晶间腐蚀

合集下载

晶间腐蚀产生条件

晶间腐蚀产生条件

晶间腐蚀产生条件
晶间腐蚀是一种常见的金属腐蚀现象,它是由于金属晶界处的化学成分不同而引起的。

晶间腐蚀会导致金属的强度和韧性降低,从而影响金属的使用寿命和性能。

下面我们来探讨一下晶间腐蚀产生的条件。

晶间腐蚀的产生与金属的化学成分有关。

当金属中的某些元素在晶界处形成了化合物或固溶体时,就会导致晶界处的化学成分不同于晶内,从而引起晶间腐蚀。

例如,不锈钢中的铬、钼等元素在晶界处形成了化合物,容易引起晶间腐蚀。

晶间腐蚀的产生与金属的加工工艺有关。

在金属的加工过程中,如果温度过高或加工速度过快,就会导致金属晶界处的化学成分发生变化,从而引起晶间腐蚀。

此外,金属的焊接、热处理等工艺也容易引起晶间腐蚀。

晶间腐蚀的产生与金属的环境有关。

在一些特殊的环境中,如高温、高压、酸性或碱性环境中,金属晶界处的化学成分容易发生变化,从而引起晶间腐蚀。

例如,在高温高压下,不锈钢中的铬、钼等元素容易形成化合物,从而引起晶间腐蚀。

晶间腐蚀的产生与金属的微观结构有关。

金属的晶粒大小、晶界角度等微观结构参数都会影响晶间腐蚀的产生。

例如,晶粒越细,晶界处的化学成分差异越小,晶间腐蚀的产生就越不容易。

晶间腐蚀的产生与金属的化学成分、加工工艺、环境和微观结构等因素有关。

在实际应用中,我们需要根据具体情况采取相应的措施,如选择合适的材料、优化加工工艺、控制环境条件等,以减少晶间腐蚀的产生,提高金属的使用寿命和性能。

奥氏体不锈钢晶间腐蚀的原因

奥氏体不锈钢晶间腐蚀的原因

奥氏体不锈钢晶间腐蚀的原因要写一篇关于“奥氏体不锈钢晶间腐蚀的原因”的文章,首先我们得先了解一下奥氏体不锈钢这位“大明星”。

不锈钢在日常生活中可谓无处不在,从厨具到建筑,真是个“百搭”。

而奥氏体不锈钢以其良好的耐腐蚀性和韧性受到大家的喜爱,但它却有一个不太好听的毛病——晶间腐蚀。

好比是你在聚会上大肆欢笑,结果发现衣服上沾了点酱油,尴尬得不要不要的。

1. 什么是晶间腐蚀?1.1 定义与特征简单来说,晶间腐蚀就是金属材料内部某些区域发生的腐蚀,想象一下你家里的墙壁,表面看起来完好,但其实里面早已“开了小花”。

这种腐蚀主要出现在材料的晶界,也就是金属的“分界线”,在这里,材料的结构变得比较脆弱,容易受到侵袭。

最典型的表现就是出现小孔或者裂缝,简直是“内忧外患”啊!1.2 原因探讨那么,晶间腐蚀究竟是从哪里来的呢?首先,要说的是奥氏体不锈钢里含有镍和铬等合金元素,这些元素虽然能增强耐腐蚀性,但如果处理不当,反而会形成一些“小圈子”。

就好比你们几个朋友总在一起,久而久之,关系就变得微妙,开始互相“拆台”。

在高温环境下,碳会与铬结合,导致铬的分布不均,给腐蚀留下了“缝隙”。

2. 环境因素的影响2.1 氧化与化学介质接下来,我们再看看外部环境的影响。

奥氏体不锈钢最怕的就是那些含氯的东西,比如海水、盐水,甚至是厨房里的清洁剂,这些化学介质可不是什么善类!它们就像“海盗”,一旦侵入,就开始大肆掠夺,损害金属的结构。

遇到这种情况,金属的“防线”立刻被攻破,腐蚀就开始“得寸进尺”。

2.2 温度与湿度而且,温度和湿度也是关键因素。

高温潮湿的环境就像是给了腐蚀一个“开挂”的机会。

想象一下,一个人在炎热的夏天里,浑身湿透,那种不适感真是“烦不胜烦”。

同理,金属在这种环境下也会变得更加脆弱,腐蚀的速度比平时快多了。

3. 如何防止晶间腐蚀?3.1 合理选材说到这,大家肯定想知道,怎么才能避免这种尴尬的情况呢?首先,选材很重要,尽量选择高品质的奥氏体不锈钢,合金成分要稳定,避免那些“易变心”的材料。

晶间腐蚀的名词解释

晶间腐蚀的名词解释

晶间腐蚀的名词解释
晶间腐蚀是一种金属腐蚀现象,通常发生在金属晶粒之间的区域。

这种腐蚀通常发生在晶界附近,由于晶界处的原子排列方式与
晶内不同,使得晶界区域更容易受到化学腐蚀的影响。

晶间腐蚀通
常会导致金属表面出现裂纹和脆化现象,降低金属的强度和耐久性。

晶间腐蚀通常发生在一些特定的环境条件下,比如高温、高压、含有腐蚀性物质的环境。

在这些条件下,金属晶界处的原子结构容
易受到腐蚀介质的侵蚀,从而引发晶间腐蚀现象。

晶间腐蚀对于金属材料的性能和可靠性都会造成严重影响,因
此在工程实践中需要采取相应的防护措施,比如选择合适的材料、
改变工作环境、采用防腐涂层等方式来减轻或避免晶间腐蚀的发生。

总的来说,晶间腐蚀是一种金属腐蚀现象,发生在金属晶界附近,容易导致金属材料的脆化和损坏,需要引起工程师和科研人员
的高度重视和研究。

晶间腐蚀

晶间腐蚀

晶间腐蚀1.沿着金属晶粒边界发生的选择性腐蚀,称为晶间腐蚀(lntergranular Corrosion);锈钢、形式,发生在金属晶体的边缘上形式,发生在金属晶体的边缓得很松弛,机械强度大大降低。

经过晶腐蚀的金属表面,外表看上去好像还如很完整,但因失去了机械强度,所以稍加轻轻敲击,便会碎成细粒。

晶间腐蚀由于肉眼无法看出,常常成设备及重要构件突然破坏,危害性极大。

例如,不锈钢、镍基合金、铝合金、镁合金等都存在腐蚀问题。

航空零件上采用的高强度铝合金镀硬铬,尤其是含铜量高的铝合金,如果热处理未处理好,就有可能在晶粒边缘连续地析出CuAl2的硬化相颗。

粒,这样晶粒近旁的含铜量就比晶粒内部的含铜量少,结果晶粒边界附近就成为阳极,为阴极,在一定的腐蚀条件下,腐蚀微电池产生,界腐蚀就发生了。

此外锌、锡、铝等金,也会发生晶间腐蚀。

2.另一种晶间腐蚀现象就是穿晶腐蚀或称为腐蚀破坏。

其腐蚀的破坏形式是沿最大张应力线发生的,可穿透晶体,所以被称为穿晶腐蚀。

例如,金属在周期交变载荷下的腐蚀及在)。

例如,金属在周期交变载荷的属性):成开裂,通常称为腐蚀裂要开。

这类腐蚀是经常发生的,尤其是合金材料,由于不同金属元素,它们之间审代取真,濟窿。

旨油韵胖解呀队等因素,这种腐蚀便会加速,直至腐蚀裂开。

3.黄铜的脱锌所形成的开裂称为季裂(Season :应力Cracking),也就是指黄铜的缉分之中去,造成铜组分富集在合金盼表面上,这蚀实属晶间腐蚀,当有应力存在时,便造成开裂实际生产中,也经常发现rosion )现象,就是金属腐蚀后于晶间腐蚀的一种特殊形多与穿晶腐蚀相似,多数发生在高粥例如,机翼的上淳窝结构等多冠妄三劣情况下,使该部位凳纹的侧墜金产生剥蚀腐蚀。

4.另外,还有空穴腐蚀( Cavitation Corrosinn竽生物腐蚀( Microbiological CorroSion)【电镀设备厂】属的晶格同样存在着影响,紲严,与所受的介质条件有密切关系:很危险,必须引起重视。

晶间腐蚀c法验收标准

晶间腐蚀c法验收标准

晶间腐蚀c法验收标准晶间腐蚀(Intergranular corrosion,简称IGC)是一种在晶界处发生的腐蚀现象。

晶界是晶体内部不同晶格结构之间的界面,而晶间腐蚀则指晶粒与晶粒之间发生腐蚀的现象。

晶间腐蚀对于金属材料的性能和可靠性有着重要的影响。

当金属材料经过长时间的高温加工、焊接、热处理等工艺过程后,晶界处往往会出现显微组织变化,形成脆化的晶界。

这种脆化的晶界使得金属材料容易发生晶间腐蚀,导致材料机械性能下降、变形、破裂等问题,严重影响材料的可靠性和寿命。

为了评估金属材料的晶间腐蚀程度和严重性,人们开发了一系列的验收标准。

这些验收标准通常包括以下内容:1. 试验样品的准备:根据所需检测的金属材料类型和规格,制备试验样品。

样品通常采用金属板材切割成特定尺寸,然后进行打磨和抛光处理,以获得平滑、清洁的表面。

2. 试验环境的设定:根据实际应用环境或特定要求,确定试验环境的温度、湿度、介质和时间等参数。

这些参数的设定应该符合实际使用情况,以真实模拟金属材料在特定条件下的腐蚀行为。

3. 试验方法的选择:根据不同的金属材料和晶界腐蚀类型,选择合适的试验方法。

常见的试验方法包括金属腐蚀试验、电化学腐蚀试验和显微组织分析等。

4. 试验评估指标:通过试验结果,评估材料是否存在晶间腐蚀问题以及程度。

常见的评估指标包括腐蚀速率、腐蚀程度、晶界脆化程度等。

5. 结果判定标准:根据验收标准,判断金属材料的晶间腐蚀情况。

通常采用一定的评分系统或分类标准,如无晶间腐蚀、轻微晶间腐蚀、严重晶间腐蚀等。

总之,晶间腐蚀是一种常见的金属材料问题,对材料的性能和可靠性有着重要影响。

为了准确评估晶间腐蚀程度,人们制定了一系列的验收标准,包括试验样品准备、试验环境设定、试验方法选择、评估指标确定以及结果判定标准等。

这些标准的使用能够帮助人们更好地了解和评估金属材料的晶间腐蚀情况,从而采取相应的措施来防止和修复晶间腐蚀问题,提高材料的可靠性和使用寿命。

晶间腐蚀试验标准

晶间腐蚀试验标准

晶间腐蚀试验标准晶间腐蚀试验标准呢,就像是给晶间腐蚀这个调皮的家伙定的一套规则。

这个标准的存在可太重要啦,就像游戏得有游戏规则一样。

对于材料来说,晶间腐蚀可是个大麻烦。

它就像小虫子在材料内部悄悄搞破坏。

那怎么知道材料会不会被晶间腐蚀欺负呢?这就需要试验标准啦。

不同的材料有不同的晶间腐蚀试验标准哦。

比如说金属材料,它就像一群性格各异的小伙伴。

有些金属可能比较坚强,不容易被晶间腐蚀影响;而有些金属就比较脆弱啦。

所以针对不同的金属材料,试验标准就会有不同的要求。

在晶间腐蚀试验标准里,试验的环境设置是很关键的一部分。

就好比我们要模拟出晶间腐蚀可能出现的各种“生活场景”。

这个环境可能包括温度呀、湿度呀,还有周围的化学物质之类的。

比如说,有的材料可能在高温高湿还有很多酸性物质的环境里就容易被晶间腐蚀盯上,那试验的时候就得把这些条件设置好。

还有试验的时间也很有讲究呢。

这就像我们煮东西,煮得时间短了可能没熟,煮得时间长了可能就煮过头啦。

对于晶间腐蚀试验来说,时间短了可能还没检测出问题,时间太长呢,又可能会把材料本来没有的问题也给“折腾”出来。

所以,试验标准里会规定一个合适的时间范围。

试验方法也是多种多样的。

有一些是通过化学试剂来检测,就像是给材料做个化学小测验。

还有一些是通过物理的方法,像是给材料照个特殊的“X 光”,看看内部有没有被晶间腐蚀破坏的迹象。

晶间腐蚀试验标准可不是一成不变的哦。

随着科学技术的发展,我们对晶间腐蚀的认识也在不断加深。

就像我们长大了,懂得的东西越来越多,对晶间腐蚀试验标准也会不断地进行修订和完善。

这样才能让我们更好地检测材料,让那些用于各种重要地方的材料都能健健康康的,不会被晶间腐蚀这个小坏蛋给破坏掉呢。

总之呢,晶间腐蚀试验标准是保障材料安全的一个很重要的东西,它虽然看起来有点复杂,但只要我们用心去了解,就会发现它就像一个很有趣的故事一样。

《晶间腐蚀》课件

《晶间腐蚀》课件
《晶间腐蚀》PPT课件
晶间腐蚀是指金属晶界处发生的一种腐蚀现象。本课件将介绍晶间腐蚀的定 义、机理、分类、危害以及防治方法,共同探索晶间腐蚀的奥秘。
什么是晶间腐蚀
晶间腐蚀是金属晶界处发生的一种腐蚀现象。它基于金属晶粒内的特殊结构, 容易受到外部环境的侵蚀。了解晶间腐蚀的定义和机理可以帮助我们更好地 理解和预防这种腐蚀现象。
晶间腐蚀的分类
晶间腐蚀类别的概述
晶间腐蚀可以根据腐蚀形貌、腐蚀速度等进 行分类,这有助于我们对不同类型的晶间腐 蚀进行深入研究。
不同材料的晶间腐蚀分类
不同金属材料的晶间腐蚀表现存在差异,了 解不同材料的分类可以帮助我们更好地应对 晶间腐蚀问题。
晶间腐蚀的危害
1 晶间腐蚀可能造成的影响
2 实际应用中的晶间腐蚀案例
晶间腐蚀不仅损害金属材料的性能和强度, 还可能导致相关设备的失效和安全隐患。
通过实际案例分析,我们可以更好地认识 晶间腐蚀对工业领域的影响,并探索解决 方案。
晶间腐蚀的防治
1
晶间腐蚀的治理方法
2
一旦晶间腐蚀发生,我们可以通过电 化学处理、金属涂层等治理方法来修
复受损的金属表面。
晶间腐蚀的预防
采取正确的材料选择、合适的工艺控 制和环境监测等预防措施,可以有效 降低晶间腐蚀的风险。
总结
对晶间腐蚀的认识深度
深入了解晶间腐蚀现象和预防方法,可以更好地 保护金属材料的性能和延长设备的使用寿命。
对晶间腐蚀的应用前景展望
持续研究晶间腐蚀机理和防治方法,有助于探索 更先进的材料和技术,为工业发展提供支持。
Байду номын сангаас

晶间腐蚀的原理

晶间腐蚀的原理

晶间腐蚀的原理
在不锈钢中,碳与硫、磷等杂质元素的存在,会导致晶间腐蚀。

在加工和使用过程中,这些杂质会逐渐积聚在不锈钢中,并沿晶间的缝隙向基体中扩散,形成疏松多孔的组织,导致强度下降、脆性增大。

尤其是磷元素,当其浓度达到一定数值时,就会使不锈钢产生“点蚀”。

“点蚀”是一种典型的晶间腐蚀形式。

点蚀是指不锈钢表面出现小孔或凹坑等缺陷的现象。

在金属腐蚀过程中,产生晶间腐蚀的原因主要有以下几种:
1.合金元素的偏析
在金属晶体形成时,由于不同元素在晶体内的分布不同而导致原子序数和电子层数的不同。

合金元素的偏析可以通过化学分析来检测。

例如在不锈钢中加入少量Si、Al、Ca等元素,就会形成第二相沉淀物(Al2CuO4)。

这些第二相沉淀物不溶于水而溶于酸或碱中,当它们溶解于酸或碱中时,就会破坏原不锈钢中所含有的第二相沉淀物而生成新的化合物,这种化合物称为腐蚀产物。

—— 1 —1 —。

晶间腐蚀开裂步骤

晶间腐蚀开裂步骤

晶间腐蚀开裂步骤晶间腐蚀开裂是一种常见的金属材料断裂形式,主要出现在高温、腐蚀环境中的金属结构中。

它对于许多行业,包括航空航天、石油化工和能源等领域都具有重要的工程应用意义。

本文将介绍晶间腐蚀开裂的步骤,以及其产生的原因和预防措施。

晶间腐蚀开裂是一种与金属晶界附近区域的腐蚀有关的断裂形式。

它通常发生在多晶金属材料中,其中晶界和金属晶体之间的变质区域容易受到化学腐蚀侵蚀。

晶间腐蚀开裂的步骤可以总结为以下三个阶段:腐蚀引发、裂纹扩展和最终破裂。

在晶间腐蚀开裂的第一阶段,腐蚀引发阶段,腐蚀性介质(如酸、碱或盐等)与金属表面接触并渗入晶界和晶界附近的变质区域。

这种渗透腐蚀使得晶界和变质区域的晶粒边界发生化学变化,减弱了晶界的力学性能。

此外,高温和氧化环境也可能加速腐蚀的发生。

在晶界区域形成的化合物或氧化物可以进一步侵蚀晶界并使其脆化,为裂纹扩展提供了条件。

在晶间腐蚀开裂的第二阶段,裂纹扩展阶段,裂纹开始在晶界附近的变质区域扩展。

这是由于腐蚀引发的化合物或氧化物导致晶界和变质区域的脆性增加,使其易于发生裂纹。

裂纹在应力的作用下逐渐扩展,并穿过晶界和晶粒边界。

随着裂纹的扩展,金属材料的强度和韧性逐渐下降,可能导致严重的结构破坏。

最终,晶间腐蚀开裂进入最后的破裂阶段,即第三阶段。

在这个阶段,裂纹扩展到一定程度,金属材料无法忍受应力集中,最终发生破裂。

这种破裂往往具有突然性和脆性,可能导致严重的安全事故和财产损失。

晶间腐蚀开裂的步骤主要涉及腐蚀引发、裂纹扩展和最终破裂三个阶段。

然而,晶间腐蚀开裂的形成不仅仅受到这些步骤的影响,还与多种因素相关。

首先,金属材料的化学成分和晶界结构对晶间腐蚀开裂具有重要影响。

某些金属合金中的含有易于腐蚀的元素,如硫、磷和碳等,会增加晶间腐蚀的风险。

此外,不完善的晶界结构和较大的晶界面积也促进了晶间腐蚀的发生。

其次,在高温和腐蚀性环境下,晶间腐蚀开裂的发生风险更高。

由于高温和腐蚀环境会促进腐蚀介质的渗透和反应,因此晶间腐蚀的速率会增加,对金属材料的破坏性也会增强。

晶间腐蚀的机理

晶间腐蚀的机理

二、晶间腐蚀的防止和消除 进行均匀化处理
焊后, 将奥氏体不锈钢的焊接接头重新加热至850~900℃, 保温 2 h, 使奥氏体晶粒内部的铬有充分时间扩散到晶界, 使晶界处 的含铬量又恢复到大于12%(质量分数) , 贫铬区得以消失, 这叫 均匀化处理。
二、晶间腐蚀的防止和消除 铁素体含量的影响
合格标准
பைடு நூலகம்
与钢表面敲击,有清脆 的金属敲击声 弯曲 90°,无裂纹;若 开裂,开裂边缘没有晶 间腐蚀迹象。 微观金相:作为上述两 试验的补充,在上述两 试验存在争议时,提供 判定依据
三、晶间腐蚀试验方法 核电设计中常用的奥氏体不锈钢晶间腐蚀试验方法
标准 敏化处理条件 适用范围 加 热 至 650± , 加 热 时 间 不 超 过 5min,保温10min后,立刻水冷 低碳(C≤0.06)18-10钢 加 热 至 675± , 加 热 时 间 不 超 过 5min,保温10min后,立刻水冷 含Mo低碳(C≤0.06)18-10钢 加 热 至 700± , 加 热 时 间 不 超 过 RCC-M MC 5min ,保温 30min 后,缓慢随炉冷 超低碳(C≤0.03)18-10钢;含稳定化元素(Ti,Nb)的18-10 1310 却(60±/h)至后,空冷 钢 加 热 至 725± , 加 热 时 间 不 超 过 5min ,保温 30min 后,缓慢随炉冷 含Mo超低碳(C≤0.03)18-10钢;含稳定化元素(Ti,Nb)以 却(60±/h)至后,空冷 及Mo的18-10钢 超低碳(C≤0.03)钢或稳定化钢(添加Ti或Nb),压力加工 试件 超低碳(C≤0.03)钢或稳定化钢(添加Ti或Nb),铸件 焊后还要进行以上热加工的焊接件
四、晶间腐蚀要求 RG1.44对于工艺评定的要求

晶间腐蚀检验方法

晶间腐蚀检验方法

晶间腐蚀检验方法晶间腐蚀(Intergranular Corrosion,简称IGC)是一种金属晶间发生的腐蚀现象,是一种隐蔽的材料失效问题。

晶间腐蚀通常发生在金属晶粒边界区域,特别是一些易于形成与腐蚀敏感的化合物相的晶界位置。

晶间腐蚀可能导致材料的力学性能和耐蚀性能下降,从而对材料的可靠性和安全性产生严重的影响。

因此,晶间腐蚀检验方法对于材料失效的预防和质量控制具有重要意义。

1.标准腐蚀试验法这是一种常用的实验室研究方法,通常使用强酸或浓碱溶液作为腐蚀介质,对试样进行浸泡腐蚀。

腐蚀时间、温度和腐蚀介质的浓度可以根据材料的要求进行调整。

通过观察试样的腐蚀程度,可以评估材料的晶间腐蚀敏感性。

2.焊接连接处腐蚀试验法通过模拟实际的焊接接头,对焊接连接处进行腐蚀试验。

这种方法更接近实际应用环境中的情况,可以更准确地评估材料在焊接热影响区域的晶间腐蚀情况。

通常采用电化学方法进行试验,如恒电位法或交流阻抗法。

3.金相显微组织观察法金属材料的显微组织往往与晶间腐蚀敏感性密切相关。

通过光学显微镜或电子显微镜观察试样的金相组织,可以评估晶粒边界的特征和化合物相的分布情况。

晶间腐蚀敏感性通常与晶界的特征有关,如晶界的偏聚现象和特定化合物相的形成。

4.化学分析法化学分析法通过对试样进行化学分析,检测晶界区域的元素异常含量,从而间接评估晶间腐蚀敏感性。

常用的化学分析方法有扫描电子显微镜-能谱分析(SEM-EDS)和电感耦合等离子体发射光谱法(ICP-OES)。

总结来说,晶间腐蚀检验方法包括标准腐蚀试验法、焊接连接处腐蚀试验法、金相显微组织观察法和化学分析法等。

这些方法均可以评估材料的晶间腐蚀敏感性,为材料的设计和选择提供参考依据。

然而,每种方法都有其局限性和适用范围,在应用时需要综合考虑多种因素。

此外,随着科学技术的不断进步,新的检验方法也在不断涌现,为晶间腐蚀问题的解决提供更多选择。

晶间腐蚀

晶间腐蚀

7
8
例 如 将 奥 氏 体 不 锈 钢 1Cr18Ni9 加 热 至 1050~1150℃固溶碳的固溶度为 010~015% , 随后进行淬火,经固溶处理的 1Cr18Ni9 钢是一 种碳过饱和体,不会产生晶间腐蚀。在 700~800℃ 温 度 范 围 内 , 碳 的 固 溶 量 不 超 过 0.02%,过饱和的碳要全部或部分从奥氏体中析 出,这时碳将扩散到晶界处,并与晶界处的铁 和铬化合生成含铬量高的碳化物Cr23C6,消耗了 晶界区的铬,而铬在晶粒内部的扩散速度比其 在晶界处的扩散速度要慢得多,来不及补充晶 界区消耗的铬,因此在晶界区形成贫铬区。
5.4 晶间腐蚀(intercrystalline corrosion)
定义:
晶间腐蚀:金属材料在特定的腐蚀介质中沿晶界发生 的一种局部选择性腐蚀。
奥氏体不锈钢晶间腐蚀
1
晶界是不同晶粒之间的交界。由于晶粒有着不同的位 向,故交界处原子的排列必须从一种位向逐步过渡到另 一种位向。因此,晶界实际上是种“面型”不完整的结 构缺陷。 晶界上原子的平均能量因晶格畸变变大而高于晶粒内部 原子的平均能量。所高出的这部分能量称为晶界能。纯 金属的晶界在腐蚀介质中的腐蚀速度比晶粒本体的腐蚀 速度快,原因在于晶界的能量较高,原子处于不稳定状 态。
26
2、弯曲法:对晶间腐蚀试验后的试样进行弯曲,观察 其显示晶粒之间已丧失结合力的裂纹。
3、其它:重量法、声响法、电阻法、强度法、超声波 法、涡流法、颜色法。
27
13
影响晶间腐蚀的因素:
1、热处理温度与时间的影响:不锈钢在能够产生晶间腐蚀的电位区,是否 产生晶间腐蚀以及腐蚀程度如何,都由钢的热处理制度对晶间腐蚀的敏感性 所决定,即取决于受热的程度、时间及冷却速度。

晶间腐蚀试验

晶间腐蚀试验

晶间腐蚀试验1. 引言晶间腐蚀是一种在金属晶界附近发生的一种腐蚀现象,它通常会导致金属材料强度下降和断裂风险增加。

晶间腐蚀的发生与金属的化学成分、晶体结构以及环境条件等相关。

为了对金属材料的抗晶间腐蚀性能进行评估,需要进行晶间腐蚀试验。

本文将介绍晶间腐蚀试验的目的、试验方法、试验结果的分析以及对试验结果的讨论。

2. 试验目的晶间腐蚀试验的目的是评估金属材料在特定环境条件下的抗晶间腐蚀性能,为材料的选择和工程设计提供依据。

3. 试验方法3.1 材料准备选取符合试验要求的金属材料样品。

根据试验需要,样品应具有明确的化学成分和晶体结构。

3.2 试验装置搭建适当的试验装置,包括腐蚀液的储存容器、试样支架、电极系统等。

3.3 试验参数设置设置合适的试验参数,包括腐蚀液的温度、pH值、腐蚀试验时间等。

3.4 试验步骤•将金属材料样品切割成合适的尺寸。

•清洗样品,除去表面的污垢和氧化物。

•将样品放置在试验装置中,并加入预定量的腐蚀液。

•开始试验,记录试验时间和试验条件。

•在试验结束后,取出样品,进行表面观察和性能测试。

4. 试验结果分析通过对试验样品的表面观察和性能测试结果,可以对晶间腐蚀的程度和影响因素进行分析。

4.1 表面观察观察样品表面是否出现腐蚀现象,包括晶间腐蚀的腐蚀坑、溶洞、裂纹等。

4.2 性能测试进行相关性能测试,如拉伸试验、硬度测试等,评估晶间腐蚀对材料性能的影响。

5. 试验结果讨论根据试验结果的分析,讨论晶间腐蚀的可能原因和影响因素,为后续的材料选择和设计提供参考。

6. 结论经过晶间腐蚀试验,对金属材料的抗晶间腐蚀性能进行了评估和分析。

试验结果表明,在特定环境条件下,材料的晶间腐蚀程度和影响因素具有一定的规律性。

根据试验结果的讨论,可以为材料的选用和工程设计提供重要的依据。

参考文献1.Smith J., et al. (2010). Intergranular Corrosion in Metals. Journal of Materials Science and Technology, 5(2), 326-340.2.ASTM G28-02. (2002). Standard Test Methods for Detecting Susceptibility to Intergranular Corrosion in Wrought, Nickel-Rich, Chromium-Bearing Alloys.3.Gonzalez-Rodriguez J., et al. (2015). Evaluation of Intergranular Corrosion Susceptibility of Stainless Steel Weldments Using the Electrochemical Potencial Re–Activation.4.王晓明,李建中,冯亮,等. (2009). 镁合金晶间腐蚀研究进展[J]. 中国有色金属学报, 19(11), 1923-1933.。

晶间腐蚀c法

晶间腐蚀c法

晶间腐蚀C法1. 什么是晶间腐蚀晶间腐蚀(Intergranular Corrosion,简称IGC)是金属晶粒边界区域受腐蚀侵蚀的一种现象。

在金属的晶界处,由于晶界比晶内原子结构不规则,容易形成电化学反应的腐蚀偏析区域,从而引起腐蚀。

2. IGC的危害晶间腐蚀对金属的力学性能和耐蚀性能会造成显著的影响。

晶界处的腐蚀会导致材料的断裂和疲劳裂纹的扩展,降低材料的强度和延展性。

因此,IGC是金属材料失效的一种重要原因,尤其是在高温、高压环境下,IGC对材料的损伤更为严重。

3. 晶间腐蚀C法的原理晶间腐蚀C法是一种通过加入化学试剂来检测金属材料是否存在晶间腐蚀的方法。

C是Chemical的缩写,代表着这种方法的基本原理是利用化学试剂与晶间腐蚀发生反应。

晶间腐蚀C法主要基于以下两个原理:3.1 金属晶界处的电位差金属晶界与晶内存在着电位差。

由于晶界的结构不规则,晶界处的电位较低,容易形成阳极区,从而发生腐蚀。

而晶内则是相对的阴极区,相对不容易发生腐蚀。

晶间腐蚀C法通过加入化学试剂,可以加速这种电位差的形成,从而更加明显地检测出晶间腐蚀。

3.2 化学试剂的选择晶间腐蚀C法所使用的化学试剂是一种能够与晶间腐蚀发生反应的试剂。

常用的化学试剂包括酸性溶液或酸性盐溶液。

这些试剂能够与金属晶界处的阳极区形成特定的化学反应,形成可见的腐蚀产物,从而可以通过观察腐蚀产物的形成情况来判断材料是否存在晶间腐蚀。

4. 晶间腐蚀C法的应用晶间腐蚀C法主要用于金属材料的质量控制和腐蚀评估。

通过对材料进行晶间腐蚀C法测试,可以判断材料是否存在晶间腐蚀问题,并评估材料的腐蚀程度。

这对于选择合适的材料和制定相应的防腐措施具有重要意义。

5. 晶间腐蚀C法的步骤晶间腐蚀C法的测试步骤如下:1.准备要测试的金属材料样品。

2.将样品加入适量的化学试剂中,并进行浸泡。

3.观察样品在化学试剂中的反应情况。

如果样品发生明显腐蚀,说明存在晶间腐蚀。

6. 晶间腐蚀C法的局限性晶间腐蚀C法虽然是一种简单、快速的金属晶间腐蚀测试方法,但也存在一定局限性。

汽车铝合金晶间腐蚀等级

汽车铝合金晶间腐蚀等级

汽车铝合金晶间腐蚀等级
汽车铝合金晶间腐蚀是指铝合金在晶界处由于一些外部因素(如潮湿环境、化学腐蚀介质等)而发生的腐蚀现象。

晶间腐蚀程度通常通过等级来表示,常见的等级包括Pitting Corrosion Grade(PCG)和Intergranular Corrosion Grade(ICG)。

PCG是指铝合金表面发生点蚀腐蚀的等级,通常用数字0-10来表示,数字越高表示腐蚀越严重。

ICG是指晶间腐蚀的等级,通常用A-D来表示,A级表示最好,D级表示最差。

汽车铝合金通常需要经过严格的防腐蚀测试和等级评定,以确保其在各种环境条件下都能保持良好的耐腐蚀性能。

制造商会根据实际使用情况和要求来确定合金的晶间腐蚀等级标准,并采取相应的防护措施来确保产品质量和安全性。

除了等级标准外,还有一些其他因素会影响汽车铝合金的晶间腐蚀,如合金成分、热处理工艺、表面涂层等。

因此,在设计和生产过程中,需要综合考虑这些因素,以提高铝合金的抗腐蚀能力。

总的来说,汽车铝合金晶间腐蚀等级是一个重要的质量指标,
对于汽车制造商和消费者来说都具有重要意义。

制造商需要严格控制合金的质量和生产工艺,以确保产品符合相应的腐蚀等级标准,从而提高汽车的使用寿命和安全性。

晶间腐蚀的例子

晶间腐蚀的例子

晶间腐蚀的例子
1. 你知道不锈钢锅吧?有时候用着用着锅底就出现一些小坑洼,这很可能就是晶间腐蚀在搞鬼呢!就像隐藏在暗处的小怪兽,一点点蚕食着金属。

比如长时间让不锈钢锅处于盐分高的环境中,晶间腐蚀就可能悄然出现啦。

2. 咱平时用的那些金属管道,时间久了为啥会突然漏水呀?哎呀,晶间腐蚀可能就是罪魁祸首呀!它就如同一个悄无声息的破坏者,一点点地让管道变得脆弱不堪。

就像一个人慢慢地被病魔侵蚀,等到发现时已经很严重了。

想想那些因为晶间腐蚀导致管道破裂的情况,多吓人呀!
3. 见过金属制品表面出现那种细细的裂缝吗?这很可能就是晶间腐蚀的杰作哦!它就好像是一个看不见的小偷,一点点偷走金属的坚固。

就好比好好的一座碉堡,被敌人从内部一点点瓦解破坏掉。

真不敢想象如果任由晶间腐蚀发展下去会怎样呢!
4. 汽车上的某些金属部件,用着用着性能就下降了,这难道没有晶间腐蚀的“功劳”?它就像是一个隐藏的杀手,在你不经意间对金属下毒手。

如同一个不起眼的小虫子,一点点蛀空大树。

你说汽车上要是因为这出了问题,得多危险呀!
5. 那些大型机械的金属结构,有时会莫名其妙地变得不牢固,十有八九是晶间腐蚀在捣乱呢!它就像是一场悄悄袭来的瘟疫,让金属“生病”。

好比坚固的城墙被蚂蚁一点点掏空。

这晶间腐蚀的威力可不容小觑呀!
6. 化工厂里的一些设备,用一段时间就不行了,晶间腐蚀肯定逃不了干系呀!它简直就是金属的噩梦。

像个狡猾的特务,暗中搞破坏。

要是没及时发现和处理晶间腐蚀,那造成的损失可就大了去了,你说是不是呀!
总之,晶间腐蚀真的是个让人头疼的家伙,我们可得时刻提防着它,不然不知道什么时候就会被它弄得措手不及呢!。

晶间腐蚀astm g28a法合格,腐蚀深度不超过100um

晶间腐蚀astm g28a法合格,腐蚀深度不超过100um

晶间腐蚀astm g28a法合格,腐蚀深度不超过100um 摘要:
1.晶间腐蚀的概述
2.ASTM G28A 法的介绍
3.合格标准及腐蚀深度限制
4.总结
正文:
1.晶间腐蚀的概述
晶间腐蚀是一种金属材料在特定环境下发生的腐蚀现象,主要发生在晶粒之间的界面处。

这种腐蚀会对金属材料的性能产生严重影响,使其强度、韧性等指标下降,最终导致材料失效。

因此,对于晶间腐蚀的检测和预防至关重要。

2.ASTM G28A 法的介绍
ASTM G28A 法是一种晶间腐蚀测试方法,主要用于检测不锈钢等金属材料在特定环境下的晶间腐蚀程度。

该方法通过对试样进行腐蚀试验,然后通过测量腐蚀深度来评估材料的晶间腐蚀性能。

3.合格标准及腐蚀深度限制
根据ASTM G28A 法的规定,晶间腐蚀的合格标准是腐蚀深度不超过100 微米。

这意味着,如果试样的腐蚀深度超过100 微米,那么该试样就被认为不合格。

这个标准是为了确保材料在使用过程中不会出现严重的晶间腐蚀现象,从而保证其性能和使用寿命。

4.总结
晶间腐蚀是金属材料在使用过程中常见的一种腐蚀现象,对材料的性能和使用寿命有很大的影响。

ASTM G28A 法是一种有效的晶间腐蚀检测方法,其合格标准是腐蚀深度不超过100 微米。

晶间腐蚀 ict

晶间腐蚀 ict

晶间腐蚀 ict
晶间腐蚀(Intergranular Corrosion,简称 IGC)是一种局部腐蚀形式,发生在金属或合金的晶界处。

晶界是晶粒之间的界面,由于晶界区域的化学成分、晶体结构和电势差异,导致晶界处的腐蚀速率比晶粒内部更高。

晶间腐蚀通常发生在不锈钢、铝合金等合金材料中,特别是在高温、强酸、强碱等恶劣环境下容易出现。

晶间腐蚀的发生会导致材料的力学性能下降,甚至会引发裂纹和断裂,从而严重影响材料的使用寿命和安全性。

为了评估和检测材料的晶间腐蚀性能,通常会采用一些测试方法,其中包括晶间腐蚀试验(Intergranular Corrosion Test,简称 ICT)。

ICT 是一种标准化的试验方法,用于评估金属或合金在特定腐蚀环境下的晶间腐蚀敏感性。

ICT 试验通常包括将试样暴露在腐蚀介质中,如强酸、强碱溶液或含有氯离子的溶液中,在一定的温度和时间条件下进行试验。

试验结束后,通过观察试样的腐蚀形貌、测量重量损失或进行金相分析等手段,评估材料的晶间腐蚀程度和敏感性。

ICT 试验可以帮助材料研究人员、工程师和质量控制人员了解材料的晶间腐蚀行为,优化材料设计和选择合适的防腐蚀措施。

此外,ICT 试验结果还可以用于比较不同材料的耐晶间腐蚀性能,为材料的选用和工程设计提供参考依据。

需要注意的是,晶间腐蚀是一个复杂的问题,ICT 试验只是评估晶间腐蚀性能的一种手段,实际应用中还需要综合考虑材料的化学成分、加工工艺、使用环境等因素。

对于关键应用领域,可能需要进行更全面的腐蚀试验和评估,以确保材料的可靠性和安全性。

如果你对特定材料的晶间腐蚀问题有更详细的需求,建议咨询相关领域的专家或参考相关的标准和文献。

晶间腐蚀要求

晶间腐蚀要求

二、晶间腐蚀的防止和消除
在钢材和焊接材料中加入Ti、Nb 等与碳的结合能力比铬更强 的元素, 能够与碳结 合成稳定的碳化物, 可以避免在奥氏体晶 界形成贫铬区。所以, 常用奥氏体不锈钢及焊接材料中都含有 Ti 或Nb 元素,如ER347等。
二、晶间腐蚀的防止和消除 进行固溶处理
焊后, 将奥氏体不锈钢的焊接接头重新加热至1050~1100℃, 此 时碳又重新溶入奥氏体中, 然后急速冷却, 便可得到稳定的奥 氏体组织, 消除贫铬区。这种方法叫固溶处理。固溶处理的缺 点是, 如果焊接接头需要在危险的温度区工作, 则仍不可避免 地会形成贫铬区。
四、晶间腐蚀要求 RG1.44对于工艺评定的要求
四、晶间腐蚀要求 RCCM中对晶间腐蚀的要求
如果碳含量≤0.035%和铬含量≥18%则不要求晶间腐蚀试验。
四、问题探讨 •结果判定的可操作性 •是否敏化的问题 •取样位置 •弯曲直径的问题
四、问题探讨 结果判定的可操作性
标准 评定方法 合格标准 敲击声测试:将试样与金属表面敲击,并与 与钢表面敲击,有清脆的金属敲击声 未经晶间腐蚀试验的试样进行比较 弯曲试验,压头直径不超过试件厚度的2倍; RCC-M 对于对接接头,沿焊缝中心线进行弯曲,使 弯曲90°,无裂纹;若开裂,开裂边缘没有 MC 1310 焊缝的表面为凸面;并与未经晶间腐蚀试验晶间腐蚀迹象。 的试样进行比较 微观金相试验 作为上述两试验的补充,在上述两试验存在 争议时,提供判定依据
一、晶间腐蚀的机理 晶间腐蚀机理
贫Cr理论 对奥氏体不锈钢而言其晶间腐蚀的原因是由于晶界区贫铬 所引起的。含碳量高于0.02%的奥氏体不锈钢中,碳与铬能 生成碳化物(Cr23C6)。这些碳化物经过高温淬火,以固溶态 溶于奥氏体中,铬均匀分布,使合金各部分铬含量均在钝 化所需值即12%以上。这种过饱和固溶体在室温下虽然暂 时保持这种状态,但它是不稳定的。如果加热到敏化温度 范围内,碳化物就会沿晶界析出,铬便从晶界边界的固溶 体中分离出来。由于铬的扩散速度很慢,远低于碳的扩散 速度,不能从晶粒内固溶体中扩充到晶界,因而只能消耗 晶界附近的铬,造成晶粒边界贫铬区。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
40
影响A体SS晶间腐蚀因素
• 但固溶处理时,在碳化铬溶解的同时, TiC也溶解了。再经过400~850℃的 敏化区加热, 优先形成的仍然是碳化铬 而不是TiC。 • 在高于碳化铬溶解,低于TiC溶解温度 范围进行稳定化处理解决这一问题。 • 1Cr18Ni9Ti稳定化处理是: 860~ 880℃,保温6小时, 空冷。
34
实例8: 双相SS的耐蚀性能
• 第一代双相SS:00Cr18Ni5Mo3Si2(3RE60)
• 第二代双相SS:00Cr22Ni5Mo3N(2205)
• 与A体SS比,耐SCC、晶间腐蚀、点蚀↑
• 样品取自某中化肥厂尿素合成塔,运行5年, 0Cr17Mn13Mo2N(A4钢),以Mn代Ni双 相SS。
17
实例3:尿素生产装置高压甲铵冷凝 器换热管与管板连接处腐蚀破坏 • 结论:制造质量不良引发点蚀→晶
间腐蚀造成次此泄漏事故。
18
实例3:尿素生产装置高压甲铵冷凝 器换热管与管板连接处腐蚀破坏 • 提示:
• 腐蚀事故往往产生于多种机理; • “制造”与“操作”是影响腐蚀的
两大要素。
19
定义 特点
23
实例4:柴油加氢换热器腐蚀
• 管材上也有很多细小的蚀坑,但腐蚀程度 比壳体轻得多。 • 腐蚀产物中除了Fe,Cr,Ni元素外,还有 较多的S和氧及少量Cl。 • 结论 – 海洋气候空放8年造成严重点蚀,一年的运 行中不断扩大造成严重腐蚀。应力集中 也诱发某些部位SCC。
24
实例4:柴油加氢换热器腐蚀
22
实例4:柴油加氢换热器腐蚀
• 1989年运行4个月后封存,充0.1MPa氮气, 后发现压力消失,空放。
• 1997年3月启用前检查,换热器壳体内有水 痕和大量蚀坑,多在底部。 • 运行一年后腐蚀加重。第1台腐蚀最轻,第 2台腐蚀最重。有的蚀坑3 mm 深,主要在 底部,已连成片且产生微裂纹(见图 )。
9
实例2:化纤行业粘胶短纤维纺丝机 滤壳腐蚀泄漏
• 材质:1Cr18Ni9Ti • 滤壳由螺纹、直筒和八角螺母三部分焊接 而成。焊后未做其它处理。 • 滤壳内通过的介质为粘胶。滤壳外部处于 凝固浴的气相中,温度25~30º C,湿度90 %。凝固液成分为:H2SO4 130g/L, ZnSO4 14~18g/L,Na2SO4 240~260g/L, 温度45~50º 。 C
• 泄漏后,蒸汽、水进入壳层,与发烟硫酸 混合形成稀硫酸并释放大量热,腐蚀↑。 • Cl离子吸附在管内壁微观缺陷处,浓缩。 • 管束停用一年中,管内停滞的冷凝水比流 动的水更易萌生点蚀。冷凝水多在管束下 部,作为电化学腐蚀之一的点蚀更易发生 在管束下部。
29
实例5: SO3蒸发器管束泄漏
• 结论
• 304L管束泄漏是由管内壁点蚀和外壁 均匀腐蚀共同引起,但主要是点蚀所 致。
• 催化裂化装置再吸收塔约20米高。进
塔贫气含少量H2S,CO2及H2O。97年
9月启用,2000年检修发现塔内填料上
部严重腐蚀,35~45º 。 C • 填料材质为1Cr18Ni9Ti 。
7
实例1:催化裂化装置再吸收塔填料 严重腐蚀
• 再吸收塔顶出来的干气中含有
CO2﹑H2S和 H2O,塔内是偏酸性的介
42
防止A体SS晶间腐蚀、点蚀措施
• 晶间腐蚀
• 避免A体SS在500~800℃范围受热, 或受热后重新进行固溶处理。 • 采用含足量Ti、Nb的SS,或再加稳定 化处理。 • 采用超低碳或高纯A体SS、双相SS。
称为晶界优先型均匀腐蚀。
33
实例7:尿素合成塔塔板支撑卡端面 (垂直轧向)腐蚀情况
• 同上。观察支撑卡端面(垂直轧向) 所呈现蜂窝状腐蚀形貌。 • 有稳定化表面的SS,在苛刻环境中耐 蚀性↑,但垂直轧向因端面晶粒暴露, 对尿素(或硝酸)抗蚀能力↓。 • 塔的SS泡罩和竖向蒸汽管端面、塔盘 围堰端部腐蚀↑。端面加焊一层SS, 寿命↑
• 管内壁和管口焊缝外表面腐蚀轻微。 • 管内壁靠焊缝熔合线处有一皮下气孔,对 应的堆焊层下CS管板已大部被腐蚀掉。
15
实例3:尿素生产装置高压甲铵冷凝 器换热管与管板连接处腐蚀破坏
16
实例3:尿素生产装置高压甲铵冷凝 器换热管与管板连接处腐蚀破坏
• 焊接留下了皮下气孔。 • 经长期运行,以点蚀为主的焊缝腐蚀 使皮下气孔暴露,甲铵渗入气孔内。 • 气孔快速扩大,与堆焊间缝隙连通。 • 介质从管外壁向内壁发展,直至蚀穿 管壁,同时将CS管板以更快的速度腐 蚀掉。
承压设备的腐蚀与控制
——晶间腐蚀、点蚀
王 非
E-mail: wangfei66882002@
1
目 录
1. 定义 特点
2. 实例 1~8
3. 影响A体SS晶间腐蚀因素
4. 防止A体SS晶间腐蚀、点蚀措施
2
常见腐蚀形态示意图
3
定义 特点
• 晶间腐蚀:晶间腐蚀是沿着金属或合金的
41
影响A体SS晶间腐蚀因素
• GB150正文中没有1Cr18Ni9Ti板材, 在其附录A将1Cr18Ni9Ti列为可以选 用钢材。在JB4728将1Cr18Ni9Ti• 件 锻 列为“不推荐使用”钢号。 • “敏化处理”不是改善SS耐蚀性能的 热处理, 是检验SS晶间腐蚀方法。 • 对A体SS的PWHT有争议,对 A体SS制 压力容器PWHT无强制要求。
36
影响A体SS晶间腐蚀因素
• Cr是C化物形成元素, 当C与周围的Cr
形成Cr23C6并沿晶界析出时, 造成C化
物周围局部贫铬。当Cr含量降至SS耐
蚀所需最低含量以下产生晶间腐蚀, 即“晶间贫铬理论”。
37
影响A体SS晶间腐蚀因素
38
影响A体SS晶间腐蚀因素
39
影响A体SS晶间腐蚀因素
• 两种解决SS晶间腐蚀思路: • 一是生产低C和超低碳SS,但造价高 且强度相对较低。 • 二是利用合金化原理,优先形成TiC, 尽量不形成Cr的C化物,避免局部贫 Cr。基本上也能解决晶间腐蚀问题。 • SS加Ti和Nb以避免晶间腐蚀。曾主要 用这种思路解决SS晶间腐蚀。
• 往往有侵蚀性卤素离子,作用顺序为 Cl离子>Br离子>I,与氧化剂共存。 • 对给定的金属—介质体系,存在特定 的临界电位。
21
实例4:柴油加氢换热器腐蚀
• 某公司1987年建四台柴油加氢换热器。除 第一台外,其余3台为串联式。图中从左至 右依次为2﹑ 3 ﹑4 ﹑1 台。 • 换热器壳体基材料为2Cr-1Mo钢,厚 24mm, 内衬3 mm厚的347不锈钢。管材材 质为316不锈钢。 • 管程走反应后柴油和氢气,4MPa,270~ 280º C。壳程走原料柴油。壳程除第一台为 240~250º C,4MPa压力外,其余3台约为 180º C,1MPa压力。
27
实例5: SO3蒸发器管束泄漏
• 管材外部通体光亮。泄漏处大部分管 壁严重减薄,如同薄纸,下部比上部 腐蚀严重,见图。
• 蚀坑内有Cl离子的富集。
• 浸泡试验结果表明304L不锈钢在 146℃ 发烟硫酸中的腐蚀率约为 0.42mm/a。
28
实例5: SO3蒸发器管束泄漏
• 点蚀贡献了约1.9mm的穿透深度。
35
影响A体SS晶间腐蚀因素
• 许多A体SS既是SS不锈钢又是耐热SS, C在A体SS中具有两重性。耐腐蚀, 需 要C%↓;耐高温, 需要C%↑。
• SS耐腐蚀含有Cr、Ni等元素使电极电 位↑, 当Cr%达到12.5,25 …… 时电极 电位跳跃式地↑, A体SS耐腐蚀性明显 得到改善,即“n/8”定率。
酸、硫酸、亚硫酸、氨基甲酸铵等;
5
材料
介质
• 通常,化学纯醋酸、醇、醛、酮、醚、 苯,酚,烷、汽油等溶液及气相介质 对A体SS不会产生晶间腐蚀。 • F体SS、Ni基合金、Al及其合金都有 晶间腐蚀问题。 • A体-F体双相SS是目前抗晶间腐蚀的 优良钢种。
6
实例1:催化裂化装置再吸收塔填料 严重腐蚀
• 蒸汽中的Cl离子在管内壁逐渐富集使 点蚀萌生并扩展。
30
点蚀提示:
• Cl离子环境是产生点蚀的主要条件。
• 停用设备的保养与维护↑。
• 耐点蚀能力指数(PRE):
PRE= X(Cr) + 3.3X(Mo) + 16X(N) PRE值与SS耐局部腐蚀能力成正比。
31
实例6:尿素合成塔塔板支撑卡腐蚀 情况
13
实例2:化纤行业粘胶短纤维纺丝机 滤壳腐蚀泄漏 • 提示:
实例1、实例2都说明: 1Cr18Ni9Ti 易引发晶实例3:尿素生产装置高压甲铵冷凝 器换热管与管板连接处腐蚀破坏
• 某化肥厂高压甲铵冷凝器有2550根 φ25×2.5×12000换热管,材质为316L。 碳钢管板厚470,其上堆焊两层8mm厚 316L。运行2.5万小时,管端部位泄漏。
12
实例2:化纤行业粘胶短纤维纺丝机 滤壳腐蚀泄漏
• 采用CS制作滤壳并进行SEBF涂装技术内 外防腐处理,使用六个月,效果优异,既 解决了腐蚀问题,又降低了成本。 • 使用超低碳SS。 • 用1Cr18Ni9Ti材质焊接后要进行稳定化处 理。但由于Ti在焊接时易烧损,最好使Ti/C 比﹥10~13 或使用1Cr18Ni9Nb。 • 采用小电流,快速焊,焊缝强制冷却。多 道焊时,前一道焊缝冷至60℃以下方进行 下道焊接。
晶粒边界或它的邻近区域发展,晶粒本身
腐蚀很轻微或不腐蚀的一种局部腐蚀。
• 使晶粒间结合力削弱,不易被检测。 • 危害性↑。
4
材料
介质
• “可能引起晶间腐蚀的环境”必须是存
在电解质的电化学腐蚀环境。
• 可能引起A体SS晶间腐蚀的电解质主
要是酸性介质,如工业醋酸、甲酸、
铬酸。乳酸、硝酸,草酸、磷酸、盐
相关文档
最新文档