危岩稳定性计算教学内容

合集下载

危岩稳定性计算.pptx

危岩稳定性计算.pptx

学海无 涯
β a
θ b
图 4.2-5a 倾到式危岩稳定性计算示意图(后缘岩体抗拉强度控制)
β a
b
图 4.2-5b 倾倒式危岩稳定性计算示意图(由底部岩体抗拉强度控制)
(2) 计算公式 ① 危岩破坏由后缘岩体抗拉强度控制时,按下式计算: 危岩体重心在倾覆点之外时:
K
1 2
f
H 2H
lk sin
——危岩体与基座接触面倾角(°),外倾时取正值,内倾时取负值; ——后缘裂隙倾角(°)。
其它符号意义同前。 ② 当危岩的破坏由底部岩体抗拉强度控制时,按下式计算:
K
1 3
f lk
b2
Wa
Q
h0
V
(1 3
hw
sin
bcos )
(4.2.5)
式中各符号意义同前。
③ 对于孤立具有缓倾软弱结构面的危岩体,后缘无裂隙水压力,其计算时 要考虑风力作用,稳定性按下式计算:
勘查区内主要为滑移式危岩、倾倒式危岩;当软弱结构面倾向山外,上覆盖 体后缘裂隙与软弱结构面贯通,在动水压力和自重力作用下,缓慢向前滑移变形, 形成滑移式危岩,其模式见图(图4.2-1);当软弱夹层形成岩腔后,上覆盖体重 心发生外移,在动水压力和自重作用下,上覆盖体失去支撑,拉裂破坏向下倾倒, 形成倾倒式危岩(图4.2-2)。
学海无涯
2. 危岩体稳定性计算及评价
1. 计算模型
目前,按照不同的标准,危岩分类系统多样,但是,从工程防治的角度按照 危岩失稳类型进行分类更有价值,可将危岩概化分为滑移式危岩、倾倒式危岩和 坠落式危岩 3 类。计算公式参考重庆市地方标准《地质灾害防治工程勘察规范》 (DB50/143-XXXX)中(30)~(50)计算公式。

对三类危岩崩塌后影响斜坡稳定性的定量计算 (1)

对三类危岩崩塌后影响斜坡稳定性的定量计算 (1)

对三类危岩崩塌后影响斜坡稳定性的定量计算摘要:三类不同运动轨迹的危岩与斜坡撞击后对斜坡稳定性的影响不同。

本文通过刚体运动学的理论知识,将三类危岩的崩塌体与斜坡作为一个系统进行研究,应用质心定理,能量守恒定律以及动量定理分别对三类危岩崩塌体与斜坡构成的系统的稳定性作了定量计算,最后给出了每个系统最终滑移距离的计算公式。

关键词:危岩斜坡定量计算1 前言危岩是指位于岩质陡坡或陡坡的崩塌源被结构面切割且稳定性较差的岩块体。

外力的作用,如地震作用,人工爆破和分化作用等使得危岩体后部主控结构面失稳断裂和贯通,大块岩体或岩石群突然从陡坡坠落。

危岩体失稳破坏的这个过程也称之为崩塌。

危岩崩塌是山岭地区最主要的一种地质灾害现象。

大量的危岩崩塌体突然从陡坡坠落,崩塌体在向下的运动过程中,垂直运行的距离远远大于水平运行距离,大块的危岩体或群体在重力作用下,获得了巨大的能量。

当不稳定斜坡受到危岩崩塌体的冲击后,危岩崩塌体的动力作用就成为了斜坡失稳的起搏器,诱使其形成崩塌滑坡。

滑坡的滑移距离能否危及该地区人民的生命安全是我们最为关心的问题。

鉴于此,具体定量的分析各类危岩崩塌体对斜坡的稳定性的影响就显得非常重要。

根据陈洪凯,唐红梅等人对危岩具体研究,可将危岩体化分为以下类:(1)坠落式危岩(2)倾倒式危岩(3)滑塌式危岩,据实地调查,陈洪凯,唐红梅等人对危岩类型的划分符合实际情况。

具体分析这三类危岩运动轨迹后发现,危岩与斜坡撞击后运动轨迹受到斜坡地形地貌和崩塌体自身形状等因素影响,很难准确地予以宏观测定以及类比分析其运动轨迹。

故采用多刚体运动学把崩塌体与斜坡作为一个系统进行研究,对这三类危岩崩塌体应用质心定理,功能转化原理以及动量定理进行定量分析计算,并认为这一细化的定量分析方法基本可信,可以为防灾治灾工作提供计算依据。

2计算过程分析2.1 坠落式危岩—斜坡系统联合运动分析计算坠落式危岩—斜坡系统:高悬于陡崖上端和岩岩腔顶部的岩体受裂隙切割脱离母岩,下部受结构面切割脱离母岩,上部及后部母岩尚未脱离,在重力作用下基本不受阻力便失稳崩塌冲击陡崖下的不稳定斜坡后联合运动。

第一章、崩塌危岩稳定性

第一章、崩塌危岩稳定性
20
地质灾害
第二节 危岩稳定性与落石运动
一、危岩分类 《地质灾害防治工程设计规范》DB50/5029—2004 失衡模式分类 滑塌式危岩 倾倒式危岩 坠落式危岩
21
地质灾害
按成因分类 : 1、单体危岩
压剪滑动型危岩 拉剪倾倒型危岩 拉裂坠落型危岩 拉裂压剪型危岩 顶部诱发破坏型危岩 底部诱发破坏型危岩
第一章、崩塌、危岩稳定性
第一章 崩塌、危岩稳定性与落石运动
1
第一章、崩塌、危岩稳定性
第一节、崩塌
一、崩塌 崩塌 — 高陡斜坡(含人工边 坡)上的岩土体完全脱离母体 后,以滚动、跳动、坠落等为 主的移动现象与过程,称为崩 塌。 特点:下落速度快、发生突然, 垂直位移大于水平位移。
2

较陡坡上的岩体在重力作用下突然
57
(9)加固山坡和路堑边坡 a、常规方法
在临近道路路基的上方,如有悬空的危岩或体积巨
3.地形地貌:江、河、湖(水库)、沟的岸坡及各种山坡、 铁路、公路边坡、工程建筑物边坡及其各类人工边坡都 是有利崩塌产生的地貌部位,坡度大于45°的高陡斜坡、 孤立山嘴或凹形陡坡均为崩塌形成的有利地形。
14
房屋选址应尽可能避
开顺层斜坡 ??
15
16
崩塌
四、可能诱发崩塌的人类工程经济活动
自然原因、 人为原因 外界原因35Fra bibliotek地质灾害
W 1 / 2(a b)LH γ P μW
W—为危岩自重(kN); —为危岩体容重(kN/m3) P—为作用在危岩体上的 地震力(kN) —地震系数。 抗震设防烈度为Ⅵ度时,
需考虑地震力,水平地震系数 取0.05,竖向地震系数取 0.03. 36
地质灾害

含断续贯通裂隙危岩体稳定性计算方法

含断续贯通裂隙危岩体稳定性计算方法

含断续贯通裂隙危岩体稳定性计算方法王智【摘要】含断续贯通裂隙危岩体是西南山区尤其是三峡库区重庆地段常见的地质灾害之一,该危岩体稳定性计算应综合考虑贯通段和未贯通段的力学参数、变形协调及应力分配问题.基于主控结构面特征建立了含断续贯通裂隙危岩体物理模型,提出了主控结构面含断续贯通裂隙的Mohr-Coulomb强度准则,并给出了参数计算表达式;建立了含断续贯通裂隙危岩体力学模型,给出了危岩体荷载计算表达式,提出了基于稳定系数的含断续贯通裂隙危岩体稳定性计算方法;将该方法运用于重庆市万州区首立山危岩体灾害稳定性计算,算例表明万州首立山8个危岩体均处于稳定状态,与根据重庆市地方标准《地质灾害防治工程设计规范》(DB50/5029-2004(简称规范))计算得到的危岩体稳定性结果相吻合;利用提出的危岩体稳定性计算方法得到的稳定系数值与"规范"值相近,具有一定的工程适用性,但其稳定系数值普遍高于"规范"值,表明"规范"过于保守.【期刊名称】《安全与环境工程》【年(卷),期】2016(023)001【总页数】5页(P22-26)【关键词】危岩体;稳定性计算方法;断续贯通裂隙;主控结构面【作者】王智【作者单位】中煤科工集团重庆设计研究院有限公司,重庆400016【正文语种】中文【中图分类】X43;TU457危岩体是指由多组岩体结构面切割并位于陡崖或陡坡上稳定性较差的岩石块体及其组合,根据失稳模式,可将危岩体分为滑塌式、倾倒式和坠落式3类。

危岩体崩塌是山区主要地质灾害类型及灾害地貌,也是三峡库区主要灾害类型,具有分布范围广、稳定性差、致灾严重等特性。

随着西部开发的迅速展开,尤其是三峡库区建造、隧道开挖等大型工程的进行,危岩体崩塌灾害日益显著。

因此,进行危岩体稳定性计算方法研究,对于其防灾减灾具有必要性和紧迫性。

含断续贯通裂隙滑塌式危岩体中的节理主要处于压剪应力状态,非贯通裂隙岩体的抗剪强度一直是国内外学者们重点研究的内容。

危岩体稳定性分析

危岩体稳定性分析
危岩体稳定性分析
———————————————————————————————— 作者:
———————————————————————————————— 日期:

附件2 危岩体稳定性分析
1、WY-01危岩体稳定性定量评价
1计算模型
从工程防治的角度按照危岩失稳类型进行分类,可将危岩概化分为滑移式危岩、倾倒式危岩和坠落式危岩3类。WY-01危岩体为滑移式危岩;其软弱结构面倾向山外,上覆盖体后缘裂隙与软弱结构面贯通,在动水压力、地震和自重力作用下,缓慢向前滑移变形,形成滑移式危岩,其模式见图(图3-1)。
图3-3 危岩崩塌破坏运动图示
根据落石的运动情况,可以分为两种状态:启动阶段、运动阶段。
1启动阶段
滑移(错断)式危岩体附着于母岩上,以一定角度的裂隙面相接,在危岩体自重和地表水渗入裂隙等因素的作用下,裂隙面锁固部位被贯通,危岩体沿母岩(或基岩)发生剪切滑移破坏。如图3-4所示。
图3-4滑移式破坏初始运动状态
WY-01
滑移式
1.65
1.37
1.36
1.13
未贯通
1.39
1.14
1.18
0.94
后缘切割面贯通40%,暴雨时完全充水
1.33
1.09
1.13
0.பைடு நூலகம்0
后缘切割面贯通50%,暴雨时完全充水
1.38
1.12
1.17
0.93
后缘切割面贯通60%,暴雨时完全充水
1.21
0.98
1.03
0.81
后缘切割面贯通70%,暴雨时完全充水
1.15
0.93
0.98
0.77
后缘切割面贯通80%,暴雨时完全充水

危岩稳定性计算(2020年整理).pdf

危岩稳定性计算(2020年整理).pdf

4.2危岩体稳定性计算及评价4.2.1计算模型目前,按照不同的标准,危岩分类系统多样,但是,从工程防治的角度按照危岩失稳类型进行分类更有价值,可将危岩概化分为滑移式危岩、倾倒式危岩和坠落式危岩3 类。

计算公式参考重庆市地方标准《地质灾害防治工程勘察规范》(DB50/143-XXXX)中(30)~(50)计算公式。

勘查区内主要为滑移式危岩、倾倒式危岩;当软弱结构面倾向山外,上覆盖体后缘裂隙与软弱结构面贯通,在动水压力和自重力作用下,缓慢向前滑移变形,形成滑移式危岩,其模式见图(图4.2-1);当软弱夹层形成岩腔后,上覆盖体重心发生外移,在动水压力和自重作用下,上覆盖体失去支撑,拉裂破坏向下倾倒,形成倾倒式危岩(图4.2-2)。

图4.2-1 滑移式危岩示意图图4.2-2 倾倒式危岩示意图1、滑移式危岩体计算(1)计算模型图4.2-3 滑移式危岩稳定性计算示意图(后缘无陡倾裂隙)图4.2-4 滑移式危岩稳定性计算示意图(后缘有陡倾裂隙)(2) 计算公式① 后缘无陡倾裂隙(滑面较缓)时按下式计算(cos sin )sin cos W Q U tg clK W Q θθϕθθ−−+=+ (4.2.1)式中:V ——裂隙水压力(kN/m),221w w h V γ=;w h ——裂隙充水高度(m),取裂隙深度的1/3。

w γ——取10kN/m 。

Q ——地震力(kN/m),按公式e Q W ξ=⨯确定,式中地震水平作用系数e ξ取0.05;K ——危岩稳定性系数;c ——后缘裂隙粘聚力标准值(kPa);当裂隙未贯通时,取贯通段和未贯通段粘聚力标准值按长度加权和加权平均值,未贯通段粘聚力标准值取岩石粘聚力标准值的0.4倍;φ——后缘裂隙内摩擦角标准值(kPa);当裂隙未贯通时,取贯通段和未贯通段内摩擦角标准值按长度加权和加权平均值,未贯通段内摩擦角标准值取岩石内摩擦角标准值的0.95倍;θ——软弱结构面倾角(°),外倾取正,内倾取负; W ——危岩体自重(kN/m 3)。

探究崩塌危岩体稳定性评价

探究崩塌危岩体稳定性评价

探究崩塌危岩体稳定性评价
崩塌危岩体是指由于地质、地形、气候等多种不利因素,已有一定形变或受力状态不良的岩体,存在发生破坏和崩塌的危险。

对于崩塌危岩体的稳定性评价,可以通过以下几个方面进行探究。

一、岩体工程地质勘察
岩体工程地质勘察是崩塌危岩体稳定性评价的基础,主要内容包括岩体结构、岩体裂隙、岩体构造、岩质性质、地形地貌、地下水位等因素的详细勘察和记录。

通过岩体工程地质勘察,可以初步确定危岩体的稳定性情况和影响因素,为后续的稳定性评价提供必要的数据基础。

二、岩体力学性质试验
岩体力学性质试验是崩塌危岩体稳定性评价的重要内容之一。

主要包括岩样采集、物理力学试验、水力力学试验、原位监测等多个方面。

这些试验可以了解岩体的强度、稳定性、变形特征、裂隙发育等情况,通过对试验数据的分析及综合评判,可以初步判断危岩体的稳定性。

三、数值模拟分析
数值模拟分析是通过计算机模拟危岩体整体受力特性和变形情况的方法,可以更加深入的探究危岩体的稳定性。

数值模拟分析可以通过有限元法、边界元法、离散元法等方式进行,实现岩体的力学、水文和水力力学相互耦合的模拟。

通过数值模拟分析,可以准确计算出危岩体的稳定性系数,提供科学的决策依据。

综上所述,崩塌危岩体稳定性评价是一个复杂的过程,需要从多个方面进行探究。

岩体工程地质勘察、岩体力学性质试验和数值模拟分析是稳定性评价的主要内容,通过将它们有机结合,丰富多样的数据得以综合分析和判断,为地质工程稳定性问题提供科学的解决方案。

危岩稳定性计算教学内容

危岩稳定性计算教学内容

危岩稳定性计算4.2危岩体稳定性计算及评价 421计算模型目前,按照不同的标准,危岩分类系统多样,但是,从工程防治的角度按 照危岩失稳类型进行分类更有价值,可将危岩概化分为滑移式危岩、倾倒式危 岩和坠落式危岩3类。

计算公式参考重庆市地方标准《地质灾害防治工程勘察 规范》 (DB50/143-2003)中(30)〜(50)计算公式。

勘查区内主要为滑移式危岩、倾倒式危岩;当软弱结构面倾向山外,上覆 盖体后缘裂隙与软弱结构面贯通,在动水压力和自重力作用下,缓慢向前滑移 变形,形成滑移式危岩,其模式见图(图4.2-1);当软弱夹层形成岩腔后,上覆 盖体重心发生外移,在动水压力和自重作用下,上覆盖体失去支撑,拉裂破坏 向下倾倒,形成倾倒式危岩(图4.2 — 2)1、滑移式危岩体计算(1)计算模型图4.2 —2倾倒式危岩示意图图4.2 —1滑移式危岩示意图图4.2 - 3滑移式危岩稳定性计算示意图(后缘无陡倾裂隙)危岩后缘图4.2 - 4滑移式危岩稳定性计算示意图(后缘有陡倾裂隙)(2)计算公式①后缘无陡倾裂隙(滑面较缓)时按下式计算(W cos Qsin U )tg clW sin Q cos(4.2.1 )式中:1V ――裂隙水压力(kN/m), V - w h W ;2h w ――裂隙充水高度(m),取裂隙深度的1/3。

w ——取10kN/m=Q 地震力(kN/m),按公式Q e W确定,式中地震水平作用系数e取0.05 ;c ――后缘裂隙粘聚力标准值(kPa);当裂隙未贯通时,取贯通段和未贯通段粘聚力标准值按长度加权和加权平均值,未贯通段粘聚力标准值取岩石粘聚力标准值的0.4倍;――后缘裂隙内摩擦角标准值(kPa);当裂隙未贯通时,取贯通段和未贯通段内摩擦角标准值按长度加权和加权平均值,未贯通段内摩擦角标准值取岩石内摩擦角标准值的0.95倍;——软弱结构面倾角(°,外倾取正,内倾取负;3W ――危岩体自重(kN/m )。

危岩体稳定性计算--坠落式(有)

危岩体稳定性计算--坠落式(有)

L 1危岩体体积(m 3)γ
20危岩体重度(kN/m 3)W
20危岩体自重(kN )c
危岩体粘聚力标准值(kPa )φ
危岩体内摩擦角标准值(°)f lk
危岩体抗拉强度标准值(kPa )a 0
1重心到潜在破坏面的水平距离(m )b 0
1重心到过潜在破坏面形心的铅锤距离(m )ζ
危岩体抗弯力矩计算系数Q
5地震力H
危岩体的高度(m )h 后缘裂隙的深度(m )
分子
0c (H-h )-Qtgφ分母
20W F10计算结果
分子0ζ*f lk *(H-h )2
分母25W*a 0+Q*b 0
F20
计算结果1:ζ依据潜在破坏面的形态取值,一般可取1/12~1/6,当潜在破坏面为矩形时可取1/6。

2:f lk 根据岩石抗拉强度标准值乘以0.2的折减系数确定。

3:地震力Q=0.05*W 。

坠落式危岩稳定性计算(后缘有陡倾裂隙)稳定系数F 取F1和F2中较小者。

第一章、崩塌危岩稳定性.ppt

第一章、崩塌危岩稳定性.ppt
10
地震引发安县至高川乡公路崩 塌造成滞留车辆120多人死亡
11
两侧危岩,特别是东侧危岩顶部已开裂达20厘 米,裂缝中树木较为茂盛,根部生长在裂缝中;
12
二、崩塌分类
崩塌
❖按崩塌体的物质组成分为两大类:
土崩 — 是产生在土体中的。 岩崩 — 是产生在岩体中的。
三、崩塌的形成条件 岩土类型、
地质构造、 地形地貌。
第4危岩体
主控面倾角小于70° 关键块体为底部危岩块体
第3危第岩2危体岩体 第1危岩体 关键块
软岩
33
地质灾害
二、荷载类型及其组合 作用在危岩上的荷载主要包括岩
体自重、作用在危岩上的地震力以及 存在于危岩体主控结构面内的裂隙水 产生的裂隙水压力。
34
地质灾害
1、重力及地震力
对于一个具体的危岩而言,通过现场勘查 可以确定其几何尺寸,即沿着陡崖或陡坡走 向方向的长度,用L表示(m);宽度是指沿 着陡崖或陡坡倾向方向的长度,通常与临空 面垂直,可简化为梯形,顶部宽度用b表示 (m),底部宽度用a表示(m);高度H为 岩体顶部至底部的高差(m)。
它们统称地质条件,它是形成崩塌的基本条件。
13
崩塌
1.岩土类型:一般而言,各类岩、土都可以形成崩塌,但 不同类型,所形成崩塌的规模大小不同。
2.地质构造:各种构造面,如节理、裂隙面、岩层界面、 断层等,对坡体的切割、分离,为崩塌的形成提供脱离 母体(山体)的边界条件。
3.地形地貌:江、河、湖(水库)、沟的岸坡及各种山坡、 铁路、公路边坡、工程建筑物边坡及其各类人工边坡都 是有利崩塌产生的地貌部位,坡度大于45°的高陡斜 坡、孤立山嘴或凹形陡坡均为崩塌形成的有利地形。
刷坡脚或浸泡坡脚、削弱坡体支撑或软化岩、土,

坠落式危岩稳定性计算

坠落式危岩稳定性计算
危岩 崩 塌点数 量 多 、 分布广 , 其 中有 代表 性 的危 岩 崩
许成 果 , 如: 李佳壕 、 吴 礼 舟认 为危 岩失 稳 源 自主控
结 构面 的断 裂失稳 , 并 运用 A B Q U S有 限元 软 件绘 制 了危岩 应力 强度 因子 在 各 因 素影 响下 的 趋 势 图 , 作 为 预测危 岩 失 稳 的 依 据 ; 李克森 、 冯 建 国结 合 断 裂力 学 和水力 学 理 论 , 建 立 了 在渗 透 力 作 用 下压 剪
坠 落 式 危 岩 稳 定 性 计 算
高 培德 , 张 刚
( 重庆 6 0 7勘察实业总公司 , 重庆 4 0 0 0 5 6 ) 摘要: 危 岩崩 塌灾害作为 山区主要地质 灾害之 一, 发生 时往往造成 严重 的生命 财产损 失。本 文 以坠 落式危岩 为例, 在野外 实地 调查 的基础上 , 提 出 了坠落式危岩力学分析 的物理模 型, 并构建 了其 断裂 分析模 型, 按 断裂 力学 方法, 求解 了坠落式危 岩主控结构面尖端应力 强度 因子 I 和 KⅡ , 采用 最大周 向应力理论 , 计 算 了主控结果 面尖 端 的相 当应力强度 因子。最 后, 定 义 了坠 落式危 岩 断裂 稳定 性系 数, 给 出 了坠落 式危 岩 稳定 状 态 的断 裂参 数
和拉剪复合型危岩主控结构面相当应力强度 因子和 断裂 扩展 角 的计算 方 法 ; 于 明 明等 采 用 悬臂 梁 力
学模 型对 四川 省苍溪 县 三清村 高 边坡 W1危 岩体 的 稳定 性进 行 了分 析 和评 价 , 结果 与野 外 宏 观 判 断结
论 基 本一致 ; 何 晓英 等从 能量 角 度 分 析 了长 江 巫
判据。
关 键词: 坠 落式危 岩 ; 断裂力 学; 主控结构 面; 应力强度 因子 ; 断裂 判据 ; 稳定性系数

三峡库区危岩稳定性计算方法及应用

三峡库区危岩稳定性计算方法及应用

τ f = σ tan ϕ + c
(12)
稳定性系数为 H (W cos β − P sin β − Q) tan ϕ + c sin β K= W sin β + P cos β 对于组合一,危岩体稳定性系数为 H W cos β tan ϕ + c sin β K1 = W sin β 对于组合三,危岩体稳定性系数为 (4)
坠落式危岩稳定性计算tablecalculationresultsunstablefallingrock编号荷载组合裂隙深度单位长度重量破裂面倾角kpa岩体内摩擦角kpa结构面内摩擦角kpa等效内摩擦角地震力kn稳定性系数101880010085400357025103260108w9101880010085400357025103260501051251011550025012583400357025964258104w20125101155002501258340035702596425862510111119548421011078400357025115264131w2311119548421011078400357025115264551271565143909751508040035702592257103w31156514390975150804003570259225775100滑塌式危岩稳定性计算tablecalculationresultsunstableslidingrock编号荷载组合裂隙深度单位长度重量破裂面倾角kpa岩体内摩擦角kpa结构面内摩擦角kpa等效内摩擦角总静水压力kn地震力kn稳定性系数20595185779947520575400357025102226019012059518577994752057540035702510222607606104w15205951857799475205754003570251022260190110251149541403517257240035702512742675019541403517257240035702512742672006104w269541403517257240035702512742675018631051565142925731311257840035702592257108915651429257313112578400357025922574356119w271565142925731311257840035702592257108956313011851137493511006240035702570250672118511374935110062400357025702502689102w351185113749351100624003570257025067255106255158252550674

岩体稳定性分析计算

岩体稳定性分析计算

因此,稳定安全系数Ks:
Ks
T
f1 • (V1 cos H sin U1 ) c1 L1 R H cos V1 sin
第五章 岩体稳定性分析
Ⅱ 等Ks法(等稳定系数法)
“抗滑体极限平衡法”的基本 观点:根据“抗滑体”处于极限 平衡状态,计算推力R并进一步计 算滑动体抗滑稳定系数。这种方 法必然导致滑动体与抗滑体具有 不同的安全系数。
⑵ 岩基深层的抗滑计算
若岩基中存在软弱结构面AB,需验算坝下的岩体是否 可能沿此结构面并通过另一可能的滑动面BC产生滑动。
通常,滑动面BC的位置及 其倾角β均未知。因此,计 算稳定系数时,要选定若干 个可能的滑动面BC分别进行 试算,以便求得最小稳定系 数及其相应的危险滑动面。 当BC选定后,有两种方法计 算稳定系数Ks
V
1 2

w
Z
w
• Zw
1 2
w
Z
2 w
滑面AE长: L H Z
sin
因水压而在滑动面上产生浮力U:
1
1
HZ
U 2 w Z w • L 2 w Z w • sin
滑体ADCE面积
S ADCE
S ADCG
S AEG
1 H • (DC AG) 1
2
2
AG • (H Z )
滑体ADCE重量W
第五章 岩体稳定性分析
Ⅰ 抗滑体极限平衡法
当单斜滑移面倾向下游时,由抗滑体极限平衡原理,
抗滑力τ: f0(V cos U H sin ) cL
下滑力T: T H cos V sin
稳定系数Ks:
Ks
f0 (V cos U H sin ) cL H cos V sin

危岩稳定性分析方法

危岩稳定性分析方法

---------------------------------------------------------------最新资料推荐------------------------------------------------------危岩稳定性分析方法第 26 卷第2期应用力学学报Vo l. 26No. 22009 年 6 月CHINESE JOURNAL OF APPLIED MECHANICSJun. 2009文章编号 : 1000 - 4939( 2009) 02 -0278 - 05危岩稳定性分析方法陈洪凯1, 2( 重庆交通大学*鲜学福2400074 重庆 ) 1唐红梅( 重庆大学1, 2王林峰1重庆 ) 2400040摘要: 通过试验建立了同时考虑危岩主控结构面贯通率和防治工程安全等级的危岩主控结构面抗剪强度参数贯通率法 ; 按照出现频率 , 将作用在危岩体上的荷载拟定为三种荷载组合 ( 工况) 。

认为处于特大型水利工程区或高频率强烈地震区的一级防治工程, 应将设计荷载组合调整为/ 自重 + 裂隙水压力( 暴雨状态 ) + 地震力0 ; 基于极限平衡理论详细推导了滑塌式危岩、倾倒式危岩和坠落式危岩在不同荷载组合下的稳定系数计算方法 , 结合稳定性评价标准, 系统建立了危岩稳定性分析方法。

应用这种危岩主控结构面抗剪强度参数贯通率法确定的 c、 U 值比规范推荐的长度加权方法随机性要小, 经 2001~ 2007 年现场观测验证计算结果是比较符合实际情况的。

关键词 : 岩石力学; 主控结构面 ; 抗剪强度参数 ; 稳定性分析方法; 危岩中图分类号 : P 642 1 21; O3461 1 文献标识码: A 文献 [ 4 - 7] 运用模糊综合评判法、赤平极射投影法及极限平衡理论对危岩块体进行了定性、半定量分析; 文献[ 8] 初步建立了各类1/ 22危岩的极限平衡分析法。

危岩是指由多组岩体结构面切割并位于陡崖或陡坡上稳定性较差的岩石块体及其组合[ 1] , 是产生崩塌灾害的初始物质条件[ 2] 。

谈危岩稳定性计算分析与治理方法

谈危岩稳定性计算分析与治理方法

谈 危 岩 稳 定 性 计 算 分 析 与 治 理 方 法
王 伟 张本 涛
7 1 0 0 6 5 ) ( 西安中交公路 岩土工程有限责任公 司, 陕 西 西安
摘 ,要 : 根据危岩 的现场分 类情况 , 对危岩的稳 定性进行 了计 算 , 并 建立 了危岩体模 型 , 通过对 危岩体 破坏形 式及 失稳模 式 的判 断, 提 出了危岩治理方 案 , 指 出危岩体 的治理应充分考虑施 工可行性、 难易度及经济成本 。
2 . 1 建立危 岩体 模 型
W9危岩体模型 图见 图 1 。
角, ( 。 ) , 外倾取 正 , 内倾取负 ; W为危岩体 自 重, k N 。 后缘有陡倾裂隙、 滑面缓倾时 , 滑移式危岩稳定性按下式计算 :


旦 二 堑 旦 = 望 旦 二 2 尘± ! :
第3 9卷 第 1 3期

7 0・
2 0 1 3 年 5 月
山 西 建 筑
SHANXI ARCHI TECTURE
V0 I . 3 9 No . 1 3 Ma v. 2 01 3
文章 编号 : 1 0 0 9 - 6 8 2 5 ( 2 0 1 3) 1 3 - 0 0 7 0 - 0 3

度, m, 取裂隙深 度 的 1 / 3 , 取1 0 k N / m; Q为地震 力 , k N / m, 按公 式 Q= ×W确定 , 式 中地震水平作用系数七级烈度地 区 取 0 . 1 ; K为危岩稳定性 系数 ; c 为后缘裂 隙粘 聚力标 准值 , k P a , 当裂 隙未 贯通 时 , 取贯通段和未贯 通段粘聚力标 准值按 长度加权 和加权平 均值 , 未贯通段粘聚力标 准值取岩石粘 聚力标准值 的 0 . 4倍 ; ( b为 后缘裂隙 内摩擦角标 准值 , k P a , 当裂 隙未贯 通 时 , 取贯 通段 和 未 贯通段 内摩擦角标准值按长度加权 和加权平 均值 , 未贯通 段 内摩 擦角标准值取岩石 内摩擦角标准值 的 0 . 9 5倍 ; 0为软弱 结构 面倾

探究崩塌危岩体稳定性评价

探究崩塌危岩体稳定性评价

探究崩塌危岩体稳定性评价崩塌危岩体稳定性评价是地质灾害防治工作中的重要环节,通过对崩塌危岩体的稳定性进行全面的评价,可以为地质灾害防治工作提供科学依据和技术支持。

本文将对崩塌危岩体稳定性评价的相关内容进行探究,以期加深对该领域的理解。

一、评价目的与意义崩塌是指岩体或土体在地下水和重力作用下,由原状岩体或土体失稳而向下滑移、碎裂或滚落,并由此引起的地质灾害。

崩塌危岩体稳定性评价的目的是为了了解危岩体的稳定状况,评估其发生崩塌的可能性和危险程度,为地质灾害防治提供科学依据。

而对崩塌危岩体稳定性进行评价的意义在于:1. 为地质灾害防治提供科学依据。

通过对危岩体的稳定性进行评价,可以为地质灾害的发生提供预警,并为地质灾害防治提供科学依据和技术支持。

2. 为工程建设提供重要参考。

在工程建设中,崩塌危岩体的稳定性评价可以帮助工程师了解工程地质条件,规划合理的工程布局,减少地质灾害对工程建设的影响。

3. 为地质环境保护提供依据。

崩塌危岩体稳定性评价可以帮助人们更好地评估岩体稳定性对周边环境的影响,为地质环境保护提供依据,保护自然生态环境。

二、评价方法崩塌危岩体稳定性评价是一项复杂的工作,需要系统地进行岩体力学参数测试、工程地质勘察、现场调查等多种手段的综合运用。

一般来说,崩塌危岩体稳定性评价主要包括以下几个方面的内容:1. 岩体力学参数测试。

通过对危岩体的岩石抗压强度、岩石抗拉强度、岩石抗剪强度等力学参数进行测试,了解危岩体的力学性质。

2. 工程地质勘察。

通过地质钻探、野外地质调查等手段,了解危岩体的地质构造、岩性分布、构造断裂带等情况。

3. 现场调查。

对危岩体的现场情况进行细致的调查,了解危岩体的裂缝、滑坡体、滑坡界限等情况。

4. 数值模拟分析。

采用数值模拟软件如 FLAC、PHASES等,对危岩体的稳定性进行数值模拟分析,评估危岩体的稳定状况。

5. 综合评价。

综合以上多种手段的结果,进行危岩体稳定性的综合评价,给出稳定性评价报告并提出针对性的防治措施建议。

探究崩塌危岩体稳定性评价

探究崩塌危岩体稳定性评价

探究崩塌危岩体稳定性评价
崩塌危岩体稳定性评价是指对岩体的崩塌危险程度进行定量评估的过程。

崩塌危岩体稳定性评价是岩体工程稳定性评价的一种特殊形式,主要用于评估在工程建设中存在崩塌危险的岩体,以确定相应的危险等级和采取相应的治理措施。

崩塌危岩体稳定性评价主要包括以下几个方面的内容:
1.岩体的物理力学性质评价:包括岩体的岩性、强度、韧性、脆性等方面的评价。

这些物理力学性质对于岩体的稳定性具有重要的影响,需要通过实验和野外观测来获得。

4.岩体变形与破坏特征评价:通过观测与监测岩体的变形与破坏特征,并对其进行判断与评价。

这些评价结果可以用来确定岩体的临界状态和潜在崩塌风险。

崩塌危岩体稳定性评价的方法主要包括定性评价和定量评价两种。

定性评价是根据经验或者判断来进行评价,主要是通过判断岩体的稳定性指标和运动模式来进行评价。

定量评价是通过数学模型和计算方法来进行评价,通常采用稳定性分析方法,如平衡法、等效连续体法和离散元法等。

在进行崩塌危岩体稳定性评价时,需要收集岩体的相关资料和数据,并进行现场勘察与观测,对岩体的物理力学性质和结构特征进行评价,然后根据评价结果进行稳定性分析和评价,确定岩体的稳定性状况和危险等级,并提出相应的治理措施和建议。

崩塌危岩体稳定性评价是岩体工程中重要的一环,可以为工程建设提供科学的指导和决策依据,保障工程的安全稳定进行。

矿山开采岩层稳定性评价培训

矿山开采岩层稳定性评价培训

矿山开采岩层稳定性评价培训一、培训背景和目的矿山开采过程中,岩层稳定性评价是确保矿山安全和高效开采的重要环节。

为了提高矿山从业人员的专业素养和能力,本次培训旨在深入介绍矿山开采岩层稳定性评价的基本概念、方法和技术,使学员能够全面了解岩层稳定性评价的原理和应用,提高其在实际工作中的能力和水平。

二、培训内容1. 岩层稳定性评价的概念和意义- 岩层稳定性评价的定义和基本原理- 岩层稳定性评价在矿山开采中的重要性和应用价值2. 岩层稳定性评价的基本方法- 岩层地质调查和采样技术- 岩层工程力学参数测试和分析方法- 岩层稳定性评价的定性和定量方法3. 岩层稳定性评价的相关技术和工具- 岩层地质雷达技术及其应用- 岩层声波测试技术及其应用- 岩层数字化建模和仿真技术4. 岩层稳定性评价的实际案例分析- 不同类型矿山的岩层稳定性评价案例- 岩层稳定性评价在矿山开采中的应用实践5. 岩层稳定性评价的风险控制和预警机制- 岩层稳定性评价中的风险识别和评估- 岩层稳定性预警技术和方法三、培训方法本次培训将采用多种教学方法,包括理论讲解、案例分析、现场观摩和实际操作等。

通过理论与实践相结合的方式,提高学员的学习效果和能力。

四、培训对象本次培训适合从事矿山开采工作的技术人员、工程师和管理人员,以及相关科研院所和高校的研究人员。

五、培训师资本次培训将邀请具有丰富矿山开采岩层稳定性评价经验的专家和学者担任讲师,确保培训内容的权威性和实用性。

六、培训时间和地点本次培训计划于XX年XX月XX日在XX地举行,具体时间和地点将另行通知。

七、培训收益通过本次培训,学员将获得以下收益:1. 全面了解岩层稳定性评价的基本概念、方法和技术;2. 掌握岩层稳定性评价的实际应用技巧和方法;3. 提高在矿山开采中的岩层稳定性评价能力和水平;4. 学习岩层稳定性评价的最新技术和发展趋势。

八、培训证书学员完成培训并通过考核后,将获得由主办单位颁发的《矿山开采岩层稳定性评价培训证书》,以资证明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

危岩稳定性计算
4.2危岩体稳定性计算及评价
4.2.1计算模型
目前,按照不同的标准,危岩分类系统多样,但是,从工程防治的角度按照危岩失稳类型进行分类更有价值,可将危岩概化分为滑移式危岩、倾倒式危岩和坠落式危岩 3 类。

计算公式参考重庆市地方标准《地质灾害防治工程勘察规范》(DB50/143-2003)中(30)~(50)计算公式。

勘查区内主要为滑移式危岩、倾倒式危岩;当软弱结构面倾向山外,上覆盖体后缘裂隙与软弱结构面贯通,在动水压力和自重力作用下,缓慢向前滑移变形,形成滑移式危岩,其模式见图(图4.2-1);当软弱夹层形成岩腔后,上覆盖体重心发生外移,在动水压力和自重作用下,上覆盖体失去支撑,拉裂破坏向下倾倒,形成倾倒式危岩(图4.2-2)。

图4.2-1 滑移式危岩示意图图4.2-2 倾倒式危岩示意图
1、滑移式危岩体计算
(1)计算模型
图4.2-3 滑移式危岩稳定性计算示意图(后缘无陡倾裂隙)
图4.2-4 滑移式危岩稳定性计算示意图(后缘有陡倾裂隙)
(2) 计算公式
① 后缘无陡倾裂隙(滑面较缓)时按下式计算
(cos sin )sin cos W Q U tg cl
K W Q θθϕθθ
--+=
+
(4.2.1)
式中:V ——裂隙水压力(kN/m),2
2
1w w h V γ=;
w h ——裂隙充水高度(m),取裂隙深度的1/3。

w γ——取10kN/m 。

Q ——地震力(kN/m),按公式e Q W ξ=⨯确定,式中地震水平作用系数
e ξ取0.05;
K ——危岩稳定性系数;
c ——后缘裂隙粘聚力标准值(kPa);当裂隙未贯通时,取贯通段和未
贯通段粘聚力标准值按长度加权和加权平均值,未贯通段粘聚力标准值取岩石粘聚力标准值的0.4倍;
φ——后缘裂隙内摩擦角标准值(kPa);当裂隙未贯通时,取贯通段和

贯通段内摩擦角标准值按长度加权和加权平均值,未贯通段内摩擦角标准值取岩石内摩擦角标准值的0.95倍;
θ——软弱结构面倾角(°),外倾取正,内倾取负; W ——危岩体自重(kN/m 3)。

② 后缘有陡倾裂隙、滑面缓倾时,滑移式危岩稳定性按下式计算:
(cos sin sin )sin cos cos W Q V U tg c l
K W Q V θθθφθθθ
---+⋅=
++ (4.2.2)
式中符号同前。

2、 倾倒式危岩计算 (1) 计算模型
图4.2-5a 倾到式危岩稳定性计算示意图(后缘岩体抗拉强度控制)
图4.2 (2) 计算公式
① 危岩破坏由后缘岩体抗拉强度控制时,按下式计算:
危岩体重心在倾覆点之外时:
012cos()2sin 3sin cos cos()sin 3sin cos lk
w H
H h b
f K h H h b
W a Q h V βθβ
βθβθββθ⎡⎤-+-⎢⎥
⎣⎦=
⎡⎤-⋅+⋅+++-⎢⎥
⎣⎦
(4.2.3) 危岩体重心在倾覆点之内时:
012cos()2sin 3sin cos cos()sin 3sin cos lk w H h H h b
f W a K h H h b
Q h V βθββθβθββθ⎡⎤--⋅⋅+-+⋅⎢⎥⎣⎦=
⎡⎤-⋅+++-⎢⎥
⎣⎦
(4.2.4) 式中:h ——后缘裂隙深度(m );
w h ——后缘裂隙充水高度(m );
H ——后缘裂隙上端到未贯通段下端的垂直距离(m ); a ——危岩体重心到倾覆点的水平距离(m );
b ——后缘裂隙未贯通段下端到倾覆点之间的水平距离(m );
0h ——危岩体重心到倾覆点的垂直距离(m);
lk f ——危岩体抗拉强度标准值(kPa ),根据岩石抗拉强度标准值乘以0.4的折减系数确定:
θ——危岩体与基座接触面倾角(°),外倾时取正值,内倾时取负值;
β——后缘裂隙倾角(°)。

其它符号意义同前。

② 当危岩的破坏由底部岩体抗拉强度控制时,按下式计算:
201
31(cos )
3sin lk w
f b Wa K h Q h V b ββ
⋅+=
⋅++ (4.2.5) 式中各符号意义同前。

③ 对于孤立具有缓倾软弱结构面的危岩体,后缘无裂隙水压力,其计算时要考虑风力作用,稳定性按下式计算:
20
1
3
()lk f b Wa K Q F h ⋅+=+⋅风 (4.2.6)
式中:F 为风力,2(sin )F S V ρω=,ρ为空气密度,标准状态下
31.293/kg m ρ=,S 为迎风面积,v 为风速,计算时取10/v m s =,ω为风向与迎风面积间的夹角。

4.2.2危岩稳定性计算
根据危岩结构特征和形态特征,结合雁门沟1、2号危岩崩塌分析结果,本区危岩破坏模式主要为滑移式和倾倒式危岩。

(1)计算参数:
根据取样室内资料,危岩体天然重度26.4kN/m3,饱和重度26.7kN/m3;天然抗压强度标准值19.67MPa,饱和抗压强度标准值14.07MPa,天然抗拉强度标准值0.68MPa,饱和抗拉强度标准值0.59Mpa。

由于勘查区内无条件进行现场试验,根据现场对危岩的调查后反复分析,灰岩裂隙面大多平直光滑,呈微张状,部分石英脉充填,裂隙面结合差,裂隙抗剪强度低,查《建筑边坡工程技术规范》(GB50330-2002)表4.5.1,综合确定,裂隙抗剪强度为:内摩擦角取25~27°,粘聚力47~57kPa。

裂隙水压力按裂隙蓄水能力和降雨情况确定。

(2)计算工况
计算工况选取如下三种:
工况Ⅰ:自重+现状裂隙水压力,(其中裂隙充水高度取取裂隙深度的
1/5~1/2);
工况Ⅱ:自重+暴雨(强度重现期按20a考虑),(其中裂隙充水高度取取裂隙深度的1/2~2/3);
工况Ⅲ(校核工况):自重+地震+暴雨(强度重现期按20a考虑),(其中裂隙充水高度取取裂隙深度的1/2~2/3);
4.2.3计算结果
危岩稳定性计算结果见下表(评价结果依据表4-5):
表4-5 危岩稳定性系数及稳定性评价
4.2.4危岩稳定性评价
(1)危岩稳定性评价标准
根据《滑坡防治工程勘查规范》(DZ/T0218-2006),防治工程等级一级,滑塌式危岩稳定安全系数取值为1.3, 倾倒式危岩稳定安全系数取值为1.5,可建立下列评价标准:
表4-6 危岩稳定性评价标准
(2)危岩稳定性评价
从表4-5可知:5个危岩体天然状态下都处于稳定状态,暴雨或连续降雨条件下处于基本稳定~欠稳定状态,地震工况均处于不稳定状态。

危岩一区有危岩体4个,编号为WY1-1,WY1-2,WY1-3,WY1-4;危岩二区的危岩体WY2;根据野外专项调查,这些危岩体现状处于稳定或基本稳定状态,暴雨期处于基本稳定状态。

经危岩稳定性计算:工况1条件下WY1-1,WY1-2,WY1-3,WY1-4和WY2,5个危岩体均处于稳定状态;工况2(暴雨)条件下仅有号危岩体WY1-1,WY1-2,WY1-3,WY1-4处于基本稳定状态,其余都处于欠稳定状态;工况3(地震)条件下危岩均处于不稳定状态。

由于这5个危岩体对居民区生命和房屋、剑青公路、威胁较大,这些危岩体急需治理。

相关文档
最新文档