北航第二次应用泛函作业

合集下载

泛函分析讲稿-FudanUniversity

泛函分析讲稿-FudanUniversity

1.3.1 内点、开集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.2 极限点、闭集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.3 内积空间 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 度量空间中的点集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.1 线性空间 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2 赋范线性空间 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
i
ii
目录
1.6.1 标准正交系 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 1.6.2 正交系的完备性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 1.6.3 线性无关向量系的正交化 . . . . . . . . . . . . . . . . . . . . . . . . 51 1.6.4 可分Hilbert空间的模型 . . . . . . . . . . . . . . . . . . . . . . . . . 52 1.7 稠密性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 1.7.1 稠密性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 1.7.2 可分空间 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 1.8 紧性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 1.8.1 相对列紧集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 1.8.2 完全有界集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 1.8.3 Arzel`a-Ascoli定理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 1.8.4 列紧集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 1.8.5 紧集上的连续映照 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 1.9 习题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

泛函习题答案(大部分)

泛函习题答案(大部分)
i =1 ∞
ii) ∀ε > 0,∃N = N (ε ),使对任意 x = (ξ i ) ∈ A,当 n ≥ N时, 皆有 | ξi | p < ε . ∑
i=n ∞
必要性:i) 是显然的,下证 ii) 1 ε 设 ε > 0,取 A 的一个有限的 ( )1/ p − 网:x1 L xk, 2 4 设 x j = (ξ i( j ) ) ( j = 1, L , k ), ⎛ ( j) p ⎞ 取自然数 N,使 ⎜ ∑ | ξ i | ⎟ ⎝ i=N ⎠
11
58 . 证明可分距离空间的子 空间是可分的 .
设 X 是距离空间, X 0 是 X 的子空间,设 X 是可分的,取 X 的 一个可数稠集 { x1 , x 2 , L} = A ⊂ X,对每一对自然数 ( n, m ),记 1 Bn , m = B ( x n , ).令 B = { Bn , m | Bn , m I X 0 ≠ ϕ },则至多是一可列集, m 对每个 Bn , m ∈ B ,任取 x n , m ∈ Bn , m I X 0,则 { x n , m } 是一可数集或 1 ε 有限集 . 设 x ∈ X 0, ε > 0,取 m 满足 0 < < ,再取 x n 使 m 4 1 1 ρ ( x , x n ) < ,于是 Bn , m = B ( x n , ) I X 0 ≠ ϕ ,且 m m 1 1 2 ρ ( x , x n ,m ) ≤ ρ ( x , x n ) + ρ ( x n , x n ,m ) < + = < ε m m m 因为 ε > 0 是任意的,故 { x n , m } 在 X 0 中稠密, ({ x n , m } ⊂ X 0 ),即 X 0 是可分的 .

北航最优化方法有关大作业参考

北航最优化方法有关大作业参考

1流量工程问题重述定一个有向网 G=(N,E) ,此中 N 是点集, E 是弧集。

令 A 是网 G 的点弧关矩,即 N×E 矩,且第 l 列与弧里 (I,j) ,第 i 行元素 1 ,第 j 行元素 -1 ,其他元素 0。

再令b m=(b m1 ,⋯,b mN )T,f m =(f m1,⋯ ,f mE )T,可将等式束表示成:Af m=b m本算例一典 TE 算例。

算例网有 7 个点和 13 条弧,每条弧的容量是 5 个位。

别的有四个需求量均 4 个位的源一目的,详细的源点、目的点信息如所示。

里了,省区了未用到的弧。

别的,弧上的数字表示弧的号。

此,c=((5,5 ⋯,5) 1 )T,×13依据上述四个束条件,分求得四个状况下的最决议量x=((x 12 ,x13,⋯ ,x75)1×13 )。

1 网拓扑和流量需求7 节点算例求解算例1(b1=[4;-4;0;0;0;0;0]T)转变为线性规划问题:Minimize c T x1Subject to Ax1=b1x1>=0 利用 Matlab 编写对偶纯真形法程序,可求得:最优解为 x1*=[4 0 0 0 0 0 0 0 0 0 0 0 0] T对应的最优值 c T x1=201.2.2 算例 2(b2=[4;0;-4;0;0;0;0] T)Minimize c T x2Subject to Ax2=b2X2>=0 利用 Matlab 编写对偶纯真形法程序,可求得:最优解为 x2*=[0 4 0 0 0 0 0 0 0 0 0 0 0]T对应的最优值 c T x2=201.2.3 算例 3(b3=[0;-4;4;0;0;0;0] T)MinimizeTc x3Subject to Ax3=b3X3>=0 利用 Matlab 编写对偶纯真形法程序,可求得:最优解为 x3*=[4 0 0 0 4 0 0 0 0 0 0 0 0] T对应的最优值 c T x3=40算例4(b4=[4;0;0;0;0;0;-4]T )Minimize c T x4Subject to Ax4=b4X4>=0利用 Matlab 编写对偶纯真形法程序,可求得:最优解为 x4*=[4 0 0 4 0 0 0 0 0 4 0 0 0] T对应的最优值 c T x4=601.3 计算结果及结果说明算例1(b1=[4;-4;0;0;0;0;0]T)算例 1 中,由 b1 可知,节点 2 为需求节点,节点 1 为供应节点,由节点 1 将信息传输至节点 2 的最短路径为弧 1。

2010新版北航研究生应用数理统计习题参考答案

2010新版北航研究生应用数理统计习题参考答案

n
xi 1
2

1
n
2n
e
2
(1 x )
, 1 xi ( i )
由 2 0 ,则似然函数为 1 的单调递增函数,且 - 1 xi ( i ) ,由极大似
ˆ min{x } 。 然估计定义可知, 1 的极大似然估计为 1 i
i
对 2 , ln L(1, 2 ) -n ln 2
- 2 , x1 ,x 2 ,…,x n 为来自总体的简单样本,求参数 1 及 2 的极大似然估计。
解:由 f ( x;1 , 2 ) 为概率密度函数可知, 2 0 。 似然函数为 L(1 , 2 ; x1 , x2 ,, xn )
1

2n
e

i 1
第 6 页 /第 23 页
北京航空航天大学
研究生应用数理统计
书后部分习题解答整理版
ˆ 0 min{xi } 。 x 0 的极大似然估计为 x
i
12. ( P81.11) )设总体 X 的概率密度函数为 f ( x;1 , 2 )
1
2
e

x 1
2
, - 1 x ,
2 1m
2

2 (n 1) S 2 n
2
( x 1 ) ( y 2 )
2 (m 1) S12m (n 1) S 2 n mn2
2
m

2
n
~ t (m n 2) 。
6. ( P80.1)设总体 X 服从两点分布 B(1, ) , 0 1 , x1 , x 2 ,…, x n 为简单随机样 本,⑴ 求 q( ) Var ( x ) ;⑵ 求 q( ) 的频率估计。

泛函分析习题解答

泛函分析习题解答

因为P, Q, P Q 是投影, 所以KerP = (ranP )⊥ , KerQ = (ranQ)⊥ , KerP Q = (ranP Q)⊥ , ∴ KerP Q ⊃ KerP ∩ KerQ. 其次证明KerP Q ⊂ KerP ∩ KerQ. 对∀x ∈ KerP Q, ∵ P 是投影, ∴ P 是幂等的, ∴ H = KerP + ranP, h = (h − P h) + P h, ∀h ∈ H. ∴ x = (x − P x) + P x, 其中x − P x ∈ KerP. 注 意 到, P Q(x − P x) = P Qx − P QP x = P Qx − P P Qx(∵ P Q 是 投 影⇐⇒ P Q = QP ) = P Qx − P 2 Qx = P Qx − P Qx = 0, ∴ x − P x ∈ KerP Q. ∵ KerP Q 是线性空间, ∴ P x = x − (x − P x) ∈ KerP Q, (∵ x ∈ KerP Q, x − P x ∈ KerP Q), ∴ P Q(P x) = 0, ∴ Q(P x) = QP x = QP (P x) = P Q(P x) = 0, 这表明P x ∈ KerQ. ∴ x = (x − P x) + P x ∈ KerP + KerQ, ∴ KerP Q ⊂ KerP + KerQ. 综上所述:KerP Q = KerP ∩ KerQ.
2
0, ∀h ∈ H,
= 0 =⇒ QP (h) = 0, and < QP h, P h >= 0.
(B)P + Q 是投影=⇒ ranP + ranQ = ran(P + Q), Ker(P + Q) = KerP ∩ KerQ. 证明:I)P + Q 是投影=⇒ ranP + ranQ = ran(P + Q) 1.如果P = 0 or Q = 0 ,显然。 2.如果P = 0 and Q = 0,这时可以证明P + Q = 0.(上面已证) 首先,ran(P + Q) ⊂ ranP + ranQ ,显然。 下证ran(P + Q) ⊃ ranP + ranQ,即∀h, g ∈ H, P h + Qg ∈ ran(P + Q). ∵ P + Q = 0 是投影, ∴ P + Q : H −→ ran(P + Q)是 正 交 投 影 , 而(P + Q)(P h + Qg ) = P (P h + Qg ) + Q(P h + Qg ) = P 2 h + P Qg + QP h + Q2 g = P h + Qg ,(这 是 因 为 由 (A) 知P + Q 是 投 影⇐⇒ ranP ⊥ranQ ⇐⇒ ranP ⊂ (ranQ)⊥ = KerQ(Q 是投影),ranQ ⊂ (ranP )⊥ = KerP (P 是投影), ∵ QP h ∈ ranP ⊂ KerQ,∴ QP h = 0.同理,P Qg = 0.) ∴ P h + Qg ∈ ran(P + Q), ∴ ranP + ranQ ⊂ ran(P + Q). 2

泛函分析在教育技术中的创新应用有哪些

泛函分析在教育技术中的创新应用有哪些

泛函分析在教育技术中的创新应用有哪些在当今数字化和信息化的时代,教育技术正经历着前所未有的变革和发展。

而泛函分析这一数学领域的重要分支,也逐渐在教育技术中展现出其独特的价值和创新应用。

泛函分析是现代数学的一个重要分支,它主要研究无穷维空间上的函数、算子和泛函的性质和结构。

虽然它看起来高深莫测,但实际上与教育技术的多个方面有着紧密的联系。

首先,在在线教育平台的优化方面,泛函分析发挥着关键作用。

随着在线教育的普及,大量学生同时访问和使用在线教育平台,这就对平台的稳定性、响应速度和资源分配提出了很高的要求。

通过运用泛函分析中的优化理论,可以对平台的服务器资源进行合理分配,以确保在高并发访问时,系统依然能够稳定运行,为学生提供流畅的学习体验。

例如,利用泛函分析中的变分法,可以将服务器的资源分配问题转化为一个优化问题,通过求解这个优化问题,找到最优的资源分配方案,使得服务器的负载均衡,减少卡顿和延迟现象。

同时,泛函分析中的算子理论可以帮助分析和预测在线教育平台中的用户行为和流量模式,从而提前进行资源调配和优化,提高平台的服务质量。

其次,泛函分析在教育数据的分析和挖掘中也具有重要意义。

教育领域产生了海量的数据,包括学生的学习行为数据、考试成绩、课程评价等等。

如何从这些纷繁复杂的数据中提取有价值的信息,为教育决策提供支持,是教育技术面临的一个重要挑战。

泛函分析中的函数逼近理论可以用于对教育数据进行建模和拟合。

通过选择合适的基函数和逼近方法,可以将复杂的数据关系用简洁的数学表达式来描述。

例如,使用多项式逼近或者样条函数逼近,可以对学生的学习成绩随时间的变化趋势进行建模,从而发现学生的学习规律和潜在问题。

此外,泛函分析中的谱分析方法可以用于挖掘教育数据中的隐藏模式和特征。

通过对数据的频谱进行分析,可以发现数据中的周期性和相关性,例如学生在不同时间段的学习效率变化,或者不同课程之间的知识关联。

这些信息对于优化教学安排、制定个性化的学习计划具有重要的指导意义。

2021年北航泛函大作业

2021年北航泛函大作业

北航泛函大作业
对于信号处理技术, 泛函分析不仅有利于我们从更高层次看待已经有理论、方法, 它同时也是很多新理论数学基础。

应用一: 比如, 对于矩阵特征值分解, 从泛函分析见解看, 矩阵就是线性变换(线性算子), 从而矩阵特征值分解问题便可看作有界线性算子谱分析问题进行处理, 这么, 矩阵特征值分解问题内在含义便愈加清楚。

应用二: 不动点定理在图像分形解码中应用。

不动点定理是建立在完备距离空间中。

设T是其到本身映射, 假如存在数, , 使得对一切x,y, 都有, 则称T为压缩映射。

不定点定理指出, 完备距离空间中任意压缩映射T, 必存在一点, 使得。

分形解码原理关键是经过图像部分参数表示来反复迭代得到原图像。

关键技术是基于不动点定理和拼贴原理, 不动点定理说明了在一个完备矩阵空间中压缩变换惟一不动点能够经过一个任意初始点反复迭代而近似到任意精度, 这恰好符合分形解码模型。

BUAA-OO-2021第二单元总结

BUAA-OO-2021第二单元总结

BUAA-OO-2021第⼆单元总结上这个课的⼀点点理解进程不共享状态调度由操作系统完成有独⽴的内存空间(上下⽂切换的时候需要保存栈、cpu 寄存器、虚拟内存、以及打开的相关句柄等信息,开销⼤)通讯主要通过信号传递的⽅式来实现(实现⽅式有多种,信号量、管道、事件等,通讯都需要过内核,效率低)线程共享变量(解决了通讯⿇烦的问题,但是对于变量的访问需要加锁)调度由操作系统完成(由于共享内存,上下⽂切换变得⾼效)⼀个进程可以有多个线程,每个线程会共享⽗进程的资源(创建线程开销占⽤⽐进程⼩很多,可创建的数量也会很多)通讯除了可使⽤进程间通讯的⽅式,还可以通过共享内存的⽅式进⾏通信(通过共享内存通信⽐通过内核要快很多)协程调度完全由⽤户控制⼀个线程(进程)可以有多个协程每个线程(进程)循环按照指定的任务清单顺序完成不同的任务(当任务被堵塞时,执⾏下⼀个任务;当恢复时,再回来执⾏这个任务;任务间切换只需要保存任务的上下⽂,没有内核的开销,可以不加锁的访问全局变量)协程需要保证是⾮堵塞的且没有相互依赖协程基本上不能同步通讯,多采⽤异步的消息通讯,效率⽐较⾼异步编程回调地狱函数Promise async/await第⼀次作业类图classDiagram FahrstuhlImpact InuptThread Person PersonList LiftThread Strategy <-- StrategyRandom : implements Strategy <-- StrategyNight : implements StrategyRandom <-- StrategyMorning : inheritance class FahrstuhlImpact { main(String[]) } class InputThread { run() } class Person { int from int to int id moveIn() moveOut() isInLift() boolean isComplete() boolean costDistance(int) int } class PersonList { List~Person~ requests getInstance() PersonList addRequest(Person) getMainRequest(int, boolean) Person getNightTop() Person isEmpty() boolean canMoveOut(int) Person[] canMoveIn(int) Person[] } class LiftThread { Strategy currentStrategy int currentLayer int currentPeople isBusy() boolean isFull() boolean arrive() open() close() moveIn(Person) moveOut(Person) displace(PersonList) mutedTask(long, long, BooleanSupplier) boolean run() } class Strategy { <<interface>> decideDestination(LiftThread,PersonList) int decideDestinationFree(LiftThread, PersonList) int dispatchTraveller(LiftThread, PersonList) }第⼀次作业中,创建了主线程、输⼊线程、电梯线程。

泛函分析答案

泛函分析答案

泛函分析题1_3列紧集p191.3.1 在完备的度量空间中,求证:为了子集A是列紧的,其充分必要条件是对∀ε > 0,存在A的列紧的ε网.证明:(1) 若子集A是列紧的,由Hausdorff定理,∀ε > 0,存在A的有限ε网N.而有限集是列紧的,故存在A的列紧的ε网N.(2) 若∀ε > 0,存在A的列紧的ε/2网B.因B列紧,由Hausdorff定理,存在B的有限ε/2网C.因C ⊆B ⊆A,故C为A的有限ε网.因空间是完备的,再用Hausdorff定理,知A是列紧的.1.3.2 在度量空间中,求证:紧集上的连续函数必是有界的,并且能达到它的上、下确界.证明:设(X, ρ)是度量空间,D是紧子集,f : D→ 是连续函数.(1) 若f无上界,则∀n∈ +,存在x n∈D,使得f (x n) > 1/n.因D是紧集,故D是自列紧的.所以{x n}存在收敛子列x n(k) →x0∈D (k→∞).由f的连续性,f (x n(k))→f (x0) (k→∞).但由f (x n) > 1/n知f (x n)→ +∞(n→∞),所以f (x n(k))→ +∞ (k→∞),矛盾.故f有上界.同理,故f有下界.(2) 设M = sup x∈D f(x),则∀n∈ +,存在y n∈D,使得f (y n) > M- 1/n.{y n}存在子列y n(k) →y0∈D (k→∞).因此f ( y0 ) ≥M.而根据M的定义,又有f ( y0 ) ≤M.所以f ( y0 ) = M.因此f能达到它的上确界.同理,f能达到它的下确界.1.3.3 在度量空间中,求证:完全有界的集合是有界的,并通过考虑l 2的子集E = {e k }k≥ 1,其中e k = { 0, 0, ..., 1, 0, ... } (只是第k个坐标为1,其余都是0 ),来说明一个集合可以是有界的但不完全有界的.证明:(1) 若A是度量空间(X, ρ)中的完全有界集.则存在A的有限1-网N = { x0, x1, x2, ..., x n }.令R = ∑1 ≤j≤nρ(x0, x j) + 1.则∀x∈A,存在某个j使得0 ≤j≤n,且ρ(x, x j) < 1.因此,ρ(x, x0) ≤ρ(x, x j) + ρ(x j, x0) ≤ 1 + ∑1 ≤j≤nρ(x0, x j) = R.所以A是度量空间(X, ρ)中的有界集.(2) 注意到ρ(e k , e j) = 21/2 ( ∀k ≠ j ),故E中任意点列都不是Cauchy列.所以,E中任意点列都没有收敛子列(否则,该收敛子列就是Cauchy列,矛盾).因此,E不是列紧集.由l 2是完备的,以及Hausdorff定理,知E不是全有界集.但E显然是有界集.1.3.4 设(X, ρ)是度量空间,F1, F2是它的两个紧子集,求证:∃x i ∈F i( i = 1, 2),使得ρ(F1, F2) = ρ(x1, x2).其中ρ(F1, F2) = inf {ρ(x, y) | x∈F1, y∈F2 }证明:由ρ(F1, F2)的定义,∀n∈ +,∃x i(n)∈F i( i = 1, 2),使得ρ(x1(n), x2(n)) < ρ(F1, F2) + 1/n.因F1, F2紧,故不妨假设{x1(n)}, {x2(n)}都是收敛列.设它们的极限分别为x1, x2,则ρ(x1, x2) ≤ρ(F1, F2).因此ρ(F1, F2) = ρ(x1, x2).1.3.5 设M是C[a, b]中的有界集,求证集合{F(x) =⎰[a, x]f(t) dt | f∈M }是列紧集.证明:设A = {F(x) =⎰[a, x]f(t) dt | f∈M }.由M有界,故存在K > 0,使得∀f∈M,ρ( f, 0) ≤K.先证明A是一致有界的和等度连续的.∀F∈A,存在f∈M,使得F(x) =⎰[a, x]f(t) dt.由于ρ(F, 0) = max x∈[a, b] | F(x) | = max x∈[a, b] | ⎰[a, x]f(t) dt |≤ max x∈[a, b] | f(t) | · (b -a ) = ρ( f, 0) · (b -a ) ≤K (b -a ).故A是一致有界的.∀ε > 0,∀s, t∈[a, b],当| s-t| < ε/K时,∀F∈A,存在f∈M,使得F(x) =⎰[a, x]f(u) du.| F(s) -F(t) | = | ⎰[s, t]f(u) du | ≤ max u∈[a, b] | f(u) | · | s -t |= ρ( f, 0) · | s -t | ≤K · (ε/K) = ε.故A是等度连续的.由Arzela-Ascoli定理,A是列紧集.1.3.6 设E = {sin nt}n≥ 1,求证:E在C[0, π]中不是列紧的.证明:显然E是一致有界的.根据Arzela-Ascoli定理,我们只要证明E不是等度连续的即可.我们的想法是找一个E中的点列f n,以及[0, π]中的两个点列s n和t n,使得| s n -t n | → 0,但| f n(s n)-f n(t n)|不收敛于0.事实上,这是可以做到的,只要令f n (u) = sin (2n u),s n = (π/2)(1 + 1/(2n)),t n = (π/2)(1 - 1/(2n)).则s n + t n = π;s n -t n = π/(2n)→ 0(n→∞).因此,| f n(s n)-f n(t n)| = 2 | sin (2n s n) - sin (2n t n) |= 2 | sin (n (s n -t n)) cos (n (s n + t n)) |= 2 | sin (π/2) cos (n π) | = 2.所以,E不是等度连续的.进而,E在C[0, π]中不是列紧的.1.3.7 求证S空间的子集A是列紧的充要条件是:∀n∈ +,∃C n> 0,使得∀x = (ξ1, ξ2, ..., ξn, ...)∈A,都有| ξn | ≤C n( n = 1, 2, ...).证明:(⇐) 设x k = (ξ1(k), ξ2(k), ..., ξn(k), ...) ( k = 1, 2, ... )是A中的点列.存在{x k}的子列{x1, k}使得其第1个坐标ξ1(1, k)收敛;存在{x1, k}的子列{x2, k}使得其第2个坐标ξ2(2, k)收敛;如此下去,得到一个{x k}的子列的序列,第( j +1)个子列是第j个子列的子列,且第j个子列的第j个坐标是收敛的.选取对角线构成的点列{x j, j},则{x j, j}是{x k}的子列,且每个坐标都收敛.根据习题1.2.1的证明可知,S空间的点列收敛的充要条件是坐标收敛.故{x j, j}是收敛点列.所以,A是列紧的.(⇒) 我们只要证明,∀n∈ +,A中的点的第n个坐标所构成的集合是有界集.若不然,设A中的点的第N个坐标所构成的集合是无界的.则存在A中的点列x k = (ξ1(k), ξ2(k), ..., ξn(k), ...) ( k = 1, 2, ... ),使得| ξN(k) | > k.显然,{ ξN(k) }无收敛子列,故{ x k }也无收敛子列,这与A列紧相矛盾.这样就完成了必要性的证明.1.3.8 设(X, ρ)是度量空间,M是X中的列紧集,映射f : X →M满足ρ( f (x1), f (x2)) < ρ( x1, x2 )(∀x1, x2∈M, x1≠x2).求证:f在X中存在唯一的不动点.证明:(1) 首先证明cl(M)是紧集.为此只要证明cl(M)列紧即可.设{ x n }是cl(M)中的点列,则存在M中的点列{ y n }使得ρ( x n, y n) < 1/n.因M列紧,故{ y n }有收敛子列{ y n(k)},设y n(k) →u∈cl(M).显然{ x n(k)}也是收敛的,并且也收敛于u∈cl(M).所以cl(M)是自列紧的,因而是紧集.(2) 令g(x) = ρ( x, f (x)),则g是X上的连续函数.事实上,由ρ( f (x1), f (x2)) < ρ( x1, x2 )可知f : X →M是连续的,因而g也连续.由习题1.3.2知存在x0∈cl(M),使得g(x0) = inf {ρ( x, f (x)) | x∈cl(M) }.(3) 若g(x0) > 0,则ρ( x0, f (x0)) > 0,即x0≠f (x0).故ρ( x0, f (x0)) = g(x0) ≤g( f (x0)) = ρ( f (x0), f ( f (x0))) < ρ( x0, f (x0)),矛盾.所以,必有g(x0) = 0,即ρ( x0, f (x0)) = 0,因此x0就是f的不动点.1.3.9 设(M, ρ)是一个紧距离空间,又E⊆C(M),E中的函数一致有界并且满足下列的Hölder条件:| x(t1) -x(t2) | ≤Cρ(t1, t2)α(∀x∈E,∀t1, t2∈M ),其中0 < α≤ 1,C > 0.求证:E在C(M)中是列紧集.证明:由Hölder条件易知E是等度连续的.又E中的函数一致有界,由Arzela-Ascoli定理知E是C(M)中的列紧集.[第3节完] 泛函分析题1_4线性赋范空间p391.4.1 在2维空间 2中,对每一点z = (x, y),令|| z ||1 = | x | + | y |;|| z ||2 = ( x 2 + y 2 )1/2;|| z ||3 = max(| x |, | y |);|| z ||4 = ( x 4 + y 4 )1/4;(1) 求证|| · ||i( i = 1, 2, 3, 4 )都是 2的范数.(2) 画出( 2, || · ||i )( i = 1, 2, 3, 4 )各空间中单位球面图形.(3) 在 2中取定三点O = (0, 0),A = (1, 0),B= (0, 1).试在上述四种不同的范数下求出∆OAB三边的长度.证明:(1) 正定性和齐次性都是明显的,我们只证明三角不等式.设z = (x, y), w = (u, v)∈ 2,s = z + w= (x + u, y + v ),|| z||1 + || w||1 = (| x | + | y |) + (| u | + | v |) = (| x | + | u |) + (| y | + | v |)≥ | x + u | + | y + v | = || z+ w||1.( || z||2 + || w||2 )2 = ( ( x 2 + y 2 )1/2 + ( u 2 + v 2 )1/2 )2= ( x 2 + y 2 ) + ( u 2 + v 2 ) + 2(( x 2 + y 2 )( u 2 + v 2 ))1/2≥ ( x 2 + u 2 ) + ( y 2 + v 2 ) + 2( x u+ y v )= ( x + u )2 + ( y + v)2 = ( || z+ w||2 )2.故|| z||2 + || w||2 ≥ || z+ w||2.|| z||3 + || w||3 = max(| x |, | y |) + max(| u |, | v |)≥ max(| x | + | u |, | y | + | v |) ≥ max(| x + u |, | y + v |) = || z+ w||3.|| ·||4我没辙了,没找到简单的办法验证,权且用我们以前学的Minkowski不等式(离散的情况,用Hölder不等式的离散情况来证明),可直接得到.(2) 不画图了,大家自己画吧.(3) OA = (1, 0),OB = (0, 1),AB = (- 1, 1),直接计算它们的范数:|| OA||1 = 1,|| OB||1 = 1,|| AB||1 = 2;|| OA||2 = 1,|| OB||2 = 1,|| AB||2 = 21/2;|| OA||3 = 1,|| OB||3 = 1,|| AB||3 = 1;|| OA||4 = 1,|| OB||4 = 1,|| AB||4 = 21/4.1.4.2 设c[0, 1]表示(0, 1]上连续且有界的函数x(t)全体.∀x∈c[0, 1],令|| x || = sup{| x(t) | | 0 < t≤ 1}.求证:(1) || ·||是c[0, 1]空间上的范数.(2) l∞与c[0, 1]的一个子空间是等距同构的.证明:(1) 正定性和齐次性都是明显的,我们只证明三角不等式.|| x || = sup{| x(t) | | 0 < t≤ 1}.|| x || + || y || = sup{| x(t) | | 0 < t≤ 1} + sup{| y(t) | | 0 < t≤ 1}≥ sup{| x(t) + y(t) | 0 < t≤ 1} = || x + y ||.所以|| ·||是c[0, 1]空间上的范数.(2) 任意取定(0, 1]中的一个单调递减列{a k },满足(i) a1 = 1;(ii) lim k→∞a k = 0.显然,在每个[a k + 1, a k]上为线性函数的f∈c[0, 1]是存在的.设X = { f∈c[0, 1] | f在每个[a k + 1, a k]上为线性函数}.容易验证X是c[0, 1]的子空间.定义ϕ : X →l∞,f #ϕ ( f ) = ( f (a1), f (a2), ...).则ϕ : X →l∞是线性双射,且|| ϕ ( f ) ||∞= sup k ≥ 1 | f (a k) | = sup0 < t≤ 1 { | f (t ) | } = || f ||.所以,ϕ : X →l∞是等距同构.因此,l∞与c[0, 1]的一个子空间是等距同构的.1.4.3 在C1[a, b]中,令|| f ||1 = (⎰[a, b] ( | f(x) |2 + | f’(x) |2) dx )1/2 (∀f∈C1[a, b]).(1) 求证:|| · ||1是C1[a, b]上的范数.(2) 问(C1[a, b], || · ||1)是否完备?证明:(1) 正定性和齐次性都是明显的,和前面的习题一样,只验证三角不等式.我们先来证明一个比较一般的结果:若线性空间X上的非负实值函数p, q都满足三角不等式:p(x) + p(y) ≥p(x +y),q(x) + q(y) ≥q(x +y),∀x, y∈X;则函数h = ( p2 + q2 )1/2也满足三角不等式.事实上,∀x, y∈X,由Minkowski不等式,我们有h(x) + h(y) = ( p(x)2 + q(x)2 )1/2 + ( p(y)2 + q(y)2 )1/2≥ (( p(x)+ p(y))2 + ( q(x) + q(y))2 )1/2 ≥ ( p(x + y)2 + q(x + y)2 )1/2 = h(x + y).回到本题:若令p( f ) = (⎰[a, b] | f(x) |2dx )1/2,q( f ) = (⎰[a, b] | f’(x) |2dx )1/2,则( p( f ) + p( g ))2 = ((⎰[a, b] | f(x) |2dx )1/2 + (⎰[a, b] | g(x) |2dx )1/2)2= ⎰[a, b] | f(x) |2dx + 2(⎰[a, b] | f(x) |2dx )1/2 · (⎰[a, b] | g(x)|2dx )1/2 + ⎰[a, b] | g(x) |2dx≥⎰[a, b] | f(x)|2dx + 2 ⎰[a, b] | f(x) | · | g(x)| dx + ⎰[a, b] | g(x)|2dx= ⎰[a, b] ( | f(x) | + | g(x)| )2dx ≥⎰[a, b] ( | f(x) + g(x)| )2dx = ( p( f + g ))2.所以有p( f ) + p( g ) ≥p( f + g ).特别地,p( f’) + p( g’) ≥p( f’+ g’),即q( f ) + q( g ) ≥q( f + g ).因此,线性空间C1[a, b]上的非负实值函数p, q都满足三角不等式.根据开始证明的结论,|| · ||1也满足三角不等式.所以,|| · ||1是C1[a, b]上的范数.(2) 在C1[- 1, 1]中,令f n(x) = (x2 + 1/n2 )1/2 ( ∀x∈[- 1, 1] ).则f’n(x) = 2x (x2 + 1/n2 )-1/2 ( ∀x∈[- 1, 1] ).显然,f n(x)几乎处处收敛于| x |,f’n(x)几乎处处收敛于2sign( x ).因此,f n(x)依测度收敛于| x |,f’n(x)依测度收敛于2sign( x ).则f’n(x) = 2x (x2 + 1/n2 )-1/2 ( ∀x∈[- 1, 1] ).显然,f n(x)几乎处处收敛于| x |,f’n(x)几乎处处收敛于2sign( x ).因此,f n(x)依测度收敛于| x |,f’n(x)依测度收敛于2sign( x ).故在L2[- 1, 1]中,f n(x) → | x |,f’n(x) → 2sign( x ).因此,它们都是L2[- 1, 1]中的基本列,故⎰[- 1, 1] | f n(x) -f m(x) |2 dx → 0(m, n→∞);⎰[- 1, 1] | f’n(x) -f m’(x) |2 dx → 0(m, n→∞).故|| f n-f m ||1 = (⎰[- 1, 1] ( | f n(x) -f m(x) |2 + | f’n(x) -f m’(x) |2 ) dx )1/2→ 0 (m, n→∞).即{ f n }是C1[- 1, 1]中的基本列.下面我们证明{ f n }不是C1[- 1, 1]中的收敛列.若不然,设{ f n }在C1[- 1, 1]中的收敛于f∈C1[- 1, 1].因|| f n-f ||1 = (⎰[- 1, 1] ( | f n(x) -f(x) |2 + | f’n(x) -f’(x) |2 ) dx )1/2≥ (⎰[- 1, 1] | f n(x) -f(x) |2dx )1/2,故在L2[- 1, 1]中,f n(x) →f.而在前面已说明L2[- 1, 1]中,f n(x) → | x |;由L2[- 1, 1]中极限的唯一性以及f的连续性,知f(x) = | x |.这样就得到f∉C1[- 1, 1],矛盾.所以,{ f n }不是C1[- 1, 1]中的收敛列.这说明C1[- 1, 1]不是完备的.对一般的C1[a, b],只要令f n(x) = (x - (a + b )/2)2 + 1/n2 )1/2( ∀x∈[a, b] )就可以做同样的讨论,就可以证明C1[a, b]不是完备空间.1.4.4 在C[0, 1]中,对每个f∈C[0, 1],令|| f ||1 = (⎰[0, 1] | f(x) |2dx )1/2,|| f ||2 = (⎰[0, 1] ( 1 + x) | f(x) |2dx )1/2.求证:|| · ||1和|| · ||2是C[0, 1]中的两个等价范数.证明:(1) 在习题1.4.3的证明中已经包含了|| · ||1是C[0, 1]中的范数的证明.下面我们证明|| · ||2是C[0, 1]中的范数,我们仍然只要验证三角不等式.|| f ||2 + || g ||2 = (⎰[0, 1] ( 1 + x) | f(x) |2dx )1/2 + (⎰[0, 1] ( 1 + x) | g(x) |2dx )1/2= || (1 + x)1/2f(x) ||1 + || (1 + x)1/2g(x) ||1≥ || (1 + x)1/2f(x) + (1 + x)1/2g(x) ||1= || (1 + x)1/2 ( f(x) + g(x) ) ||1≥ (⎰[0, 1] (1 + x) | f(x) + g(x) |2dx )1/2= || f + g ||2.所以,|| · ||2也是C[0, 1]中的范数.(2) 我们来证明两个范数的等价性.∀f∈C[0, 1]|| f ||1 = (⎰[0, 1] | f(x) |2dx )1/2 ≤ (⎰[0, 1] ( 1 + x) | f(x) |2dx )1/2 = || f ||2,|| f ||2 = (⎰[0, 1] ( 1 + x) | f(x) |2dx )1/2 ≤ 2 (⎰[0, 1] | f(x) |2dx )1/2 = 2 || f ||1.因此两个范数等价.1.4.5 设BC[0, ∞)表示[0, ∞)上连续且有界的函数f(x)全体,对每个f ∈BC[0, ∞)及a > 0,定义|| f ||a = (⎰[0, ∞) e-ax | f(x) |2dx )1/2.(1) 求证|| ·||a是BC[0, ∞)上的范数.(2) 若a, b > 0,a≠b,求证|| ·||a与|| ·||b作为BC[0, ∞)上的范数是不等价的.证明:(1) 依然只验证三角不等式.|| f ||a + || g ||a = (⎰[0, ∞) e-ax | f(x) |2dx )1/2 + (⎰[0, ∞) e-ax | g(x) |2dx )1/2= || e-ax/2f(x)||L2 + || e-ax/2g(x)||L2≤ || e-ax/2f(x)+ e-ax/2g(x)||L2= || e-ax/2 ( f(x)+ g(x))||L2= (⎰[0, ∞) e-ax | f(x)+ g(x) |2dx )1/2= || f + g ||a,所以|| ·||a是BC[0, ∞)上的范数.(2) 设f n(x)为[n, +∞)上的特征函数.则f n∈BC[0, ∞),且|| f n||a = (⎰[0, ∞) e-ax | f n(x) |2dx )1/2 = (⎰[n, ∞) e-ax dx )1/2 = ((1/a)e-an)1/2.同理,|| f n||b = ((1/b)e-bn)1/2.故若a < b,则|| f n||a/|| f n||b = (b/a)1/2e-(b -a)n/2→ +∞ (n→+∞).因此|| ·||a与|| ·||b作为BC[0, ∞)上的范数是不等价的.1.4.6 设X1, X2是两个B*空间,x1∈X1和x2∈X2的序对(x1, x2)全体构成空间X = X1⨯X2,并赋予范数|| x || = max{ || x1 ||1, || x2 ||2 },其中x = (x1, x2),x1∈X1,x2∈X2,|| · ||1和|| ·||2分别是X1和X2的范数.求证:如果X1, X2是B空间,那么X也是B空间.证明:(1) 先验证|| · ||的三角不等式.设x = (x1, x2), y = (y1, y2)∈X1⨯X2,则|| x + y || = || (x1 + y1, x2 + y2) || = max{ || x1 + y1 ||1, || x2 + y2 ||2 }≤ max{ || x1 ||1 + || y1 ||1, || x2 ||2 + || y2 ||2 }≤ max{ || x1 ||1, || x2 ||2 } + max{ || y1 ||1, || y2 ||2 }= || (x1, x2) || + || (y1, y2) ||= || x || + || y ||,而|| · ||的正定性和齐次性是显然的,所以,|| · ||是X1⨯X2的范数.(2) 设X1, X2是B空间,我们来证明X也是B空间.设x(n) = (x1(n), x2(n))是X = X1⨯X2中的基本列,则|| x(n) -x(m) || = max{ || x1(n) -x1(m) ||1, || x2(n) -x2(m)||2 } ≥ || x1(n) -x1(m) ||1,故{x1(n)}是X1中的基本列,同理,{x2(n)}是X2中的基本列.因X1, X2是B空间,故{x1(n)}和{x2(n)}分别是X1, X2中的收敛列.设x1(n) →x1∈X1,x2(n) →x2∈X2,令x = (x1, x2).则|| x(n) -x || = max{ || x1(n) -x1 ||1, || x2(n) -x2 ||2 }≤ || x1(n) -x1 ||1 + || x2(n) -x2 ||2→ 0 (n→∞).所以,|| x(n) -x ||→ 0 (n→∞).即{ x(n) }为X = X1⨯X2中的收敛列.所以X = X1⨯X2也是B空间.1.4.7 设X是B*空间.求证:X是B空间,必须且只须对∀{x n}⊆X,∑n≥ 1 || x n || < +∞⇒∑n≥ 1x n 收敛.证明:(⇒) ∀{x n}⊆X,记S n = ∑1 ≤j≤n x j,B n = ∑1 ≤j≤n || x n ||,则|| S n + p-S n || = || ∑1 ≤j≤n + p x j -∑1 ≤j≤n x j ||= || ∑n +1 ≤j≤n + p x j ||≤∑n +1 ≤j≤n + p || x j ||= B n + p-B n → 0,(n→∞).故{ S n }为X中的Cauchy列.由X完备,故{ S n }为X中的收敛列,即∑n≥ 1x n 收敛.(⇐) 反证法.若(X, ρ)不完备,设(Y, d )为(X, ρ)的一个完备化.不妨设(X, ρ)是(Y, d )的子空间,则存在y∈Y \ X.因cl( X ) = Y,故∀n∈ +,存在x n∈X,使得d(x n, y) < 1/2n.则ρ(x n, x m) = d(x n, x m) ≤d(x n, y) + d(x m, y) ≤ 1/2n+ 1/2m → 0,因此{x n}是X中的Cauchy列,但不是收敛列.令z n = x n+1-x n,S n = ∑1 ≤j≤n z j;则z n, S n∈X.因|| z n || = || x n+1-x n || = ρ(x n+1, x n) ≤d(x n+1, y) + d(x n+1, y) ≤ 1/2n+1+ 1/2n < 1/2n - 1,故∑n≥ 1 || z n || < +∞.而S n = ∑1 ≤j≤n z j = ∑1 ≤j≤n ( x j+1-x j ) = x n+1-x1;故∑n≥ 1z n 在中不收敛.矛盾.1.4.8 记[a, b]上次数不超过n的多项式全体为 n.求证:∀f(x)∈C[a, b],存在P0(x)∈ n,使得max a ≤x≤b| f(x) –P0(x) | = min{ max a ≤x≤b| f(x) –P(x) | | P∈ n }.证明:注意到 n是B*空间C[a, b]中的n+1维子空间.{1, x, x2, ..., x n}是 n中的一个向量组,把它看成C[a, b]中的一个有限向量组.根据定理p35, 1.4.23,对任意∀f(x)∈C[a, b],存在最佳逼近系数{λ0, λ1, ..., λn},使得|| f(x) –∑0 ≤j≤n λj x j || = min{ || f(x) –∑0 ≤j≤n a j x j || | (a0, a1, ..., a n)∈ n+1}.令P0(x) = ∑0 ≤j≤n λj x j 就得到要证明的结论.1.4.9 在 2中,对∀x = (x1, x2)∈ 2,定义范数|| x || = max(| x1 |, | x2 |),并设|| x0–λ e1 ||.e1 = (1, 0),x0 = (0, 1).求a∈ 适合|| x0–a e1 || = minλ∈并问这样的a是否唯一?请对结果作出几何解释.解:g(λ) = || x0–λ e1 || = || (0, 1) –λ(1, 0)|| = || (–λ, 1)|| = max(| λ |, 1) ≥ 1,故g(λ) 当| λ| ≤ 1时取得最小值1.所以a = 0满足要求.显然满足要求的a不是唯一的.从几何上看就是某线段上的点到某定点的距离都是1.1.4.10 求证范数的严格凸性等价于下列条件:|| x + y || = || x || + || y || ( ∀x≠θ, y≠θ) ⇒x = c y ( c > 0).证明:(⇒) 设范数是严格凸的,若x, y ≠θ满足|| x + y || = || x || + || y ||,事实上,我们总有|| (x/|| x ||) || = || (y/|| y ||) || = 1.因x, y ≠θ,故|| x || + || y || > 0,所以|| x + y || ≠ 0.于是|| x ||/|| x + y || + || y ||/|| x + y || = 1.假若x/|| x || ≠y/|| y ||,由严格凸性,得到|| (|| x ||/|| x + y ||)(x/|| x ||) + (|| y ||/|| x + y ||)(y/|| y ||) || < 1,即|| (( x + y )/|| x + y ||) || < 1,矛盾.因此必然有x/|| x || = y/|| y ||,即x = (|| x ||/|| y ||) y.(⇐) 设∀x, y ≠θ,|| x + y || = || x || + || y ||蕴涵x = c y ( c > 0).下面证明范数是严格凸的.设x≠y,且|| x || = || y || = 1,又设α, β∈(0, 1),且α + β= 1.我们知道|| α x + β y || ≤ || α x || + || β y || = α || x || + β|| y || = α + β= 1.假若|| α x + β y || = 1,根据我们的条件,就得到α x = c (β y),其中c > 0.那么,就有|| α x || = || c (β y) ||,而|| x || = || y || = 1,所以α= c β;故x = y,这就与x≠y相矛盾.所以必然有|| α x + β y || < 1,即范数是严格凸的.1.4.11 设X是线性赋范空间,函数ϕ : X → 1称为凸的,如果不等式ϕ( λ x + (1 -λ) y ) ≤λϕ( x ) + (1 -λ)ϕ( y ) ( ∀ 0 ≤λ≤ 1)成立.求证凸函数的局部极小值必然是全空间的最小值.证明:设x0是凸函数ϕ的一个局部极小点.如果存在x∈X,使得ϕ( x ) < ϕ( x0),则∀ t ∈(0, 1),ϕ( t x + (1 -t ) x0) ≤t ϕ( x ) + (1 -t )ϕ( x0) < t ϕ( x0) + (1 -t )ϕ( x0) = ϕ( x0).而对x0的任意邻域U,都存在t ∈(0, 1),使得t x + (1 -t ) x0∈U.这就与x0是局部极小点相矛盾.因此∀x∈X,都有ϕ( x0) ≤ϕ( x ),即x0是ϕ的最小点.1.4.12 设(X, || · ||)是一线性赋范空间,M是X的有限维子空间,{e1, e2, ..., e n}是M的一组基,给定g∈X,引进函数F : n → 1.对∀c = (c1, c2, ..., c n)∈ n,规定F(c) = F(c1, c2, ..., c n) = || ∑1 ≤i≤n c i e i-g ||.(1) 求证F是一个凸函数;(2) 若F的最小值点是c = (c1, c2, ..., c n),求证f = ∑1 ≤i≤n c i e i给出g在M中的最佳逼近元.证明:(1) 设c = (c1, c2, ..., c n), d = (d1, d2, ..., d n)∈ n, λ∈[0, 1],则F(λ c + ( 1 -λ) d ) = || ∑1 ≤i≤n ( λ c i + ( 1 -λ) d i ) e i-g ||= || λ∑1 ≤i≤n c i e i + ( 1 -λ) ∑1 ≤i≤n d i e i- (λ g+ ( 1 -λ)g )||= || λ(∑1 ≤i≤n c i e i -g) + ( 1 -λ) ( ∑1 ≤i≤n d i e i-g )||≤λ|| ∑1 ≤i≤n c i e i -g || + ( 1 -λ) || ∑1 ≤i≤n d i e i-g ||= λ F(c)+ ( 1 -λ)F(d),故F是一个凸函数.(2) 因为{e1, e2, ..., e n}是M的一组基,故M中的每个元h都可表示为h = ∑1 ≤i≤n d i e i,其中d = (d1, d2, ..., d n)∈ n.因为F(c) ≤F(d),故|| f-g || = F(c) ≤F(d) = || h-g ||.那么f就是g在M中的最佳逼近元.1.4.13 设X是B*空间,X0是X的线性子空间,假定∃c∈(0, 1)使得∀y∈X,有inf { || y–x || | x ∈X0 } ≤c || y ||.求证:X0在X中稠密.证明:设y∈X,∀ε > 0,∃x1∈X0,s.t. || y–x1 || < c || y || + ε /4.∃x2∈X0,s.t. || (y–x1) –x2 || < c || y–x1 || + ε /8.∃x3∈X0,s.t. || (y–x1 –x2 ) –x3 || < c || y–x1 –x2 || + ε /16.如此下去,可得到一个X0中的点列{ x n },满足|| y–∑1 ≤j≤n +1x j|| < c || y–∑1 ≤j≤n x j|| + ε /2n + 2(∀n∈ +).那么,我们可以用数学归纳法证明|| y–∑1 ≤j≤n x j|| < c n || y || + ε (∑1 ≤j≤n 1/2j + 1).当n = 1时,|| y–x1 || < c || y || + ε /4.结论成立.当n = 2时,|| (y–x1) –x2 || < c || y–x1 || + ε /8< c (c || y || + ε /4) + ε /8 < c 2 || y || + ε (1/4 + 1/8),结论成立.当n≥ 3时,若|| y–∑1 ≤j≤n x j|| < c n || y || + ε (∑1 ≤j≤n 1/2j + 1)成立,则|| y–∑1 ≤j≤n +1x j|| < c || y–∑1 ≤j≤n x j|| + ε /2n + 2< c (c n || y || + ε (∑1 ≤j≤n 1/2j + 1)) + ε /2n + 2< c n+1 || y || + ε (∑1 ≤j≤n 1/2j + 1)) + ε /2n + 2< c n+1 || y || + ε (∑1 ≤j≤n+ 11/2j + 1)),因此结论也成立.由数学归纳法原理,∀n∈ +,|| y–∑1 ≤j≤n x j|| < c n || y || + ε (∑1 ≤j≤n 1/2j + 1).因为c∈(0, 1),故存在N∈ +,使得c N || y || < ε /2.令x = ∑1 ≤j≤N x j,则x∈X0.且|| y–x || < ε /2 + ε (∑1 ≤j≤N 1/2j + 1) < ε.所以,X0在X中稠密.[张峰同学的证明] 反证法.若不然,则cl(X0)是X的真闭线性子空间.用Riesz引理,存在y∈X,使得|| y || = 1,且inf { || y–x || | x ∈ cl(X0)} > c.故对此y∈X,有inf { || y–x || | x ∈X0 } > c || y ||,矛盾.1.4.14 设C0表示以0为极限的实数全体,并在C0中赋以范数|| x || = max n≥1| ξn |,( ∀x = (ξ1, ξ2, ..., ξn, ...)∈C0 ).又设M = {x = (ξ1, ξ2, ..., ξn, ...)∈C0 | ∑n ≥1 ξn/2n = 0}.(1) 求证:M是C0的闭线性子空间.(2) 设x0= (2, 0, 0, ...),求证:inf z ∈M || x0–z || = 1,但∀y∈M,有|| x0–y || > 1.证明:(1) 显然M ≠∅,容易直接验证M是C0的线性子空间.若x k = (ξ1(k), ξ2(k), ..., ξn(k), ...)为M中的点列,且x k→x = (ξ1, ξ2, ..., ξn, ...)∈C0.则∀ε > 0,存在N∈ +,使得∀k > N,|| x k -x || < ε.此时,∀n∈ +,有|ξn -ξn(k)| ≤ max n≥1| ξn -ξn(k) | = || x k -x || < ε.| ∑n ≥1 ξn/2n | = | ∑n ≥1 ξn/2n-∑n ≥1 ξn(k)/2n | = | ∑n ≥1 (ξn -ξn(k))/2n |≤∑n ≥1 |ξn -ξn(k)|/2n≤∑n ≥1 ε/2n = ε.所以,∑n ≥1 ξn/2n = 0,即x = (ξ1, ξ2, ..., ξn, ...)∈M.所以M是C0的闭线性子空间.(2) x0= (2, 0, 0, ...),∀z = (ξ1, ξ2, ..., ξn, ...)∈M,|| x0–z || = max{| 2 -ξ1 |, | ξ2 |, | ξ3 |, ... }.如果| 2 -ξ1 | > 1,则|| x0–z || > 1.如果| 2 -ξ1 | ≤ 1,则| ξ1 | ≥ 1,我们断言{| ξ2 |, | ξ3 |, ... }中至少有一个大于1者.否则,假若它们都不超1,因为ξn → 0 (n→∞),故它们不能全为1.由∑n ≥1 ξn/2n = 0知| ξ1 |/2 = | ∑n ≥2 ξn/2n | ≤∑n ≥2 | ξn | /2n < ∑n ≥2 1/2n = 1/2,这样得到| ξ1 | < 1,矛盾.故{| ξ2 |, | ξ3 |, ... }中至少有一个大于1者.因此也有|| x0–z || > 1.综上所述,但∀y∈M,有|| x0–y || > 1.由此,立即知道inf z ∈M || x0–z || ≥ 1.下面证明inf z ∈M || x0–z || ≤ 1.∀n∈ +,令z n= (1 - 1/2n, -1, -1, ..., -1, 0, 0, ...).( z n从第2个坐标开始有连续的n个-1,后面全部是0 ),则(1 - 1/2n)/2 - 1/4 - 1/8 - ... - 1/2n + 1 = 0,因此z n∈M.此时,|| x0–z n || = max{| 1 + 1/2n|, | 1/4|, | 1/8|, ... } = 1 + 1/2n.故inf z ∈M || x0–z || ≥ inf n || x0–z n || = inf n (1 + 1/2n ) = 1.所以,inf z ∈M || x0–z || = 1.1.4.15 设X是B*空间,M是X的有限维真子空间,求证:∃y∈X,|| y|| = 1,使得|| y–x || ≥ 1 ( ∀x ∈M ).证明:取定z∈X \ M,令Y = span{z} + M.记S = { y∈Y | || y || = 1 }.则M是Y的真闭子空间,而S是Y中的单位球面.由Riesz引理,∀n∈ +,存在y n∈S,使得d( y n, M ) ≥ 1 - 1/n.因为Y也是有限维的,故其中的单位球面为自列紧集.存在{y n}的收敛子列.不妨设y n(k) →y∈S.则d( y n(k), M ) ≥ 1 - 1/n(k),故有d( y, M ) ≥ 1.即|| y–x || ≥ 1 ( ∀x ∈M ).1.4.16 若f是定义在区间[0, 1]上的复值函数,定义ωδ( f ) = sup{| f (x) – f (y) | | ∀x, y∈[0, 1], | x–y | ≤δ}.如果0< α≤ 1对应的Lipschitz空间Lipα,由满足|| f || = | f(0) | + supδ > 0{δ–αωδ( f )} < +∞的一切f组成,并且以|| f ||为模.又设lipα = { f∈Lipα| lim δ→ 0 δ–αωδ( f ) = 0}.求证Lipα是B空间,而且lipα是Lipα的闭子空间.证明:(1) 显然,C1[0, 1]⊆Lipα,因此Lipα不空.对区间[0, 1]上的复值函数f, g,∀λ∈ ,我们有ωδ( f + g ) = sup{| f (x) + g (x) – f (y) – g (y) | | ∀x, y∈[0, 1], | x–y | ≤δ}≤ sup{| f (x) – f (y) | + | g (x) – g (y) | | ∀x, y∈[0, 1], | x–y | ≤δ}≤ωδ( f ) + ωδ( g ).ωδ( λ f ) = sup{|λ f (x) –λ f (y) | | ∀x, y∈[0, 1], | x–y | ≤δ}= | λ| sup{| f (x) – f (y) | | ∀x, y∈[0, 1], | x–y | ≤δ}= | λ| ·ωδ( f ).若f, g∈Lipα,λ∈ ,则|| f + g || = | f(0) + g(0) | + supδ > 0{δ–αωδ( f + g ) }≤ | f(0) | + | g(0) | + supδ > 0{δ–α(ωδ( f ) + ωδ( g )) }= | f(0) | + | g(0) | + supδ > 0{δ–αωδ( f ) + δ–αωδ( g ) }≤ | f(0) | + | g(0) | + supδ > 0{δ–αωδ( f ) }+ supδ > 0{ δ–αωδ( g ) }= || f || + || g || < +∞.|| λ f || = | λ f(0) | + supδ > 0{δ–αωδ( λ f )}= | λ| · | f(0) | + | λ| · supδ > 0{δ–αωδ( f )}= | λ| · || f || < +∞.因此,f + g, λ f∈Lipα,且上述两个不等式表明|| · ||有齐次性和三角不等式.显然,|| f || ≥ 0.当|| f || = 0时,| f(0) | + supδ > 0{δ–αωδ( f )} = 0,意味着f(0) = 0,且ωδ( f ) = 0(∀δ> 0).而ωδ( f ) = 0(∀δ> 0)则意味着f为常值.所以,f = 0.即|| · ||有正定性.综上所述,Lipα是B*空间.(2) 我们首先证明集合Lipα⊆C[0, 1].∀f∈Lipα,∀x, y∈[0, 1],x ≠y,记δ = | x -y |.则| f (x) – f (y) | ≤ωδ( f ).而δ–αωδ( f ) ≤ supδ > 0{δ–αωδ( f n-f m) } ≤ || f ||,所以,| f (x) – f (y) | ≤ || f || δα= || f || · | x -y |α,故f∈C[0, 1].我们再证明,∀f∈Lipα,|| f ||C≤ || f ||,其中|| ·||C是C[0, 1]范数.事实上,∀x∈[0, 1],| f (x) | ≤ | f (0) | + | f (x) – f (0) |,故|| f ||C = max x∈[0, 1] | f (x) | ≤ | f (0) | + max x∈[0, 1] | f (x) – f (0) |≤ | f (0) | + sup x∈(0, 1] | f (x) – f (0) |/| x |α≤ | f (0) | + sup x∈(0, 1] { δ–αωδ( f ) } ≤ || f ||.这说明,如果{ f n }是Lipα中的基本列,则它也必是C[0, 1]中的基本列.而C[0, 1]是完备的,故存在f∈C[0, 1],使得{ f n }一致收敛于f.而{ f n }作为Lipα中的基本列,有|| f n-f m || = | f n(0) -f m(0) | + supδ > 0{δ–αωδ( f n-f m) } → 0 (n, m→∞),因此∀ε > 0,∃N∈ +,使得∀n, m > N,有| f n(0) -f m(0) | + supδ > 0{δ–αωδ( f n-f m) } < ε.因此supδ > 0{δ–αωδ( f n-f m) } < ε.故∀δ > 0,ωδ( f n-f m) < εδα.即∀x, y∈[0, 1],| x -y | ≤δ,都有| ( f n(x) -f m(x)) - ( f n(y) -f m(y)) | < εδα.令m→∞,得到| ( f n(x) -f(x)) - ( f n(y) -f(y)) | ≤εδα.因此,sup {| ( f n(x) -f(x)) - ( f n(y) -f(y)) | | x, y∈[0, 1],| x -y | ≤δ}≤εδα.即∀δ > 0,ωδ( f n-f ) ≤εδα.故supδ > 0{δ–αωδ( f n-f ) } ≤ε.同样地,对不等式| f n(0) -f m(0) | < ε令m→∞,就得到| f n(0) -f(0) | ≤ε.所以,| f n(0) -f(0) | + supδ > 0{δ–αωδ( f n-f ) } ≤ 2ε.这说明f n-f∈Lipα.而f n∈Lipα,故f = ( f -f n ) + f n∈Lipα.而前面的式子也表明|| f -f n || ≤ 2ε.因此|| f n-f || → 0 (n→∞),即{ f n }为Lipα中的收敛列.所以,Lipα是Banach空间.(3) 记lipα = { f∈Lipα| lim δ→ 0 δ–αωδ( f ) = 0 }.∀f, g∈lipα,∀λ∈ ,我们有δ–αωδ( f + g ) ≤δ–α(ωδ( f ) + ωδ( g ) ) = δ–αωδ( f ) + δ–αωδ( g ) → 0 (δ→ 0).δ–αωδ( λ f ) = | λ| ·δ–αωδ( f ) → 0 (δ→ 0).故f + g, λ f∈lipα,因此,lipα是Lipα的线性子空间.设{ f n }是lipα中的序列,且f n→f∈Lipα(n→∞).则{ f n }一致收敛于f.∀ε > 0,存在N∈ +,使得|| f N →f || < ε /2.故有supδ > 0{δ–αωδ( f N-f ) } < ε /2.因为lim δ→ 0 δ–αωδ( f N) = 0,所以,∃∆ > 0,使得∀δ∈(0, ∆),有δ–αωδ( f N) < ε /2.此时我们有δ–αωδ( f ) ≤δ–α(ωδ( f N) + ωδ( f -f N))= δ–αωδ( f N) + δ–αωδ( f -f N)< ε /2 + supδ > 0{δ–αωδ( f N-f ) } < ε.所以,lim δ→ 0 δ–αωδ( f ) = 0,即f∈lipα.所以lipα是Lipα的闭子空间.1.4.17 (商空间) 设X是线性赋范空间,X0是X的闭线性子空间,将X中的向量分类,凡是适合x’-x’’∈X0的两个向量x’, x’’归于同一类,称其为等价类,把一个等价类看成一个新的向量,这种向量的全体组成的集合为X/X0表示,并称其为商空间.下列是关于商空间的命题.(1) 设[ y ]∈X/X0,x∈X,求证:x∈[ y ]的充分必要条件是[ y ] = x + X0.证明:设x’, x’’∈X,若它们归于同一类,则记为x’~x’’.我们用[ x ]表示x所在的等价类(大家注意,题目形式已经作了相应的修改).(⇒) 若x∈[ y ],则x~y.∀u ∈[ y ],u~y,故u~x,即u –x∈X0.因此u ∈x + X0.所以[ y ] ⊆x + X0.反过来,∀u ∈x + X0,则u~x,故u~y.因此u ∈[ y ].所以x + X0 ⊆ [ y ].所以[ y ] = x + X0.(⇐) 若[ y ] = x + X0,则y –x∈X0,即y~x.从而x∈[ y ].(2) 在X/X0中定义加法与数乘如下:[ x ] + [ y ] = x + y + X0(∀[ x ], [ y ] ∈X/X0 )λ[ x ] = λ x + X0(∀[ x ]∈X/X0 , ∀λ∈ )其中x和y分别表示属于等价类[ x ]和[ y ]的任一元素.又规定范数|| [ x ] ||0 = inf z∈[ x ] || z || ( ∀[ x ]∈X/X0 )求证:(X/X0, || · ||0)是一个B*空间.证明:第(1)部分说明了[ x ] = x + X0.容易看出加法与乘法的定义是合理的.进一步可以证明X/X0 构成数域 上的线性空间,且其零元为[ θ] = X0.下面证明|| · ||0是X/X0 上的范数.显然,∀[ x ]∈X/X0,|| [ x ] ||0≥ 0.若[ x ] = [ θ] = X0,则|| [ x ] ||0 = 0.若|| [ x ] ||0 = 0,则inf z∈[ x ] || z || = 0.存在z n∈[ x ]使得|| z n || → 0,即z n→θ (n→∞).那么,x-z n∈X0,x-z n→x (n→∞),而X0是闭集,故x∈X0.所以x~θ,即[ x ] = X0.因此|| · ||0有正定性.∀[ x ]∈X/X0,∀λ∈ ,|| λ[ x ]||0 = || [ λ x ] ||0 = inf y∈[ x ] || λ y || = inf y∈[ x ] | λ| · || y ||= | λ| · inf y∈[ x ] || y || = | λ| · ||[ x ]||0.因此|| · ||0有齐次性.∀[ x ], [ y ]∈X/X0,|| [ x ] + [ y ] ||0 = inf z∈[ x ] + [ y ] || z || = inf u∈[ x ], v∈[ y ] || u + v ||≤ inf u∈[ x ], v∈[ y ] { || u || + || v || } ≤ inf u∈[ x ] { inf v∈[ y ] { || u || + || v ||} }≤ inf u∈[ x ] { inf v∈[ y ] { || u || + || v ||} } = inf u∈[ x ] { || u || + inf v∈[ y ] || v || }= inf u∈[ x ] || u || + inf v∈[ y ] || v || = || [ x ] ||0 + || [ y ] ||0.因此|| · ||0的三角不等式成立.所以,(X/X0, || · ||0)是一个B*空间.(3) 设[ x ]∈X/X0, 求证对∀y∈[ x ]有inf { || y -z || | z∈X0 } = || [ x ] ||0.证明:|| [ x ] ||0 = inf u∈[ x ] || u || = inf u∈[ y ] || u || = inf { || u || | u∈y + X0 }= inf { || y + v || | v∈X0 } = inf { || y -z || | z∈X0 }.(4) 定义映射ϕ : X →X/X0为ϕ (x) = [ x ] = x + X0(∀x∈X ).求证ϕ是线性连续映射.证明:∀x, y∈X,∀α, β∈ ,ϕ( α x + β y ) = [α x + β y ] = [α x ] + [ β y ] = α [ x ] + β[ y ] = αϕ (x) + βϕ (y).|| ϕ (x) -ϕ (y) ||0 = || [ x ] - [ y ] ||0 = || [ x-y ] ||0 = inf z∈[ x-y ] || z || ≤ || x-y ||.所以,ϕ是线性连续映射.(5) ∀[ x ]∈X/X0,求证∃y∈X,使得ϕ (y) = [ x ],且|| y || ≤ 2|| [ x ] ||0.证明:因为|| [ x ] ||0 = inf z∈[ x ] || z ||,若|| [ x ] ||0 = 0,则由|| · ||0的正定性,知[ x ] = X0,取y = θ即满足要求.若|| [ x ] ||0≠ 0,则inf z∈[ x ] || z || = || [ x ] ||0 < 2 || [ x ] ||0,存在∃y∈[ x ],使得|| y || ≤ 2|| [ x ] ||0.此时显然有ϕ (y) = [ x ] = [ y ].(6) 设(X, || · ||)完备,求证(X/X0, || · ||0)也是完备的.证明:设{ [ x ]n }是X/X0中的基本列.为证明它是收敛列,只需证明它存在收敛子列.由基本列性质,可选出子列{ [ x ]n(k)}使得|| [ x ]n(k) - [ x ]n(k+1) ||0 ≤ 1/2k.故∑k ≥ 1 || [ x ]n(k) - [ x ]n(k+1) ||0 收敛.根据(5),∀k∈ +,∃y k∈[ x ]n(k+1) - [ x ]n(k),使得|| y k || ≤ 2|| [ x ]n(k+1) - [ x ]n(k) ||0.那么,∑k ≥ 1|| y k ||收敛.由X的完备性,s k = ∑ 1 ≤j ≤k y j是X中的收敛列.设其极限为s.由(5)中ϕ的连续性,在X/X0中,ϕ(s k) →ϕ(s) ( k→∞ ).而ϕ(s k) = ϕ( ∑ 1 ≤j ≤k y j ) = ∑ 1 ≤j ≤k ϕ( y j )= ∑ 1 ≤j ≤k ( [ x ]n(j+1) - [ x ]n(j)) = [ x ]n(k+1) - [ x ]n(1).故{[ x ]n(k+1) - [ x ]n(1)}收敛,因而{[ x ]n(k)}是收敛列.因此X/X0中的基本列{ [ x ]n }存在收敛子列{[ x ]n(k)},所以,{ [ x ]n }是X/X0中的收敛列.因此,(X/X0, || · ||0)是完备的.(7) 设X = C[0, 1],X0 = { f∈X | f (0) = 0 },求证:X/X0 ≅ ,其中记号“≅”表示等距同构.证明:显然,X0是C[0, 1]中的线性子空间.记X0所确定的等价关系为~,则f~g ⇔ f (0) = g (0).定义Φ : X/X0 → ,Φ([ f ]) = f (0).显然定义是合理的.∀f, g∈X,∀α, β∈ ,Φ(α[ f ] + β[ g ]) = Φ([αf + β g ]) = (αf + β g )(0)= αf (0)+ β g (0) = αΦ([ f ])+ βΦ([ g ]).因此Φ是线性映射.因Φ(X0) = 0,故Φ是单射.而∀c∈ ,若记所对应的常值函数为h c∈C[0, 1],则Φ( [ h c] ) = c.故Φ是满射.综上所述,Φ : X/X0 → 是线性同构.∀f∈X,|| [ f ]||0 = inf g∈[ f ] { || g || } ≥ inf g∈[ f ] { | g (0) | }= inf g∈[ f ] { | f (0) | } = | f (0) | = | Φ([ f ]) |.另一方面,因为常值函数h f (0)∈[ f ],故|| [ f ]||0 = inf g∈[ f ] { || g || } ≤ || h f (0) || = | f (0) | = | Φ([ f ]) |.所以,∀f∈X,都有|| [ f ]||0 = | Φ([ f ]) |,因此Φ : X/X0 → 是等距同构.[第4节完] 泛函分析题1_5凸集与不动点p521.5.1 设X是B*空间,E是以θ为内点的真凸子集,P是由E产生的Minkowski 泛函,求证:(1) x∈int(E) ⇔P(x) < 1;(2) cl(int(E)) = cl(E).证明:(1) (⇒) 若x∈int(E),存在δ > 0,使得Bδ(x) ⊆E.注意到x + x/n→x ( n→∞ ),故存在N ∈ +,使得x + x/N ∈Bδ(x) ⊆E.即x/( N/( 1 + N ) ) ∈E.因此P(x) ≤N/( 1 + N ) < 1.(⇐) 若P(x) < 1.则存在a > 1,使得y = a x∈E.因θ∈int(E),故存在δ > 0,使得Bδ(θ) ⊆E.令η = δ(a - 1)/a,∀z∈Bη(x),令w = (a z-y )/(a - 1),则|| w || = || (a z-y )/(a - 1) || = || a z-y ||/(a - 1)= || a z-a x ||/(a - 1) = a || z-x ||/(a - 1) < aη/(a - 1) = δ.故w∈Bδ(θ) ⊆E.故z = ((a - 1)w + y )/a ∈E,因此,Bη(x) ⊆E.所以x∈int(E).(2) 因int(E) = E,故有cl(int(E)) ⊆ cl(E).下面证明相反的包含关系.若x∈cl(E),则∀ε > 0,存在y∈E,使得|| x -y || < ε/2.因ny/(n + 1) →y ( n →∞ ).故存在N ∈ +,使得|| Ny/(N + 1) -y || < ε/2.令z = Ny/(N + 1),则z∈E,且P(z) ≤N/(N + 1) < 1,由(1)知z∈int(E).而|| z -x || ≤ || z -y || + || y -x || < ε/2 + ε/2 = ε.故x∈cl(int(E)),因此cl(E) ⊆ cl(int(E))所以cl(int(E)) = cl(E).1.5.2 求证在B空间中,列紧集的凸包是列紧集.证明:设A是B空间X中的列紧集,∀ε > 0,存在A的有限ε /3网B.设B = {b1, b2, ..., b n},M = max j{ || b j || },取δ > 0,使得n δ M < ε /3.设[0, 1]分划D为0 = t0 < t1 < t2 < ... < t m = 1,使得max 1 ≤j ≤m {| t j–t j–1|} < δ.设∀x∈co(A),设x= λ1 a1 + λ2 a2+ ... + λ k a k,其中a j∈A,λ j > 0,∑ j λ j = 1.对每个j ≤k,存在b i( j )∈B使得|| a j-b i( j ) || < ε /3;令y= λ1 b i(1) + λ2 b i(2)+ ... + λ k b i(k),则|| x - y || = || λ1 (a1 -b i(1)) + λ2 (a2 -b i(2))+ ... + λ k (a k-b i(k))||,≤λ1 · || a1 -b i(1) || + λ2 · || a2 -b i(2) || + ... + λ k · || a k-b i(k) ||≤ ( λ1 + λ2 + ... + λ k ) · (ε /2) = ε /3.将y= λ1 b i(1) + λ2 b i(2)+ ... + λ k b i(k)中的那些含有相同b j的项合并起来,于是,y可表示为y= μ1 b1 + μ2 b2+ ... + μ n b n,其中μj ≥ 0,且∑ j μj = 1.对每个l ≤n,存在t s( l )∈D,使得|| μl-t s( l ) || < δ;令z= t s(1) b1 + t s(2) b2+ ... + t s(n) b n,则|| y - z || = || (μ1 -t s(1))b1 + (μ2 -t s(2))b2+ ... + (μn -t s(n))b n ||≤∑ l | μl-t s( l ) | · max j{ || b j || } ≤n δ M < ε /3;令C = {t s(1) b1 + t s(2) b2+ ... + t s(n) b n | t s(i)∈D,1 ≤i≤n},则C是有限集,且C是co(A)的有限ε网.因空间是完备的,故co(A)是列紧集.1.5.3 设C是B*空间X中的一个紧凸集,映射T : C →C连续,求证T在C上有一个不动点.证明:因为C是紧集,所以C是闭集.因为C是紧集,故C的任意子集都列紧.而T(C) ⊆C,故T(C)列紧.于是,由Schauder不动点定理,T在C上有一个不动点.[Schauder定理:B*空间中闭凸集C上使T(C)列紧的连续自映射T必有不动点] 1.5.4 设C是B空间X中的一个有界闭凸集,映射T i : C→X (i = 1, 2)适合(1) ∀x, y∈C ⇒T1x + T2y∈C;(2) T1是一个压缩映射,T2是一个紧映射.。

Matlab北航教程第四章

Matlab北航教程第四章
[B,A]=butter(n,w0):滤波器设计 y=filter(B,A,x):对信号x进行滤波
4.6_3
CH4.7 系统分析 S_ss=ss(A,B,C,D):利用状态方程创建LTI S_zpk=zpk(Z,P,K) :利用零极点增益创建LTI S_tf=tf(num,den) :利用传递函数创建LTI [A,B,C,D]=ssdata(S_lti) [Z,P,K]=zpkdata(S_lti) [num,den]=tfdata(S_lti)
[x,resnorm,residual,exitflag]= lsqnonlin(fun,x0): 基于Gauss-Newton方法求解
min ( f (x) f1(x)2 f2 (x)2 fm (x)2 ) x
[x,resnorm,residual,exitflag] = lsqcurvefit(fun,x0,xdata,ydata) 非线性最小二乘曲线拟合
伪逆:B=pinv(A)
满秩分解 可利用rref指令完成
司楚尔(Schur)分解: [U R] = schur(A)
乔列斯基(Cholesky)分解:R = chol(X) R’*R=X
[R,p] = chol(X) 利用p来判断R是否为正定,p=0则X正定
线性方程组的解 一、行列式、逆、恰定方程 det(A) inv(A) x=inv(A)*b x=A\b 求解Ax=b,例4.1-1 二、最小二乘问题 对超定问题Ax=b有三种方法,4.1-2 x=inv(trans(A)A) trans(A)b x=pinv(A)*b x=A\b
CH4.2 矩阵的一些运算 加、减、乘
trace(A) rank(A)
kron(A,B) norm(A,flag) cond(A)

北航数值分析报告大作业二

北航数值分析报告大作业二

数值分析大作业(二)学院名称宇航学院专业名称航空宇航推进理论与工程学生姓名段毓学号SY16153062016年11月5日1 算法设计方案首先将矩阵A 进行拟上三角化,把矩阵A 进行QR 分解,计算出RQ 。

要得出矩阵A 的全部特征值,首先对A 进行QR 的双步位移得出特征值。

最后,采用列主元的高斯消元法求解特征向量。

1.1 A 的拟上三角化因为对矩阵进行QR 分解并不改变矩阵的结构,因此在进行QR 分解前对矩阵A 进行拟上三角化可以大大减少计算机的计算量,提高程序的运行效率。

具体算法如下所示,记A A =)1(,并记)(r A 的第r 列至第n 列的元素为()n r r j n i a r ij,,1,;,,2,1)(ΛΛ+==。

对于2,,2,1-=n r Λ执行 若()n r r i a r ir,,3,2)(Λ++=全为零,则令)()1(r r A A =+,转5;否则转2。

计算()∑+==nri r ir r a d 12)(()()r r r r r r r r r r d c a d a c ==-=++则取,0sgn )(,1)(,1若)(,12r rr r r r a c c h +-=令()nTr nrr r r r r r r r R a a c a u ∈-=++)()(,2)(,1,,,,0,,0ΛΛ。

计算r r T r r h u A p /)(=r r rr r Tr r h u p t /=r r r r u t q -=ωT rr T r r r r p u u A A --=+ω)()1(继续。

1.2 A 的QR 分解具体算法如下所示,记)1(1-=n A A ,并记[]nn r ij r a A ⨯=)(,令I Q =1 对于1,,2,1-=n r Λ执行 1.若()n r r i a r ir ,,3,1)(Λ++=全为零,则令r r Q Q =+1r r A A =+1,转5;否则转2。

全日制工程硕士研究生培养方案-北航研究生院-北京航空航天大学

全日制工程硕士研究生培养方案-北航研究生院-北京航空航天大学

大型飞机高级人才培养班航空工程全日制工程硕士研究生培养方案一、适用类别或领域航空工程(085232)二、培养目标材料工程、电子与通信工程、控制工程、航空工程领域全日制工程硕士 (以下简称航空工程等领域全日制工程硕士)是与以上各工程领域任职资格相联系的专业学位,主要为国民经济和国防建设等领域培养应用型、复合型高层次工程技术和工程管理人才。

大飞机班旨在探索一条“以国家大型项目人才需求为索引,培养具有献身精神、团结协作精神、开拓创新精神的设计型和复合型人才”的研究生培养新模式,是北航研究生培养体系的一部分。

航空工程等领域全日制工程硕士培养的基本要求是:1、坚持党的基本路线,热爱祖国、遵纪守法、品行端正、诚实守信、身心健康,具有良好的科研道德和敬业精神。

2、在本领域掌握坚实的基础理论和系统的专门知识,有较宽的知识面和较强的自立能力,具有大飞机设计、制造、运营、管理等领域需求的创造能力和工程实践能力。

3、掌握一门外国语。

三、培养模式及学习年限1.航空工程等领域全日制工程硕士研究生培养实行导师负责制,或以导师为主的指导小组制,负责制订硕士研究生个人培养计划,选课、组织开题报告、论文中期检查、指导科学研究和学位论文,并与中国商飞、第一飞机设计研究院、西飞公司等航空企业联合培养,实行导师组指导。

2.硕士研究生一般用1学年完成课程学习,课程学习实行学分制,具体学习、考核及管理工作执行《北京航空航天大学研究生院关于研究生课程学习管理规定》。

3.专业实习是全日制工程硕士研究生培养中的重要环节,全日制工程硕士研究生在学期间,应保证不少于0.5年的工程实践。

4.学位论文选题应来源于航空工程等领域工程技术背景。

鼓励实行双导师制,其中第一导师为校内导师,校外导师应是与本工程领域相关的专家,也可以根据学生的论文研究方向,成立指导小组。

5.采用全日制学习方式,遵循《北京航空航天大学研究生学籍管理规定》,学制一般为2.5年,实行弹性学习年限。

北航 数值分析第二次大作业(带双步位移的QR方法)

北航 数值分析第二次大作业(带双步位移的QR方法)

一、算法设计方案:按题目要求,本程序运用带双步位移的QR方法求解给定矩阵的特征值,并对每一实特征值,求解其相应的特征向量。

总体思路:1)初始化矩阵首先需要将需要求解的矩阵输入程序。

为了防止矩阵在后面的计算中被破坏保存A[][]。

2)对给定的矩阵进行拟上三角化为了尽量减少计算量,提高程序的运行效率,在对矩阵进行QR分解之前,先进行拟上三角化。

由于矩阵的QR 分解不改变矩阵的结构,所以具有拟上三角形状的矩阵的QR分解可以减少大量的计算量。

这里用函数void QuasiTriangularization()来实现,函数形参为double型N维方阵double a[][N]。

3)对拟上三角化后的矩阵进行QR分解对拟上三角化的矩阵进行QR分解会大大减小计算量。

用子程序void QR_decomposition()来实现,将Q、R设为形参,然后将计算出来的结果传入Q和R,然后求出RQ乘积。

4)对拟上三角化后的矩阵进行带双步位移的QR分解为了加速收敛,对QR分解引入双步位移,适当选取位移量,可以避免进行复数运算。

为了进一步减少计算量,在每次进行QR分解之前,先判断是否可以直接得到矩阵的一个特征值或者通过简单的运算得到矩阵的一对特征值。

若可以,则得到特征值,同时对矩阵进行降阶处理;若不可以,则进行QR分解。

这里用函数intTwoStepDisplacement_QR()来实现。

这是用来存储计算得到的特征值的二维数组。

考虑到特征值可能为复数,因此将所有特征值均当成复数处理。

此函数中,QR分解部分用子函数void QR_decompositionMk()实现。

这里形参有三个,分别用来传递引入双步位移后的Mk阵,A矩阵,以及当前目标矩阵的维数m。

5)计算特征向量得到特征值后,计算实特征值相应的特征向量。

这里判断所得特征值的虚数部分是否为零。

求实特征值的特征向量采用求解相应的方程组((A-λI)x=0)的方法。

因此先初始化矩阵Array,计算(A-λI),再求解方程组。

北航4系弹性力学作业答案闫晓军胡殿印

北航4系弹性力学作业答案闫晓军胡殿印

23
第一次作业(习题六)
(2) 这个问题属于空间问题(应变沿z方向是变 化的!),应当考虑六个相容条件:
∂ 2 ε y ∂ 2 ε z ∂ 2 γ yz ∂ 2ε x ∂ ∂γ yz ∂γ zx ∂γ xy = − + + =2 , , 2 + 2 ∂y∂z ∂x ∂x ∂y ∂z ∂y∂x ∂y ∂z 2 2 2 ∂ 2ε y ∂ ∂γ zx ∂γ xy ∂γ yz ∂ ε z ∂ ε x ∂ γ zx = − + + =2 , , 2 + 2 ∂z∂x ∂y ∂y ∂z ∂x ∂z∂x ∂z ∂x 2 2 2 2 ε γ γ γ ∂ ∂ ∂ ∂ ∂ ε γ ∂ εz ∂ ∂ y xy xy yz x zx + = − + + , 2 = 2 ∂z ∂y 2 x y z x y ∂ ∂ ∂ ∂ ∂ ∂x∂y x ∂
注意:坐标变换关系式的表达
I1 = σ x + σ y + σ z
σ i′j′ = lii′l jj′σ ij σ x′ = σ x l112 + σ y l12 2 + σ z l132 + 2 (τ xy l11l12 + τ yz l12l13 + τ zx l13l11 ) σ y′ = σ x l212 + σ y l22 2 + σ z l232 + 2 (τ xy l21l22 + τ yz l22l23 + τ zx l23l21 ) σ z′ = σ x l312 + σ y l32 2 + σ z l332 + 2 (τ xy l31l32 + τ yz l32l33 + τ zx l33l31 )

北京航空航天大学附中高考数学二轮复习 三角函数

北京航空航天大学附中高考数学二轮复习 三角函数

北京航空航天大学附中三维设计2013年高考数学二轮复习:三角函数本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题 (本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数]4,3[sin 2)(ππω-=在区间x x f 上的最小值为-2,则ω的取值范围是( )A .[)+∞⎥⎦⎤⎝⎛-∞-,629,YB .⎪⎭⎫⎢⎣⎡+∞⎥⎦⎤ ⎝⎛-∞-,2329,YC .(][)+∞-∞-,62,YD .(]⎪⎭⎫⎢⎣⎡+∞-∞-,232,Y 【答案】D2.扇形面积是1平方米,周长为4米,则扇形中心角的弧度数是( )A . 2B . 1C .πD .2π 【答案】A3.为得到函数)32sin(π-=x y 的图象,只需将函数)62sin(π+=x y 的图像( )A .向左平移4π个单位长度 B .向右平移4π个单位长度 C .向左平移2π个单位长度D .向右平移2π个单位长度【答案】A4.若x 是三角形的最小内角,则函数y=sin x+cos x+sin xcos x 的值域是( )A .[-1,+∞)B . (1, 2+12] C .[-1, 2] D . (0, 2]【答案】B5.已知a =︒80sin ,则cos100°的值等于( )A .21a -B .21a --C .211a--D .a -【答案】B 6.tan θ+1tan θ =4,则sin2θ=( ) A .15 B . 14C .13D .12【答案】D7.图中的曲线对应的函数解析式是( )A . y =|sinx |B . y =sin |x |C . y =-sin |x |D . y =-|sinx |【答案】C8.函数)32cos(π--=x y 的单调递增区间是( )A .)(322,342Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ B . )(324,344Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ C .)(382,322Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ D . )(384,324Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ 【答案】D9.已知()53sin =+απ且α为第四象限角,则()πα2cos -的值是( ) A .54 B .54- C .54± D .53【答案】A10.2||,0)(sin(πϕωϕω<>+=x y )的图象的一部分图形如图所示,则函数的解析式为( )A .y=sin(x+3π) B .y=sin(x-3π) C .y=sin(2x+3π) D .y=sin(2x-3π)【答案】C11.当20π<<x 时,函数x x x x f 2sin sin 82cos 1)(2++=的最小值为( )A .2B .32C .4D .34【答案】C12.420sin °=( )A .23- B .21 C .23 D . 21-【答案】C第Ⅱ卷(非选择题 共90分)二、填空题 (本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.若,(0,)2παβ∈,3cos()22βα-=,1sin()22αβ-=-,则cos()αβ+的值等于____________ 【答案】12-14.若()53sin =-απ,α是第二象限,则=αcos . 【答案】54-15.若等式3sin α+cos α=413+m 能够成立,则m 的取值范围是 .【答案】7[3,]3- 16.已知tanx=6,那么21sin 2x+31cos 2x= . 【答案】55111三、解答题 (本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c , q=(a 2,1),p=(c b -2, C cos )且q p //.求:(I )求sin A 的值;(II )求三角函数式1tan 12cos 2++-CC的取值范围.【答案】(I )∵q p //,∴c b C a -=2cos 2, 根据正弦定理,得C B C A sin sin 2cos sin 2-=, 又()sin sin sin cos cos sin B A C A C A C =+=+,1sin cos sin 2C A C ∴=,0sin ≠C Θ,21cos =∴A , 又0A π<<Q 3π=∴A ;sinA=23(II )原式C C C CC C C CC cos sin 2cos 21cos sin 1)sin (cos 211tan 12cos 2222+-=+--=++-=,)42sin(22cos 2sin π-=-=C C C ,∵π320<<C ,∴πππ1213424<-<-C ,∴1)42sin(22≤-<-πC ,∴2)42sin(21≤-<-πC ,∴)(C f 的值域是]2,1(-.18.如图所示,某市政府决定在以政府大楼O 为中心,正北方向和正东方向的马路为边界的扇形地域内建造一个图书馆.为了充分利用这块土地,并考虑与周边环境协调,设计要求该图书馆底面矩形的四个顶点都要在边界上,图书馆的正面要朝市政府大楼.设扇形的半径OM R = ,45MOP ∠=o,OB 与OM 之间的夹角为θ. (1)将图书馆底面矩形ABCD 的面积S 表示成θ的函数.(2)若45R m =,求当θ为何值时,矩形ABCD 的面积S 有最大值? 其最大值是多少?(精确到0.01m2)【答案】(Ⅰ)由题意可知,点M 为»PQ 的中点,所以OM AD ⊥. 设OM 于BC 的交点为F ,则2sin BC R θ=,cos OF R θ=.1cos sin 2AB OF AD R R θθ=-=-.所以2sin (cos sin )S AB BC R R R θθθ=⋅=-22(2sin cos 2sin )R θθθ=- 2(sin 21cos 2)R θθ=-+222sin(2)4R R πθ=+-,(0,)4πθ∈ . (Ⅱ)因为(0,)4πθ∈ ,则32(,)444πππθ+∈ .所以当242ππθ+=,即8πθ=时,S 有最大值.2max (21)S R =-2(21)450.4142025838.35=-⨯=⨯=.故当8πθ=时,矩形ABCD 的面积S 有最大值838.35m2.19.用两种方法说明函数1tan()26y x π=-的图像可以由函数tan y x =的图像经过怎样的变换得到。

北京航空航天大学911材料综合材料现代研究方法作业习题精选全文

北京航空航天大学911材料综合材料现代研究方法作业习题精选全文

可编辑修改精选全文完整版作业习题一、主要参考书1.王富耻. 材料现代分析测试方法[M],北京理工大学出版社,2006.2.高家武等. 高分子材料近代测试技术[M],北京航空航天大学出版社,1998.二、学习指导阅读作业:参考书1:材料现代分析测试方法第七章(266-288页)第六章(248-259页)第九章(334-337页)参考书2:高分子材料近代测试技术第三章(85-125页)总体学习目标:1.定性理解差热分析(DTA)、差示扫描量热法(DSC)、热重法(TG)和动态力学热分析(DMTA)等热分析技术的基本原理及影响因素;2. 掌握热分析曲线解析方法和热分析技术在材料研究领域中的具体应用;3.定性地理解在红外光谱(IR)中分子结构对吸收峰位置的影响;4.学会利用解析红外光谱图谱并辨别未知物分子结构中的官能团;5.定性地理解核磁共振(NMR)的物理原理及影响化学位移和自旋-自旋裂分的因素;6.学会解析核磁共振氢谱(1H-NMR),并学习综合利用IR和NMR等分析推断有机分子和聚合物的结构。

三、思考题节选X射线衍射解释名词:1.特征X射线 2.相干散射 3.倒易矢量 4.倒易球 5.光电效应 6.吸收限 7.俄歇效应 8.X射线的激发电压 9.X射线的工作电压 10.非相干散射11.晶带 12.晶带定律 13.倒易点阵简答题1.X射线产生的条件是什么?2.空间点阵与晶体结构是什么关系?3.干涉指数与晶面指数是什么关系?4.X射线在晶体中产生衍射的极限条件是什么?5.倒易矢量的基本性质?6.X射线分析中工作电压如何选择?7.X射线衍射仪中测角仪其什么作用?8.写出X射线定性物相分析的程序?9.X射线衍射仪有什么用途?10.什么是厄瓦尔德作图法?11.正点阵中,同一晶带的面在倒易空间中与什么相对应?12.四种类型点阵的系统消光规律?13.用厄瓦尔德图法解释劳厄法的成像原理和劳厄斑点的分布规律?14.什么是X射线粉末法衍射花样指数化方法?15.什么是X射线谱中,波长最短的短波限对应的X射线光子能量应是最大,但为什么最大强度出现在中央、16.说明标识X射线谱产生的机理。

北航最优化方法作业答案co_theory

北航最优化方法作业答案co_theory

原始问题
min-max问题是研究对偶问题的基础!各种对偶的区别: 的定义方式不同! 原始问题(primal problem)
◎ 前提: 两人采取理性行为 不管对方采取何种策略,该行为都能保证自己的最大获益 该行为都能保证自己的最大获益 -不管对方采取何种策略 Peter: 选 最多要支付 Harriet: 选 最少收到 需要解决的问题: max-min问题←→对偶问题
第 7 章 约束优化:理论 数学规划基础 LHY‐SMSS‐BUAA 第 7 章 约束优化:理论 数学规划基础 LHY‐SMSS‐BUAA
4
线性规划的对偶理论
线性规划的对偶理论: 原始问题←→对偶问题 • 原始问题-minimize,对偶问题-maximize • 原始问题最优解所对应的单纯形乘子是对偶问题的解 • 弱对偶性 • 强对偶性(之一有解,则另一个必有解,且最优值相等)
其中 是凸函数. 定理. 凸规划的任一KKT点是全局极小点. 注1. 凸规划的所有局部解也是全局解. 注2. 线性规划是凸规划;二次规划中目标函数的Hessian阵 半正定时,也是凸规划.
第 7 章 约束优化:理论 数学规划基础 LHY‐SMSS‐BUAA
则 . 从而 Lagrange乘子的解释:最优值关于约束的灵敏度,即 约束函数变化时,对应的最优值的变化率!
原始问题(primal problem) 例1.
Lagrange对偶-例
其中 的其它约束. 对任意的
, 是凸函数,X是凸集,是希望分别处理 ,定义对偶函数 定义对偶函数(dual (d l function) f ti )
对偶函数
对偶问题: 对偶问题(dual problem):
注:如果要求 ci(x) = 0,则对偶问题中与之对应的变量没 有符号限制.

北航最优控制ppt第三章

北航最优控制ppt第三章

5、泛函的变分: 当自变量函数 X (t ) 有变分δX 时, 泛函的增量为
∆J = J [X + δX ] − J [X ]
= δJ [X ,δX ] + ε δX
这里, [X , δX ] 是 δX 的线性泛函,若 δX → 0 时, δJ 有ε → 0,则称δJ [X , δX ] 是泛函 J [X ] 的变分。 J 是 ∆J δ 的线性主部。
6、泛函的极值:若存在ε > 0 ,对满足的 X − X * < ε 一切X,J ( X ) − J ( X * ) 具有同一符号,则 称 J ( X ) 在 X = X *处有极值。
定理: ( X ) 在 X = X * 处有极值的必要条件是对 J
于所有容许的增量函数 δX (自变量的变分), 泛函 J ( X ) 在 X * 处的变分为零
例3-1
求通过点(0,0)及(1,1)且使
& J = ∫ ( x 2 + x 2 )dt
0 1
x * (t )。 取极值的轨迹
解 这是固定端点问题,相应的欧拉——拉格朗日方 程为 d
2x − dt & (2 x) = 0

&& − x = 0 x
它的通解形式为
x (t ) = Acht + Bsht
现在,将上面对 x(t ) 是标量函数时所得到的公式推 广到 X (t )是n维向量函数的情况。这时,性能泛函为
& J = ∫ F ( X , X , t )dt
t0 tf
(3-9)
式中
x1 (t ) x (t ) X = 2 M xn (t )
& x1 (t ) x (t ) & & = 2 X M & x n (t )

期末考试泛函分析报告B卷

期末考试泛函分析报告B卷
第 2 页(共 3 页)
.
.
------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------
1, 完备的距离空间是第二类型集。
()
2, 距离空间中的闭集可表示成可列个开集的交


3, 全有界集是有界且可分的。


4, 设 M 为内积空间 X 上的子集,则一定有 M M 。


5, 设 E1, E2 为 Banach 空间,T 是从 E1 到 E2 的算子,则T 有界的充要条件是T 连续的。 (
2, 叙述共鸣定理 3,集合的稠密性的定义以及三个等价定义。
得分 评阅人
四、计算题:(共 2 小题,每题 6 分,共 12 分)
1, 设 X L1([a,b]),Y C[a,b],定义算子T : X Y , f (x) T ( f )(x)
求T 的范数。
a
x
f (t)dt ,
精品文档
2,设
图像。如果 T 的图像是
,则称算子 T 为 X 到 Y 上的闭算子。
,则称集族 为T 的
4,赋范线性空间 E 的范数满足
,则可以在 E 中定义内积使其成
为内积空间。
5,给定距离空间 X , , M X 。若
,都存在 M 的一

,则称集合 M 是全有界的。
6,集合 A LP ([a,b])(1 P ) 准紧的充分必要条件是 A 具有下列性质:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二次应用泛函作业
从数学的本质来看,最基本的集合有两类:线性空间(有线性结构的集合)、度量空间(有度量结构的集合)。

对线性空间而言,主要研究集合的描述,直观地说就是如何清楚地告诉地别人这个集合是什么样子。

为了描述清楚,就引入了基(相当于三维空间中的坐标系)的概念,所以对于一个线性空间来说,只要知道其基即可,集合中的元素只要知道其在给定基下的坐标即可。

但线性空间中的元素没有“长度”(相当于三维空间中线段的长度),为了量化线性空间中的元素,所以又在线性空间引入特殊的“长度”,即范数。

赋予了范数的线性空间即称为赋范线性空间。

但赋范线性空间中两个元素之间没有角度的概念,为了解决该问题,所以在线性空间中又引入了内积的概念。

因为有度量,所以可以在度量空间、赋范线性空间以及内积空间中引入极限,但抽象空间中的极限与实数上的极限有一个很大的不同就是,极限点可能不在原来给定的集合中,所以又引入了完备的概念,完备的内积空间就称为Hilbert空间。

线性赋范空间就是定义了范数的线性空间,所谓范数就是线性空间到数域的一个映射,其满足范数公理(正定性,齐次性,三角不等式),可以理解为线性空间元素的长度。

内积空间就是定义了内积的线性空间,而内积可以看成是两个元素作用生成一个数,按一般向量内积理解即可。

度量空间是定义了度量的线性空间,也就是两个元素之间的“长度”,满足正定性、对称性、三角不等式。

一般而言,定义了内积可以诱导出范数(也就是与自己做内积再开根号),定义了范数可以诱导出度量(两元素的度量即为元素差的范数),但度量诱导范数需要加一点限制。

所谓希尔伯特空间就是定义了内积的线性空间,并且按照内积诱导出的度量是完备的(完备就是柯西序列在内部收敛)特别的,实数域上的有限维希尔伯特空间叫做欧几里得空间;复数域上的有限维希尔伯特空间叫做酉空间。

泛函分析的空间理论一个有重大意义的事实是:n
R中的极限论及基于极限概念的分析理论的许多结果,仅依赖于模长性质,而与模长的定义无关,因而实际上并不依赖于Euclid空间的特殊构造。

这就说明了若某个向量空间上定义了一种类似于模长的概念,它具有正定性,齐次性,三角不等式性质,则定义极限之后,就可将Euclid空间中那些仅依赖于性质的概念与结论直接推广于该空间,从而得到经典分析的一个具有广阔发展余地的拓广,从而引向赋范空间概念。

相关文档
最新文档