《41第一节平面向量的概念及其线性运算》教案
届数学一轮复习第五章平面向量第1节平面向量的概念及线性运算教学案含解析
第1节平面向量的概念及线性运算考试要求1。
了解向量的实际背景;2.理解平面向量的概念,理解两个向量相等的含义;3.理解向量的几何表示;4。
掌握向量加法、减法的运算,并理解其几何意义;5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;6.了解向量线性运算的性质及其几何意义。
知识梳理1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量.平行向量又叫共线向量。
规定:0与任一向量平行。
(5)相等向量:长度相等且方向相同的向量。
(6)相反向量:长度相等且方向相反的向量。
2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算(1)交换律:a+b=b+a。
(2)结合律:(a+b)+c=a+(b+c)减法减去一个向量相当于加上这个向量的相反向量a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λaλ(μa)=λμa;(λ+μ)a=λa+μa;λ(a+b)=λa+λb=03.共线向量定理向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b=λa。
[常用结论与微点提醒]1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即错误!+错误!+错误!+…+错误!=错误!,特别地,一个封闭图形,首尾连接而成的向量和为零向量.2。
中点公式的向量形式:若P为线段AB的中点,O为平面内任一点,则错误!=错误!(错误!+错误!).3。
错误!=λ错误!+μ错误!(λ,μ为实数),若点A,B,C共线,则λ+μ=1.4.解决向量的概念问题要注意两点:一是不仅要考虑向量的大小,更重要的是考虑向量的方向;二是要特别注意零向量的特殊性,考虑零向量是否也满足条件.诊断自测1。
平面向量的线性运算教学设计
平面向量的线性运算教学设计设计思路:本文基于平面向量的线性运算教学设计,主要内容包括向量的加法、减法、数乘以及线性组合等方面。
通过理论知识的介绍、示例的演示和互动练习等方式,让学生能够深入理解线性运算的概念与性质,提高解决实际问题的能力。
【引言】平面向量的线性运算是数学中重要的内容之一,它在几何、物理、工程等学科中都有广泛的应用。
正确理解和掌握平面向量的线性运算,对于学生培养逻辑思维、解决实际问题具有重要意义。
本文将通过教学设计,帮助学生深入理解平面向量的线性运算,并能够灵活运用于实际问题中。
【教学设计】一、理论知识的引入1. 引入向量的概念与性质:向量的定义、向量的模、向量的方向等。
2. 平面向量的表示方法:坐标表示法、位置矢量表示法等。
二、向量的加法与减法1. 向量的加法:向量相加的几何意义,向量相加的运算法则。
2. 向量的减法:向量相减的几何意义,向量相减的运算法则。
三、向量的数乘与线性组合1. 向量的数乘:向量与实数相乘的几何意义,向量数乘的运算法则。
2. 向量的线性组合:向量线性组合的概念与性质。
四、实例演示与解析1. 实例1:平面向量的相加减计算。
通过具体的示例,引导学生学会进行向量的相加、相减运算。
2. 实例2:向量的数乘与线性组合应用。
结合实际问题,让学生理解向量的数乘与线性组合在几何、力学等方面的应用,如力的合成与分解等。
五、互动练习与巩固1. 设计小组练习题目:编写一些向量加减或数乘题目,供学生进行小组讨论与解答。
2. 出示练习题目进行课堂检测:出示一些题目,要求学生即时回答,并解析答案,加深学生对知识点的理解与掌握。
【教学反思】通过本教学设计,学生在学习过程中通过理论知识的介绍、实例演示以及互动练习等方式,有助于培养学生的逻辑思维能力和解决实际问题的能力,使学生对平面向量的线性运算有更深入的理解和应用。
同时,教学过程中注重互动,培养学生的合作意识和团队精神,增加学习的趣味性。
平面向量的概念及线性运算(优质课)教案
1.6平面向量的基本概念与线性运算(优质课)教案教学目标:1、了解向量、向量的相等、共线向量等概念;2、掌握向量、向量的相等、共线向量等概念.3、熟练掌握向量的线性运算法则:加法法则,减法法则,数乘法则.教学过程:*创设情境兴趣导入如图7-1所示,用100N①的力,按照不同的方向拉一辆车,效果一样吗?图7-1一、平面向量的概念:1、平面向量:在数学与物理学中,有两种量.只有大小,没有方向的量叫做数量(标量),例如质量、时间、温度、面积、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等.平面上带有指向的线段(有向线段)叫做平面向量,线段的指向就是向量的方向,线段的长度表示向量的大小.如图7-2所示,有向线段的起点叫做平面向量的起点,有向线段的终点叫做平面向量的终点.以A为起点,B为终点的向量记作AB.也可以使用小写英文字母,印刷用黑体表示,记作a;手写时应在字母上面加箭头,记作a.BaA图7-22、向量的模长:向量的大小叫做向量的模.向量a,AB的模依次记作a,AB.3、零向量:长度为0的向量叫做零向量,其方向是任意的.4、单位向量:长度等于1个单位长度的向量叫做单位向量.5、平行向量:方向相同或相反的非零向量叫做平行向量.平行向量又称为共线向量,任一组平行向量都可以移到同一直线上.规定:0与任一向量平行.6、 相等向量:长度相等且方向相同的向量叫做相等向量.7、相反向量:与向量a 长度相等且方向相反的向量叫做a 的相反向量.规定零向量的相反向量仍是零向量.二、平面向量的基本运算:一般地,λa +μb 叫做a , b 的一个线性组合(其中λ,μ均为系数).如果l =λa +μ b ,则称l 可以用a ,b 线性表示.向量的加法、减法、数乘运算都叫做向量的线性运算.1、三角形法则:位移AC 叫做位移AB 与位移BC 的和,记作AC =AB +BC .一般地,设向量a 与向量b 不共线,在平面上任取一点A (如图7-6),依次作AB =a , BC =b ,则向量AC 叫做向量a 与向量b 的和,记作a +b ,即 a +b =AB +BC =AC (7.1)求向量的和的运算叫做向量的加法.上述求向量的和的方法叫做向量加法的三角形法则. 2、平行四边形法则:如图7-9所示, ABCD 为平行四边形,由于AD =BC ,根据三角形法则得AB +AD =AB +BC =AC这说明,在平行四边形ABCD 中, AC 所表示的向量就是AB 与AD 的和.这种求和方法叫做向量加法的平行四边形法则.平行四边形法则不适用于共线向量,可以验证,向量的加法具有以下的性质: (1)a +0 = 0+a = a ; a +(−a )= 0; (2)a +b =b +a ;图7-7ACBaba +bab图7-9ADCB(3)(a +b )+ c = a +(b +c ). 3、平面向量减法法则:与数的运算相类似,可以将向量a 与向量b 的负向量的和定义为向量a 与向量b 的差.即a −b = a +(−b ).设a =OA ,b =OB ,则()= OA OB OA OB OA BO BO OA BA −=+−+=+=.即 OA OB −=BA (7.2)观察图7-13可以得到:起点相同的两个向量a 、 b ,其差a -b 仍然是一个向量,叫做a 与b 的差向量,其起点是减向量b 的终点,终点是被减向量a 的终点.一般地,实数λ与向量a 的积是一个向量,记作λa ,它的模为||||||a a λ=λ (7.3)若||λ≠a 0,则当λ>0时,λa 的方向与a 的方向相同,当λ<0时,λa 的方向与a 的方向相反.由上面定义可以得到,对于非零向量a 、b ,当0λ≠时,有 λ⇔=a b a b ∥ (7.4) 一般地,有 0a = 0,λ0 = 0 .数与向量的乘法运算叫做向量的数乘运算,容易验证,对于任意向量a , b 及任意实数λμ、,向量数乘运算满足如下的法则:()()111=−=−a a a a , ;()()()()2a a a λμλμμλ== ;()()3a a a λμλμ+=+ ;()()a b a b λλλ+=+4 .aAa -bBbO图7-13题型1 平面向量的基本概念 例1 给出下列六个命题:① 两个向量相等,则它们的起点相同,终点相同; ② 若|a |=|b |,则a =b ;③ 若AB →=DC →,则A 、B 、C 、D 四点构成平行四边形; ④ 在ABCD 中,一定有AB →=DC →;⑤ 若m =n ,n =p ,则m =p ; ⑥ 若a ∥b ,b ∥c ,则a ∥c .其中错误的命题有________.(填序号) 答案:①②③⑥解析:两向量起点相同,终点相同,则两向量相等;但两相等向量,不一定有相同的起点和终点,故①不正确;|a |=|b |,由于a 与b 方向不确定,所以a 、b 不一定相等,故②不正确;AB →=DC →,可能有A 、B 、C 、D 在一条直线上的情况,所以③不正确;零向量与任一向量平行,故a ∥b ,b ∥c 时,若b =0,则a 与c 不一定平行,故⑥不正确.例2 在平行四边形ABCD 中(图7-5),O 为对角线交点. (1)找出与向量DA 相等的向量; (2)找出向量DC 的负向量; (3)找出与向量AB 平行的向量.分析 要结合平行四边形的性质进行分析.两个向量相等,它们必须是方向相同,模相等;两个向量互为负向量,它们必须是方向相反,模相等;两个平行向量的方向相同或相反.解 由平行四边形的性质,得 (1)CB =DA ;(2)BA =DC −,CD DC =−; (3)BA //AB ,DC //AB ,CD //AB .练习:1. 如图,∆ABC 中,D 、E 、F 分别是三边的中点,试写出ADCB图7-5O(1)与EF 相等的向量;(2)与AD 共线的向量.2.如图,O 点是正六边形ABCDEF 的中心,试写出 (1)与OC 相等的向量; (2)OC 的负向量; (3)与OC题型2 向量的线性表示例3 一艘船以12 km/h 的速度航行,方向垂直于河岸,已知水流速度为5 km/h ,求该船的实际航行速度.解 如图7-10所示,AB 表示船速,AC 为水流速度,由向量加法的平行四边形法则,AD 是船的实际航行速度,显然22AD AB AC =+=22125+=13.又512tan =∠CAD ,利用计算器求得6723CAD '∠≈︒1. 即船的实际航行速度大小是13km/h ,其方向与河岸线(水流方向)的夹角约6723'︒.*例4 用两条同样的绳子挂一个物体(图7-11).设物体的重力为k ,两条绳子与垂线的夹角为θ,求物体受到沿两条绳子的方向的拉力1F 与2F 的大小.分析 由于两条同样的绳子与竖直垂线所成的角都是θ,所以12F F =.解决问题不考虑其它因素,只考虑受力的平衡,所以12F F k +=−.解 利用平行四边形法则,可以得到1212cos F F F k +==θ,所以12cos k F =θ.练习:1. 如图,已知a ,b ,求a +b .F AD BE C(练习题第1题图EFAB C DO (图1-8)第2题图 A BDC图7-10F 1F 2kθ 图7-112.填空(向量如图所示):(1)a +b =_____________ ,答案:→AC (2)b +c =_____________ ,答案:→BD (3)a +b +c =_____________ .答案:→AD 3.计算:(1)AB +BC +CD ; (2)OB +BC +CA . 答案:(1)→AD (2)→OA例5 已知如图7-14(1)所示向量a 、b ,请画出向量a -b .解 如图7-14(2)所示,以平面上任一点O 为起点,作OA =a ,OB =b ,连接BA ,则向量BA 为所求的差向量,即BA = a -b . 练习:1.填空:(1)AB AD −=_______________,答案:→DABbOaAba(1)(2)图7-14(图1-15)bbaa(1)(2)第1题图(2)BC BA −=______________,答案:→AC (3)OD OA −=______________.答案:→AD2.如图,在平行四边形ABCD 中,设AB = a ,AD = b ,试用a , b 表示向量AC 、BD 、DB .解:AC =a+b ,BD =b-a,DB =a -b例6 在平行四边形ABCD 中,O 为两对角线交点如图7-16,AB =a ,AD =b ,试用a , b 表示向量AO 、OD .分析 因为12AO AC =,12OD BD =,所以需要首先分别求出向量AC 与BD . 解 :AC =a +b ,BD =b −a , 因为O 分别为AC ,BD 的中点,所以 1122==AO AC (a +b )=12a +12b ,OD =12BD =12(b −a )=−12a +12b .练习:1. 计算:(1)3(a −2 b )-2(2 a +b );(2)3 a −2(3 a −4 b )+3(a −b ).解:(1)3(a −2 b )-2(2 a +b )=3a -6b-4a-2b=4 b-a (2)3 a −2(3 a −4 b )+3(a −b )=-11b2.设a , b 不共线,求作有向线段OA ,使OA =12(a +b ). 解:如图所示。
高中数学_《平面向量的概念及其线性运算》教学设计学情分析教材分析课后反思
《平面向量的概念及其线性运算》教学设计一、教材分析:本节课对平面向量的概念及其线性运算的复习,是对学生所学知识的融通和运用,也是学生对学习平面向量的总结和探索。
正确理解和熟练掌握平面向量的概念及其线性运算是之后学好空间向量的关键。
二、学情分析:本节课是在学习平面向量的概念及其线性运算,继续深入学习,是一节复习课。
学生已经掌握了平面向量的概念及其线性运算的基础知识,,这为本节课的学习提供了一定的知识保障,在此基础上,本节课将继续加深学生对基础知识的理解,加强平面向量的线性运算,这也是为后面学习空间向量内容做好知识储备的课.为了让学生能更加直观、形象地理解平面向量的概念及其线性运算,将采用多媒体课件进行演示,以提高学生的学习兴趣,使之能达到良好的教学效果。
三、教学目标:1、了解向量的实际背景;2、理解平面向量的概念,理解两个向量相等的含义;3、理解向量的几何表示;4、掌握向量加法、减法的运算,并理解其几何意义;5、掌握向量数乘的运算及其儿几何意义,理解两个向量共线的含义;6、了解向量线性运算的性质及其几何意义;四、教学重点和教学难点:(一)教学重点:1、理解平面向量的概念,理解两个向量相等的含义;2、理解向量的几何表示;3、掌握向量加法、减法的运算,并理解其几何意义;4、掌握向量数乘的运算及其儿几何意义,理解两个向量共线的含义;5、了解向量线性运算的性质及其几何意义;(二)教学难点:平面向量的线性运算以及共线定理的应用五、教学工具:多媒体、粉笔等。
六、教学过程:向量运算定义法则(或几何意义)运算律加法求两个向量和的运算(1)交换律:abba+=+;(2)结合律:cbacba++=++)()(减法求a与b的相反向量-b的和的运算)(baba-+=-相等向量长度且方向的向量两向量只有相等或不等,不能比较大小相反向量长度且方向的向量的相反向量为0教师展示表格,布置任务学生加深学生对新知识的理解共线.其中错误说法的序号是________. 考点二 平面向量的线性运算(基础之翼练牢固)[题组练通]1.在△ABC 中,D 为AB 的中点,点E 满足EC EB 4=,则ED = ( ) A. AD AB 3465- B. AD AB 6534- C. AD AB 3465+ D. AD AB 6534+2.在四边形ABCD 中,AB ∥CD ,AB =3DC ,E 为BC 的中点,则AE 等于 ( )A.AD AB 2132+ B.AD AB 3221+ C.AD AB 3165+ D.AD AB 6531+ 3.在△ABC 中,AB =2,BC =3,∠ABC =60°,AD 为BC 边上的高,O 为AD 的中点,若BC AB AO μλ+=,其中λ,μ∈R ,则λ+μ等于 ( )教师板书讲题过程教师提出问题学生自主完成,并回答问题培养学生语音表达能力,激发学生七、板书设计:平面向量的概念及其线性运算一、知识梳理二、典例分析1、向量的有关概念考点一:2、向量的线性运算考点二:3、共线向量定理考点三:八、教学反思:总体情况良好,基本满意,大多数学生可以换换掌握!九、作业反馈:分析作业中存在的问题,查找原因,并进行总结和反馈。
平面向量的线性运算教案
平面向量的线性运算教案一、引言平面向量是数学中重要的概念之一,具有广泛的应用领域。
本教案旨在通过线性运算的教学来帮助学生深入理解平面向量的概念和运算法则。
二、知识点梳理1. 平面向量的定义和表示方法2. 平面向量的加法和减法运算3. 数乘运算及其性质4. 平面向量的数量积及其性质5. 平面向量的分解与合成三、教学步骤1. 概念讲解(1) 平面向量的定义和表示方法平面向量是具有大小和方向的量,用箭头来表示。
常用的表示方法有坐标表示和向量符号表示。
2. 加法和减法运算(1) 加法运算- 向量的加法满足交换律和结合律。
- 加法运算可以通过平行四边形法则进行计算。
(2) 减法运算- 向量的减法可以转化为加法运算,即a - b = a + (-b)。
- 通过平行四边形法则可以将减法运算转化为加法运算。
3. 数乘运算及其性质(1) 数乘运算- 数乘运算指的是将一个向量与一个实数相乘,结果是一个新的向量。
- 数乘运算可以改变向量的大小和方向。
(2) 数乘运算的性质- 数乘的加法法则:(k1 + k2)a = k1a + k2a- 数乘的数乘法则:(k1k2)a = k1(k2a)4. 数量积及其性质(1) 数量积的定义- 数量积,也称点积或内积,是两个向量的乘积,结果是一个实数。
- 数量积的计算方法为两个向量模的乘积乘以它们夹角的余弦值。
(2) 数量积的性质- 交换律:a·b = b·a- 结合律:(ka)·b = k(a·b) = a·(kb)- 分配律:(a + b)·c = a·c + b·c5. 分解与合成(1) 向量的分解- 分解是将一个向量表示为多个已知向量的线性组合。
- 可以使用平行四边形法则或三角函数来进行向量的分解。
(2) 向量的合成- 合成是根据给定向量和它们的系数,通过线性组合得到一个新的向量。
四、案例演练1. 解决实际问题(1) 给定向量A(-3, 4)和向量B(2, 5),求A + B和2A - B的结果。
《平面向量的概念》教学设计
《平面向量的概念》一、教学内容分析:1、课程要求要求了解向量的实际背景,通过位移等物理背景引入向量的概念;理解向量的概念,掌握向量的表示方法,掌握生活中的向量。
通过对平面向量的有关概念、表示的学习,培养数学抽象、直观想象,逻辑推理的核心素养。
2、教材的地位和作用向量是高中阶段学习的一个新的矢量,向量概念是《平面向量》的最基本内容,它的学习直接影响到我们对向量的进一步研究和学习,如向量间关系、向量的加法、减法以及数乘等运算,还有向量的坐标运算等,因此为后面的学习奠定了基础.3、教学重点:向量的相关概念,向量的几何表示和符号表示二、教学目标设计1、知识与技能目标1)识记平面向量的定义,会用有向线段和字母表示向量,能辨别数量与向量;2)识记向量模的定义,会用字母和线段表示向量的模.2、过程与方法目标学生通过对向量的学习,能体会出向量来自于客观现实,提高观察、分析、抽象和概括等方面的能力,感悟数形结合的思想.3、情感态度与价值观目标通过构建和谐的课堂教学氛围,激发学生的学习兴趣,使学生勇于提出问题,同时培养学生数学抽象,直观想象,逻辑推理的核素素养.教学难点:向量的几何表示的理解三、学情分析(1)能力分析:对于我校的学生,基础知识较薄弱,虽然他们的智力发展已到了形成运演阶段,但并不具备较强的抽象思维能力、概括能力及数形结合的思想.(2)认知分析:之前,学生有了物理中的矢量概念,这为学习向量作了最好的铺垫。
(3)情感分析:部分学生具有积极的学习态度,强烈的探究欲望,能主动参与研究.四、教学策略分析教法:启发教学法,引探教学法,问题驱动法,并借助多媒体来辅助教学学法:在学法上,采用的是发现,归纳,练习。
从问题出发,引导学生分析问题,让学生经历观察分析、概括、归纳、类比等发现和探索过程.五、教学过程课上教学过程:1、创设问题情境,引出向量的实际背景问题1:左图是我某天晨跑的路线图,一共4公里,从水晶城到达维也纳,用时25分钟;请问在这个事件中出现了哪些物理量?问题2:你还能举出哪些与位移,时间,路程类似的物理量?问题3:物理上有标量和矢量之分,请问速度,加速度,路程,位移,力,时间,功等这些“量”哪些是矢量,哪些是标量,他们有什么不同?【设计意图】数学的学习应该是与学生的生活融合起来,由生活的实例引入,在数学教育中渗透德育,在对比于物理学中的速度、位移等学生已有的知识给出本章研究的问题平面向量形成对概念的初步认识,为进一步抽象概括做准备。
平面向量的线性运算教案
平面向量加法及其几何意义教学目的:⑴掌握向量加法的定义⑵会用向量加法的三角形法则和向量的平行四边形法则作两个向量的和向量 ⑶掌握向量加法的交换律和结合律,并会用它们进行向量计算教学重点:用向量加法的三角形法则和平行四边形法则,作两个向量的和向量.一、引入:1.向量的概念:我们把既有大小又有方向的量叫向量2.向量的表示方法:①用有向线段表示;②用字母a 、b 等表示; ③用有向线段的起点与终点字母:AB ;④向量AB 的大小――长度称为向量的模,记作|AB |. 3.零向量、单位向量概念:①长度为0的向量叫零向量,记作的方向是任意的②长度为1个单位长度的向量,叫单位向量.零向量、单位向量的定义都是只限制大小,不确定方向. 4.平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.向量a 、b 、c 平行,记作a ∥b ∥c . 5.相等向量定义:长度相等且方向相同的向量叫相等向量.(1)向量a 与b 相等,记作a =b ; (2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关........... 6.共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上. (1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系. 7.对向量概念的理解AB 的字母是有顺序的,起点在前终点在后,所以我们说有向线段有三个要素:起点、方向、长度;既有大小又有方向的量,我们叫做向量,有二个要素:大小、方向.向量不能比较大小;实数与向量不能相加减,但实数与向量可以相乘.向量与有向线段的区别:向量是自由向量,只有大小和方向两个要素;与起点无关:只要大小和方向相同,则这两个向量就是相同的向量;有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段 向量共线定理8.向量b 与a(a≠0)共线的充要条件是有且只有一个实数λ,使得b =λa. 二、1. 向量的加法:求两个向量和的运算,叫做向量的加法几何中向量加法是用几何作图来定义的,一般有两种方法,即向量加法的三角形法则(“首尾相接,首尾连”)和平行四边形法则(对于两个向量共线不适应)课本中采用了三角形法则来定义,这种定义,对两向量共线时同样适用,当向量不共线时,向量加法的三角形法则和平行四边形法则是一致的如图,已知向量a 、b 在平面内任取一点A ,作AB a =,BC b =,则向量AC 叫做a 与b 的和,记作a b +,即 a b AB BC AC+=+=(1)BB特殊情况:aabbba +ba +AABBC C)2()3(对于零向量与任一向量a ,有 00a a a +=+=探究:(1)两相向量的和仍是一个向量;(2)当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |;(3)当a 与b 同向时,则a +b 、a 、b 同向,且|a +b |=|a |+|b |,当a 与b 反向时,若|a |>|b |,则a +b 的方向与a 相同,且|a +b |=|a |-|b |;若|a |<|b |,则a +b 的方向与b 相同,且|a +b |=|b |-|a |.(4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n 个向量连加. 2.向量加法的交换律:a +b =b +a3.向量加法的结合律:(a +b ) +c =a + (b +c ) 三、例 长江两岸之间没有大桥的地方,常常通过轮渡进行运输,如图,一艘船从长江南岸A 点出发,以5km/h 的速度向垂直于对岸的方向行驶,同时江水的速度为向东2km/h 。
高中数学必修4《平面向量的线性运算》教案
高中数学必修4《平面向量的线性运算》教案
高中数学必修4《平面向量的线性运算》教案
教学准备
教学目标
1、掌握向量的加法运算,并理解其几何意义;
2、会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力;
3、通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;
教学重难点
教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量.
教学难点:理解向量加法的定义.
教学工具
投影仪
教学过程
一、设置情景:
1、复习:向量的定义以及有关概念
强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置
从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行.
三、应用举例:
例二(P94—95)略
练习:P95
四、小结
1、向量加法的几何意义;
2、交换律和结合律;
3、注意:当且仅当方向相同时取等号.
五、课后作业:
P103第2、3题
课后小结
1、向量加法的几何意义;
2、交换律和结合律;
3、注意:|a+b| ≤ |a| + |b|,当且仅当方向相同时取等号. 课后习题
作业:
P103第2、3题
板书
略。
平面向量的线性运算教案
平面向量的线性运算教案教案标题:平面向量的线性运算教学目标:1. 理解平面向量的基本概念和性质。
2. 掌握平面向量的线性运算,包括向量的加法、减法、数乘和点乘。
3. 能够应用线性运算解决平面向量相关的问题。
教学重点:1. 平面向量的线性运算的定义和性质。
2. 向量的加法、减法、数乘和点乘的运算规则。
3. 运用线性运算解决平面向量的问题。
教学难点:1. 点乘的概念和应用。
2. 运用线性运算解决复杂的平面向量问题。
教学准备:1. 教师准备:教学课件、平面向量的示意图、习题集。
2. 学生准备:纸笔、计算器。
教学过程:一、导入(5分钟)1. 引入平面向量的概念和基本性质,与学生进行互动讨论,激发学生的学习兴趣。
2. 回顾向量的表示方法和坐标表示,确保学生对向量的基本概念有清晰的理解。
二、讲解平面向量的线性运算(15分钟)1. 向量的加法和减法:介绍向量的加法和减法的定义和运算规则,并通过示意图进行解释和演示。
2. 向量的数乘:介绍向量的数乘的定义和运算规则,并通过示意图进行解释和演示。
3. 向量的点乘:介绍向量的点乘的定义和运算规则,并通过示意图进行解释和演示。
三、练习与讨论(20分钟)1. 给出一些简单的练习题,让学生进行个别或小组练习。
2. 针对学生的问题和困惑进行解答和讲解,引导学生理解和掌握平面向量的线性运算。
四、拓展应用(15分钟)1. 给出一些实际问题,引导学生运用平面向量的线性运算解决问题。
2. 分组讨论和展示解题过程和结果,促进学生的思维发散和创新。
五、归纳总结(5分钟)1. 对平面向量的线性运算进行总结和归纳,强化学生对知识点的理解和记忆。
2. 指导学生将所学知识进行整理和梳理,形成学习笔记或思维导图。
六、作业布置(5分钟)1. 布置适量的练习题,巩固学生对平面向量的线性运算的掌握。
2. 鼓励学生自主学习,拓展相关知识,提高问题解决能力。
教学反思:在教学过程中,要注重理论与实践的结合,通过示意图和实际问题的引导,帮助学生理解和应用平面向量的线性运算。
高考数学复习第五章平面向量第一节平面向量的概念及其线性运算教案文苏教版
第一节平面向量的概念及其线性运算1.向量的有关概念2.向量的线性运算平行四边形法则向量a(a ≠0)与b 共线,当且仅当有唯一一个实数λ,使得b =λa. [小题体验]1.在△ABC 中,AB ―→=c ,AC ―→=b ,若点D 满足BD ―→=2DC ―→,则AD ―→=________. 解析:如图,因为在△ABC 中,AB ―→=c ,AC ―→=b ,且点D 满足BD ―→=2DC ―→,所以AD ―→=AB ―→+BD ―→=AB ―→+23BC ―→=AB ―→+23(AC ―→-AB ―→)=23AC ―→+ 13AB―→=23b +13c. 答案:23b +13c2.下列四个命题:①若a ∥b ,则a =b ; ②若|a|=|b|,则a =b ; ③若|a|=|b|,则a ∥b;④若a =b ,则|a|=|b|.其中正确命题的序号是________. 答案:④3.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________. 解析:因为向量λa +b 与a +2b 平行,所以λa +b =k (a +2b),则⎩⎪⎨⎪⎧λ=k ,1=2k ,所以λ=12.答案:121.在利用向量减法时,易弄错两向量的顺序,从而求得所求向量的相反向量,导致错误.2.在向量共线的重要条件中易忽视“a ≠0”,否则λ可能不存在,也可能有无数个. 3.要注意向量共线与三点共线的区别与联系. [小题纠偏]1.若菱形ABCD 的边长为2,则|AB ―→-CB ―→+CD ―→|=________. 解析:|AB ―→-CB ―→+CD ―→|=|AB ―→+BC ―→+CD ―→|=|AD ―→|=2. 答案:22.已知a ,b 是非零向量,命题p :a =b ,命题q :|a +b|=|a|+|b|,则p 是q 的________条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”).解析:若a =b ,则|a +b|=|2a|=2|a|,|a|+|b|=|a|+|a|=2|a|,即p ⇒q .若|a +b|=|a|+|b|,由加法的运算知a 与b 同向共线, 即a =λb ,且λ>0,故q p .所以p 是q 的充分不必要条件.答案:充分不必要3.已知向量i 与j 不共线,且AB ―→=i +m j ,AD ―→=n i +j.若A ,B ,D 三点共线,则实数m ,n 应该满足的条件是________.(填序号)①m +n =1;②m +n =-1;③mn =1;④mn =-1.解析:由A ,B ,D 共线可设AB ―→=λAD ―→,于是有i +m j =λ(n i +j)=λn i +λj.又i ,j 不共线,因此⎩⎪⎨⎪⎧λn =1,λ=m ,即有mn =1.答案:③考点一 平面向量的有关概念基础送分型考点——自主练透 [题组练透]1.给出下列六个命题:① 两个向量相等,则它们的起点相同,终点相同; ②若|a|=|b|,则a =b ;③若AB ―→=DC ―→,则A ,B ,C ,D 四点构成平行四边形; ④在平行四边形ABCD 中,一定有AB ―→=DC ―→; ⑤若m =n ,n =p ,则m =p ; ⑥若a ∥b ,b ∥c ,则a ∥c.其中错误的命题是________.(填序号)解析:两向量起点相同,终点相同,则两向量相等,但两相等向量,不一定有相同的起点和终点,故①不正确;|a|=|b|,由于a 与b 方向不确定,所以a ,b 不一定相等,故②不正确;AB ―→=DC ―→,可能有A ,B ,C ,D 在一条直线上的情况,故③不正确;零向量与任一向量平行,故当a ∥b ,b ∥c 时,若b =0,则a 与c 不一定平行,故⑥不正确.答案:①②③⑥ 2.给出以下命题:①对于实数p 和向量a ,b ,恒有p (a -b)=p a -p b ; ②对于实数p ,q 和向量a ,恒有(p -q )a =p a -q a ; ③若 p a =p b(p ∈R),则a =b ; ④若p a =q a(p ,q ∈R ,a ≠0),则p =q .其中正确的命题是________.(填序号)解析:根据实数与向量乘积的定义及其运算律,可知①②④正确;当p =0时,p a =p b =0,而不一定有a =b ,故③不正确.答案:①②④[谨记通法]有关平面向量概念的6个注意点(1)相等向量具有传递性,非零向量的平行也具有传递性. (2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象的移动混淆.(4)非零向量a 与a |a|的关系:a |a|是与a 同方向的单位向量,-a|a|是与a 反方向的单位向量.(5)两个向量不能比较大小,只可以判断它们是否相等,但它们的模可以比较大小. (6)两平行向量有向线段所在的直线平行或重合,易忽视重合这一条件. 考点二 向量的线性运算基础送分型考点——自主练透[题组练透]1.如图,在△ABC 中,CD DA =AE EB =12,若DE ―→=λCA ―→+μCB ―→,则λ+μ=________.解析:由题意,DA ―→=23CA ―→,AE ―→=13AB ―→,∴DE ―→=DA ―→+AE ―→=23CA ―→+13AB ―→=23CA ―→+13(CB ―→-CA ―→)=13CA ―→+13CB ―→.又DE ―→=λCA ―→+μCB ―→, ∴λ=μ=13,λ+μ=23.答案:232.(2019·苏州调研)设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内的任意一点,则OA ―→+OB ―→+OC ―→+OD ―→=________OM ―→.解析:因为M 是平行四边形ABCD 对角线AC ,BD 的交点,所以OA ―→+OC ―→=2OM ―→,OB ―→+OD ―→=2OM ―→,所以OA ―→+OB ―→+OC ―→+OD ―→=4OM ―→.答案:43.(2019·海门中学检测)在等腰梯形ABCD 中,AB ―→=-2CD ―→,M 为BC 的中点,则AM ―→=________(用AB ―→,AD ―→表示).解析:因为AB ―→=-2CD ―→, 所以AB ―→=2DC ―→.又M 是BC 的中点, 所以AM ―→=12(AB ―→+AC ―→)=12(AB ―→+AD ―→+DC ―→) =12⎝ ⎛⎭⎪⎫AB ―→+AD ―→+12 AB ―→=34AB ―→+12AD ―→. 答案:34AB ―→+12AD ―→[谨记通法]1.平面向量的线性运算技巧(1)不含图形的情况:可直接运用相应运算法则求解.(2)含图形的情况:将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量、三角形的中位线等性质,把未知向量用已知向量表示出来求解.2.利用平面向量的线性运算求参数的一般思路 (1)没有图形的准确作出图形,确定每一个点的位置.(2)利用平行四边形法则或三角形法则进行转化,转化为要求的向量形式. (3)比较、观察可知所求. 考点三 共线向量定理的应用重点保分型考点——师生共研 [典例引领]设两个非零向量a 与b 不共线,(1)若AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3(a -b), 求证:A ,B ,D 三点共线;(2)试确定实数k ,使k a +b 和a +k b 同向.解:(1)证明:因为AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3a -3b , 所以BD ―→=BC ―→+CD ―→=2a +8b +3a -3b =5(a +b)=5AB ―→.所以AB ―→,BD ―→共线,又因为它们有公共点B ,所以A ,B ,D 三点共线.(2)因为k a +b 与a +k b 同向,所以存在实数λ(λ>0),使k a +b =λ(a +k b), 即k a +b =λa +λk b.所以(k -λ)a =(λk -1)b. 因为a ,b 是不共线的两个非零向量,⎩⎪⎨⎪⎧k -λ=0,λk -1=0,解得⎩⎪⎨⎪⎧k =1,λ=1或⎩⎪⎨⎪⎧k =-1,λ=-1,又因为λ>0,所以k =1.[由题悟法]共线向量定理的3个应用(1)证明向量共线:对于向量a ,b ,若存在实数λ,使a =λb ,则a 与b 共线. (2)证明三点共线:若存在实数λ,使AB ―→=λAC ―→,则A ,B ,C 三点共线. (3)求参数的值:利用共线向量定理及向量相等的条件列方程(组)求参数的值. [提醒] 证明三点共线时,需说明共线的两向量有公共点.[即时应用]1.(2018·南京第十三中学测试)如图,在△ABC 中,∠A =60°,∠A 的平分线交BC 于点D ,若AB =4,且AD ―→=14AC ―→+λAB ―→(λ∈R),则AD 的长为________.解析:因为B ,D ,C 三点共线,所以14+λ=1,解得λ=34,如图,过点D 分别作AC ,AB 的平行线交AB ,AC 于点M ,N ,则AN ―→=14AC ―→,AM―→=34AB ―→,由AB =4,得AN =AM =3,又因为AM ―→+AN ―→=AD ―→,所以(AM ―→+AN ―→)2= |AD ―→|2,所以AD 2=27,AD =3 3.答案:3 32.(2019·天一中学检测)如图,在△ABC 中,D 为BC 的四等分点,且靠近B 点,E ,F 分别为AC ,AD 的三等分点,且分别靠近A ,D 两点,设AB ―→=a ,AC ―→=b.(1)试用a ,b 表示BC ―→,AD ―→,BE ―→; (2)证明:B ,E ,F 三点共线.解:(1)在△ABC 中,∵AB ―→=a ,AC ―→=b ,∴BC ―→=AC ―→-AB ―→=b -a ,AD ―→=AB ―→+BD ―→=AB ―→+14BC ―→ =a +14(b -a)=34a + 14b ,BE ―→=BA ―→+AE ―→=-AB ―→+13AC ―→=-a +13b.(2)证明:∵BE ―→=-a +13b ,BF ―→=BA ―→+AF ―→=-AB ―→+23AD ―→=-a +23⎝ ⎛⎭⎪⎫34a +14b =-12a +16b =12(-a +13b),∴BF ―→=12BE ―→,∴BF ―→与BE ―→共线,且有公共点B , ∴B ,E ,F 三点共线.一抓基础,多练小题做到眼疾手快1.在平行四边形ABCD 中,对角线AC 与BD 交于点O ,若AB ―→+AD ―→=λAO ―→,则λ=________.解析:根据向量加法的运算法则可知,AB ―→+AD ―→=AC ―→=2AO ―→,故λ=2. 答案:22.(2019·海门中学检测)在平面直角坐标系中,O 为坐标原点,A ,B ,C 三点满足OC ―→=23OA ―→+13OB ―→,则|AC ―→||AB ―→|=________. 解析:因为OC ―→=23OA ―→+13OB ―→,所以AC ―→=OC ―→-OA ―→=-13OA ―→+13OB ―→=13(OB ―→-OA ―→),所以AC ―→=13AB ―→,所以|AC ―→||AB ―→|=13.答案:133.(2018·启东期末)在平行四边形ABCD 中,E 为线段BC 的中点,若AB ―→=λAE ―→+μAD ―→,则λ+μ=________.解析:由已知,得AE ―→=AB ―→+12AD ―→,所以AB ―→=AE ―→-12AD ―→,又AB ―→=λAE ―→+μAD ―→, 所以λ=1,μ=-12,则λ+μ=12.答案:124.(2018·扬州模拟)在△ABC 中,N 是AC 边上一点且AN ―→=12NC ―→,P 是BN 上一点,若AP ―→=m AB ―→+29AC ―→,则实数m 的值是________.解析:如图,因为AN ―→=12NC ―→,P 是BN ―→上一点.所以AN ―→=13AC ―→,AP ―→=m AB ―→+29AC ―→=m AB ―→+23AN ―→,因为B ,P ,N 三点共线,所以m +23=1,则m =13.答案:135.(2019·张家港模拟)如图所示,向量OA ―→,OB ―→,OC ―→的终点A ,B ,C 在一条直线上,且AC ―→=-3CB ―→,设OA ―→=a ,OB ―→=b ,OC ―→=c ,若c =m a +n b ,则m -n =________.解析:由向量OA ―→,OB ―→,OC ―→的终点A ,B ,C 在一条直线上,且AC ―→=-3CB ―→,得OC ―→=OA ―→+AC ―→=OA ―→-3CB ―→=OA ―→-3(CO ―→+OB ―→), 即OC ―→=OA ―→+3OC ―→-3OB ―→, 则c =-12a +32b.又c =m a +n b ,所以m =-12,n =32,所以m -n =-2. 答案:-26.(2018·江阴高级中学测试)已知向量a ,b ,c 中任意两个都不共线,但a +b 与c共线,且b +c 与a 共线,则向量a +b +c =________.解析:依题意,设a +b =m c ,b +c =n a ,则有(a +b)-(b +c)=m c -n a ,即a -c =m c -n a.又a 与c 不共线,于是有m =-1,n =-1,a +b =-c ,a +b +c =0.答案:0二保高考,全练题型做到高考达标1.已知△ABC 和点M 满足MA ―→+MB ―→+MC ―→=0.若存在实数m ,使得AB ―→+AC ―→=m AM ―→成立,则m =________.解析:由MA ―→+MB ―→+MC ―→=0得点M 是△ABC 的重心,可知AM ―→=13(AB ―→+AC ―→),即AB―→+AC ―→=3AM ―→,则m =3.答案:32.(2019·江阴期中)若a ,b 不共线,且a +m b 与2a -b 共线,则实数m 的值为________. 解析:∵a +m b 与2a -b 共线,∴存在实数k ,使得a +m b =k (2a -b)=2k a -k b , 又a ,b 不共线, ∴1=2k ,m =-k , 解得m =-12.答案:-123.下列四个结论:①AB ―→+BC ―→+CA ―→=0; ②AB ―→+MB ―→+BO ―→+OM ―→=0; ③AB ―→-AC ―→+BD ―→-CD ―→=0;④N Q ―→+Q P ―→+MN ―→-MP ―→=0, 其中一定正确的结论个数是________.解析:①AB ―→+BC ―→+CA ―→=AC ―→+CA ―→=0,①正确; ②AB ―→+MB ―→+BO ―→+OM ―→=AB ―→+MO ―→+OM ―→=AB ―→,②错;③AB ―→-AC ―→+BD ―→-CD ―→=CB ―→+BD ―→+DC ―→=CB ―→+BC ―→=0,③正确 ;④N Q ―→+Q P ―→+MN ―→-MP ―→=NP ―→+PN ―→=0,④正确. 故正确的结论个数为3. 答案:34.(2018·南汇中学检测)已知△ABC 中,点D 在BC 边上,且CD ―→=2DB ―→,CD ―→=r AB―→+s AC ―→,则r +s =________.解析:如图,因为CD ―→=2DB ―→,所以CD ―→=23CB ―→.又因为CB ―→=AB ―→-AC ―→, 所以CD ―→=23AB ―→-23AC ―→.又CD ―→=r AB ―→+s AC ―→,所以r =23,s =-23,所以r +s =0.答案:05.(2018·海安中学检测)如图,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB ―→=a ,AC ―→=b ,则AD ―→=________(用a ,b 表示).解析:连结CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD ―→=12AB ―→=12a ,所以AD―→=AC ―→+CD ―→=b +12a.答案:12a +b6.(2019·常州调研)已知矩形ABCD 的两条对角线交于点O ,点E 为线段AO 的中点,若DE ―→=m AB ―→+n AD ―→,则m +n 的值为________.解析:如图所示,因为点E 为线段AO 的中点,所以DE ―→=12(DA ―→+DO ―→)=12DA ―→+14DB ―→=-12AD ―→+14AB ―→-14AD ―→=14AB ―→-34AD ―→, 又DE ―→=m AB ―→+n AD ―→, 所以m =14,n =-34,故m +n =14-34=-12.答案:-127.设点M 是线段BC 的中点,点A 在直线BC 外,BC ―→2=16,|AB ―→+AC ―→|= |AB ―→-AC ―→|,则|AM ―→|=________.解析:由|AB ―→+AC ―→|=|AB ―→-AC ―→|可知,AB ―→⊥AC ―→,则AM 为Rt △ABC 斜边BC 上的中线,因此,|AM ―→|=12|BC ―→|=2. 答案:28.(2019·启东期中)在△ABC 中,D 为边AB 上一点,M 为△ABC 内一点,且满足AD ―→=34AB ―→,AM ―→=AD ―→+35BC ―→,则S △AMD S △ABC=________. 解析:如图,∵AD ―→=34AB ―→,AM ―→=AD ―→+35BC ―→,AM ―→=AD ―→+DM ―→,∴AD =34AB ,DM =35BC ,且DM ∥BC , ∴S △AMD S △ABC =34×35=920. 答案:9209.如图所示,在△OAB 中,点C 是以点A 为对称中心的点B 的对称点,点D 是把OB ―→分成2∶1的一个三等分点,DC 交OA 于点E ,设OA ―→=a ,OB ―→=b.(1)用a 和b 表示向量OC ―→,DC ―→;(2)若OE ―→=λOA ―→,求实数λ的值.解:(1)依题意,A 是BC 的中点,所以2OA ―→=OB ―→+OC ―→,即OC ―→=2OA ―→-OB ―→=2a -b ,DC ―→=OC ―→-OD ―→=OC ―→-23OB ―→=2a -b -23b =2a -53b. (2)若OE ―→=λOA ―→,则CE ―→=OE ―→-OC ―→=λa -(2a -b)=(λ-2)a +b.因为CE ―→与DC ―→共线.所以存在实数k ,使CE ―→=k DC ―→.即(λ-2)a +b =k ⎝⎛⎭⎪⎫2a -53b ,因为a ,b 是不共线的两个非零向量,所以⎩⎪⎨⎪⎧ λ-2=2k ,1=-53k ,解得⎩⎪⎨⎪⎧ k =-35,λ=45.10.设e 1,e 2是两个不共线的向量,已知AB ―→=2e 1-8e 2,CB ―→=e 1+3e 2,CD ―→= 2e 1-e 2.(1)求证:A ,B ,D 三点共线;(2)若BF ―→=3e 1-k e 2,且B ,D ,F 三点共线,求k 的值.解:(1)证明:由已知得BD ―→=CD ―→-CB ―→=(2e 1-e 2)-(e 1+3e 2)=e 1-4e 2,因为AB ―→=2e 1-8e 2,所以AB ―→=2BD ―→.又因为AB ―→与BD ―→有公共点B ,所以A ,B ,D 三点共线.(2)由(1)可知BD ―→=e 1-4e 2,因为BF ―→=3e 1-k e 2,且B ,D ,F 三点共线,所以BF ―→=λBD ―→ (λ∈R),即3e 1-k e 2=λe 1-4λe 2,得⎩⎪⎨⎪⎧ λ=3,-k =-4λ.解得k =12.三上台阶,自主选做志在冲刺名校1.(2019·汇龙中学检测)如图所示,A ,B ,C 是圆O 上的三点,CO的延长线与线段AB 交于圆内一点D .若OC ―→=x OA ―→+y OB ―→,则x +y 的取值范围是________.解析:由于A ,B ,D 三点共线,设AD ―→=αAB ―→,则OD ―→=OA ―→+AD ―→=OA ―→+αAB ―→=OA ―→+α(OB ―→-OA ―→)=(1-α)OA ―→+αOB ―→.由于O ,C ,D 三点共线,且点D在圆内,点C 在圆上,OC ―→与OD ―→方向相反,则存在λ<-1,使得OC ―→=λOD ―→=λ[(1-α)·OA ―→+αOB ―→]=λ(1-α)OA ―→+λαOB ―→=x OA ―→+y OB ―→,因此x =λ(1-α),y =λα,所以x +y =λ<-1.答案:(-∞,-1)2.已知O ,A ,B 是不共线的三点,且OP ―→=m OA ―→+n OB ―→ (m ,n ∈R).(1)若m +n =1,求证:A ,P ,B 三点共线;(2)若A ,P ,B 三点共线,求证:m +n =1.证明:(1)若m +n =1,则OP ―→=m OA ―→+(1-m )OB ―→=OB ―→+m (OA ―→-OB ―→),所以OP ―→-OB ―→=m (OA ―→-OB ―→),即BP ―→=m BA ―→,所以BP ―→与BA ―→共线.又因为BP ―→与BA ―→有公共点B ,所以A ,P ,B 三点共线.(2)若A ,P ,B 三点共线,则存在实数λ,使BP ―→=λBA ―→,所以OP ―→-OB ―→=λ(OA ―→-OB ―→).又OP ―→=m OA ―→+n OB ―→.故有m OA ―→+(n -1)OB ―→=λOA ―→-λOB ―→,即(m -λ)OA ―→+(n +λ-1)OB ―→=0.因为O ,A ,B 不共线,所以OA ―→,OB ―→不共线,所以⎩⎪⎨⎪⎧ m -λ=0,n +λ-1=0,所以m +n =1.。
平面向量的基本概念及线性运算 教案
一.易忽视零向量这一特殊向量
二.准确理解向量的基本概念是解决类题目的关键.1.相等向量具有传递性,非零向量平行也具有传递性.共线向量平行向量和相等向量均与向量的起点无关.
三.“向量”和“有向线段”是两个不同的概念,向量只有两个要素:大小、方向;而有向线段有三个要素:起点、方向、长度.
四.进行向量的线性运算时,要尽可能转化到三角形或平行四边形中,选用从同一顶点出发的基本向量或首尾相连的向量,运用向量加、减法运算及数乘运算来解.
对于B,由题意得 ,又 ,所以 共线,从而得到A、B、D三点共线,故B正确.
对于C,由题意得 ,又 ,所以 不共线,故A、C、D三点不共线,所以C不正确.
对于D,由题意得 不共线,所以B、C、D三点不共线.
故选B.
3.设a与b是两个不共线向量,且向量a+λb与-(b-2a)共线,则λ=________.
向量b与a(a≠0)共线的充要条件是有且只有一个实数λ,使得b=λa.
巧用系数判共线
=λ +μ (λ,μ∈R),若A,B,C三点共线,则λ+μ=1;反之,也成立.
【题干】给出下列命题:①零向量的长度为零,方向是任意的;②若a,b都是单位向量,则a=b;③向量 与 相等.则所有正确命题的序号是()
A.①B.③C.①③D.①②
【题干】如图,在平行四边形ABCD中,AC,BD相交于点O,E为线段AO的中点.若 =λ +μ (λ,μ∈R),则λ+μ等于()
A.1B. C. D.
【答案】B
【解析】∵E+ =λ +μ ,
∴λ+μ= + = .
【题干】设平面向量 不共线,若 = +5 , =-2 +8 , =3( ),则
平面向量的基本概念及线性运算
适用学科
平面向量的线性运算教案
平面向量的线性运算教案本教案将介绍平面向量的线性运算,内容包括平面向量的加法、减法、数量乘法等运算规则和性质。
通过本教案的学习,学生将能够正确运用线性运算来解决与平面向量相关的问题。
一、引入平面向量是向量的一种特殊形式,具有大小和方向。
平面向量可以用一个有序数对表示,也可以用箭头表示。
我们用向量的加法、减法和数量乘法来进行平面向量的线性运算。
二、平面向量的加法平面向量的加法满足以下运算规则:1. 两个向量的加法满足交换律,即A + A = A + A。
2. 三个向量的加法满足结合律,即(A + A) + A = A + (A + A)。
3. 对于任意向量A,存在一个零向量A,使得A + A = A。
三、平面向量的减法平面向量的减法可以看作是加法的逆运算。
如果要计算A - A,可以先将A取负,即-A,然后进行加法运算。
即A - A = A + (-A)。
四、平面向量的数量乘法平面向量的数量乘法是指将一个向量与一个实数相乘,结果仍然是一个向量。
数量乘法满足以下运算规则:1. 数量乘法满足分配律,即A(A + A) = AA + AA,(A + A)A = AA+ AA,其中A、A为实数。
2. 数量乘法满足结合律,即(AA)A = A(AA),其中A、A为实数。
3. 数量乘法与向量加法满足交换律,即A(A + A) = AA + AA,(A +A)A = AA + AA。
五、平面向量的应用平面向量的线性运算在几何、物理等学科中有着广泛的应用。
例如,在几何中,可以通过平面向量的减法来计算两点之间的距离和方向;在物理中,可以利用平面向量的数量乘法来计算力的合成和分解等。
六、实例演练为了帮助学生更好地理解平面向量的线性运算,以下是一些实例演练:1. 已知向量A = (2, 3)、A = (-1, 4),求向量A = 2A - 3A。
2. 已知向量A = (6, -2)、A = (1, -3),求向量A,使得3A + A = 2A。
2022年 《高三数学第一节 平面向量的概念及其线性运算》优秀教案
第一节平面向量的概念及其线性运算教学目标知识与技能:1.掌握向量的加法、减法的运算,并理解其几何意义;2.掌握平面向量的坐标运算;会根据向量的坐标,判断向量是否共线.过程与方法: 通过学生对向量与数量的识别能力的训练,理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念; 通过阐述向量的减法运算可以转化成向量的加法运算,使学生理解事物之间可以相互转化的辩证思想.情感态度与价值观:培养学生认识客观事物的数学本质的能力及渗透类比的数学方法.[备考方向要明了]1.向量的有关概念23.向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,使得b=λa.[例1] 给出以下命题:①两个具有共同终点的向量,一定是共线向量;②假设A,B,C,D是不共线的四点,那么=是四边形ABCD为平行四边形的充要条件;③假设a与b同向,且|a|>|b|,那么a>b;④λ,μ为实数,假设λa=μb,那么a与b共线.其中假命题的个数为( ) A.1 B.2 C.3 D.4[自主解答] ①不正确.当起点不在同一直线上时,虽然终点相同,但向量不共线.②正确.∵=,∴||=||且∥.又∵A ,B ,C ,D 是不共线的四点,∴四边形ABCD 是平行四边形.反之,假设四边形ABCD 是平行四边形,那么AB 綊DC 且与方向相同,因此=.③不正确.两向量不能比拟大小.④不正确.当λ=μ=0时,a 与b 可以为任意向量,满足λa =μb ,但a 与b 不一定共线. [答案] C[冲关锦囊]涉及平面向量有关概念的命题的真假判断,准确把握概念是关键;掌握向量与数的区别,充分利用反例进行否认也是行之有效的方法.[巧练模拟]1.给出以下命题:①向量与向量的长度相等,方向相反; ②+=0;③a 与b 平行,那么a 与b 的方向相同或相反; ④两个相等向量的起点相同,那么其终点必相同; ⑤与是共线向量,那么A ,B ,C ,D 四点共线. 其中假命题的个数是( B ) A .2 B .3 C .4 D .5解析:选B ①正确;②中+=0,而不等于0,故②错误;③中a 或b 为零向量时满足a 与b 平行,但不能说a 与b 方向相同或相反,因为零向量的方向是任意的,故③错误;④正确;⑤中当与是共线向量时,与所在直线可能平行、可能重合,故⑤错误.因此假命题的个数为3.[例2] (1)(2021A .0 B . C . D .(2)如图,在△ABC 中,=13,P 是BN 上的一点,假设=m +211,那么实数m 的值为________.[自主解答] (1)如图,在正六边形ABCDEF 中,=,=,那么++=++=+=+=. (2)由=13,得=14. =+=+n=+n(-)=(1-n) +14n=m+211,由14n=211,得m=1-n=3 11 .[答案] (1)D (2)311[冲关锦囊]1.进行向量运算时,要尽可能地将它们转化到平行四边形或三角形中,充分利用相等向量、相反向量、三角形的中位线定理、相似多边形对应边成比例等性质,把未知向量用向量表示出来.2.向量的线性运算类似于代数多项式的运算,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在向量线性运算中同样适用,运用上述法那么可简化运算.[例3] (1)(2021·南昌模拟)向量a,b不共线,c=k a+b(k∈R),d=a-b.如果c∥d,那么( ) A.k=1且c与d同向B.k=1且c与d反向C.k=-1且c与d同向 D.k=-1且c与d反向(2)假设A,P,B三点共线,且=m+n (m,n∈R),那么m+n=________.[自主解答] (1)∵c∥d,∴c=λd.即k a+b=λ(a-b).∴k=λ=-1.∴c=-d,即c与d反向.(2)∵A,P,B三点共线∴存在λ∈R使=λ.那么=+λ(-)=(1-λ) +λ,∴m+n=1-λ+λ=1[答案] (1)D (2)1[冲关锦囊]1.向量b与非零向量a共线的充要条件是存在唯一实数λ,使b=λa.要注意只有非零向量才能表示与之共线的其他向量,求解时要注意待定系数法和方程思想的运用.2.证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.[巧练模拟]2.设两个非零向量a与b不共线.(1)假设=a+b,=2a+8b,=3(a-b).求证:A,B,D三点共线;(2)试确定实数k,使k a+b和a+k b共线.解:(1)证明:∵=a+b,=2a+8b,=3(a-b),∴=+=2a+8b+3(a-b)=2a+8b+3a-3b=5(a+b)=5.∴,共线.又∵它们有公共点B,∴A,B,D三点共线.(2)∵k a+b与a+k b共线,∴存在实数λ,使k a+b=λ(a+k b),即k a+b=λa+λk b.∴(k-λ)a=(λk-1)b.∵a、b是不共线的两个非零向量,∴k-λ=λk-1=0,∴k2-1=0.∴k=±1.板书设计:教学反思:。
平面向量概念及运算的教学设计
平面向量概念及运算的教学设计平面向量的概念及线性运算知识目标:了解向量、向量的相等、共线向量等概念;掌握向量、向量的相等、共线向量等概念.能力目标:通过这些内容的学习,培养学生的运算技能与熟悉思维能力.向量的线性运算.已知两个向量,求这两个向量的差向量以及非零向量平行的充要条件.从“不同方向的力作用于小车,产生运动的效果不同”的实际问题引入概念.向量不同于数量,数量是只有大小的量,而向量既有大小、又有方向.教材中用有向线段来直观的表示向量,有向线段的长度叫做向量的模,有向线段的方向表示向量的方向.数量可以比较大小,而向量不能比较大小,记号“a>b”没有意义,而“︱a︱>︱b︱”才是有意义的.教材通过生活实例,借助于位移来引入向量的加法运算.向量的加法有三角形法则与平行四边形法则.向量的减法是在负向量的基础上,通过向量的加法来定义的.即a-b=a+(-b),它可以通过几何作图的方法得到,即a-b可表示为从向量b 的终点指向向量a的终点的向量.作向量减法时,必须将两个向量平移至同一起点.实数?乘以非零向量a,是数乘运算,其结果记作?a,它是一个向量,其方向与向量a相同,其模为a的?倍.由此得到a∥b?a??b.对向量共线的充要条件,要特别注意“非零向量a、b”与“??0”等条件.教学课件.2课时.(90分钟)第7章平面向量第7章平面向量第7章平面向量第7章平面向量第7章平面向量平面向量的实际背景及基本概念一.知识点梳理1.向量的概念:我们把既有大小又有方向的量叫向量2.数量的概念:只有大小没有方向的量叫做数量数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小.3.有向线段:带有方向的线段叫做有向线段4.有向线段的三要素:起点,大小,方向5.有向线段与向量的区别;相同点:都有大小和方向不同点:①有向线段有起点,方向和长度,只要起点不同就是不同的有向线段比如:上面两个有向线段是不同的有向线段②向量只有大小和方向,并且是可以平移的,比如:在①中的两个有向线段表示相同的向量③向量是用有向线段来表示的,可以认为向量是由多个有向线段连接而成6.向量的表示方法:①用有向线段表示;②用字母a、b等表示;③用有向线段的起点与终点字母:;7.向量的模:向量的大小称为向量的模,记作||.8.零向量、单位向量概念:长度为零的向量称为零向量,记为:0长度为1的向量称为单位向量9.平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.即:0∥a说明:综合①、②才是平行向量的向量a、b、c平行,记作a∥b∥c.10.相等向量长度相等且方向相同的向量叫相等向量.说明:向量a与b相等,记作a=b;零向量与零向量相等;任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.11.共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上.......说明:平行向量是可以在同一直线上的共线向量是可以相互平行的二.例题讲解例1.判断下列说法是否正确,为什么?平行向量是否一定方向相同?不相等的向量是否一定不平行?与零向量相等的向量必定是什么向量?与任意向量都平行的向量是什么向量?两个非零向量相等当且仅当什么?共线向量一定在同一直线上吗?解析:不是,方向可以相反,可有定义得出零向量零向量共线向量长度相等且方向相同不一定,可以平行例2.下列命题正确的是?A.a与b共线,b与c共线,则a与c也共线?B.任意两个相等的非零向量的始点与终点是平行四边形的四顶点?C.向量a与b不共线,则a与b都是非零向量?D.有相同起点的两个非零向量不平行所以有a与b都是非零向量,所以应选C.例3.如右图所示,设O是正六边形ABCDEF的中心,分别写出图中与向量OA,OB,OC相等的向量解:按照向量相等的定义可知:OA?CB?DOOB?DC?EOOC?AB?ED?FO三.课堂练习1.判断下列命题是否正确,若不正确,请简述理由?①向量AB与CD是共线向量,则A、B、C、D四点必在一直线上;?②单位向量都相等;?③任一向量与它的相反向量不相等;?④一个向量方向不确定当且仅当模为0;?⑤共线的向量,若起点不同,则终点一定不同2..判断下列式子是否正确,若不正确请指出错误原因.①=0②.-=0若将所有单位向量的起点归结在同一起点,则其终点构成的图形是___________.将所有共线向量移至同一起点,终点构成的图形是什么图形?___________3.下列说法正确的是A.平行向量是方向相同的向量B.长度相等的向量叫相等向量C.零向量的长度为0D.共线向量是在同一条直线上的向量4.若非零向量a与b共线,则以下说法下确的是A.与必须在同一直线上B.与平行,且方向必须相同`C.与平行,且方向必须相反D.与平行本节我们学习了以下内容:1.向量,有向线段,向量平行,向量相等这几个基本概念2.有向线段与向量间的区别和联系3.零向量与单位向量的概念 4.平行向量的定义向量的加法运算及其几何意义教学目标:1、掌握向量的加法运算,并理解其几何意义;2、会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力;3、通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量.教学难点:理解向量加法的定义.1.向量的加法:求两个向量和的运算,叫做向量的加法.2.三角形法则3.三角形法则的来由如图,已知向量a、b.在平面内任取一点A,作=a,=b,则向量叫做a与b的和,记作a+b,即a+b?AB?BC?AC,规定:a+0-=0+a中小学课外辅导专家海伊教育学科教师辅导讲义中小学课外辅导专家恒有λ(μ1a±μ2b)=λμ1a±λμ2b课堂练习例1化简:(1)+(2)DB++(3)AB+DF+++FA解:(1)+AB=AB+=(2)DB++=++DB=(+)+DB=BD+DB=0(3)++CD+BC+FA =+BC+CD++=AC+CD++=++=+=0解析:要善于运用向量的加法的运算法则及运算律来求和向量例2若AC=a+b,=a-b①当满足什么条件时,a+b与a-b垂直?②当满足什么条件时,|a+b|=|a-b|?③当满足什么条件时,a+b平分a与b所夹的角?④a+b与a-b可能是相等向量吗?=a+b,=-=a-b由此问题就可转换为:①当边满足什么条件时,对角线互相垂直?(|a|=|b|)②当边A满足什么条件时,对角线相等?(互相垂直)。
数学总复习教案:4.1平面向量的概念与线性运算
第四章平面向量与复数第1课时平面向量的概念与线性运算(对应学生用书(文)、(理)60~62页)考情分析考点新知① 了解向量的实际背景;理解平面向量的基本概念和几何表示;理解向量相等的含义。
②掌握向量加、减法和数乘运算,理解其几何意义;理解向量共线定理。
③了解向量的线性运算性质及其几何意义.掌握向量加、减法、数乘的运算,以及两个向量共线的充要条件。
1. (必修4P63练习第1题改编)如图在平行四边形ABCD中,E为DC边的中点,且错误!=a,错误!=b,则错误!=________.答案:b-错误!a解析:错误!=错误!+错误!+错误!错误!=-a+b+错误!a=b-错误!a。
2. (必修4P65例4改编)在△ABC中,错误!=c,错误!=b。
若点D 满足错误!=2错误!,则错误!=________.(用b、c表示)答案:错误!b+错误!c解析:因为错误!=2错误!,所以错误!-错误!=2(错误!-错误!),即3错误!=AB,→+2错误!=c+2b,故错误!=错误!b+错误!c.3. (必修4P63练习第6题改编)设四边形ABCD中,有错误!错误!=错误!且|错误!|=错误!,则这个四边形是________.答案:等腰梯形解析:错误!=错误!错误!错误!∥错误!,且|错误!|=错误!|错误!|,∴ABCD 为梯形.又|错误!|=|错误!|,∴四边形ABCD的形状为等腰梯形.4. (必修4P66练习第2题改编)设a、b是两个不共线向量,错误!=2a+p b,错误!=a+b,错误!=a-2b。
若A、B、D三点共线,则实数p =________.答案:-1解析:∵ 错误!=错误!+错误!=2a-b,又A、B、D三点共线,∴存在实数λ,使错误!=λ错误!。
即错误!∴p=-1。
1. 向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量错误!的大小叫做向量的长度(或模),记作|错误!|。
(2)零向量:长度为0的向量叫做零向量,其方向是任意的.(3)单位向量:长度等于1个单位长度的向量叫做单位向量.(4)平行向量:方向相同或相反的非零向量叫做平行向量.平行向量又称为共线向量,任一组平行向量都可以移到同一直线上.规定:0与任一向量平行.(5)相等向量:长度相等且方向相同的向量叫做相等向量.(6)相反向量:与向量a长度相等且方向相反的向量叫做a的相反向量.规定零向量的相反向量仍是零向量.2. 向量加法与减法运算(1)向量的加法①定义:求两个向量和的运算,叫做向量的加法.②法则:三角形法则;平行四边形法则.③运算律:a+b=b+a;(a+b)+c=a+(b+c).(2) 向量的减法①定义:求两个向量差的运算,叫做向量的减法.②法则:三角形法则.3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学过程课堂导入以前台胞春节期间来大陆探亲,乘飞机先从台北到香港,再从香港到上海.20XX年7月4日,两岸直航包机启航.若台北到香港的位移用向量a表示,香港到上海的位移用向量b表示,台北到上海的位移用向量c表示.想一想,向量a、b、c有何关系?复习预习1.我们已经学习过位移、速度、力等,你能总结出它们的特点吗?特点为________________________________.2.在学习三角函数线时,我们已经学习过有向线段了,你还记得吗?所谓有向线段就是________________________,三角函数线都是_____________.知识讲解考点1 向量的有关概念考点2 向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算(1)交换律:a+b=b+a(2)结合律:(a+b)+c=a +(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|(2)当λ>0时,λa与a的方向相同;当λ<0时,λa与a的方向相反;当λ=0时,λa=0λ(μa)=(λμ) a(λ+μ)a=λa+μaλ(a+b)=λa+λb考点3 共线向量定理向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得b=λa.例题精析 【例题1】【题干】设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,假命题的个数是( )A .0B .1C .2D .3【答案】D【解析】向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.【例题2】【题干】如图,在△OAB 中,延长BA 到C ,使AC =BA ,在OB 上取点D ,使DB =13OB .设OA uu u r =a ,OB uuu r =b ,用a ,b 表示向量OC u u u r ,DC u u u r .【解析】OC u u u r =OB uuu r +BC uuu r =OB uuu r +2BA uu u r=OB uuu r +2(OA uu u r -OB uuu r )=2OA uu u r -OB uuu r=2a -b . DC u u u r =OC u u u r -OD u u u r =OC u u u r -23OB uuu r=(2a -b )-23b=2a -53b .【例题3】【题干】已知a ,b 不共线,OA uu u r =a ,OB uuu r =b ,OC u u u r =c ,OD u u u r =d ,OE uuu r=e ,设t ∈R ,如果3a =c,2b =d ,e =t (a +b ),是否存在实数t 使C ,D ,E 三点在一条直线上?若存在,求出实数t 的值,若不存在,请说明理由.【解析】由题设知,CD uuu r =d -c =2b -3a ,CE uuu r=e -c =(t -3)a +t b ,C ,D ,E 三点在一条直线上的充要条件是存在实数k ,使得CE uuu r =k CD uuu r,即(t -3)a +t b =-3k a +2k b ,整理得(t -3+3k )a =(2k -t )b .因为a ,b 不共线,所以有⎩⎪⎨⎪⎧t -3+3k =0,t -2k =0,解之得t =65.故存在实数t =65使C ,D ,E 三点在一条直线上.课堂运用 【基础】1.如图,已知AB u u u r =a ,AC uuu r =b ,BD u u u r =3DC u u u r ,用a ,b 表示AD u u u r ,则AD u u u r=( ) A .a +34b B.14a +34b C.14a +14bD.34a +14b解析:选B ∵CB u u u r =AB u u u r -AC uuu r =a -b ,又BD u u u r=3DC u u u r ,∴CD uuu r =14CB u u u r =14(a -b ),∴AD u u u r =AC uuu r +CD uuu r =b +14(a -b )=14a +34b .2.已知向量p =a |a |+b|b |,其中a 、b 均为非零向量,则|p |的取值范围是( ) A .[0,2] B .[0,1] C .(0,2]D .[0,2]解析:选D a |a |与b|b |均为单位向量,当它们同向时,|p |取得最值2,当它们反向时,|p |取得最小值0.故|p |∈[0,2].3.(2013·保定模拟)如图所示,已知点G 是△ABC 的重心,过G 作直线与AB ,AC 两边分别交于M ,N 两点,且AMu u u u r=x AB u u u r ,AN uuu r =y AC uuu r ,则x ·y x +y的值为( )A .3 B.13 C .2D.12解析:选B (特例法)利用等边三角形,过重心作平行于底面BC 的直线,易得x ·y x +y =13.【巩固】4.在▱ABCD 中,AB u u u r =a ,AD u u u r=b ,AN uuu r =3NC uuu r ,M 为BC 的中点,则MN u u u u r =________(用a ,b 表示).解析:由AN uuu r =3NC uuu r 得4AN uuu r =3AC uuu r =3(a +b ),AM u u u u r =a +12b , 所以MN u u u u r =34(a +b )-⎝⎛⎭⎪⎫a +12b =-14a +14b . 答案:-14a +14b5.(2013·淮阴模拟)已知△ABC 和点M 满足MA u u u r +MB u u u r +MC u u u u r =0.若存在实数m 使得AB u u u r +AC uuu r =m AM u u u u r 成立,则m =________.解析:由题目条件可知,M 为△ABC 的重心,连接AM 并延长交BC 于D ,则AM u u u u r =23AD u u u r ,因为AD 为中线,则ABu u u r +AC uuu r =2AD u u u r =3AM u u u u r ,所以m =3.答案:3【拔高】6.如图所示,在五边形ABCDE 中,点M 、N 、P 、Q 分别是AB 、CD 、BC 、DE 的中点,K 和L 分别是MN 和PQ 的中点,求证:KL uu u r =14AE u u u r.证明:任取一点O ,KL uu u r =OL u u u r -OK uuu r .∵K 、L 为MN 、PQ 的中点.∴OK uuu r =12(OM uu u u r +ON uuu r ),OL u u u r =12(OP uuu r +OQ uuu r).又∵M ,N ,P ,Q 分别为AB ,CD ,BC ,DE 中点,∴OM u u u u r =12(OA u u u r +OB uuu r ),ON uuu r =12(OC uuu r +OD uuu r),OP uuu r =12(OB uuu r +OC uuu r ),OQ uuu r =12(OD uuu r +OE uuu r).∴KL uu u r =OL u u u r -OK uuu r =12[-(OM u u u u r +ON uuu r )+(OP uuu r +OQ uuu r)]=14[-(OA u u u r +OB uuu r +OC uuu r +OD uuu r )+(OB uuu r +OC uuu r +OD uuu r +OE uuu r)]=14(-OA u u u r +OE uuu r )=14AE u u u r .7.设两个非零向量e 1和e 2不共线.(1)如果AB u u u r =e 1-e 2,BC uuu r =3e 1+2e 2,CD uuu r =-8e 1-2e 2,求证:A 、C 、D 三点共线;(2)如果AB u u u r =e 1+e 2,BC uuu r =2e 1-3e 2,CD uuu r =2e 1-k e 2,且A 、C 、D 三点共线,求k 的值.解:(1)证明:∵AB u u u r =e 1-e 2,BC uuu r =3e 1+2e 2,CD uuu r =-8e 1-2e 2,∴AC uuu r =AB u u u r +BC uuu r =4e 1+e 2=-12(-8e 1-2e 2)=-12CD uuu r ,∴AC uuu r 与CD uuu r 共线.又∵AC uuu r 与CD uuu r 有公共点C ,∴A 、C 、D 三点共线.(2) AC uuu r =AB u u u r +BC uuu r =(e 1+e 2)+(2e 1-3e 2)=3e 1-2e 2,∵A 、C 、D 三点共线,∴AC uuu r 与CD uuu r 共线,从而存在实数λ使得AC uuu r =λCD uuu r ,即3e 1-2e 2=λ(2e 1-k e 2),得⎩⎪⎨⎪⎧3=2λ,-2=-λk ,解得λ=32,k =43.课程小结(1)向量共线的充要条件中要注意“a ≠0”,否则λ可能不存在,也可能有无数个.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线;另外,利用向量平行证明向量所在直线平行,必须说明这两条直线不重合.。