调频的抗噪声性能

调频的抗噪声性能
调频的抗噪声性能

不同信道及噪声特性对通信性能的影响分析及验证

实验四、不同信道及噪声特性对通信性能的影响分析及验证实验目的: 熟悉Matlab编程环境、编程流程以及基本Matlab函数的编写与调用;掌握瑞利、莱斯信道模型的Matlab实现;掌握莱斯信道的相位补偿。 预备知识: 1.Matlab编程基础; 2.数字基带通信系统的基础知识; 3.衰落信道的基础知识。 4.信道相位补偿; 实验环境: 1.实验人数 50 人,每 2 人一组,每组两台电脑 % 2.电脑 50 台 实验内容: 1.用Matlab生成长度为200的随机二进制数序列并采用格雷码对其进行编码;2.搭建数字基带通信系统; 3.生成瑞利信道、莱斯信道以及高斯白噪声信道; 4.对接收信号进行相位补偿; 5.画出瑞利信道、莱斯信道的相位补偿曲线并与信道相位比较并分析其结果。6.画出莱斯信道的信噪比与误比特率曲线,并与理论曲线比较,分析其结果。 实验原理: 1.衰落信道 在无线通信领域,衰落是指由于信道的变化导致接收信号的幅度发生随机变化的现象,即信号衰落。导致信号衰落的信道被称作衰落信道。 ( 衰落可按时间、空间、频率三个角度来分类。

(1)在时间上,分为慢衰落和快衰落。慢衰落描述的是信号幅度的长期变化,是传播环境在较长时间、较大范围内发生变化的结果,因此又被称为长期衰落、大尺度衰落。快衰落则描述了信号幅度的瞬时变化,与多径传播有关,又被称为短期衰落、小尺度衰落。慢衰落是快衰落的中值。 (2)在频率上,分为平坦性衰落和选择性衰落。 多径衰落可分为平坦衰落和频率选择性衰落。如果无线传播信道的频带比传送信号还宽,则接收到的信号会受到平坦衰落。当传送信号的带宽大于信道的同调带宽时,接收信号的增益和相位将会随着信号频谱的改变而变化,因而在接收端产生了信号失真,这就是选择性衰落。 (3)在空间上,分为瑞利衰落和莱斯衰落。瑞利衰落适用于从发射机到接收机不存在直射信号的情况;相反,莱斯衰落适用于发射机到接收机存在直射路径的情况。 在无线通信信道环境中,电磁波经过反射折射散射等多条路径传播到达接收机后,总信号的强度服从瑞利分布。 同时由于接收机的移动及其他原因,信号强度和相位等特性又在起伏变化, 故称为瑞利衰落。在无线通信信道中,由于信号进行多径传播达到接收点处的场强来自不同传播的路径,各条路径延时时间是不同的,而各个方向分量波的叠加,又产生了驻波场强,从而形成信号快衰落称为瑞利衰落。瑞利衰落属于小尺度的衰落效应,它总是叠加于如阴影、衰减等大尺度衰落效应上。 如果收到的信号中除了经反射折射散射等来的信号外,还有从发射机直接到达接收机(如从卫星直接到达地面接收机)的信号,那么总信号的强度服从莱斯分布, 故称为莱斯衰落。 2.瑞利衰落与莱斯衰落 瑞利分布是一个均值为0,方差为2σ的平稳窄带高斯过程,其包络的一维分布是瑞利分布。 2 22()exp() 02z z f z z σσ=-≥ (4-1) 瑞利分布是最常见的用于描述平坦衰落信道接收包络或独立多径分量接受包络 统计时变特性的一种分布类型。两个正交高斯噪声信号之和的包络服从瑞利分布。 " 莱斯分布的概率密度函数称为莱斯密度函数: 220222()exp()()2R R A RA p R I σσσ +=- (4-2)

基于蒙特卡罗法2FSK系统抗噪声性能仿真2

通信原理 课程设计报告 题目:基于蒙特卡罗法2FSK系统抗噪声性能仿真院系: 专业: 班级: 姓名: 指导教师: 2010年12月27日-2010年12月31日

编写MA TLAB的M文件,用该文件的采用相干解调法的2FSK系统的抗噪性能进行1000个符号的蒙特卡罗法仿真,画出误码率与信噪比之间的关系曲线,其中信噪比的取值为r=0dB、2dB、4dB、6dB…10dB,同时画出误码率与信噪比的理论曲线,其中信噪比的取值为r=0dB、0.1dB、0.2dB…10dB。 分步实施: 1)熟悉2FSK系统调制解调,熟悉蒙特卡洛法;熟悉误码率计算; 2)编写主要程序; 3)画出系统仿真误码率曲线的系统理论误码率曲线。

1、蒙特卡罗思想概述 蒙特卡罗方法也称为随机模拟方法,有时也称为随机抽样技术或统计实验方法。它的基本思想是:为了求解数学、物理、工程技术以及生产管理等方面的问题,首先建立一个概率模型或随机过程,使它的参数等于问题的解;然后通过对模型或过程的观察或抽样试验来计算所求参数的统计特征,最后给出所求解的近似值。而解得精确度可用估计值的标准误差来表示。 蒙特卡罗方法可以解决各种类型的问题,但总的来说,视其是否涉及随机过程的性态和结果,该方法处理的问题可以分为两类:第一类是确定性的数学问题,首先建立一个与所求解有关的概率模型,使所求的解就是我们所建立模型的概率分布或数学期望;然后对其进行随机抽样观察,即产生随机变量;最后用其算术平均值作为所求解的近似估计值。第二类是随机性问题,被考察的元素更多的受到随机性的影响,一般情况下采用直接模拟方法,即根据实际物理情况的概率法则,用电子计算机进行抽样试验。 在应用蒙特卡罗方法解决实际问题的过程中,大体有如下几个内容: (1)对求解的问题建立简单而又便于实现的概率统计模型,使所求的解恰好是所建立模型的概率分布或数学期望。 (2)根据概率统计模型的特点和计算实践的需要,尽量改进模型,以便减小方差和费用,提高计算效率。 (3)建立对随机变量的抽样方法,其中包括建立产生伪随机数的方法和建立对所遇到的分布产生随机变量的随机抽样方法。 (4)给出获得所求解的统计估计值及其方差或标准误差的方法。 2、2FSK 系统调制解调原理 频移键控是利用载波的频率变化来传递数字信息。在2FSK 中,载波的频率随二进制基带信号在f1和f2两个频率间变化。用f1和f2分别表示二进制“1”和“0”。因此,2FSK 信号的时域表达式为 )cos()()cos()()(212n n s n n n s n FSK t nT t g a t nT t g a t e θωφω+?? ? ???-++??????-=∑∑∞-∞→∞ -∞ →

噪声及其特征

“学程导航”课时教学计划 施教日期年月日 教学内容噪声及其特征共几课时 1 课 型 新授第几课时 1 教学目标1.初步了解乐音和噪声的区别,能分别从物理,环境保护的角度区分乐音和噪声。 2.知道噪声的来源及其对人的危害,能对生活中的噪声的来源进行分类,对噪声的等级进行简单的判断。 3.了解噪声的传播途径及控制噪声的方法。 教 学重难点知道噪声的来源及其对人的危害,能对生活中的噪声的来源进行分类,了解噪声的传播途径及控制噪声的方法。 教学资源 预习设计1.认真阅读教材P16--P19页。 2.完成《学成导航》中的"课前预习"

1.乐音和噪声的区别: 板书:乐音和噪声的区别: (1)环境保护角度: 乐音是指悦耳动听,令人愉快的声音噪声是指刺耳难听,令人厌烦的声音(2)物理学角度: 乐音是指声源做有规则振动产生的声音。 噪声是指声源做无规则的振动产生的声音。 2.噪声的来源: 板书:噪声的来源: (1)工业生产 (2)交通运输 (3)日常生活 3.噪声的危害: 4.噪声的控制: 板书:噪声的控制: (1)在声源处控制噪声 (2)在传播过程中控制噪声 (3)在人耳处减弱噪声 5.新知巩固:(1)请学生阅读教材第一段思考:乐音和噪声有什么区别?(分别从环境保护和物理学的角度来区分) (2)请学生列举一些日常生活中你认为是属于噪声的例子。 (1)请学生分组讨论把书本第16页中的各种噪声,根据噪声的来源进行分类(注意:可以分成三类) (2)请学生代表回答,师生集体进行纠错。 1.请学生阅读教材第17页思考一下问题: (1)噪声的危害对人有哪些危害? (2)噪声的大小有什么物理量来进行量度的?单位是什么? (3)从表中找出使人感觉比较安逸的声音是多大? 请学生阅读教材P18-19页思考一下问题: (1)在我们的日常生活在有哪些方法可以控制噪声? (2)书本中四幅图中分别使用什么方法来控制噪声的? (3)以声消声的工作原理是什么? 1.请学生完成课内思考第1,2,3,4.题。 2.请学生代表回答,及时纠错

基于system-view的pcm-2dpsk-仿真及系统抗噪声性能测试实验报告

基于system-view的pcm-2dpsk-仿真及系统抗噪声性能测试实验报告

西安电子科技大学 通信系统实验报告 ——基于systemview地2D PSK+PCM传输仿真

指导教师: 姓名学号班级 李媛媛 01121359 011214 张少虎 01121360 011214 日期:2015年7月

一、系统仿真目地 1、了解 PCM+2DPK通信系统地原理和信息传输方案 2、掌握通信系统地设计方法与参数选择原则 3、掌握由图符模块建立子系统并构成通信系统地设计方法 4、熟悉通信系统地SYSTEMVIEW仿真测试环境系统仿真内容简介 5、测试实验所搭建2dpsk传输系统抗噪声性能,并与理论曲线作对比 6、观测不同信噪比条件下关键信号眼图变化情况,进一步了解眼图地作用与含义 7、了解信号在系统传输过程中各阶段频率分量地变化,加深对限号调制解调在频域地认知 二、实验内容 1、用三个频率和幅度分别为400HZ,2v、500HZ ,2v、700HZ,0.5v地正弦信号作为系统地输入,经过PCM编码系统转换为数字信号,再经并串转换转换为基带信号 2、以基带信号作为2DPSK系统输入信号,码速率Rb=16kbit/s.采用键控法实现2DPSK地调制

,采用非相干解调法实现2DPSK地解调,分别观察系统各点波形. 3、将2DPSK系统输出信号进行串并变换,再经P CM解码系统还原为系统初始输入地模拟信号,并观察信号时域和频域地变化. 4、使用仿真软件SYSTEMVIEW,从SystemVi ew 配置地图标库中调出相关合适地图符并进行合适地参数设置,并连好图符间地连线,完成对PCM编码、2DPSK键控调制、非相干解调、pcm解码仿真电路设计,并完成仿真操作. 5、观察各点波形:包括时域波形、眼图、部分信号瀑布图、2dpsk系统抗噪声性能曲线等,以及记录主要信号点地功率谱密度. 6、分析实验所得图形数据,判断系统传输地正确性. 7、搭建抗噪声性能测试原理图,测试在不同信噪比环境下,系统误码率地大小,并以此绘制出误码率随信噪比变化地数据曲线,即2DPSK系统地抗噪声性能,绘制该曲线,并与理论曲线进行对比. 三、原理简介

低噪声放大器设计 论文

低噪声放大器设计 摘要:微弱信号检测就是利用近代电子学和信号处理方法从噪声中提取有用信号,其关键在于抑制噪声。恢复、增加和提取有用信号。与普通放大器相比,低噪声放大器应具有低得多的噪声系数。欲使放大器获得良好的低噪声特性,除使用好的低噪声器件外,还要有周密的设计。本文将从低噪声放大器在通讯系统中的作用,低噪声放大器的主要技术指标以及低噪声放大器的设计方法来论述低噪声放大器,以获得最佳噪声性能的低噪声放大器。重点介绍了低噪声放大器的设计方法。 关键词:低噪声,微弱信号检测,噪声系数,放大器 0.引言 随着现代科学研究和技术的发展,人们越来越需要从强噪声中检测出有用的微弱信号,于是逐渐形成了微弱信号检测这门新兴的科学技术学科,其应用范围遍及光学、电学、磁学、声学、力学、医学、材料等领域。微弱信号检测技术是利用电子学、信息论、计算机及物理学的方法,分析噪声产生的原因和规律,研究被测信号的特点与相关性,检测被噪声淹没的微弱有用信号,或用一些新技术和新方法来提高检测系统输出信号的信噪比,从而提取有用信号。微弱信号检测所针对的检测对象,是用常规和传统方法不能检测到的微弱量。对它的研究是发展高新技术,探索及发现新的自然规则的重要手段,对推动相关领域的发展具有重要的应用价值。目前,微弱信号检测的原理、方法和设备已经成为很多领域中进行现代科学技术研究不可缺少的手段。显然,对微弱信号检测理论的研究,探索新的微弱信号检测方法,研制新的微弱信号检测设备是目前检测技术领域的一大热点。 1.低噪声放大器在通讯系统中的作用 随着通讯工业的飞速发展,人们对各种无线通讯工具的要求也越来越高,功率辐射小、作用距离远、覆盖范围大已成为各运营商乃至无线通讯设备制造商的

地铁站台噪声特性分析

专业知识分享版 使命:加速中国职业化进程 摘 要:采用噪声与振动测试分析系统,对地铁车辆进入站台和驶出站台及站台广播噪声进行测试与分析。通过对数据分析得出:站台主要噪声源为车辆通过站台时的轮轨噪声与车辆制动啸叫声的叠加,等效声级81.5 dB(A),频率范围200~4 000 Hz 。无车辆通过时广播噪声为主要噪声源,等效声级为79.1 dB(A),频率范围为500~1 000 Hz 。该研究结果对地铁车站的减振降噪设计具有较高的现实意义和应用价值。 关键词:声学;地铁车站;站台;噪声;频谱;测试 随着城市建设速度的加快、人口数量的增加及汽车工业的迅速发展,城市道路交通拥挤现象愈发严重,已成为城市建设发展中必须解决的主要问题之一。城市地铁交通具有方便快捷、安全准时等特点,在改善城市道路交通现状方面发挥了重要的作用,已成为各大城市选择的主要方法之一。 但是,地铁在带给人们便利的同时,也带来地铁噪声。地铁车站是人们乘坐地铁必须经过和驻足的场所,随着人们生活水平的提高和对环境保护意识的增强,地铁站内噪声情况越来越被更多的人所关注。掌握地铁车辆进出站台的噪声与振动分布现状[1―5],为地铁站台减振降噪设计[6,7]、人们工作环境的改善提供依据,具有较高的现实意义和应用前景。 1 测试环境、仪器及布点 1..1 测试环境 本次测试地点为国内某城市的普通地铁车站,其站台长120 m ,宽度为6 m ,表面为大理石结构。轨道布置在站台的两侧,两侧墙体为水泥表面,并未做吸声处理。站台与轨道间采用半封闭安全门阻隔,安全门高度为1.4 m 。 测试时,本线路的车隔为8 min 。车辆为每编组6 辆车,总长度为 118 m ,分为 3 个单元,每单元为一动一拖形式。其中每辆动车重约35 t ,每辆拖车重约32 t ,最大轴重为14 t 。车辆高度为3.5 m ,车体结构为鼓型设计,最大宽度为2.75 m 。车门为双开电动塞拉门,每辆车设有8套,对称布置。转向架为无摇枕焊接结构,设有一系橡胶弹簧和二系空气弹簧,可有效的降低振动噪声。 1..2测试仪器 本次测试采用HEAD acoustics 噪声与振动分析系统,此系统由HPS Ⅳ数字式回放系

基于system_view的pcm2dpsk_仿真及系统抗噪声性能测试实验报告

西安电子科技大学 通信系统实验报告 ——基于system view的2DPSK+PCM传输仿真 指导教师: 日期:2015年7月

一、系统仿真目的 1、了解PCM+2DPK通信系统的原理和信息传输方案 2、掌握通信系统的设计方法与参数选择原则 3、掌握由图符模块建立子系统并构成通信系统的设计方法 4、熟悉通信系统的SYSTEMVIEW仿真测试环境系统仿真内容简介 5、测试实验所搭建2dpsk传输系统抗噪声性能,并与理论曲线作对比 6、观测不同信噪比条件下关键信号眼图变化情况,进一步了解眼图的作用与含义 7、了解信号在系统传输过程中各阶段频率分量的变化,加深对限号调制解调在频域的认知 二、实验内容 1、用三个频率和幅度分别为400HZ,2v、500HZ,2v、700HZ,0.5v的正弦信号作为系统的输入,经过PCM编码系统转换为数字信号,再经并串转换转换为基带信号 2、以基带信号作为2DPSK系统输入信号,码速率Rb=16kbit/s。采用键控法实现2DPSK的调制,采用非相干解调法实现2DPSK的解调,分别观察系统各点波形。 3、将2DPSK系统输出信号进行串并变换,再经PCM解码系统还原为系统初始输入的模拟信号,并观察信号时域和频域的变化。 4、使用仿真软件 SYSTEMVIEW,从 SystemView 配置的图标库中调出相关合适的图符并进行合适的参数设置,并连好图符间的连线,完成对 PCM编码、2DPSK键控调制、非相干解调、pcm解码仿真电路设计,并完成仿真操作。 5、观察各点波形:包括时域波形、眼图、部分信号瀑布图、2dpsk系统抗噪声性能曲线等,以及记录主要信号点的功率谱密度。 6、分析实验所得图形数据,判断系统传输的正确性。 7、搭建抗噪声性能测试原理图,测试在不同信噪比环境下,系统误码率的大小,并以此绘制出误码率随信噪比变化的数据曲线,即2DPSK系统的抗噪声性能,绘制该曲线,并与理论曲线进行对比。 三、原理简介 1、PCM编码译码原理 (1)编码原理 编码过程分三步: 抽样:需要满足低通采样定理,采样频率8kHz 。 量化:均匀量化时小信号量化误差大,因此采用不均匀选取量化间隔的非线性量化方法,即量化特性在小信号时分层密、量化间隔小,而在大信号时分层疏、量化间隔大。实现方法:实现非均匀量化的方法之一是把输入量化器的信号 x先进行压扩处理,再把压扩得到的信号y进行均匀量化。压扩器就是一个非线性变换电路,弱信号被扩大,强信号被压缩。压缩器的入出关系表示为y=f(x) 。常用压扩器大多采用对数式压缩,广泛采用的两种对数压扩特性是μ律压扩和A律压扩。效果:改善了小信号时的量化信噪比。 A律压扩特性的13段折线逼近方法:对x轴不均匀分成8段,分段的方法是每次以二分之一对分;对y轴在0~1范围内均匀分成8段,每段间隔均为1/8。然后把x,y各对应段的交点连接起来构成8段直线。其中第1、 2段斜率相同(均为16),因此可视为一条直线段,故实际上只有7根斜率不同的折线。以上分析的是第一象限,对于双极性语音信号,在第三象限也有对称的一组折线,也是7根,但其中靠近零点的1、2段斜率与正方向的第1、2段斜率相同,又可以合并为一根,因此,正、负双向共有13段折线。 13段折线在第一象限的压扩特性如下图所示:

低噪声功率放大器设计

微波电子线路大作业 ——低噪声功率放大器设计 班级:021013班 学号:02011268 姓名:

低噪声放大器的设计 一、设计要求: 已知GaAs FET 在4 GHz 、50 Ω系统中的S 参数和噪声参量为 S11=∠-60°,S21=∠81°, S12=∠26°,S22=∠-60° Fmin= dB Γout=∠100°RN=20 Ω 设计一个低噪声放大器,要求噪声系数为2 dB ,并计算相应的最大增益。 若按单向化进行设计,则计算GT 的最大误差。 二、低噪声放大器设计原理及思路 低噪声放大器功能概述 低噪声放大器是射频/微波系统的一种必不可少的部件,它紧接接收机天线,放大天线从空中接收到的微弱信号。低噪声放大器在对微弱信号放大的同时还会产生附加于扰信号,因此它的设计目标是低噪声,足够的增益,线性动态范围宽。低噪声放大器影响整机的噪声系数和互调特性,分析如下 (1) 系统接收灵敏度: (2) 多个级连网络的总噪声系数 放大器工作组态分类 A 类放大器(导通角360度,最大理论效率50%)用于小信号、低噪声,通常是接收机前端放大器或功率放大器的前级放大。 B 类(导通角180度,最大理论效率%)和 C 类(导通角小于180度,最大理论效率大于% )放大器电源效率高,愉出信号谐波成分高,需要有外部混合电路或滤波电路.由B 类和C 类放大器还可派生出 D 类、 E 类、P 类等放大器。 min 114(dBm/Hz)NF 10log BW(MHz)/(dB) S S N =-+++321112 121 11 n tot A A A A A An F F F F F G G G G G G ---=+++ +

常用图像去噪方法比较及其性能分析

龙源期刊网 https://www.360docs.net/doc/6d6090923.html, 常用图像去噪方法比较及其性能分析 作者:孟靖童王靖元 来源:《信息技术时代·下旬刊》2018年第02期 摘要:本文介绍了噪声的分类模型,之后又分别介绍了空间域去噪、傅里叶去噪算法以及小波去噪中的部分算法,并分别对相似算法进行了分析比较。同时为了更好的比较出各算法之间的去噪差别针对其中部分去噪算法进行了用matlab的实现,比较了去噪的效果。 关键词:数字图像;噪声;滤波 一、引言 随着当今社会数字化的普及,人们传递图像信息的方式已经从之前单纯的实物传递变为当今的数字图像的传递。然而由于各种原因会导致数字图像真实性减弱。针对这种问题,数字图像处理技术应运而生。数字图像处理技术的产生,不仅满足了人们的视觉,同时经过处理的图像还可以更好的应用于图像加密,图像识别等领域。 二、空间域去噪算法 (一)均值滤波去噪 通过计算某一滤波目标区域内的算数平均值来替代目标区域中心所对应的像素值的方法来达到去除噪声的目的。而加权均值滤波则是在原有均值滤波的基础上,通过对某些更趋进于真实像素的点进行加权的方法来达到更好的去噪效果,使最终区域中心像素更加趋近于真实像素。 利用均值滤波可以很好的去除由高斯噪声带来的对于图像的影响,然而对于由于椒盐噪声带来的对于图像的影响,均值滤波去除的效果并不很好。同时,由于均值滤波的算法是通过取目标范围内一小区域中点灰度值的平均值,来决定区域中心点灰度值的,所以不可避免的造成图像经过均值滤波后会导致图像部分原始真实细节被滤掉,造成视觉上细节不清楚的情况。并且所取范围越大,图像中细节部分越不清晰,图像越平滑。 (二)中值滤波去噪 通过求区域中心点及其周围点灰度值的中值,来代替该中心点的灰度值。因此利用中值去噪的方法可以较好的弥补均值滤波对于图像边缘不清晰处理的缺点。然而由于中值滤波对于所选滤波区域的选择要求较高,因此对于滤波区域大小形状的选择需要根据具体图像来确定。此外,与均值滤波相比,中值滤波对于椒盐噪声的处理比对于高斯噪声的处理更好。 (三)维纳滤波去噪

模拟通信中调频系统的抗噪声性能分析

模拟通信中调频系统的抗噪声性能分析 作者:指导老师: 摘要:在通信系统中调制扮演着不可或缺的作用,通过调制可以把基带信号频率搬移到合适的频率上,从而达到提高发射效率的作用,也可以通过调制把多个基带信号分别搬移到不同的载频处,提高信道利用率。还有扩展信号带宽提高抗干扰能力等。本文主要通过对模拟通信中正弦波的频率调制(即频率调制FM)过程进行分析,并通过计算在大信噪比下的解调器制度增益然后与调幅系统的作比较来分析调频系统的抗噪声性能(因为相干解调只适用于窄带调频所以暂不分析)。还有小信噪比下的门限效应以及通过预加重和去加重技术来提高调频系统的抗噪声性能。最后运用MATLAB软件对模拟通信中调频系统进行仿真设计,并分析和总结仿真结果。 关键字:模拟通信;调频系统; 解调器;门限效应;制度增益;仿真设计。 引言 进入21世纪以来,随着国民经济的飞速提升,中国通信行业也得到了快速发展,对通信的技术要求也逐渐提高。从模拟通信到数字通信,从无线电广播到卫星,光纤通信等等。而频率调制在通信发展的进程上都占据着重要的作用,比如FM广泛应用于高保真音乐广播,电视伴音信号的传输,卫星通信和蜂窝系统。频率调制(FM)在电子音乐合成技术中,是最有效的合成技术之一,还有有线频率在多领域应用。研究模拟通信中调频系统的抗噪声性能能够从理论上认识调频系统的噪声来源和如何改善系统的抗噪声性能。 第一章:调频系统的简介 1.1 模拟通信和调频系统的概述 在实际的通信中,由于通信业务的多样性,消息的来源也是多种多样的,但基本可以分为两大类:连续的和离散的。连续的消息如话音,声波振动的幅度也是随时间连续变化的。若把它转换为随时间连续变化的电压信号,信号幅度也是时间连续函数。这样的信号称作模拟信号,传输模拟信号的通信就称作模拟通信。 调频定义:幅度不变,载波信号的频率随调试信号幅度变化位变化的调制方式叫着调频。 就是载频的频率不是一个常数,是随调制信号而在一定围变化,其幅值则是一个常数。与其对应的,调幅就是载频的频率是不变的,其幅值随调制信号而变。已调波频率变化的大小由调制信号的大小决定,变化的周期由调制信号的频率决定。已调波的振幅保持不变。调频波的波形,就像是个被压缩得不均匀的弹簧,调频波用英文字母FM表示。 一般干扰信号总是叠加在信号上,改变其幅值。所以调频波虽然受到干扰后幅度上也会有变化,但在接收端可以用限幅器将信号幅度上的变化削去,所以调频波的抗干扰性极好,用收音机接收调频广播,基本上听不到杂音。 其次频率调制又称作非线性调制,因为已调信号频谱不再是原调制信号的线性搬移,而是频谱的非线性变换,会产生与频谱搬移不同的新的频率成分。故又称作非线性调制。与幅度调制相比,频率调制

低噪声放大器指标

第1节低噪声放大器指标 低噪声放大器 低噪声放大器(LNA)是射频接收机前端的主要部分。 它主要有四个特点。 1)它位于接收机的最前端,这就要求它的噪声越小越好。为了抑制后面各级噪声对系统的影响,这要求有一定的增益,但为了不使后面的混频器过载,产生非线性失真,它的增益又不能过大。放大器在工作频段内应该是稳定的。 2)它所接收的信号是很微弱的,所以低噪声放大器必定是个小信号放大器。而且由于受传输路径的影响,信号的强弱又是变化的,在接收信号的同时又可能伴随着很多强信号的干扰,因此要求放大器有足够大的线性范围,而且增益最好是可以调节的。 3)低噪声放大器一般通过传输线直接和天线或者天线的滤波器相连,放大器的输入端必须和它们很好的匹配,以达到功率最大传输或者最小的噪声系数,并能保证滤波器的性能。 4)低噪声放大器应该具有一定的选频功能,抑制带外和镜像频率干扰,因此它一般是频带放大器。 低噪声放大器的所有指标都是互相牵连的,甚至是相互矛盾的。这些指标不仅取决于电路的结构,对集成电路来说,还取决于工艺技术。在设计中如何采用折衷的原则,兼顾各项指标,是很重要的。 1)低功耗 LNA是小信号放大器,必须给它设置一个静态偏置。而降低功耗的根本办法是采用低电源电压、低偏置电流,但伴随的结果是晶体管的跨导减小,从而引起晶体管及放大器的一系列指标的变化。 2)工作频率 放大器所能允许的工作频率和晶体管的特征频率Ft有关。减小偏置电流的结果会使晶体管的特征频率降低。在集成电路中,增大晶体管的面积会使极间电容增加,这也降低了特征频率。 3)噪声系数 任何一个线性网络的噪声系数可以表示为: (4.1)

噪音的特性

噪声级为30~40分贝是比较安静的正常环境;超过50分贝就会影响睡眠和休息。由于休息不足,疲劳不能消除,正常生理功能会受到一定的影响;70分贝以上干扰谈话,造成心烦意乱,精神不集中,影响工作效率,甚至发生事故;长期工作或生活在90分贝以上的噪声环境,会严重影响听力和导致其他疾病的发生。 音量类比 160分贝瞬间失聪 150分贝煤气罐爆炸 130分贝近处的开炮声 120分贝飞机引擎 100分贝园锯切割机 90分贝载重汽车 70分贝繁忙的主干道 40分贝安静的公园 30分贝无人的空房间 10分贝针掉地 人的耳朵对于60-70分贝的声音是比较适宜的,80-90分贝就会感觉到很吵闹,神经细胞将会受到破坏;而音量超过100分贝的话,则足以使耳内部听力的毛细胞死亡或损伤,造成听力的损失。所以我们在聆听的时候需要注意这些问题,不仅仅需要考虑对环境的影响,对节能的影响,也要考虑到对自身健康的影响,可以说对于个人来说最后这一点是最为重要的。[3] 放音设备的声压级过高会增加现场周围的噪声形成声音污染,并且会严重影响到人们的听力,而人们将超出需要、影响听力的声压级称之为声暴力。扩声系统声压级过高会造成能源浪贵,也会造成扩声设备资源浪费。有人讲增加3分贝没有什么了不起,但却不知道不知道声压级增加3分贝,放大器的功率就要增加一倍,甚至有时器材也会增加一倍。这都要付出很大的代价。[ 3噪声污染按声源的机械特点可分为:气体扰动产生的噪声、固体振动产生的噪声、液体撞击产生的噪声以及电磁作用产生的电磁噪声。噪声按声音的频率可分为:<400Hz的低频噪声、400~1000Hz的中频噪声及>1000Hz的高频噪声。 ] 按普通人的听觉

低噪声路面

低噪声路面 环境工程083 杨阳嵩 08013986 摘要:公路交通噪声已经成为环境噪声污染的一个主要来源,有关交通噪声的控制问题已越来越引起人们的重视。国内外的研究表明,多孔隙沥青混凝土路面、多孔弹性路面具有显著降噪效果,因此有必要详细阐述其在降低噪声方面的机理和降噪措施,从降低交通噪音的现实意义入手,介绍了交通噪音的主要来源,进而提出各种有效的低噪音沥青路面类型及其降噪机理, 轮胎路面相互作用的噪音产生机理,胶粉改性沥青混凝土因在混合料中掺入弹性材料一胶粉而具有减噪的特性,成为国际上公认的低噪音路面之一,在欧美及日本等国家应用较为普遍,并就各种低噪音路面的应用作了比较探讨,从而提高道路的降噪功能。 关键词:沥青路面;噪声;开级配沥青磨耗层;多孔弹性路面; 胶粉改性沥青 随着城市化进程的逐步加快,城市交通工具数量越来越多,功率越来越大,速度越来越快,交通噪声己成为现代城市环境中的最主要噪声来源。研究表明,40dB(A)的连续噪音可使10%的人睡眠受到影响,70dB(A)时可影响50%的人。高强度的噪声不仅使工作人员增加生理负担和能量消耗,而且使工作人员神经紧张、心情烦躁、注意力不易集中、容易疲劳,影响其工作效率,也容易引起工伤,严重阻碍了国民经济建设,并给人们的身心健康造成巨大的伤害。近年来,随着水泥混凝土路面的历程的激增,对道路两侧及城市居民的生活环境影响也越为严重。 水泥混凝土的降噪问题以及选择合适的路面结构材料成为亟待解决的问题。交通噪声的分析研究表明,交通噪声源予车辆发动机为主的动力系统以及轮胎与路表间的滚动接触。车辆高速行驶时,噪声主要来自于轮胎与路表间的摩擦,即路面/轮胎噪声。相应的降低交通噪声途径有两条,一条是通过科技创新有效降低噪声的产生,从降低声源噪声的角度来减少噪声污染,另一条是设立隔音墙隔断噪声的传播途径来降低噪声污染。在降低噪声源方面,近年来由于汽车工业的

[隔声材料隔声性能内容]比较材料的隔声性能

[隔声材料隔声性能内容]比较材料的隔声性能第一部分降噪研究 一、概述 通过前一阶段对南京依维柯A3010车内噪声的研究和分析,对降 低该车车内噪声提出了一些改进建议。根据建议,南京依维柯公司在机舱吸声隔声的基础上,对A3010汽车又进行了局部改进,主要改进措施有:1.在暖风机的外表面粘贴阻尼;2.在原进气口的夹层空腔处增设了隔离结构,将进气通道与夹层空腔隔开;3. 在变速器盖板下面增设一层吸声垫层; 4.设计了新的排气消声器。下面就将采取上述措施之后的汽车噪声情况作一介绍。 二、车内噪声情况 1.暖风机外表面粘贴阻尼 在暖风机的外表面粘贴阻尼材料,在一定程度上增加了暖风机外 壳的隔声性能,减少了通过暖风机传入车厢的发动机噪声。表一列出了发动机以一定的转速运转、汽车停在原地的工况下测得的车内噪声。 2.进气口增设隔离结构

在进气口的夹层空腔内增设隔离结构,破坏了原夹层空腔的声学特性,也减少了经此空腔 传入车内的进气噪声。测试结果列于表2。 在变速器盖下面加吸声垫层的情况下,对车内噪声的测试表明,尽管加垫层使变速器盖附近的近场声有所降低(约0.5dBA),但对驾驶员耳旁和其他座位处的噪声均效果甚微。样车装上新消声器后的噪声测试表明,新削声器使车外噪声有所降低,但对车内噪声几乎没有影响。 3.效果评价 为了考察采取各项降噪措施后的效果,将原样车、机舱吸声隔声、暖风机包阻尼、进气口装隔离结构等状态下,发动机以不同转速运转时测得的噪声值列于表3-表6。表中的“原状”指未采取任何措施,隔声指采取机舱吸声隔声措施。“暖风”指暖风机外表面包阻尼材料,“进气”指进气口装隔离机构。必须说明,各项措施是依次采用的,采取后一种措施时,前一种措施并未撤除,也就是说,后一种措施的效果是在以前措施的基础之上取得的,是各项措施的综合效果。

FSK信号的解调与抗噪声性能分析

F S K信号的解调与抗噪声 性能分析 Prepared on 21 November 2021

课程设计 课程设计名称:通信综合 专业班级: 学生姓名: 学号: 指导教师: 课程设计时间:2014年 电子信息工程专业课程设计任务书

目录 2FSK信号的解调与抗噪声性能分析一.课程设计的目的和意义 基本要求

掌握2FSK的调制与解调的实现方法,探索并分析其抗噪声性能;遵循本系统的设计原则,理顺基带信号、传输频带及两个载频三者间相互间的关系;加深理解2FSK调制器与解调器的工作原理,学会对2FSK工作过程进行检查及对主要性能指标进行测试的方法。 课程设计的目的及意义 本次课程设计是对通信原理课程理论教学和实验教学的综合和总结。通过这次课程设计,使同学认识和理解通信系统,掌握信号是怎样经过发端处理、被送入信道、然后在接收端还原。要求学生掌握通信原理的基本知识,运用所学的通信仿真的方法实现某种传输系统。能够根据设计任务的具体要求,掌握软件设计、调试的具体方法、步骤和技巧。对一个实际课题的软件设计有基本了解,能进一步掌握高级语言程序设计基本概念,掌握基本的程序设计方法,拓展知识面,激发在此领域中继续学习和研究的兴趣,为学习后续课程做准备。 在信道中,大多数具有带通传输特性,必须用数字基带信号对载波进行调制,产生各种已调数字信号。可以用数字基带信号改变正弦型载波的幅度、频率或相位中的某个参数,产生相应的数字振幅调制、数字频率调制和数字相位调制。也可以用数字基带信号同时改变正弦型载波幅度、频率或相位中的某几个参数,产生新型的数字调制。 本课程设计旨在根据所学的通信原理知识,并基于MATLAB软件,仿真一2FSK 数字通信系统。2FSK数字通信系统,即频移键控的数字调制通信系统。频移键控是利用载波的频率变化来传递数字信息。在2FSK中,载波的频率随二进制基带信号在f1和f2两个频率点间变化。因此,一个2FSK信号的波形可以看成是两个不同载频的2ASK信号的叠加。可以利用频率的变化传递数字基带信号,通过调制解调还原数字基带信号,实现课程设计目标。 二,2FSK的基本原理和实现 二进制频率调制是用二进制数字信号控制正弦波的频率随二进制数字信号的变化而变化。由于二进制数字信息只有两个不同的符号,所以调制后的已调

低噪声放大器-理论

低噪声放大器设计的理论基础 作者:佚名来源:本站整理发布时间:2009-10-20 20:45:05 射频低噪声放大器的ADS设计 本文首先简要介绍了低噪声放大器设计的理论基础,并以2.1-2.4Ghz 低噪声放大器为例,详细阐述了如何利用Agilent 公司的ADS 软件进行分析和优化设计该电路的过程,仿真结果完全满足设计指标,最后对微波电路的容差特性进行了模拟分析,对于S 波段低噪声放大器的设计研究有着重要的参考价值。 关键词:低噪声放大器,匹配,仿真,优化 1. 前言 低噪声微波放大器(LNA)已广泛应用于微波通信、GPS 接收机、遥感遥控、雷达、电子对抗、射电天文、大地测绘、电视及各种高精度的微波测量系统中,是必不可少的重要电路。低噪声放大器位于射频接收系统的前端,其主要功能是将来自天线的低电压信号进行小信号放大。前级放大器的噪声系数对整个微波系统的噪声影响最大,它的增益将决定对后级电路的噪声抑制程度,它的线性度将对整个系统的线性度和共模噪声抑制比产生重要影响。对低噪声放大器的基本要求是:噪声系数低、足够的功率增益、工作稳定性好、足够的带宽和大

的动态范围。 Advanced Design System(ADS)软件是Agilent 公司在HPEESOF 系列EDA 软件基础上发展完善的大型综合设计软件,它功能强大,能够提供各种射频微波电路的仿真和优化设计,广泛应用于通信、航天等领域,是射频工程师的得力助手。本文着重介绍如何使用ADS 进行低 噪声放大器的仿真与优化设计。 2. 低噪声放大器特点及指标 LNA 是射频接收机前端的主要部分,它主要有四个特点。首先,它位于接收机的最前端,这就要求它的噪声系数越小越好。为了抑制后面各级噪声对系统的影响,还要求有一定的增益,但为了不使后面的混频器过载,产生非线性失真,它的增益又不宜过大。放大器在工作频段内应该是稳定的。其次,它所接受的信号是很微弱的,所以低噪声放大器必定是一个小信号放大器。而且由于受传输路径的影响,信号的强弱又是变化的,在接受信号的同时又可能伴随许多强干扰信号输入,因此要求放大器有足够的线型范围,而且增益最好是可调节的。第三,低噪声放大器一般通过传输线直接和天线或者天线滤波器相连,放大器的输入端必须和他们很好的匹配,以达到功率最大传输或者最小的噪声系数,并保证滤波器的性能。第四,应具有一定的选频功能,抑制带外和镜像频率干扰,因此它一般是频带放大器【1】。 2.1 工作频率与带宽 放大器所能允许的工作频率与晶体管的特征频率fT 有关,由晶体管

QPSK抗噪声性能干扰仿真

Q P S K抗噪声性能干扰 仿真 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

通信系统综合设计题目 QPSK抗噪声性能仿真

摘要 基于MATLAB的调制解调方案,包括串并转换、电平转换、载波调制、信号合成、相干解调、抽样判决,和并串转换一系列系统的设计。对QPSK的星座图和调制解调进行了仿真,并对系统性能进行了分析,进而证明QPSK调制技术的 优越性。仿真QPSK系统通过AWGN信道的误符号率(SER)和误比特率(BER),发送端采用GRAY编码映射,基带脉冲采用矩形脉冲,每个脉冲抽样点数为8。四 相相移调制是利用载波的四种不同相位差来表征输入的数字信息,是四进制移相键控。QPSK是在M=4时的调相技术,它规定了四种载波相位,分别为45°,135°,225°,315°,调制器输入的数据是二进制数字序列,为了能和四进制的载波相位配合起来,则需要把二进制数据变换为四进制数据,这就是说需要把二进制数字序列中每两个比特分成一组,共有四种组合,即00,01,10,11,其中每一组称为双比特码元。每一个双比特码元是由两位二进制信息比特组成,它们分别代表四进制四个符号中的一个符号。QPSK中每次调制可传输2个信息比特,这些信息比特是通过载波的四种相位来传递的。解调器根据星座 图及接收到的载波信号的相位来判断发送端发送的信息比特,进而分析QPSK误符号率和误比特率。 关键词:QPSK 调制解调相干解调格雷码 MATLAB仿真误比特率

Abstract the article will introduce the QPSK modulation and demodulation principle, then proposed one kind based on the MATLAB modulation and demodulation of the program, including the string and the conversion, conversion, carrier modulation, signal synthesis, coherent demodulation, sample sentences and string conversion, and a series of system design, the QPSK constellation diagram and the modulation and demodulation of the simulation, and the SER&BER of the system are analyzed, and then proved the superiority of QPSK modulation technology. Keyword: QPSK Modulation and Demodulation Coherent Demodulation Gray Code Matlab modulation Symbol Error Rate

噪声污染的主要特征及其影响分析

从物理学角度分析,可以将声音分为两种,乐音与噪音。只要振动有规律的声音都叫做乐音;不同频率与强度的各种杂乱组合的声音称为噪声。噪声污染指形成的噪声比国家规定的排放噪声标准高,并且对他人正常学习工作造成干扰。声音是人耳对物体振动产生的主观感受。噪声不但对人们的心情、工作学习造成影响,还对人们的身体健康造成了危害。 1、噪声污染的特征。噪声污染的特征主要表现为:噪声污染具备了即时性。这一污染对污染物无法采集,当结束振动声源时,声音变化迅速消失,在环境中不断积累污染并且造成了长期的伤害;噪声是暂时性的,噪声源发声结束,噪声就消失。噪声可以带来非致命的、间接缓慢的危害。但是不能忽略其对人身心的影响;噪声源具有分散性分布特点,噪声形成了局限的影响范围。噪声污染还体现出了时空局部性与多发性、间接性等特点。综合分析,它不会形成能够采集的污染物,更加不会出现长期积累的污染。它可以产生间接的危害,并且属于缓慢的非另外,判断声音是否为噪声,不但取决于这一声音的响度,还取决于其频率、连续性以及信息内容,同时还和声音发出的主观意愿以及听到声音的心理情况相关。 2、噪声污染的影响。主要表现为:(1)对人们生活的影响。在人们的日常生活中,往往会受到来自各种方面的噪声的干扰,如汽车鸣笛噪声、施工噪声、机械操作噪声及商场喧闹噪声等等,这些噪声不但会影响人类的正常生活作息,同时还会对人类的身心健康产生极大的危害。(2)对经济的影响。噪声污染是抑制经济发展的重要因

素,因为噪声会造成各行业工作人员的情绪低落和烦躁,进而导致其工作效率变低,最终影响到企业的经济效益和创收;再者,由于很多建筑所处地段的噪声污染严重,或者建筑本身的防噪声能力不强,所以导致大多数人都不愿意购买或租赁这些建筑,因而造成房地产贬值。(3)对动物的影响。现在很多人都喜欢养一些小宠物,甚至将宠物当做自己的家人来看待,所以宠物的健康也是人们所非常关注的一项问题。以往人们都只关注噪声对人类所带来的影响,却忽视了噪声对动物的影响。据相关研究表明,噪声污染会在一定程度上影响动物的情绪,尤其是比较大的噪声更会严重影响到动物的生活习惯,容易造成动物脱毛、生育能力下降甚至死亡。 深圳市华太检测有限公司现有场所面积3000多平方米,满足开展相应检验检测工作的需要。注册资金500万,拥有700余万元的固定资产,拥有国内先进的微机控制伺服泵源万能试验机,压力试验机,甲醛测试试件平衡预处理恒温恒湿室,甲醛释放量测试气候箱(智能式)、气相色谱质谱联用仪(GC-MS)、气相色谱仪(GC)、电感耦合等离子体发射光谱仪(ICP-OES)、原子吸收光谱仪、原子荧光光谱仪等大型仪器设备280多台,能满足现有检测项目的要求。

正确选择低噪声放大器

正确选择低噪声放大器 正确选择低噪声放大器 目前,有关低噪声放大器的讨论常常关注于RF/无线应用,但实际应用中,噪声对于低频模拟产品(如数据转换器缓冲、应变仪信号放大和麦克风前置放大器)也有很大影响,是一项重要的考虑因素。为了选择一款合适的放大器,设计工程师必须首先了解放大器是否拥有低噪声特性和相关的噪声参数。另外,还要了解不同类型放大器(双极型、JFET输入或CMOS输入)的噪声参数差异。 噪声参数 尽管影响放大器噪声性能的参数有很多,但最重要的两个参数是:电压噪声和电流噪声。电压噪声是指在没有它噪声干扰的情况下,放大器输入短路时出现在输入端的电压波动。电流噪声是指在没有其它噪声干扰的情况下,放大器输入开路时出现在输入端的电流波动。 描述放大器噪声的典型指标是噪声密度,也称作点噪声。电压噪声密度单位为nV/,电流噪声密度通常表示为pA/。在低噪声放大器数据资料中可以找到这些参数,而且,一般给出两种频率下的数值:一个是低于200Hz的闪烁噪声;另一个是在1kHz通带内的噪声。简单起见,这些测量值以放大器输入端为参考,不需要考虑放大器增益。 图1所示为电压噪声密度与频率的对应关系曲线。噪声曲线与两个主要的噪声成份有关:闪烁噪声和散粒噪声。闪烁噪声是所有线性器件固有的随机噪声,也称作1/f噪声,因为噪声振幅与频率成反比。闪烁噪声通常是频率低于200Hz 时的主要噪声源,。1/f角频率是指噪声大小基本相同、不受频率变化影响的起始频率。散粒噪声是流过正向偏置pn结的电流波动所造成的白噪声,也出现在该频段。值得注意的是:电压噪声的1/f角频率与电流噪声的1/f角频率可能会不同。 图1.电压噪声密度与频率的关系曲线,主要受两种噪声源的影响:闪烁噪声和散粒噪声。闪烁噪声或1/f噪声与频率成反比,是频率低于200Hz时的主要噪声源。

相关文档
最新文档