离散傅里叶变换及快速算法
[理学]离散傅里叶变换及其快速算法
非周期序列的离散时间傅里叶变换 (DTFT) /序列的傅里叶变换
• 定义序列x(n)的离散时间傅里叶变换(DTFT)为:
X (e ) DTFT{x(n)}
j n jn x ( n )e
• 序列x(n)的离散时间傅里叶逆变换(IDTFT)为:
x(n) IDTFT{X (e j )} 1 2
按时间抽取的FFT算法
• 设N=2M,M为正整数,如取N=23=8,即离散时间信号为
x(n) {x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7)}
• 按照规则①将序列x(n)分为奇偶两组,一组序号为偶数, 另一组序号为奇数,即
{x(0), x(2), x(4), x(6) | x(1), x(3), x(5), x(7)}
X (e j )e jn d
傅里叶变换对小结
• 傅里叶级数(FS)(时域:连续周期;频域:非周期离散)
1 Xk T
T 2
T 2
x(t )e jk1t dt
x(t )
k
X k e jk1t
k 0, 1, 2,
• 傅里叶变换(FT)(时域:连续非周期;频域:非周期连续)
DFT及其快速算法
DFT及其快速算法DFT(离散傅里叶变换)是傅里叶变换在离散时间序列上的表示,具有广泛应用于信号处理和图像处理等领域。
DFT的计算复杂度通常为O(N^2),其中N为序列的长度。
为了减少计算复杂度,人们发展了许多快速算法,其中最著名的是快速傅里叶变换(FFT)。
DFT可以将一个信号或序列分解成一系列正弦和余弦函数的频谱成分。
它将时域的信号转换为频域的频谱,揭示了信号中各个频率成分的振幅和相位信息。
DFT可以用于信号滤波、频谱分析、数据压缩等许多应用。
DFT的定义如下:X[k]=Σ(x[n]*e^(-j*2πk*n/N)),其中0<=k<N该公式表示了将N个离散时间域样本x[n]变换为N个离散频率域样本X[k]的计算方式。
其中e^(-j*2π/N)为旋转因子,N为序列的长度。
DFT的计算复杂度为O(N^2),需要进行N次乘法和加法运算。
对于大规模的序列,计算速度较慢,为了提高计算效率,人们提出了FFT算法。
FFT是一种高效的DFT计算方法,它基于DFT的对称性质和递归算法来减少计算量。
FFT的计算复杂度为O(NlogN),比DFT快速得多。
FFT算法的基本思想是将一个长度为N的序列分解为两个长度为N/2的子序列,并利用子序列的DFT结果计算整个序列的DFT结果。
这个过程不断重复,直到达到长度为1的序列,也就是基本的正弦和余弦函数。
FFT算法主要有两种形式:快速递归FFT和快速迭代FFT。
快速递归FFT是通过递归的方式将序列分解为子序列,并利用子序列的DFT结果计算整个序列的DFT结果。
这个过程类似于分治法,将复杂的问题分解为简单的子问题,然后将子问题的解合并起来得到最终结果。
快速迭代FFT是通过迭代的方式将序列分解为子序列,然后利用旋转因子和蝶形运算来计算序列的DFT结果。
蝶形运算是FFT算法中的基本操作,通过两两配对的方式进行乘法和加法运算,将两个输入序列转换为两个输出序列。
这个过程可以通过迭代的方式进行,并且可以实现并行计算,提高计算速度。
第3章 离散傅里叶变换及其快速算法
计算中, 在DFT计算中,不论是乘法和加法,运算量均与 计算中 不论是乘法和加法, N2成正比。因此,N较大时,运算量十分可观。例 成正比。因此, 较大时 运算量十分可观。 较大时, 计算N=10点的 点的DFT,需要 次复数相乘, ,计算 点的 ,需要100次复数相乘,而 次复数相乘 N=1024点时,需要 点时, 点时 需要1048576(一百多万)次复数乘 (一百多万) 如果要求实时处理, 法,如果要求实时处理,则要求有很高的计算速 度才能完成上述计算量。 度才能完成上述计算量。 反变换IDFT与DFT的运算结构相同,只是多 与 的运算结构相同, 反变换 的运算结构相同 乘一个常数1/N,所以二者的计算量相同。 乘一个常数 ,所以二者的计算量相同。
nk X (k ) = ∑ { Re [ x( n)]Re WN − I m [ x(n)]I m [WNnk ] n =0 N −1
(
+ j Re [ x(n)]I m
(
[ ] [W ]+ I
nk N
)
nk [ x( n)]Re WN } m
[ ])
又每个复数相加包括2个实数相加,所以,每计算一个 X( k) 要进行 次实数相乘和 次实数相乘和2N+2( N-1) =2( 2N-1) 次实 ( ) 要进行4N次实数相乘和 ( ) ( ) 数相加,因此,整个DFT运算需要 2实数相乘和 (2N-1) 运算需要4N 实数相乘和2N( 数相加,因此,整个 运算需要 ) 次实数相加。 次实数相加。
虽然频谱分析和DFT运算很重要 , 但在很长 运算很重要, 虽然频谱分析和 运算很重要 一段时间里, 由于DFT运算复杂 , 并没有得到 运算复杂, 一段时间里 , 由于 运算复杂 真正的运用, 真正的运用 , 而频谱分析仍大多采用模拟信号 滤波的方法解决, 直到1965年首次提出 年首次提出DFT运 滤波的方法解决 , 直到 年首次提出 运 算的一种快速算法以后, 情况才发生了根本变 算的一种快速算法以后 , 人们开始认识到DFT运算的一些内在规律 , 运算的一些内在规律, 化 , 人们开始认识到 运算的一些内在规律 从而很快地发展和完善了一套高速有效的运算 方法——快速付里变换(FFT)算法。FFT的出 快速付里变换( 方法 快速付里变换 )算法。 的出 现 , 使 DFT 的 运 算 大 大 简 化 , 运 算 时 间 缩 短 二个数量级, 一 ~ 二个数量级 , 使 DFT的运算在实际中得到 的运算在实际中得到 广泛应用。 广泛应用。
第三章 离散傅里叶变换及其快速算法
~ ~ 设周期序列 x 1( n) 和 x 2 ( n) 的周期均为N,且:
~ X 1(k ) DFS[~1(n)], x
~ X 2(k ) DFS[~2(n)]; x
~3(n) a~1(n) b~ 2(n) (a,b均为常数) x x 如果: x
则有: ~ ~ ~ ~1(n) b~2(n)] aX 1(k ) bX 2(k ) X 3(k ) DFS[ax x
1 2
③周期卷积满足交换律。 同理可得: 如果: ~(n) ~1(n) ~ 2(n) y x x
则有:
1 N 1 ~ ~ 1 ~ ~ ~ Y (k ) DFS[ ~1(n) ~ 2(n)] X 1(l ) X 2(k l ) X 1(k ) * X 2(k ) x x N l 0 N
~(n) 1 x N ~(k) j N kn ...(3.2.1a) x e
k 0 N 1 2
两边 e
N 1
j
2 nr N
并从n=0~N-1求和得:
N 1 N 1 2 2 ~ j ( k r ) n ~(n) j N nr 1 x e X(k)e N N n 0 k 0 n 0 N 1 1 N 1 j 2N ( k r ) n ~ X(k)[ e ] (交换右边求和次序) N n 0 k 0 ~ X(r)
~ ~ kn X 1(k ) X 2(k )W N
k 0 k ( nmr ) N
N 1
W
]
~1(m) ~ 2(n m lN ) x x
m 0
1 N
W
k 0
N 1
k ( nmr ) N
1, r (n m) lN 0, r (n m) lN
离散傅里叶变换(DFT)及其快速算法-庄
图像识别
通过对图像进行DFT变换, 提取特征向量,可用于图 像的分类、识别和检索。
在频谱分析中的应用
频谱估计
通过DFT对信号进行频谱分析, 可以估计信号的频率分布和强度。
调制识别
利用DFT对接收信号进行频谱分析, 可以识别信号的调制方式和参数。
雷达目标识别
通过对雷达回波信号进行DFT变换, 可以提取目标特征,实现目标分类 和识别。
图像处理
在图像处理领域,DFT被广泛应用于图像频域分 析和变换编码等技术。庄算法等快速算法的应用 ,使得图像处理更加高效,为图像压缩、图像增 强等技术的发展提供了重要支撑。
科学计算
在科学计算领域,DFT被广泛应用于数值分析和 数值计算。庄算法等快速算法的出现,提高了科 学计算的精度和速度,为科学研究和工程设计提 供了更加可靠的数值分析方法。
PART 02
DFT的基本原理
离散傅里叶级数(DFS)
定义
离散傅里叶级数是周期为N的复数序 列x[n],其可以通过三角函数的线性 组合来表示。
公式
X[k] = ∑_{n=0}^{N-1} x[n] * w^(kn) / sqrt(N)
离散傅里叶变换(DFT)的定义
定义
DFT是对于有限长序列x[n]的变换,将x[n]映射到频域X[k]。
对未来研究和应用的展望
算法优化
随着计算技术的发展,未来可以进一步优化庄算法等快速算法,提高计算效率和精度, 以满足更加复杂和大规模的信号处理、图像处理、通信系统和科学计算等应用需求。
应用拓展
随着数字化时代的到来,离散傅里叶变换及其快速算法在各个领域的应用前景将更加广 阔。未来可以进一步拓展其在人工智能、物联网、量子计算等领域的应用,推动相关技
信号实验报告( 离散傅里叶变换及其快速算法及IIR数字滤波器的设计)
信号实验一离散傅里叶变换及其快速算法一、实验目的1、掌握计算序列的离散傅里叶变换(FFT)的方法;2、掌握实现时间抽取快速傅里叶变换(FFT)编程方法;3、加深对DFT与序列的傅里叶变换和Z变换之间的关系的理解;4、复习复数序列的运算方法。
二、程序设计框图1.码位倒置程序框图2.蝶形图运算程序框图三、实验程序实验程序的源代码如下:#include"math.h"#include"stdio.h"/*------------------------------------------------------------------------------------------子函数部分------------------------------------------------------------------------------------------*/ void swap(float *a,float *b)//交换变量子函数{float T;T=*a;*a=*b;*b=T;}void fft (float A [],float B [],unsigned M)//数组A为序列的实部, 数组B为序列的虚部{unsigned long N,I,J,K,L,LE,LE1,P,Q,R;float Wr,Wi,W1r,W1i,WTr,WTi,theta,Tr,Ti;N=1<<M;J=0;for(I=0;I<N-1;I++){if(J>I){swap(&A [I],&A [J]);swap(&B [I],&B [J]);}K=N>>1;while(K>=2&&J>=K){J-=K;K>>=1;}J+=K;}for(L=1;L<=M;L++){LE=1<<L;LE1=LE/2;Wr=1.0;Wi=0.0;theta=(-1)*3.1415926536/LE1;W1r=cos (theta);W1i=sin (theta);for(R=0;R<LE1;R++){for(P=R;P<N-1;P+=LE){Q=P+LE1;//基本蝶形图的复数运算Tr=Wr*A[Q]-Wi*B[Q];Ti=Wr*B[Q]+Wi*A[Q];A[Q]=A[P]-Tr;B[Q]=B[P]-Ti;A[P]+=Tr;B[P]+=Ti;}WTr=Wr;WTi=Wi;Wr=WTr*W1r-WTi*W1i;Wi=WTr*W1i+WTi*W1r;}}return;}/*------------------------------------------------------------------------------------------主函数部分------------------------------------------------------------------------------------------*/ void main(){float A[20],B[20];char t1,t2,file_name[20];int M,N,i,iiff;FILE *fp;/*************************************数据读取部分************************************/ printf("请输入文件名:");//输入数据文件名scanf("%s",file_name);printf("FFT变换还是IFFT变换?(FFT:1,IFFT:-1):");//输入变换方式, 1为FFT, -1为IFFTscanf("%d",&iiff);while(iiff!=1&&iiff!=-1)//检错: 检验上一步的输入是否有错, 有错则重新输入{printf("输入错误, 请重新输入! ");printf("FFT or IFFT?(FFT:1,IFFT:-1):");scanf("%d",&iiff);}fp=fopen(file_name,"r");//打开文件并读入数据fscanf(fp,"%d",&M);N=pow(2,M);//计算序列总数for(i=0;i<N;i++)//读取文件中的数据{fscanf(fp,"%f%c%c%f",&A[i],&t1,&t2,&B[i]);if(iiff==-1)//根据FFT或IFFT修正BB[i]=B[i]*-1;if(t2!='j')//检错: 检验读取格式是否有错{printf("输入格式错误\n");break;}if(t1=='+')//判断虚部的正负号B[i]=B[i];else if(t1=='-')B[i]=-B[i];}/****************************************变换部分****************************************/ fft(A,B,M);//FFT变换/**************************************数据输出部分**************************************/ fp=fopen("fft_result.txt","w"); //输出结果if(iiff==-1)fprintf(fp,"IFFT变换的输出结果是: \n");elsefprintf(fp,"FFT变换的输出结果是: \n");for(i=0;i<N;i++){if(iiff==-1) //根据FFT或IFFT修正B{B[i]=B[i]*-1/N;A[i]=A[i]/N;}if(B[i]>=0)//修正虚部的输出格式fprintf(fp,"%f+j%f\n",A[i],B[i]);else if(B[i]<0)fprintf(fp,"%f-j%f\n",A[i],-B[i]);else if(B[i]==0)fprintf(fp,"%f\n",A[i]);}fclose(fp);}四、程序运行结果检验(1) 1.对序列进行FFT变换输入文件fft_input.txt:21+j02+j0-1+j04+j0控制台输入:请输入文件名: fft_input.txtFFT变换还是IFFT变换?(FFT:1,IFFT:-1): 1输出文件fft_result.txt:FFT变换的输出结果是:6.00000+j0.000002.00000+j2.00000-6.00000+j0.000002.00000+j-2.00000运行结果分析:程序运行输出结果与计算结果相同, 表示傅里叶正变换(FFT)成功。
第2章 离散傅里叶变换(DFT)及其快速算法(FFT)
电信系信息技术教研室
2.1.1 离散傅里叶级数DFS
信号特性的时频域对应关系 连续 离散 周期
非周期 周期 离散
电信系信息技术教研室
2.1.1 离散傅里叶级数DFS
?如何对周期为N的周期序列进行频域分析……
如: ~(n) ~(n kN ) x x 周期序列不能进行Z变换,因为其在 n=-到+ 都 周而复始永不衰减,即 z 平面上没有收敛域,所以 其DTFT亦不存在。但是,如同连续时间周期信号可用 傅氏级数表达,周期序列也可用离散的傅氏级数来表 示。
2 1 2 1
X (2) 0 X (6) 0
X (3) 1 j X (7 ) 1 j
2 1 2 1
电信系信息技术教研室
解法二:公式解
N 1 j 2 N 7 j 2 8 kn
X
k
DFS x n
mk
ki mk ~ ~ x (i ) wN wN X ( k ) i 0
N 1
电信系信息技术教研室
3)共轭对称性
x 对于复序列 ~n ,其共轭序列为
~* ~* DFS x n X k
* *
~* x n
,则:
~ ~ DFSx n X k
解:上述序列的基本周期为 N=4,因而
W4 = e-j2π /4 = -j,
~ X (k )
~ X (0) ~ X (1 ) ~ X (2) ~ X (3)
n0
3
nk ~ x ( n )W 4
3
n0
3
~ ( n )W x 4
数字信号处理—原理、实现及应用(第4版)第3章 离散傅里叶变换及其快速算法 学习要点及习题答案
·54· 第3章 离散傅里叶变换(DFT )及其快速算法(FFT )3.1 引 言本章是全书的重点,更是学习数字信号处理技术的重点内容。
因为DFT (FFT )在数字信号处理这门学科中起着不一般的作用,它使数字信号处理不仅可以在时域也可以在频域进行处理,使处理方法更加灵活,能完成模拟信号处理完不成的许多处理功能,并且增加了若干新颖的处理内容。
离散傅里叶变换(DFT )也是一种时域到频域的变换,能够表征信号的频域特性,和已学过的FT 和ZT 有着密切的联系,但是它有着不同于FT 和ZT 的物理概念和重要性质。
只有很好地掌握了这些概念和性质,才能正确地应用DFT (FFT ),在各种不同的信号处理中充分灵活地发挥其作用。
学习这一章重要的是会应用,尤其会使用DFT 的快速算法FFT 。
如果不会应用FFT ,那么由于DFT 的计算量太大,会使应用受到限制。
但是FFT 仅是DFT 的一种快速算法,重要的物理概念都在DFT 中,因此重要的还是要掌握DFT 的基本理论。
对于FFT 只要掌握其基本快速原理和使用方法即可。
3.2 习题与上机题解答说明:下面各题中的DFT 和IDFT 计算均可以调用MA TLAB 函数fft 和ifft 计算。
3.1 在变换区间0≤n ≤N -1内,计算以下序列的N 点DFT 。
(1) ()1x n =(2) ()()x n n δ=(3) ()(), 0<<x n n m m N δ=- (4) ()(), 0<<m x n R n m N = (5) 2j()e, 0<<m n N x n m N π=(6) 0j ()e n x n ω=(7) 2()cos , 0<<x n mn m N N π⎛⎫= ⎪⎝⎭(8)2()sin , 0<<x n mn m N N π⎛⎫= ⎪⎝⎭(9) 0()cos()x n n ω=(10) ()()N x n nR n =(11) 1,()0n x n n ⎧=⎨⎩,解:(1) X (k ) =1N kn N n W -=∑=21j0eN kn nn π--=∑=2jj1e1ekN n k nπ---- = ,00,1,2,,1N k k N =⎧⎨=-⎩(2) X (k ) =1()N knNM n W δ-=∑=10()N n n δ-=∑=1,k = 0, 1, …, N -1(3) X (k ) =100()N knNn n n W δ-=-∑=0kn NW 1()N n n n δ-=-∑=0kn NW,k = 0, 1, …, N -1为偶数为奇数·55·(4) X (k ) =1m knN n W -=∑=11kmN N W W --=j (1)sin esin k m N mk N k N π--π⎛⎫⎪⎝⎭π⎛⎫ ⎪⎝⎭,k = 0, 1, …, N -1 (5) X (k ) =21j 0e N mn kn N N n W π-=∑=21j ()0e N m k nNn π--=∑=2j()2j()1e1em k N N m k Nπ--π----= ,0,,0≤≤1N k mk m k N =⎧⎨≠-⎩(6) X (k ) =01j 0eN nknN n W ω-=∑=021j 0e N k nN n ωπ⎛⎫-- ⎪⎝⎭=∑=002j 2j 1e1ek NN k N ωωπ⎛⎫- ⎪⎝⎭π⎛⎫- ⎪⎝⎭--= 0210j 202sin 2e2sin /2N k N N k N k N ωωωπ-⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭⎡⎤π⎛⎫- ⎪⎢⎥⎝⎭⎣⎦⎡⎤π⎛⎫- ⎪⎢⎥⎝⎭⎣⎦,k = 0, 1, …, N -1或 X (k ) =00j 2j 1e 1e Nk N ωωπ⎛⎫- ⎪⎝⎭--,k = 0, 1, …, N -1(7) X (k ) =102cos N kn N n mn W N -=π⎛⎫ ⎪⎝⎭∑=2221j j j 01e e e 2N mn mn kn N N N n πππ---=⎛⎫ ⎪+ ⎪⎝⎭∑=21j ()01e 2N m k n N n π--=∑+21j ()01e 2N m k n N n π--+=∑=22j ()j ()22j ()j ()11e 1e 21e 1e m k N m k N N N m k m k N N ππ--+ππ--+⎡⎤--⎢⎥+⎢⎥⎢⎥--⎣⎦=,,20,,N k m k N mk m k N M ⎧==-⎪⎨⎪≠≠-⎩,0≤≤1k N - (8) ()22j j 21()sin ee 2j mn mnN N x n mn N ππ-π⎛⎫== ⎪-⎝⎭ ()()112222j j j ()j ()0011()=e e ee 2j 2j j ,2=j ,20,(0≤≤1)N N kn mn mn m k n m k n N N N N N n n X k W Nk m N k N mk k N --ππππ---+===--⎧-=⎪⎪⎨=-⎪⎪-⎪⎩∑∑其他(9) 解法① 直接计算χ(n ) =cos(0n ω)R N (n ) =00j j 1[e e ]2n n ωω-+R N (n )X (k ) =1()N knNn n W χ-=∑=0021j j j 01[e e ]e 2N kn n n N n ωωπ---=+∑=0000j j 22j j 11e 1e 21e 1e N N k k N N ωωωω-ππ⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭⎡⎤--⎢⎥+⎢⎥⎢⎥--⎣⎦,k = 0, 1, … , N -1 解法② 由DFT 共轭对称性可得同样的结果。
离散傅里叶变换及其快速算法
离散傅里叶变换及其快速算法离散傅里叶变换(Discrete Fourier Transform,DFT)是一种将离散信号转换为频域表示的数学工具。
它在信号处理、图像处理、通信等领域有广泛的应用。
而快速傅里叶变换(Fast Fourier Transform,FFT)是一种能够高效计算DFT的算法,大大减少了计算量。
首先,我们来看一下DFT的原理。
给定一个有限长度的离散信号序列x(n),DFT将其转换为频谱X(k),其中k为频率索引,取值范围为0到N-1,N为序列的长度。
DFT的定义公式如下:X(k) = Σ x(n) * exp(-j * 2π * nk / N)其中,exp为自然指数函数,j为虚数单位。
DFT将信号分解为了N个复数的和,这些复数代表了不同频率分量在信号中的贡献。
然而,直接计算DFT的时间复杂度非常高,为O(N^2)。
为了提高计算效率,Cooley和Tukey于1965年提出了FFT算法。
FFT算法基于以下性质:若N为2的整数次幂,则DFT可以被分解为两个较小长度的DFT的线性组合。
具体来说,将N个点的DFT拆分为长度为N/2的两个DFT,然后再对这两个子序列进行DFT,最后将两个子序列的结果组合起来。
这个过程可以递归地进行,直到序列长度为1,即可得到最终的DFT结果。
FFT算法的时间复杂度为O(NlogN),远远小于直接计算DFT的复杂度。
这使得FFT成为了处理大规模数据的首选方法之一、此外,FFT还有其他一些优点,如可并行化计算、对称性质等。
FFT算法可以采用不同的实现方式,最著名的是基于蝶形运算的Cooley-Tukey算法。
这种实现方式将FFT过程分为了两个阶段:置换阶段和蝶形运算阶段。
置换阶段通过将信号重新排序,将原始序列分为奇偶两个子序列,并计算每个子序列的DFT。
这个过程可以递归地应用于子序列,直到长度为1蝶形运算阶段是FFT算法的核心部分。
蝶形运算是指将两个频域上的复数进行运算,得到新的复数。
第三章 离散傅里叶变换(DFT)及其快速算法(FFT)2
5
3.4.2 基2 DIT-FFT 算法
基2FFT要求DFT变换区间长度N=2M,M为自然数。
1. DIT-FFT算法
序列x(n)的N点DFT为
N 1
X (k) DFT[x(n)]N x(n)WNk n n0
将上面的和式按n的奇偶性分解为
k 0,1, , N 1
X (k)
x(n)WNk n
减少运算量的途径之一就是将N点DFT分解为几个较
短的DFT进行计算,则可大大减少其运算量。
B. WNm 的周期性和对称性:
WNm的周期性:WNml N
j2(ml N )
e N
jቤተ መጻሕፍቲ ባይዱm
e N
WNm
WNm的对称性:
(WNN m )* WNm
m N
WN 2
WNm
3
快速傅里叶变换就是不断地将长序列的DFT分解为短序列 的DFT,并利用WNm 的周期性和对称性及其一些特殊值来 减少DFT运算量的快速算法。
(3.4.7)
这样,就将N点DFT的计算分解为计算两个N/2点离散傅里
叶变换X1(k)和X2(k),再计算式(3.4.7)。
8
蝶形图
蝶形图及运算功能
X (k) X1(k) WNk X 2 (k)
X
k
N 2
X1(k)
WNk
X2 (k)
k 0,1, , N 1 2
8点DFT一次时域抽取分解运算流图
人们已经研究出多种FFT算法,它们的复杂度和运算效率 各不相同。
本章主要介绍最基本的基2 FFT算法及其编程方法。
1
3.4.1 直接计算DFT的特点及减少运算量的 基本途径
DFT计算量:
离散傅里叶变换及其快速算法
第五章离散傅里叶变换及其快速算法 1离散傅里叶变换(DFT)的推导(1) 时域抽样:目的:解决信号的离散化问题。
效果:连续信号离散化使得信号的频谱被周期延拓。
⑵时域截断: 原因:工程上无法处理时间无限信号。
方法:通过窗函数(一般用矩形窗)对信号进行逐段截取。
结果:时域乘以矩形脉冲信号,频域相当于和抽样函数卷积。
(3)时域周期延拓:目的:要使频率离散,就要使时域变成周期信号。
方法:周期延拓中的搬移通过与 、:(t _nT s )的卷积来实现。
表示:延拓后的波形在数学上可表示为原始波形与冲激串序列的卷积。
结果:周期延拓后的周期函数具有离散谱。
经抽样、截断和延拓后,信号时域和频域都是离散、周期的。
过程见图抽样后0 fJif-用于截断原函数J L<Z 用于抽样i4LJI Ji WWtin1 f=1 ----------> --------------t-------------- ►fVtt截断后有卷积波纹i------------- ►t0 I------------------ rfJL 」L延拓后7角ii t飞7Vtfft \ \ t \ f定义DFT用于延拓「ITf处理后信号的连续时间傅里叶变换:I'U N *|nT sr 0 N图1 DFT 推导过程示意图〜 oo "N 4l ~(f)=£ IS h(nTs)ek =^O「j2 飞n/Nn=0-kf o )(i) l~(f)是离散函数,仅在离散频率点f二kf o k—处存在冲激,强度为a k,其T o NT s余各点为0。
〜N N 1(ii) H(f)是周期函数,周期为Nf o == 工,每个周期内有N个不同的幅值。
T o NT s T s(iii) 时域的离散时间间隔(或周期)与频域的周期(或离散间隔)互为倒数。
2 DFT及IDFT的定义DFT定义:设hnT s是连续函数h(t)的N个抽样值n=0,1,…,N J,这N个点的宽度为N 的DFT 为:DFT N h(nT s)]=^ h(nT s)e」2邢/N =H —— J (k =0,1,…,N _1)7 l NT s 丿IDFT定义:设H 上是连续频率函数H(f)的N个抽样值k =0,1,…,N J,这N个点(NT s 丿的宽度为N的IDFT为:DFT N1 H k丄7 H L e」2「nk/N厶nTs , (k =0,1,…,N —1)|L Ns N k 卫NT se^Rk/N称为N点DFT的变换核函数,e j2 flk/N称为N点IDFT的变换核函数。
《数字信号处理》C3离散傅里叶变换及快速算法
j
n
x(n) z n
M 1 n 0
n x ( n ) z jn
X ( e ) DTFT [ x ( n )]
n
x ( n )e
M 1 n 0
jn ( ) x n e
2 j X ( e ) FT [ x N ( n )] N ( k ) DFS [ x N ( n )] X X ( k ) DFT [ x ( n )]N
n 0
N 1
n
1 n0 N
N 1
X (k )W
k 0
N 1
nk N
n z
1 N 1 N 1 nk n X (k ) WN z N k 0 n 0
N 1 1 N 1 k 1 n X (k ) WN z N k 0 n 0
(n) ak e x
k 0 N 1 j 2 kn N
2 2 T 0 0T NT N
为什么是有限项之和? 如何求系数?
( n )e x
n 0
N 1
j
2 mn N
2 2 j kn j mn ak e N e N n 0 k 0 N 1 N 1
N 1
ak ak lN
周期
3.1 周期序列的傅里叶级数
离散傅里叶变换及其快速算法
ak 也是以 N周期的周期序列,满足 ak
~ X (k ) Nak
ak 。令 ln
(3.5)
将式(3.4)代入,得
N 1 j kn ~ ~ N X ( k ) x ( n )e n 0 2
k
(3.6)
~ X (k ) 式中, 是以N为周期的周期序列,称为
~ x (n) 的离散傅里叶级数,用DFS表示。
~(k ), N 相位为 幅度为 X
~ arg[ X (k )]
。
基波分量的频率为 2 N ,幅度为
~ 为arg[ X (1)]
~ X (1) N
,相位
。
x ( n ) 以 N 8 为周期 n) 【例3-1】设 x(n) R4 (,将
进行周期延拓,得到周期序列 幅频特性。
~ x ( n)
2016-12-8
解:根据定义求解
14 12 e 8e
j
j
2 k 6
10e
j
j
2 2k 6 j 2 5k 6
2 3k 6
6e
2 4k 6
10e
X (0) 60 X (3) 0
X (1) 9 j 3 3 X (4) 3 j 3
X (2) 3 j 3 X (5) 9 j 3 3
x 3(n )
当k取奇数( k=2m+1 ,m=0,1,…, N/4-1 )时
N n(2 m 1) X 1(2m 1) x 1(n ) x 1 n 4 W N 2 n 0 N 4 1 N n mn x 1(n ) x 1 n W W N N 4 4 n 0 2
第四章 离散傅里叶变换及其快速算法
离散 连续
周期延拓 非周期
4.1 离散傅里叶变换的定义
kn X (k ) DFT [ x(n)] x(n)WN , n 0 N 1 N 1 n 0 2 kn N
= x ( n )e
j
k=0, 1, , N-1
X ( k )WN kn k 0 N 1
1 x(n) IDFT [ X (k )] N 1 N
4 N
x D1X N
W N ( N 1 ) 2 ( N 1 ) WN W N ( N 1 )( N 1 ) 1
1
D
1 N
W N 2 ( N 1 )
1 DN N
dftmtx(N) 函数产生N×N的DFT矩阵DN conj(dftmtx(N))/N 函数产生N×N的IDFT矩阵DN-1
二、 圆周移位性质
1. 序列的圆周移位 x(n)的圆周移位定义为
y(n)=x((n+m))N RN(n) 其过程为: 1)、将x(n)以N为周期进行周期延拓得x((n))N 2)、将x((n))N左移m位,得x((n+m))N 3)、取其主值序列x((n+m))N RN(n) 循环移位过程如图所示
WNN 1
2 WN ( N 1)
WNN 1 2 WN ( N 1) ( WN N 1) ( N 1)
DFT
IDFT矩阵形式为
1 1 1 W 1 N 1 D 1 1 W N 2 N N 1 W N ( N 1 ) 1 W N 2 W
0 n N `1 0 k N `1
DFT 则: x1 (n) x2 (n) X1 ( K ) X 2 ( K )
第三章离散傅里叶变换及其快速计算方法
傅里叶系数标号k :0~N
数字频率ω:0~2π 模拟频率 f :0~fs
0
N /2
0
0
fs /2
0
s /2
北京邮电大学信息与通信工程学院
N k (变换系数标号) 2 (弧度,数字频率) fs f (Hz,模拟频率) s (弧度/秒,模拟角频率)
24
DFS 定义:几点说明
频率成份
直流分量:
N 1
北京邮电大学信息与通信工程学院
11
DFS 定义:预备知识
基本关系式 若 r,m 都是整数,则:
N N 1 j 2 k(r m )
eN
k0
0
rm rm
证明: 对于r=m:不论 k 取何值,显然等式成立。
对于r≠m:
1 W N 1 j 2 k(rm) N
e W 1W k0
N 1 k(rm)
离散傅里叶级数包含了 0 到 (N-1)fs/N 的频率,因而 N 个傅里叶级数的系 数位于从 0 直到接近取样频率的频率上。
N 1
当 k=0 时, X (0) x(n)WN 0n x(n) ,此时得到的傅里叶级数的系数
称为信号的直流分量(DnC0 Componenn0t)X,(0)/ N 是信号的平均值;
交流分量:
其它频率(k>0)称为周期信号的谐波,此时的傅里叶级数系数称为 信号的交流分量。
k=1 时的频率为信号的一次谐波,或基频,频率大小为 fs/N,时间为 NTs,等于完成一个周期所需要的时间。其它谐波为基频的整数倍。
8
3.1 问题的提出:傅里叶变换的四种形式 (6)
四种傅里叶变换形式的归纳总结:
形式
时间函数
频率函数
第3章1-4 离散傅里叶变换及其快速算法讲解
考虑到DFT关系的对偶性,可以证明,长为N的两序列之积的DFT 等于它们的DFT的循环卷积除以N,即
3种卷积: 线性卷积 线性卷积不受主值区间限制 周期卷积 循环卷积 是周期卷积取主值,在一定条件下与线性卷积相等。 两个长度都为N的因果序列的循环卷积仍是一个长度为N的序列, 而它们的线性卷积却是一个长度为2N-1的序列。
设x1(n)和x2(n)都是长度为N的有限长因果序列,它们的线性卷 积为
它是长为2N-1的序列。
现将x1(n)和x2(n)延长至L(L>N),延长部分(从N到L-1)均填充为零 值,计算x1(n)和x2(n)的L点循环卷积,得到
为了下面分析方便,先将x1(n)和x2(n)以L为周期进行延拓,得 到两个周期序列
若它们长度不等,取长度最大者,将短的序列通过补零加长,注 意此时DFT与未补零的DFT不相等。
此性质可以直接由DFT的定义进行证明。
2.对称性 最常遇到的是实序列。设x(n)是一个长度为N的实序列,且
DFT[x(n)]=X(k),则有 这意味着
或
这就是说,实序列的DFT系数X(k)的模是偶对称序列,辐角是 奇对称序列。
何信息。这正是傅里叶变换中时域和频域对偶关系的反映,这有 着十分重要的意 义。DFT实现了频域离散化,开辟了在频域采用 数字技术处理的新领域。
这使我们自然想到,对于任意一个频率特性,是否均能用频域
采样的办法来逼近,这是一个很吸引人的问题,因为用频率采样 来逼近,可使问题大大简化。因此我们要讨论频率采样的可行性 以及所带来的误差。
Matlab实现 fft1.m
X(4)=0.46235 X(5)= 0.47017+j0.16987 X(6)= 0.50746+j0.40597 X(7)= 0.71063+j0.92558
离散傅里叶变换及其快速算法
w nk N
又如
w
N N
/
2
1,
因此
w(kN / 2) N
wNk
利用这些周期性和对称性,使DFT运算中有些项可合并;
2)利用
w
nk N
的周期性和对称性,把长度为N点的大点数的DFT
运算依次分解为若干个小点数的DFT。因为DFT的计算量正比于N2,
N小,计算量也就小。
FFT算法正是基于这样的基本思想发展起来的。它有多种形式,
n0
N / 21
X (2r 1) [x(n) x(n N / 2)]WNn(2r1)
n0
N / 21
[x(n) (n)=x(n)+x(n+N/2) b(n)=[x(n)-x(n+N/2]wnN
这两个序列都是N/2点的序列,将其代入上两式,得
结果仍然储存在同一组存储器中,直到最后 输出,中间无需其它存储器,这叫原位计算 。 每一级运算均可在原位进行,这种原位运算 结构可节省存储单元,降低设备成本,还可 节省寻址的时间。
21
(3)序数重排
对按时间抽取FFT的原位运算结构,当运算完毕
时,正好顺序存放着 X(0),X(1),X(2),
…,X(7),因此可直接按顺序输出,但这种原
但基本上可分为两类:时间抽取法和频率抽取法。
6
2、按时间抽取的FFT(N点DFT运算的分解) 先从一个特殊情况开始,假定N是2的整数次方,
N=2M,M:正整数
首先将序列x(n)分解为两组,一组为偶数项,一组为奇数 项,
x(2r) x1(r) x(2r 1) x2 (r
)
r 0,1,, N/2-1
位运算的输入 x(n)却不能按这种自然顺序存入
数字信号处理第三章离散傅里叶变换(DFT)及其快速算法(FFT)
周期
2
s、fs N
分辨率
2
N
fs N
返回
回到本节
DFT和DFS之间的关系:
周期延拓
取主值
有限长序列
周期序列
主值区序列
有限长序列 x(n) n 0,1, 2, M 1
周期序列 xN (n) x(n mN ) x((n))N m 0 n0 N 1 n mN n0 ((n))N n0
四种傅立叶变换
离散傅立叶变换(DFT)实现了信号首次在频域 表示的离散化,使得频域也能够用计算机进行处理。 并且这种DFT变换可以有多种实用的快速算法。使信 号处理在时、频域的处理和转换均可离散化和快速 化。因而具有重要的理论意义和应用价值,是本课程 学习的一大重点。
本节主要介绍
3.1.1 DFT定义 3.1.2 DFT与ZT、FT、DFS的关系 3.1.3 DFT的矩阵表示
• X(k)为x(n)的傅立叶变换 X (e j ) 在区间 [0, 2 ]上的N
点等间隔采样。这就是DFT的物理意义。
j ImZ
2பைடு நூலகம்3
4
5 6
1 2
N
k=0 ReZ
7 (N-1)
DFT与z变换
X(ejω)
X(k)
0
o
2
0
N 1 k
DFT与DTFT变换
回到本节
变量
、f k
之间的某种变换关系.
• 所以“时间”或“频率”取连续还是离 散值,就形成各种不同形式的傅里叶变换 对。
3.1 离散傅里叶变换的定义及物理意义
时间域
t:连续
模拟域
离散傅里叶变换及快速算法
序列分解为N个谐波相关的复指数之和。将
j 2N nk
X (k ) x(n)e
, k 0,1,2,
(5-3)
称之为离散傅里叶级数DFS的k次谐波系数。是一个基波周 期为N的周期序列。
X (k ) X ( k N )
§5.离散傅里叶变换及快速算法
在DFS变换中引入复数
k
X ( jk0 )e jk0t
*时域周期为Tp, 频域谱线间隔为2π/Tp
时域信号 连续的 周期的
频域信号
非周期的
离散的
3.离散时间、连续频率的傅立叶变换 – DTFT(离散时间傅立叶 变换) X e 或 X (e ) x(nT) T
j jT
---T 0 T 2T
正 : X (e
WN e
j 2N
将DFS正反变换描述为
nk 正 : X (k ) DFSx (n) X (k ) x (n)WN n 0
N 1
1 N 1 反 : x (n) IDFS X (k ) x (n) X (k )WN nk N k 0
(5-5)
WN
的性质: 1 N 1 ( nm) k 1 n m lN 正交性: WN 0 n m lN N k 0
周期性:
W
k mN N
W
k N
l , m, N / 2, k / 2均为整数
共轭对称性(偶序列): 可约性:
k N (WN )* WN k
k mk k 2 WN WmN WN // 2
§5.离散傅里叶变换及快速算法
2.离散傅里叶变换(DFT)
但对于数字系统,无论是Z 变换还是序列傅立叶变换的适用方面都存 在一些问题,重要是因为频率变量的连续性性质(DTFT变换出连续频 谱),不便于数字运算和储存。 参考DFS,可以采用类似DFS的分析方法解决以上问题。可以把有限 长非周期序列假设为一无限长周期序列的一个主值周期,即对有限长非 周期序列进行周期延拓,延拓后的序列完全可以采用DFS进行处理,即 采用复指数基频序列和此有限长时间序列取相关,得出每个主值在各频 率上的频谱分量以表示出这个“主值周期”的频谱信息。 由于DFT借用了DFS,这样就假设了序列的周期无限性,但在处理时 又对区间作出限定(主值区间),以符合有限长的特点,这就使DFT带 有了周期性。另外,DFT只是对一周期内的有限个离散频率的表示,所 以它在频率上是离散的,就相当于DTFT变换成连续频谱后再对其采样, 此时采样频率等于序列延拓后的 周期N,即主值序列的个数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(5-5)
W e N
j
2 N
的性质:
正交性,周期性,
共轭对称性(偶序列),可约性。
§5.离散傅里叶变换及快速算法
1.离散傅里叶级数
1.2离散傅里叶级的计算
例5-1 求出下面周期序列的DFS
x(n) 0 ,1,2,3, 0 ,1,2,3, 0,1,2,3
n0
为改进嵌套循环计算的效率,将循环结构改为矩阵形式计算
§5.离散傅里叶变换及快速算法
0.概述
离散时间傅里叶变换(DTFT)是通过周期频谱 来描述一个离散信号序列,即DTFT是连续变 量w的连续函数。离散傅里叶变换(DFT)则是 针对有限长序列,是对DTFT采样后得到的离 散序列。 此种表示方法非常有利于数值计算以及数字信 号处理算法的DSP硬件实现。 本章将研究离散傅里叶级数,离散傅里叶变换 (DFT),及离散傅里叶变换的快速算法FFT。
(5-3)
n0
称之为离散傅里叶级数DFS的系数。是一个基波周期为N的 周期序列。
X (k) X (k N)
§5.离散傅里叶变换及快速算法
W e 在DFS变换中引入复数 N
j
2 N
将DFS正反变换描述为
N 1
X (k) x(n)WNnk
n0
x (n)
1 N
N 1
X (k )WNnk
k 0
n0
x(n)
1 N
N 1
X (k )WNnk
k 0
x
1 N
WN* X
WN WNkn 0
k,n
N
1
1 1
1
WN1
1
W ( N 1) N
1
W ( N 1) N
WN( N
1)2
§5.离散傅里叶变换及快速算法
2.离散傅里叶变换(DFT)
2.2 DTFT与DFT的关系
§5.离散傅里叶变换及快速算法
X ((k))N
X
(N
k)
1 k N 1
Matlab: x=x(mod(-n,N)+1)
§5.离散傅里叶变换及快速算法
3.离散傅里叶变换(DFT)的性质
3.2 序列的循环位移
x(n m) x((n m)) N
§5.离散傅里叶变换及快速算法
3.离散傅里叶变换(DFT)的性质
3.2 序列的循环位移
X WN x
x
1 N
WN* X
1
WN
WNkn
0
k,n
N
1
1
1
1 WN1
W ( N 1)
N
1
W ( N 1) N
WN( N
1)2
§5.离散傅里叶变换及快速算法
1.离散傅里叶级数
1.2离散傅里叶级的计算
Function [Xk] = dfs (xn, N) % Xk and xn are column(not row) vectors if nargin < 2 N = length(xn) n = 0: N-1; k = 0: N-1; WN = exp(-j*2*pi/N); kn = k’*n; WNkn = WN.^kn; Xk = WNkn * xn
§5.离散傅里叶变换及快速算法
2.离散傅里叶变换(DFT)
2.1 DFT的定义
采用对变量取模N的运算,可简写为
x(n) x(n rN ) x(n) x(n mod N ) x((n)) N r
x(n) x((n))N x(n) x(n)RN (n)
周期延拓 加窗操作
对于周期序列 x(n) ,和其主值序列 x(n) ,取DFS 则周期序列的DFS与其主值序列的DFS的关系为:
2.1 DFT的定义
对于一个周期序列 x(n) ,定义它的第一个周期的 有限长序列为该周期序列的主值序列 x(n) ,有
x(n) 0 n N 1
x(n) DFT[x(n)]
0
else x(n)RN (n)
x(n) x(n rN ) r
其中周期序列 x(n) 可视为是有限长序列 x(n) 以N为周期的延拓
W kn0 N
X
(k
)
即DFS系数乘以一个复指数。
的DFS系数为
同样,如果 x(n) 乘以一个复指数,WNkn0 x(n) x(n) 的DFS系数 X (k) 将发生位移。
X (k k0)
§5.离散傅里叶变换及快速算法
2.离散傅里叶变换(DFT)
离散傅里叶级数DFS作为一种过渡形式,可以引出离散傅里 叶变换DFT。DFS用于周期序列,DFT则用于分析有限长序列。
§5.离散傅里叶变换及快速算法
1.离散傅里叶级数
1.3离散傅里叶级的性质 1)线性 如果 x1(n), x2 (n) 都是周期为N的周期序列,则
DFS[x1(n) x2 (n)] X1(n) X 2 (n)
2)位移 如果 X (k) 是周期序列 x(n) 的DFS系数,则
x(n) 的位移序列 x(n n0 )
x(n)
1
N
1
X
(
k
)e
j
2 N
k
n
n 0,1,2,(5-2)
N K 0
§5.离散傅里叶变换及快速算法
x(n)
1
N 1
X
(
k
)e
j
2 N
k
n
n 0,1,2,(5-2)
N K 0
式中将 x(n) 序列分解为N个谐波相关的复指数之和。将
X
(k)N 1x(n)e Nhomakorabeaj
2 N
nk
,k
0,1,2,
§5.离散傅里叶变换及快速算法
4.离散傅里叶变换(DFT)的快速算法FFT
4.2 快速算法(蝶形运算)
§5.离散傅里叶变换及快速算法
§5.离散傅里叶变换及快速算法
§5.离散傅里叶变换及快速算法
§5.离散傅里叶变换及快速算法
8点DFT的FFT运算图
例5-3
§5.离散傅里叶变换及快速算法
4.离散傅里叶变换(DFT)的快速算法FFT
4.1 DFT直接运算的计算量
N 1
X (k ) x(n)WNnk n0
X=WNx (WN: N*N, x: 1*N, X: 1*N)
其计算量为:CN=O(N2)
通常X与W都是复数,计算一个X需要N次复数乘法运算, N-1次复数加法运算。则对所有的X(k)就需要N2次复数 乘法运算,N(N-1)次复数加法运算。当N较大时运算量 将很大。 如N=1024时,要完成1048576次,难以做到实时处理。
3.离散傅里叶变换(DFT)的性质
3.1 线性、对称性、反转
1. 线性: DFT[ax1(n)+bx2(n)]=aDFT[x1(n)]+bDFT[x2(n)] 此时一般需保证x1和x2的DFT有相同的长度。长度不同时需 对短序列补零,使它与长序列的长度相同后再进行变换。
2.反转:
X (0)
k 0
DFT[x((n))N ]
§5.离散傅里叶变换及快速算法
3.离散傅里叶变换(DFT)的性质
3.2 序列的循环位移
例5-2
§5.离散傅里叶变换及快速算法
3.离散傅里叶变换(DFT)的性质
3.3 序列的循环位移的MATLAB实现
function y = cirshftt(x,m,N) if length(x) > N
error('N must be >= the length of x') end x = [x zeros(1,N-length(x))]; n = [0:1:N-1]; n = mod(n-m,N); y = x(n+1);
§5.离散傅里叶变换及快速算法
1.离散傅里叶级数
1.1离散傅里叶级数的定义
设 x(n) 是一个周期为N的周期序列,它满足条件
x(n) x(n kN) (5-1)
式中N称为序列的基波周期。由傅里叶级数可知,周期 函数可由复指数的线性组合来构成。其频率为基波频
率(2pi/N)的倍数。由5-2式的离散傅里叶级数DFS 来表示。
x(k
)
x(k)
0
0 k N 1 else
x(k) x(k rN ) r
§5.离散傅里叶变换及快速算法
2.离散傅里叶变换(DFT)
由于无限长序列 x(n), X (n)可以用它们的主值序列完全表
示,可将前述(5-5)DFS正反变换描述为
其中:
X WN x
N 1
X (k ) x(n)WNnk