《概率论与数理统计电子教案第一章

合集下载

概率论与数理统计教案(48课时)

概率论与数理统计教案(48课时)

《概率论与数理统计》课程教案第一章 随机事件及其概率一.本章的教学目标及基本要求(1) 理解随机试验、样本空间、随机事件的概念;(2) 掌握随机事件之间的关系与运算,;(3) 掌握概率的基本性质以及简单的古典概率计算; 学会几何概率的计算;(4) 理解事件频率的概念,了解随机现象的统计规律性以及概率的统计定义。

了解概率的公理化定义。

(5) 理解条件概率、全概率公式、Bayes 公式及其意义。

理解事件的独立性。

二.本章的教学内容及学时分配第一节 随机事件及事件之间的关系第二节 频率与概率 2学时第三节 等可能概型(古典概型) 2 学时第四节 条件概率第五节 事件的独立性 2 学时三.本章教学内容的重点和难点1) 随机事件及随机事件之间的关系;2) 古典概型及概率计算;3)概率的性质;4)条件概率,全概率公式和Bayes 公式5)独立性、n 重伯努利试验和伯努利定理四.教学过程中应注意的问题1) 使学生能正确地描述随机试验的样本空间和各种随机事件;2) 注意让学生理解事件,,,,,A B A B A B A B AB A ⊂⋃⋂-=Φ…的具体含义,理解事件的互斥关系;3) 让学生掌握事件之间的运算法则和德莫根定律;4) 古典概率计算中,为了计算样本点总数和事件的有利场合数,经常要用到排列和组合,复习排列、组合原理;5) 讲清楚抽样的两种方式——有放回和无放回;五.思考题和习题思考题:1. 集合的并运算⋃和差运算-是否存在消去律?2. 怎样理解互斥事件和逆事件?3. 古典概率的计算与几何概率的计算有哪些不同点?哪些相同点?习题:第二章 随机变量及其分布一.本章的教学目标及基本要求(1) 理解随机变量的概念,理解随机变量分布函数的概念及性质, 理解离散型和连续型随机变量的概率分布及其性质,会运用概率分布计算各种随机事件的概率;(2) 熟记两点分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的分布律或密度函数及性质;二.本章的教学内容及学时分配第一节 随机变量第二节 第二节 离散型随机变量及其分布离散随机变量及分布律、分布律的特征第三节 常用的离散型随机变量常见分布(0-1分布、二项分布、泊松分布) 2学时第四节 随机变量的分布函数分布函数的定义和基本性质,公式第五节 连续型随机变量及其分布连续随机变量及密度函数、密度函数的性质 2学时第六节 常用的连续型随机变量常见分布(均匀分布、指数分布、正态分布)及概率计算 2学时三.本章教学内容的重点和难点a) 随机变量的定义、分布函数及性质;b) 离散型、连续型随机变量及其分布律或密度函数,如何用分布律或密度函数求任何事件的概率;c) 六个常见分布(二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布);四.教学过程中应注意的问题a) 注意分布函数(){}F x P X x =<的特殊值及左连续性概念的理解;b) 构成离散随机变量X 的分布律的条件,它与分布函数()F x 之间的关系;c) 构成连续随机变量X 的密度函数的条件,它与分布函数()F x 之间的关系;d) 连续型随机变量的分布函数()F x 关于x 处处连续,且()0P X x ==,其中x 为任意实数,同时说明了()0P A =不能推导A =Φ。

《概率论与数理统计》电子教案第一章随机事件与概率

《概率论与数理统计》电子教案第一章随机事件与概率

《概率论与数理统计教程》教案第一章随机事件与概率教材:《概率论与数理统计教程》总安排学时:90本章学时:14第一讲:随机事件及其运算教学内容:引言、概率论的基本概念、事件之间的关系及运算、事件之间的运算规律。

教学目的:(1)了解概率论这门学科的研究对象,主要任务和应用领域;(2)深刻理解随机试验、基本事件、样本空间、随机事件的概念;掌握一个随机试验的样本空间、基本事件和有关事件的表示方法。

(3)深刻理解事件的包含关系、和事件、积事件、互斥事件、互逆事件和差事件的意义;掌握事件之间的各种运算,熟练掌握用已知事件的运算表示随机事件;(4)掌握事件之间的运算规律,理解对偶律的意义。

教学的过程和要求:(1)概率论的研究对象及主要任务(10分钟)举例说明概率论的研究对象和任务,与高等数学和其它数学学科的不同之处,简单介绍概率论发展的历史和应用;(i)概率论的研究对象:确定性现象或必然现象:在相同的条件下,每次观察(试验)得到的结果是完全相同的现象。

例:向空中抛掷一物体,此物体上升到一定高度后必然下落;例:在一个标准大气压下把水加热到100℃必然会沸腾等现象。

随机现象或偶然现象:在相同的条件下,每次观察(试验)可能出现不同结果的现象。

例:在相同的条件下抛一枚均匀的硬币,其结果可能是正面(分值面)向上,也可能是反面向上,重复投掷,每次的结果在出现之前都不能确定;例:从同一生产线上生产的灯泡的寿命等现象。

(ii)概率论的研究任务:概率论与数理统计就是研究和揭示随机现象的统计规律性的一门数学学科。

(iii)概率论发展的历史:概率论起源于赌博问题。

大约在17世纪中叶,法国数学家帕斯卡(B•Pascal)、费马(fermat)及荷兰数学家惠更斯(C•Hugeness)用排列组合的方法,研究了赌博中一些较复杂的问题。

随着18、19世纪科学的迅速发展,起源于赌博的概率论逐渐被应用于生物、物理等研究领域,同时也推动了概率理论研究的发展. 概率论作为一门数学分支日趋完善,形成了严格的数学体系。

概率论与数理统计教案(48课时)(最新整理)

概率论与数理统计教案(48课时)(最新整理)

( x, y )G
,注意二重积分运算知识点的复习。
d) 二维均匀分布的密度函数的具体表达形式。
五.思考题和习题
思考题:1. 由随机变量 X ,Y 的边缘分布能否决定它们的联合分布?
2. 条件分布是否可以由条件概率公式推导? 3. 事件的独立性与随机变量的独立性是否一致? 4.如何利用随机变量之间的独立性去简化概率计算,试举例说明。 习题:
第四章 随机变量的数字特征 一.教学目标及基本要求
(1)理解数学期望和方差的定义并且掌握它们的计算公式;
(2)掌握数学期望和方差的性质与计算,会求随机变量函数的数学期望,特别是利用
期望或方差的性质计算某些随机变量函数的期望和方差。
(3)熟记 0-1 分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的数学期
第四节 二维随机变量的函数的分布
已知(X,Y)的分布率 pij 或密度函数 (x, y) ,求 Z f ( X ,Y ) 的分布律或密度
函数Z (z) 。特别如函数形式: Z X Y , Z max( X ,Y ), Z min( X ,Y ) 。
2 学时
三.本章教学内容的重点和难点
a) 二维随机变量的分布函数及性质,与一维情形比较有哪些不同之处;
5.列举正态分布的应用。
习题:
第三章 多维随机变量及其分布
一.教学目标及基本要求
(1)了解二维随机变量概念及其联合分布函数概念和性质,了解二维离散型和连续 型随机变量定义及其概率分布和性质,了解二维均匀分布和正态分布。
(2)会用联合概率分布计算有关事件的概率,会求边缘分布。 (3)掌握随机变量独立性的概念,掌握运用随机变量的独立性进行概率计算。 (4)会求两个独立随机变量的简单函数(如函数 X+Y, max(X, Y), min(X, Y))的分布。

《概率论与数理统计电子教案第一章

《概率论与数理统计电子教案第一章

随机变量的定义
根据随机变量可能取值的性质,可以分为离散型随 机变量和连续型随机变量。
随机变量的分类
离散型随机变量分布律
分布律的定义 二项分布、泊松分布等。
常见离散型随机变量的分布 律
对于一个离散型随机变量X,其所有可能取 的值xi(i=1,2,...)与取这些值的概率 P{X=xi}(i=1,2,...)构成的表格或公式称为 离散型随机变量X的分布律。
叁 多维随机变量函数的概率密度求法
对于多维随机变量的函数,其概率密度可以通过换元法和雅可比行 列式求得。
随机变量数字特征
数学期望与方差概念
数学期望(期望值)
01
描述了随机变量取值的"平均"水平,是概率加权的平均
值。
方差
02
描述了随机变量取值的离散程度,即取值与期望值的偏
离程度。方差越大,说明随机变量的取值越分散。
大数定律应用
大数定律概念
中心极限定理内容及意义
中心极限定理内容
中心极限定理指出,大量相互独立、同分布 的随机变量之和的分布,当变量个数足够大 时,将趋于正态分布。
中心极限定理意义
中心极限定理是概率论和数理统计中的基本 定理之一,为许多统计方法的推导和应用提 供了理论基础,如置信区间、假设检验等。
棣莫弗-拉普拉斯定理
事件的独立性
计算多个事件同时发生的概率。
两个或多个事件的发生互不影响。
条件概率
在给定条件下,某事件发生的概 率。
独立试验
每次试验的结果与其他次试验的 结果无关。
随机变量及其分布
随机变量概念及分类
设随机试验的样本空间为 S={e}, X=X{e}是定义在 样本空间S上的实值单值 函数。称X=X{e}为随机变 量。

概率论与数理统计教案

概率论与数理统计教案

概率论与数理统计教案【篇一:概率论与数理统计教案】《概率论与数理统计》课程教案第一章随机事件及其概率一.本章的教学目标及基本要求(1) 理解随机试验、样本空间、随机事件的概念; (2) 掌握随机事件之间的关系与运算,;(3) 掌握概率的基本性质以及简单的古典概率计算; 学会几何概率的计算; (4) 理解事件频率的概念,了解随机现象的统计规律性以及概率的统计定义。

了解概率的公理化定义。

(5) 理解条件概率、全概率公式、bayes 公式及其意义。

理解事件的独立性。

二.本章的教学内容及学时分配第一节随机事件及事件之间的关系第二节频率与概率 2学时第三节等可能概型(古典概型) 2 学时第四节条件概率第五节事件的独立性 2 学时三.本章教学内容的重点和难点1)随机事件及随机事件之间的关系; 2)古典概型及概率计算;3)概率的性质;4)条件概率,全概率公式和bayes公式 5)独立性、n 重伯努利试验和伯努利定理四.教学过程中应注意的问题1)使学生能正确地描述随机试验的样本空间和各种随机事件;2)注意让学生理解事件a?b,a?b,a?b,a?b,ab??,a…的具体含义,理解事件的互斥关系;3)让学生掌握事件之间的运算法则和德莫根定律;4)古典概率计算中,为了计算样本点总数和事件的有利场合数,经常要用到排列和组合,复习排列、组合原理;5)讲清楚抽样的两种方式——有放回和无放回;五.思考题和习题思考题:1. 集合的并运算?和差运算-是否存在消去律?2. 怎样理解互斥事件和逆事件?3. 古典概率的计算与几何概率的计算有哪些不同点?哪些相同点?习题:第二章随机变量及其分布一.本章的教学目标及基本要求(1) 理解随机变量的概念,理解随机变量分布函数的概念及性质, 理解离散型和连续型随机变量的概率分布及其性质,会运用概率分布计算各种随机事件的概率; (2) 熟记两点分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的分布律或密度函数及性质;二.本章的教学内容及学时分配第一节随机变量第二节第二节离散型随机变量及其分布离散随机变量及分布律、分布律的特征第三节常用的离散型随机变量常见分布(0-1分布、二项分布、泊松分布) 2学时第四节随机变量的分布函数分布函数的定义和基本性质,公式第五节连续型随机变量及其分布连续随机变量及密度函数、密度函数的性质 2学时第六节常用的连续型随机变量常见分布(均匀分布、指数分布、正态分布)及概率计算 2学时三.本章教学内容的重点和难点a) 随机变量的定义、分布函数及性质;b) 离散型、连续型随机变量及其分布律或密度函数,如何用分布律或密度函数求任何事件的概率;c) 六个常见分布(二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布);四.教学过程中应注意的问题a) 注意分布函数f(x)?p{x?x}的特殊值及左连续性概念的理解; b)构成离散随机变量x的分布律的条件,它与分布函数f(x)之间的关系;c) 构成连续随机变量x的密度函数的条件,它与分布函数f(x)之间的关系; d) 连续型随机变量的分布函数f(x)关于x处处连续,且p(x?x)?0,其中x为任意实数,同时说明了p(a)?0不能推导a??。

概率论与数理统计教案第一章第1节[推荐]

概率论与数理统计教案第一章第1节[推荐]

概率论与数理统计教案第一章第1节[推荐]第一篇:概率论与数理统计教案第一章第1节[推荐]第一章随机事件及其概率概率论与数理统计是从数量化的角度来研究现实世界中一类不确定现象(随机现象)规律性的一门应用数学学科,20世纪以来,广泛应用于工业、国防、国民经济及工程技术等各个领域.本章介绍的随机事件与概率是概率论中最基本、最重要的概念之一.第一节随机事件内容分布图示★ 随机现象★ 样本空间★ 随机现象的统计规律性★ 随机事件★ 事件的集合表示★ 事件的关系与运算★ 事件的运算规律★ 例1 ★ 例4 ★ 内容小结★ 习题1-1★ 例2 ★ 例5 ★ 课堂练习★ 例3 内容要点:一.随机现象从亚里士多德时代开始,哲学家们就已经认识到随机性在生活中的作用, 但直到20世纪初, 人们才认识到随机现象亦可以通过数量化方法来进行研究.概率论就是以数量化方法来研究随机现象及其规律性的一门数学学科.而我们已学过的微积分等课程则是研究确定性现象的数学学科.二.随机现象的统计规律性由于随机现象的结果事先不能预知, 初看似乎毫无规律.然而人们发现同一随机现象大量重复出现时, 其每种可能的结果出现的频率具有稳定性, 从而表明随机现象也有其固有的规律性.人们把随机现象在大量重复出现时所表现出的量的规律性称为随机现象的统计规律性.概率论与数理统计是研究随机现象统计规律性的一门学科.为了对随机现象的统计规律性进行研究,就需要对随机现象进行重复观察, 我们把对随机现象的观察称为随机试验, 并简称为试验,记为E.例如, 观察某射手对固定目标进行射击;抛一枚硬币三次,观察出现正面的次数;记录某市120急救电话一昼夜接到的呼叫次数等均为随机试验.随机试验具有下列特点: 1.可重复性: 试验可以在相同的条件下重复进行;2.可观察性: 试验结果可观察,所有可能的结果是明确的;3.不确定性: 每次试验出现的结果事先不能准确预知.三.样本空间尽管一个随机试验将要出现的结果是不确定的, 但其所有可能结果是明确的, 我们把随机试验的每一种可能的结果称为一个样本点, 记为e(或ω);它们的全体称为样本空间, 记为S(或Ω).基本事件的称谓是相对观察目的而言它们是不可再分解的、最基本的事件,其它事件均可由它们复合而成,一般地,我们称由基本事件复合而成的事件为复合事件.四.事件的集合表示按定义, 样本空间S是随机试验的所有可能结果(样本点)的全体, 故样本空间就是所有样本点构成的集合, 每一个样本点是该集合的元素.一个事件是由具有该事件所要求的特征的那些可能结果所构成的, 所以一个事件对应于S中具有相应特征的样本点(元素)构成的集合, 它是S的一个子集.于是, 任何一个事件都可以用S的某一子集来表示,常用字母A,B,Λ等表示.五.事件的关系与运算因为事件是样本空间的一个集合, 故事件之间的关系与运算可按集合之间的关系和运算来处理.六.事件的运算规律事件间的关系及运算与集合的关系及运算是一致的,为了方便,给出下列对照表:表1.1 记号Ω∅概率论样本空间,必然事件不可能事件基本事件事件A的对立事件事件A发生导致B发生事件A与事件B相等事件A与事件B至少有一个发生事件A与事件B同时发生事件A发生而事件B不发生事件A和事件B互不相容集合论全集空集元素子集A的余集A是B的子集A与B的相等A与B的和集A与B的交集A与B的差集A 与B没有相同的元素ωAAA⊂BA=BA Y BABA-BAB=∅例题选讲:例1在管理系学生中任选一名学生, 令事件A表示选出的是男生, 事件B表示选出的是三年级学生, 事件C表示该生是运动员.(1)叙述事件ABC的意义;(2)在什么条件下ABC=C成立?(3)什么条件下C⊂B?(4)什么条件下A=B成立? 解(1)ABC是指当选的学生是三年级男生, 但不是运动员.(2)只有在C⊂AB, 即C⊂A,C⊂B同时成立的条件下才有ABC=C 成立, 即只有在全部运动员都是男生, 且全部运动员都有是三年级学生的条件下才有ABC=C.(3)C⊂B表示全部运动员都是三年级学生, 也就是说, 若当选的学生是运动员, 那么一定是三年级学生, 即在除三年级学生之外其它年级没有运动员当选的条件下才有C⊂B.(4)A⊂B表示当选的女生一定是三年级学生, 且B⊂A表示当选的三年级学生一定是女生.换句话说, 若选女生, 只能在三年级学生中选举, 同时若选三年级学生只有女生中选举.在这样的条件下, A=B成立.例2 考察某一位同学在一次数学考试中的成绩, 分别用A, B, C, D, P, F表示下列各事件(括号中表示成绩所处的范围):A--优秀([90,100]), B--良好([80,90)),C--中等([70,80)),D--及格([60,70)),P--通过([60,100]),F--未通过([0,60)),则A,B,C,D,F是两两不相容事件P与F是互为对立事件,即有P=F;A,B,C,D均为P的子事件,且有P=A Y B Y C Y D.例3(讲义例1)甲,乙,丙三人各射一次靶,记A-“甲中靶” B-“乙中靶” C-“丙中靶” 则可用上述三个事件的运算来分别表示下列各事件:(1)“甲未中靶”:A;(2)“甲中靶而乙未中靶”:AB;(3)“三人中只有丙未中靶”:ABC;(4)“三人中恰好有一人中靶”:ABC Y ABC Y ABC;(5)“ 三人中至少有一人中靶”:A YB Y C;(6)“三人中至少有一人未中靶”: A Y B Y C;或ABC;(7)“三人中恰有兩人中靶”:ABC Y ABC Y ABC;(8)“三人中至少兩人中靶”:AB Y AC Y BC;(9)“三人均未中靶”:ABC;(10)“三人中至多一人中靶”:ABC Y ABC Y ABC Y ABC;(11)“三人中至多兩人中靶”:ABC或A Y B Y C.注:用其他事件的运算来表示一个事件, 方法往往不惟一,如上例中的(6)和(11)实际上是同一事件,读者应学会用不同方法表达同一事件, 特别在解决具体问题时,往往要根据需要选择一种恰当的表示方法.例4指出下列各等式命题是否成立, 并说明理由:(1)A Y B=(AB)Y B;(2)AB=A Y B;(3)A Y B I C=ABC;(4)(AB)(AB)=∅.解(1)成立.(AB)Y B=(A Y B)I(B Y B)(分配律)=(A Y B)I S=A Y B.(2)不成立.若A发生, 则必有A Y B发生, A发生, 必有A不发生, 从而AB不发生, 故AB=A Y B不成立.(3)不成立.若A Y B I C发生, 即C发生且A Y B发生, 即必然有C发生.由于C发生, 故C必然不发生, 从而ABC不发生, 故(3)不成立.(4)成立.(AB)(AB)=(AB)(BA)=A(BB)A=(A∅)A=∅A=∅.例5 化簡下列事件:(1)(A Y B)(A Y B);(2)AB Y AB Y AB.解(1)(A Y B)(A Y B)=[A(A Y B)]Y[B(A Y B)](分配律)=(AA Y AB)Y(BA Y BB)=(A Y AB)]Y(BA Y∅)(因AB⊂A)=A Y BA=A.(2)AB Y AB Y AB=AB Y AB Y AB Y AB=AB Y AB Y AB Y AB(交换律)=(AB Y AB)Y(AB Y AB)(结合律)=(A Y A)B Y A(B Y B)=B Y A=AB.(对偶律)课堂练习1.设当事件A与B同时发生时C也发生, 则().(A)A Y B是C的子事件;(B)ABC;或A Y B Y C;(C)AB是C的子事件;(D)C是AB的子事件.2.设事件A={甲种产品畅销, 乙种产品滞销}, 则A的对立事件为().(A)甲种产品滞销,乙种产品畅销;(B)甲种产品滞销;(C)甲、乙两种产品均畅销;(D)甲种产品滞销或者乙种产品畅销.第二篇:概率论与数理统计概率论与数理统计,运筹学,计算数学,统计学,还有新增的应用数学,每个学校情况不太一样,每个导师研究的方向也不太一样。

第一章概率论基本概念

第一章概率论基本概念

在古典概型中, 2.概率的古典定义: 概率的古典定义: 概率的古典定义 在古典概型中,设 Ω={ω1, 2, , n} A = {ωi , i , , i } ω Lω ω2 L ωm 1 则
m 事件 包含的样本点数 事件A P( A) = . = n 样本点总数
n
事实上, 事实上, Q Ω = U {ω k } ∴ P (Ω ) = ∑ P ({ω k }) = nP ({ω k }) k =1 k =1 1 又 P (Ω ) = 1,所以 P ({ω 1 }) = P ({ω 2 }) = L = P ({ω n }) = . n
指每次试验都发生的事 件, Ω表示 5. 必然事件: 必然事件: . 用
6. 不可能事件: 不可能事件: 事件, 指每次试验都不发生的 事件,
用φ表示 .
注意: 必然事件和不可能事件不具有随机性, 注意: 必然事件和不可能事件不具有随机性, 但为了今后研究的方便, 但为了今后研究的方便,我们把它们作为随机事件 的特殊情形来处理。 的特殊情形来处理。
随机事件、 第一节 随机事件、频率与概率
样本空间与随机事件 一、
1、随机试验:指满足以下条件的试验 、随机试验: 1)试验可以在相同条件下重复进行; )试验可以在相同条件下重复进行; 2)试验的可能结果不止一个,但事先知道试验 )试验的可能结果不止一个, 的所有可能结果; 的所有可能结果; 3)每次试验恰好出现所有可能结果中的一个, )每次试验恰好出现所有可能结果中的一个, 但究竟出现哪个结果,试验前不能确切预言 不能确切预言。 但究竟出现哪个结果,试验前不能确切预言。 2、样本点:指随机试验中每一个可能的结果 、样本点: 也称基本事件, 也称基本事件, 通常用ω表示, 3、样本空间:指样本点的全体组成的结果; 、样本空间:指样本点的全体组成的结果; 结果

概率论与数理统计教案(48课时)

概率论与数理统计教案(48课时)

概率论与数理统计教案(48课时)第一章随机事件及其概率本章的教学目标及基本要求(1)理解随机试验、样本空间、随机事件的概念;(2)掌握随机事件之间的关系与运算,;(3)掌握概率的基本性质以及简单的古典概率计算;学会几何概率的计算;(4)理解事件频率的概念,了解随机现象的统计规律性以及概率的统计定义。

了解概率的公理化定义。

(5)理解条件概率、全概率公式、Bayes公式及其意义。

理解事件的独立性。

本章的教学内容及学时分配第一节随机事件及事件之间的关系第二节频率与概率2学时第三节等可能概型(古典概型)2学时第四节条件概率第五节 事件的独立性2学时三.本章教学内容的重点和难点1)随机事件及随机事件之间的关系;2)古典概型及概率计算;3)概率的性质;5)独立性、n 重伯努利试验和伯努利定理四.教学过程中应注意的问题1)使学生能正确地描述随机试验的样本空间和各种随机事件;2)注意让学生理解事件4uB,AuB 、AcB,4-B,4B = ®,A... 的具体含义,理解事件的互斥关系;根定律;4)条件概率, 全概率公式和Bayes 公式 3) 让学生掌握事件之间的运算法则和德莫4)古典概率计算中,为了计算样本点总数和1)事件的有利场合数,经常要用到排列和组合,复习排列、组合原理;2)讲清楚抽样的两种方式有放回和无放回;思考题和习题思考题:1.集合的并运算和差运算-是否存在消去律?2.怎样理解互斥事件和逆事件?3.古典概率的计算与几何概率的计算有哪些不同点?哪些相同点?习题:第二章随机变量及其分布本章的教学目标及基本要求(1)理解随机变量的概念,理解随机变量分布函数的概念及性质,理解离散型和连续型随机变量的概率分布及其性质,会运用概率分布计算各种随机事件的概率;(2)熟记两点分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的分布律或密度函数及性质;二.本章的教学内容及学时分配第一节随机变量第二节第二节离散型随机变量及其分布离散随机变量及分布律、分布律的特征第三节常用的离散型随机变量常见分布(0-1分布、二项分布、泊松分布)2学时第四节随机变量的分布函数分布函数的定义和基本性质,公式第五节连续型随机变量及其分布连续随机变量及密度函数、密度函数的性质2学时第六节常用的连续型随机变量常见分布(均匀分布、指数分布、正态分布)及概率计算2学时三.本章教学内容的重点和难点a)随机变量的定义、分布函数及性质;b)离散型、连续型随机变量及其分布律或密度函数,如何用分布律或密度函数求任何事件的概率;C)六个常见分布(二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布);四.教学过程中应注意的问题a)注意分布函数F(x) P{X x}的特殊值及左连续性概念的理解;b)构成离散随机变量X的分布律的条件,它与分布函数F(x)之间的关系;c)构成连续随机变量X的密度函数的条件,它与分布函数F(x)之间的关系;d)连续型随机变量的分布函数F(x)关于x处处连续,且P(X x) 0,其中x为任意实数,同时说明了P(A) 0不能推导A 。

《概率论与数理统计》教案

《概率论与数理统计》教案

《概率论与数理统计》教案第一章:概率论的基本概念1.1 随机现象与样本空间1.2 事件及其运算1.3 概率的定义与性质1.4 条件概率与独立性第二章:随机变量及其分布2.1 随机变量的概念2.2 离散型随机变量的概率分布2.3 连续型随机变量的概率密度2.4 随机变量函数的分布第三章:多维随机变量及其分布3.1 二维随机变量的联合分布3.2 边缘分布与条件分布3.3 随机变量的独立性3.4 多维随机变量函数的分布第四章:大数定律与中心极限定理4.1 大数定律4.2 中心极限定理4.3 样本均值的分布4.4 样本方差的估计第五章:数理统计的基本概念5.1 统计量与抽样分布5.2 参数估计与点估计5.3 置信区间与置信水平5.4 假设检验与p值第六章:参数估计6.1 总体参数与样本参数6.2 估计量的性质6.3 最大似然估计6.4 点估计与区间估计第七章:假设检验7.1 假设检验的基本概念7.2 检验的错误与功效7.3 常用检验方法7.4 似然比检验与正态分布检验第八章:回归分析8.1 线性回归模型8.2 回归参数的估计8.3 回归模型的检验与诊断8.4 多元线性回归分析第九章:方差分析9.1 方差分析的基本概念9.2 单因素方差分析9.3 多因素方差分析9.4 协方差分析与重复测量方差分析第十章:时间序列分析10.1 时间序列的基本概念10.2 平稳性检验与时间序列模型10.3 自回归模型与移动平均模型10.4 指数平滑模型与状态空间模型第十一章:非参数统计11.1 非参数统计的基本概念11.2 非参数检验方法11.3 非参数回归分析11.4 非参数时间序列分析第十二章:生存分析12.1 生存分析的基本概念12.2 生存函数与生存曲线12.3 生存分析的统计方法12.4 生存分析的应用实例第十三章:贝叶斯统计13.1 贝叶斯统计的基本原理13.2 贝叶斯参数估计13.3 贝叶斯假设检验13.4 贝叶斯回归分析第十四章:多变量分析14.1 多变量数据分析的基本概念14.2 多元散点图与主成分分析14.3 因子分析与聚类分析14.4 判别分析与典型相关分析第十五章:统计软件与应用15.1 统计软件的基本使用方法15.2 R语言与Python在统计分析中的应用15.3 统计软件的实际操作案例15.4 统计分析在实际领域的应用重点和难点解析本《概率论与数理统计》教案涵盖了概率论的基本概念、随机变量及其分布、多维随机变量、大数定律与中心极限定理、数理统计的基本概念、参数估计、假设检验、回归分析、方差分析、时间序列分析、非参数统计、生存分析、贝叶斯统计、多变量分析以及统计软件与应用等多个方面。

《概率论与数理统计》第一章 随机事件与及其概率教案

《概率论与数理统计》第一章 随机事件与及其概率教案

第一章随机事件与及其概率§1.1随机事件及其运算教学目的要求:掌握几个基本概念,为后面的学习打下基础,并对本书内容体系有一个大致的了解.教材分析:1.概括分析:概率论是数理统计的理论基础,本节是概率论中的最基本的与最基础的内容之一.学习本节,要求学生掌握随机事件、样本空间、事件域、布尔代数等基本概念,了解事件之间的关系和事件之间的一些运算.2.教学重点:随机事件、样本空间、事件域、布尔代数等基本概念,事件之间的关系和事件之间的一些运算.3.教学难点:事件之间的关系和事件之间的一些运算的证明.教学过程:1.1.1随机现象必然现象(确定性现象):只有一个结果的现象。

例如“在一个标准大气压下,纯水加热到100C 时必然沸腾。

”“同性电荷相吸。

”随机现象(偶然现象):是在一定条件下,并不总是出现相同的结果的现象。

特点:1、结果不只一个;2、哪一种结果出现,人们事先又不知道。

例1.1.1随机现象的例子(1)抛一枚质地均匀的硬币,可能是正面朝上,也可能是反面朝上;(2)掷一颗骰子,出现的点数‘(3)一天内进入某超市的顾客数;(4)某种型号电视机的寿命;(5)测量某物理量(长度、直径等)的误差。

概率论与数理统计是一门处理随机现象的学科。

概率论是从数量侧面研究随机现象及其统计规律性的数学学科,它的理论严谨,应用广泛,并且有独特的概念和方法,同时与其它数学分支有着密切的联系它是近代数学的重要组成部分;数理统计是对随机现象统计规律归纳的研究,就是利用概率论的结果,深入研究统计资料,观察这些随机现象并发现其内在的规律性,进而作出一定精确程度的判断,将这些研究结果加以归纳整理,形成一定的数学模型。

虽然概率论与数理统计在方法上如此不同,但做为一门学科,它们却相互渗透,互相联系。

随机试验:对在相同条件下可以重复的随机现象的观察、记录、试验。

1.1.2样本空间在一个试验中,不论可能的结果有多少,总可以从中找出一组基本结果,满足:1)每进行一次试验,必然出现且只能出现其中的一个基本结果;2)任何结果,都是由其中的一些基本结果所组成。

概率论与数理统计教学设计(第一章)

概率论与数理统计教学设计(第一章)

传统讲授
教学用具
教学目的 1.掌握频率的基本性质; 2.概率的统计定义概率的公理化定义
参考资料
《概率论与数理统计》余长安编,武汉大学出版社 《概率与数理统计》吴传生编,高等教育出版社

学 基 本 内
1.频率的定义 2. 概率的定义 3. 概率的性质
容 教学
分析 重 1.理解频率与概率的基本概念。
点 2.概率的基本性质, 通过举例让学生理解
1
的任一个被抽取的可能性均为 10 . 这样一类随机试验是一类最简单的概率模型, 它曾经是概率论 发展初期主要的研究对象.
教学组织 与安排
一、古典概型的特点
新授内容 二、计算古典概型的方法
三、几何概型
归纳小结 总结古典概型的特点和求解古典概型和超几何概型的问题。
作业 习题 2、6、13
教学后记
本节课以人为本,以学生为主体,教师为组织者、引导者,同时将教学育 人课程思政渗透到教学中去,本节课的例题贴近生活、贴近学生,课堂讲 解条理清晰,同时也培养了学生发现问题、分析问题、解决问题的自主学 习的能力。
-8-
作业 习题 1、2
教学后记
1、从发生的角度清楚事件的关系与运算的涵义; 2、熟练掌握由简单事件表示复杂事件的方法 3、掌握事件之间的变形; 4、理解事件互斥与对立不等价。
-1-
课程章节 课时 授课方式
2.频率与概率
第一章:概率论的基本概念/第三节:频率与概率
2 学时
授课类型
新授课 □习题课 □实验课 □其 他
参考资料
《概率论与数理统计》余长安编,武汉大学出版社 《概率与数理统计》吴传生编,高等教育出版社
教 学 1. 随机试验 基 2. 样本空间、样本点 本 3. 随机事件 内 4. 事件之间的关系与运算 教学 容 分析

(完整word版)概率论与数理统计教案第一章(word文档良心出品)

(完整word版)概率论与数理统计教案第一章(word文档良心出品)

概率论与数理统计教学教案第一章随机事件与概率
授课序号01
A ,A
B =B A ; ()B
C A B C =),
()AB C A BC =);
B C AC BC =),
)()()A B C A C B C =;
对偶律(德•)摩根公式):=A B A B ,并事件的对立等于对立事件的交,=B A B ,交事件的对立等于对立事件的并。

{0,1,2,
=
,即一定不会发生的不可能事件。

授课序号02
11i i i A ==⎫=⎪⎭∑11i i i A ==⎫=⎪⎭∑)(1P A =-)(B P =个人中至少有两个人的生日相同的概率是多少?B 的概率依次为为三个随机事件,已知
授课序号03
)在一维情形下表示长度,在二维情形下表示面积,在三维情形下表示体积。

二、主要例题:
授课序号04
各事件概率的积,则称事件12,A A 个事件的积事件的概率等于各事件概率的积,则称事件1i i A B =⎫=⎪⎭为试验E 的事件,且)(AB P A =()((12||A P A P A 相互独立,则下列各对事件也相互独立:
)B
授课序号05
(j A =∅2n A A =Ω则称事件组12,,
,n A A A 为样本空间的一个。

概率论与数理统计课程教案

概率论与数理统计课程教案

第一章 随机事件与概率第一节 随机事件及其运算1、 随机现象:在一定条件下,并不总是出现相同结果的现象2、 样本空间:随机现象的一切可能基本结果组成的集合,记为Ω={ω},其中ω表示基本结果,又称为样本点。

3、 随机事件:随机现象的某些样本点组成的集合常用大写字母A 、B 、C 等表示,Ω表示必然事件,∅表示不可能事件。

4、 随机变量:用来表示随机现象结果的变量,常用大写字母X 、Y 、Z 等表示。

5、 时间的表示有多种: (1) 用集合表示,这是最基本形式 (2) 用准确的语言表示 (3) 用等号或不等号把随机变量于某些实属联结起来表示6、事件的关系(1)包含关系:如果属于A 的样本点必属于事件B ,即事件 A 发生必然导致事件B 发生,则称A 被包含于B ,记为A ⊂B;(2)相等关系:若A ⊂B 且B ⊃ A ,则称事件A 与事件B 相等,记为A =B 。

(3)互不相容:如果A ∩B=∅,即A 与B 不能同时发生,则称A 与B 互不相容7、事件运算(1)事件A 与B 的并:事件A 与事件B 至少有一个发生,记为 A ∪B 。

(2)事件A 与B 的交:事件A 与事件B 同时发生,记为A∩ B 或AB 。

(3)事件A 对B 的差:事件A 发生而事件B 不发生,记为 A -B 。

用交并补可以表示为B A B A =-。

(4)对立事件:事件A 的对立事件(逆事件),即 “A 不发生”,记为A 。

对立事件的性质:Ω=⋃Φ=⋂B A B A ,。

8、事件运算性质:设A ,B ,C 为事件,则有 (1)交换律:A ∪B=B ∪A ,AB=BA(2)结合律:A ∪(B ∪C)=(A ∪B)∪C=A ∪B ∪C A(BC)=(AB)C=ABC(3)分配律:A ∪(B∩C)=(A ∪B)∩(A∪C)、 A(B ∪C)=(A∩B)∪(A∩C)= AB∪AC (4)棣莫弗公式(对偶法则):B A B A ⋂=⋃ B A B A ⋃=⋂9、事件域:含有必然事件Ω ,并关于对立运算和可列并运算都封闭的事件类ξ称为事件域,又称为σ代数。

《概率论与数理统计》教案

《概率论与数理统计》教案

《概率论与数理统计》教案第一章:概率的基本概念1.1 概率的定义与性质介绍概率的定义,理解概率是衡量随机事件发生可能性大小的数。

掌握概率的基本性质,如additivity(可加性)和symmetry(对称性)。

1.2 条件概率与独立性引入条件概率的概念,理解在给定一些信息的情况下,事件发生的概率。

学习独立事件的定义,掌握独立性原理,了解如何通过乘法规则计算联合概率。

第二章:随机变量及其分布2.1 随机变量的概念介绍随机变量的定义,理解随机变量是随机现象的数值化描述。

学习离散随机变量和连续随机变量的区别,以及如何列出随机变量的可能取值。

2.2 概率分布学习概率分布的概念,掌握如何计算随机变量取某个值的概率。

掌握期望值和方差的计算方法,了解它们在描述随机变量集中趋势和离散程度方面的作用。

第三章:多维随机变量及其分布3.1 联合随机变量引入多维随机变量的概念,理解多个随机变量共同作用的概率分布。

学习如何列出联合随机变量的可能取值,以及如何计算联合概率。

3.2 独立随机变量掌握独立多维随机变量的概念,了解独立性在概率论中的重要性。

学习如何计算两个独立随机变量的联合分布,以及如何推导条件概率。

第四章:大数定律与中心极限定理4.1 大数定律介绍大数定律的概念,理解在足够多次试验中,随机变量的样本平均将趋近于其期望值。

学习弱大数定律和强大数定律的表述,以及它们在实际应用中的意义。

4.2 中心极限定理掌握中心极限定理的内容,了解当样本量足够大时,样本均值的分布将趋近于正态分布。

学习如何应用中心极限定理进行近似计算,以及其在统计学中的重要性。

第五章:数理统计的基本概念5.1 统计量与样本介绍统计量的概念,理解统计量是用来描述样本特征的函数。

学习如何计算样本均值、样本方差等基本统计量。

5.2 抽样分布与估计掌握抽样分布的概念,了解不同统计量的抽样分布特性。

学习点估计和区间估计的定义,了解如何根据样本数据估计总体参数。

[经济学]概率论与数理统计教案

[经济学]概率论与数理统计教案

一、教案基本信息[经济学]概率论与数理统计教案课时安排:共计20 课时教学目标:使学生掌握概率论与数理统计的基本概念、原理和方法,培养学生运用统计学知识分析和解决实际问题的能力。

二、教学内容第一章:概率论基本概念1.1 随机现象与概率1.2 随机变量及其分布1.3 概率分布函数与累积分布函数1.4 离散型随机变量的期望与方差第二章:数理统计基本概念2.1 统计学的基本概念2.2 样本与总体2.3 描述性统计分析2.4 概率分布函数与累积分布函数的应用第三章:参数估计3.1 参数估计的概念3.2 点估计与区间估计3.3 最大似然估计3.4 贝叶斯估计第四章:假设检验4.1 假设检验的基本概念4.2 检验的误差与功效4.3 常用的假设检验方法4.4 假设检验的计算机实现第五章:多变量统计分析5.1 多变量数据概述5.2 协方差与相关系数5.3 多元线性回归分析5.4 因子分析与主成分分析三、教学方法与手段采用讲授、案例分析、上机操作相结合的教学方法,以帮助学生掌握基本概念、原理和方法,并培养实际应用能力。

四、教学评价评价方式包括平时成绩、课后作业、课堂讨论和期末考试。

其中,期末考试占总评的60%,平时成绩和课后作业占总评的40%。

五、教学资源教材:《概率论与数理统计》(第五版),作者:陈希孺辅助教材:《概率论与数理统计学习指导》教学软件:统计分析软件(如SPSS、R、Python 等)六、教学内容第六章:随机样本与抽样分布6.1 随机样本的定义与性质6.2 抽样分布的概念与性质6.3 常用抽样分布的推导与特点6.4 抽样误差与中心极限定理第七章:方差分析7.1 方差分析的基本概念7.2 单因素方差分析7.3 多因素方差分析7.4 方差分析的应用案例第八章:非参数统计8.1 非参数统计的基本概念8.2 非参数检验方法8.3 非参数统计的应用案例8.4 非参数方法与参数方法的比较第九章:时间序列分析9.1 时间序列的基本概念9.2 平稳时间序列的性质与分析9.3 的时间序列模型9.4 应用时间序列分析预测未来趋势第十章:统计软件应用10.1 SPSS 统计软件的基本操作10.2 R 语言与Python 统计分析10.3 实际案例分析与软件操作练习10.4 软件应用中的常见问题与解决方法七、教学方法与手段采用讲授、案例分析、上机操作相结合的教学方法,以帮助学生掌握非参数统计、时间序列分析等高级统计方法,并培养实际应用能力。

[经济学]概率论与数理统计教案

[经济学]概率论与数理统计教案

概率论与数理统计教案第一章:概率的基本概念1.1 概率的定义与性质介绍概率的定义,理解概率是衡量事件发生可能性的数值。

掌握概率的基本性质,如总概率公式、概率的互补性等。

1.2 随机事件与样本空间理解随机事件的概念,区分必然事件、不可能事件和随机事件。

学习样本空间的定义,掌握计算样本空间的方法。

1.3 条件概率与独立性学习条件概率的定义,理解条件概率与随机事件的关系。

掌握独立事件的定义,学会判断事件的独立性。

第二章:随机变量及其分布2.1 随机变量的概念介绍随机变量的定义,理解随机变量是随机事件的结果。

学习随机变量的分类,如离散随机变量和连续随机变量。

2.2 离散随机变量的概率分布学习离散随机变量的概率分布,如二项分布、泊松分布等。

掌握概率质量函数的性质,学会计算随机变量的概率分布。

2.3 连续随机变量的概率密度学习连续随机变量的概率密度,如正态分布、均匀分布等。

掌握概率密度函数的性质,学会计算随机变量的概率密度。

第三章:数理统计的基本概念3.1 统计量与参数学习统计量的定义,理解统计量是用来描述样本特征的量。

掌握参数的概念,学会估计总体参数。

3.2 抽样分布与中心极限定理学习抽样分布的定义,理解抽样分布的性质。

掌握中心极限定理的内容,学会应用中心极限定理。

3.3 估计量的性质与有效性学习估计量的性质,如无偏性、有效性等。

学会判断估计量的有效性,掌握选择最佳估计量的方法。

第四章:假设检验与置信区间4.1 假设检验的基本概念学习假设检验的定义,理解假设检验的目的。

掌握假设检验的基本步骤,学会构造检验统计量。

4.2 常用的假设检验方法学习常用的假设检验方法,如t检验、卡方检验等。

学会选择合适的检验方法,并掌握检验的判断准则。

4.3 置信区间的估计学习置信区间的定义,理解置信区间的作用。

掌握置信区间的计算方法,学会构造置信区间。

第五章:回归分析与相关分析5.1 回归分析的基本概念学习回归分析的定义,理解回归分析的目的。

概率论与数理统计 第一章教案

概率论与数理统计 第一章教案

第一讲概率的定义及性质Ⅰ授课题目§1.0 概率论研究的对象§1.1 随机试验§1.2 样本空间、随机事件§1.3 频率与概率,概率的性质Ⅱ教学目的与要求1、理解随机试验、随机事件、必然事件、不可能事件等概念2、理解样本空间、样本点的概念,会用集合表示样本空间和事件3、掌握事件的基本关系与运算4、掌握概率的性质Ⅲ教学重点与难点重点:事件的基本关系与运算,概率的性质难点:用集合表示样本空间和事件Ⅳ讲授内容:§1.0 概率论研究的对象一两类现象---确定现象与不确定现象先从实例来看自然界和社会上存在着两类不同的现象.例1水在一个大气压力下,加热到100℃就沸腾.例2向上抛掷一个五分硬币,往下掉.例3太阳从东方升起.例4一个大气压力下,20℃的水结冰.例1,例2,例3是必然发生的,而例4是必然不发生的.个确切结果)称之为确定性现象或必然现象.微积分,线性代数等就研究必然现象的数学工具.与此同时,在自然界和人类社会中,人们还发现具有不同性质的另一类现象先看下面实例.例5用大炮轰击某一目标,可能击中,也可能击不中.例6在相同的条件下,抛一枚质地均匀的硬币,其结果可能是正面(我们常把有币值的一面称作正面)朝上,也可能是反面朝上.例7次品率为50%的产品,任取一个可能是正品,也可能是次品.例8次品率为1%的产品,任取一个可能是正品,也可能是正品.例5~例8这类现象归纳起来可以看作在相同条件下一系列的试验或观察,而每次试验或观察的可能结果不止一个,在每次试验或观察之前无法预知确切结果,即呈现出不确定性(即这些现象的结果事先不能完全确定),这一类型现象我们称之为不确定性现象或偶然现象,也称之为随机现象.二统计规律性、概率论研究的对象对于不确定性现象,人们经过长时期的观察或实践的结果表明,这些现象并非是杂乱无章的,而是有规律可寻的.例如,大量重复抛一枚硬币,得正面朝上的次数与正面朝下的次数大致都是抛掷总次数的一半.在大量地重复试验或观察中所呈现出的固有规律性,就是我们以后所说的统计规律性.而概率论正是研究这种随机(偶然)现象,寻找他们的内在的统计规律性的一门数学学科.概率论是数理统计的基础,由于随机现象的普遍性,使得概率与数理统计具有及其广泛的应用.另一方面,广泛的应用也促进概率论有了极大的发展.§1.1 随机试验对随机现象进行的试验或观察称为随机试验,简称试验,它具有下列特性(征):(1)试验可以在相同条件下重复进行;(2)试验的所有可能结果是明确可知的,并且不止一个;(3)每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前不能肯定这次试验会出现哪一个结果.随机实验记为E.例1E1:投掷一枚硬币,观察正反面朝上的情况.它有两种可能的结果就是“正面朝上”或“反面朝上”,投掷之前不能预言哪一个结果出现,且这个试验可以在相同的条件下重复进行,所以E1是一个随机试验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章 随机事件及其概率
1.4 全概率公式与贝叶斯公式*
精选ppt
1
• 1.4.1 全概率公式
• 定义1 若样本空间 中事件 A1,A2, ,An满足:
(1)A iA j (i j;ni,j 1 ,2 , ,n ), (2)A1A2 An Ai
i1
则称 A1,A2, ,An 为样本空间 的一个划分或一
样本空间 的ቤተ መጻሕፍቲ ባይዱ个划分,B 为 中的任意事件,

P(B) 0,由条件概率有P( Ai
B)
P ( AiB ) P (B )
,再由乘
法公式和全概率公式有
精选ppt
4
P( Ai B)
P(Ai)P(BAi)
n
(i1,2, ,n)
P(Ak)P(BAk)
k1
• 称上式为逆概率公式,此公式是数学家贝叶
斯于1763年发表的,所以又称为贝叶斯
(Bayes)公式,它也是用来求条件概率的重
要公式.
精选ppt
5
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
解 令 A 、B 分别表示甲、乙抽到难签的事件,

P(A)
4 ,这里
10
A
、A
构成甲抽签的一个划分,故
由全概率公式
精选ppt
3
P (B ) P (A )P (B A ) P (A )P (B A )
4 3 6 4 10 9 10 9
4 10
1.4.2* 贝叶斯(Bayes)公式
贝叶斯(Bayes)公式 设事件 A1,A2, ,An为
个完备事件组(如图1.4.1).
全概率公式 设事件 A1,A2, ,An 样本空间 的一
个划分(如图1.4.2),且P (A i)0(i1 ,2, ,n), 则对 中的任意事件 B 有
n
P(B) P(Ai)P(BAi)
i1
精选ppt
2
图1.4.1
图1.4.2
例 某项考试须由学生抽签答题,所备10个考签中 有4个难签,每位考生抽签一次,答后考签不放 回.现有甲、乙两人先后应考,求甲、乙各自抽到 难签的概率.
相关文档
最新文档