数值分析 PPT课件
基于MATLAB的数值分析2PPT课件
【例】 clf;t=0.1:.1:3; y=exp(t.*t); semilogy(t,y) grid xlabel('t'); ylabel('exp(t.*t) ');
24
若干特殊图形
x=[1:10]; y=[5 6 3 4 8 1 10 3 5 6]; subplot(2,3,1),bar(x,y),axis([1 10 1 11]) subplot(2,3,2),hist(y,x),axis([1 10 1 4]) subplot(2,3,3),stem(x,y,'k'),axis([1 10 1 11]) subplot(2,3,4),stairs(x,y,'k'), axis([1 10 1 11]) subplot(2,3,5), x = [1 3 0.5 5];explode = [0 0 0
【例】用图形表示离散函数 y(n6)1 。
n=(0:12)'; y=1./abs(n-6); plot(n,y,'r*',…
'MarkerSize',20) grid on
2021/3/9
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
2
4
6
8
10
12
9
坐标轴的控制
axis指令
axis([xmin xmax ymin ymax]): 设定二维图形的x和y坐标的范围;
t=(0:pi/50:2*pi)';
k=0.4:0.1:1;
Y=cos(t)*k;
数值分析课件 第一章 绪论
1 e 0 1 x n e 0 d I n x 1 e 0 1 x n e 1 d x e 1 1 ( ) I n n n 1 1
公式一:I n 1 e [ x n e x 1 0 n 0 1 x n 1 e x d x ] 1 n I n 1
I01 e 01exdx11 e0.63212 记为0I5 0* 6 此公式精确成
初始的小扰动 |E 0|0.51 0 8迅速积累,误差呈递增趋势。 造成这种情况的是不稳定的算法 /* unstable algorithm */ 我们有责任改变。
公式二: I n 1 n I n 1 I n 1 n 1 ( 1 I n )
方法:先估计一个IN ,再反推要求的In ( n << N )。 注 意在e此理(N 公论1 式上1)与等公价IN 式。一N 1 1
)
0 .0 6 6 8 7 0 2 2 0
I
12
1 (1 13
I
13
)
0 .0 7 1 7 7 9 2 1 4
I
11
1 (1 12
I
12
)
0 .0 7 7 3 5 1 7 3 2
I
10
1 11
(1
I
11
)
0 .0 8 3 8 7 7 1 1 5
I
1
1 2
(1
I
2
)
0 .3 6 7 8 7 9 4 4
0
2! 3! 4!
11/1e111 e1 x 2d1x11 1 3 2! 50 3! 7 4! 9
取 01ex2dxS4 ,
S4
R4 /* Remainder */
则 R 44 1 !1 9 由 留5 1 !下1 部1 分1 称为截断误差 /* Truncation Error */
数值分析ppt-华中科技CHP1
计算方法华中科技大学数学系教材张诚坚, 高健, 何南忠. 计算方法. 北京:高等教育出版社,1999年参考书¾李庆扬, 易大义, 王能超. 现代数值分析, 北京:高等教育出版社¾Richard L. Burden & J. Douglas Faires .Numerical Analysis(Seventh Edition), 北京:高等教育出版社, 2001¾徐士良.C常用算法程序集(第二版).北京:清华大学出版社,1996期末考试试题期末考试的试卷有填空题和解答题。
解答题共7个题,分数约占70%。
期末考试主要考核:基本概念;基本原理;基本运算。
必须带简易计算器。
总成绩=平时成绩*20%+期末成绩*80%§1绪论第1节数值算法概论第2节预备知识与误差第1节数值算法概论1. 引言数值计算已经是计算机处理实际问题的一种关键手段。
它使各科学领域从定性分析阶段走向定量分析阶段,从粗糙走向精密。
2. 计算机数值方法的研究对象与特点计算问题x I n∫+ =15dxxx n 11nx I dx =∫011615 , ln5n n n n I I I I −==−1615 , ln I I I I ==−误差的传播与积累丽的北京就刮起台风来了?!3 数值算法计算方法的主要任务:1.将计算机上不能执行的运算化为在计算机上可执行的运算2.针对所求解的数值问题研究在计算机上可执行的且有效的计算公式3.因为可能采用了近似等价运算,故要进行误差分析,即数值问题的性态及数值方法的稳定性数值算法是指有步骤地完成解数值问题的过程.数值算法有四个特点:1.目的明确算法必须有明确的目的,其条件和结论均应有清楚的规定2.定义精确对算法的每一步都必须有精确的定义3.算法可执行算法中的每一步操作都是可执行的4.步骤有限算法必须在有限步内能够完成解题过程例如给出等差数列1,2,3,…,10000的求和算法算法构造如下:N取记数器置零=S.1=,0⇒+,.21+N⇒SNNS.3<N10000若2,,否则转.4输出SN,一、误差的种类及来源1模型误差在建立数学模型过程中,要将复杂的现象抽象归结为数学模型,往往要忽略一些次要因素的影响,而对问题作一些简化,因此和实际问题有一定的区别.2观测误差在建模和具体运算过程中所用的数据往往是通过观察和测量得到的,由于精度的限制,这些数据一般是近似的,即有误差.3截断误差由于计算机只能完成有限次算术运算和逻辑运算,因此要将有些需用极限或无穷过程进行的运算有限化,对无穷过程进行截断,这就带来误差.第2节预备知识与误差在数值计算过程中还会遇到无穷小数,因误差与有效数字有效数字用科学计数法,记(其中)若(即的截取按四舍五入规则),则称为有n 位有效数字,精确到。
数值分析课件
则有
x f ( x) x nxn1 Cp n, n f ( x) x
它表示相对误差可能放大 n倍. 如
n 10 , 有
f (1) 1, f (1.02) 1.24 若取 x 1, ,
x A 1.02, 自变量相对误差为 2 %, 函数值相对误差为 24 % ,
避免误差危害的若干原则
例 在五位十进制计算机上,计算
A 52492 i ,
其中 0.1 0.9. i
i 1 1000
解:把运算的数写成规格化形式
A 0.52492 10 i .
5 i 1 1000
由于在计算机内计算时要对阶, 若取 i 0.9 , 对阶时 i 0.000009 105 ,在五位的计算机中表示为 机器 0 ,因此
* 只有一位有效数字. x2
若改用
x2 8 63
1 8 63 1 0.0627 15.94
则具有3位有效数字.
避免误差危害的若干原则
说 明
如果x1和x2 很接近时,应用
x1 ln x1 ln x2 ln . x2
1 x x1 ,
当x很大时, 应用 x 1 x
取右端的有限项近似代替左端。 如果无法改变算式,在计算机上则采用双精度运算,以 增加有效数字位数,但这要增加机器计算时间和多占内
存单元.
避免误差危害的若干原则
三、防止大数吃小数
当两个绝对值相差很大的数进行加法或减法运 算时,绝对值小的数有可能被绝对值大的数 "吃掉"从 而引起计算结果很不可靠.
例如,某计算机允许表示具有七位有效数字的十进制数, 计算333.3333+0.0002222222。 若计算时没有位数的限制,则计算结果应当是 333.3335222222。而现在的问题是,计算机由于字长位数 的限制,只能表示七位有效数字,于是只得将小数点最后 的6个数字全部删掉,得到333.3335。这样,在相加的过通过改变 计算公式避免或减少有效数字的损失。
《数值分析教程》课件
一种适用于大规模计算的数值方法
详细描述
谱方法适用于大规模计算,通过将问题分解为较小的子问 题并利用多线程或分布式计算等技术进行并行计算,可以 有效地处理大规模的计算任务。
感谢您的观看
THANKS
具有简单、稳定和可靠的优点。
05
数值积分与微分
牛顿-莱布尼兹公式
要点一
总结词
牛顿-莱布尼兹公式是数值积分中的基本公式,用于计算定 积分。
要点二
详细描述
牛顿-莱布尼兹公式基于定积分的定义,通过选取一系列小 区间上的近似值,将定积分转化为一系列小矩形面积之和 ,从而实现了数值积分。
复化求积公式
总结词
算机实现各种算法,为各个领域的科学研究和技术开发提供了强有力的支持。
数值分析的应用领域
总结词
数值分析的应用领域非常广泛,包括科学计算、工程 、经济、金融、生物医学等。
详细描述
数值分析的应用领域非常广泛,几乎涵盖了所有的科学 和工程领域。在科学计算方面,数值分析用于模拟和预 测各种自然现象,如气候变化、生态系统和地球科学等 。在工程领域,数值分析用于解决各种复杂的工程问题 ,如航空航天、机械、土木和电子工程等。在经济和金 融领域,数值分析用于进行统计分析、预测和优化等。 在生物医学领域,数值分析用于图像处理、疾病诊断和 治疗等。总之,数值分析已经成为各个领域中不可或缺 的重要工具。
03
线性方程组的数值解法
高斯消去法
总结词
高斯消去法是一种直接求解线性方程组的方法,通过一系列 行变换将系数矩阵变为上三角矩阵,然后求解上三角方程组 得到解。
详细描述
高斯消去法的基本思想是将系数矩阵通过行变换化为上三角 矩阵,然后通过回带求解得到方程组的解。该方法具有较高 的稳定性和精度,适用于中小规模线性方程组的求解。
《数值分析》第二讲插值法PPT课件
1 xn xn2 xnn Vandermonde行列式
即方程组(2)有唯一解 (a0, a1, , an)
所以插值多项式
P (x ) a 0 a 1 x a 2 x 2 a n x n
存在且唯一
第二章:插值
§2.2 Lagrange插值
y
数值分析
1、线性插值
P 即(x)ykx yk k 1 1 x yk k(xxk)
l k ( x k 1 ) 0 ,l k ( x k ) 1 ,l k ( x k 1 ) 0 l k 1 ( x k 1 ) 0 ,l k 1 ( x k ) 0 ,l k 1 ( x k 1 ) 1
lk1(x)(x(k x 1 x xk k))x x ((k 1x k x 1k )1) lk(x)((xx k x xk k 1 1))((x xkxx k k1)1)
第二章:插值
数值分析
3、Lagrange插值多项式
令 L n ( x ) y 0 l 0 ( x ) y 1 l 1 ( x ) y n l n ( x )
其中,基函数
lk (x ) (x ( k x x x 0 ) 0 ) (( x x k x x k k 1 1 ) )x x k ( ( x x k k 1 ) 1 ) (( x x k x n x )n )
因此 P (x ) lk (x )y k lk 1 (x )y k 1
且
P (x k ) y k P (x k 1 ) y k 1
lk(x), lk1(x) 称为一次插值基函数
数值分析
第二章:插值
2、抛物线插值 令
y (xk , yk )
f (x)
lk1(x)(x(k x 1 x xk k))x x ((k 1x k x 1k )1) p( x) (xk1,yk1)
数值分析第一章基础知识优秀课件
16 周二 3课时 第八章 常微分方程初值问题数值解法[1] 17 周二 3课时 第八章 常微分方程初值问题数值解法[2] 18 周二 3课时 习题课 19 周二 3课时 总复习
注:数值算法演示主要用Matlab和C语言实现,有时采用
Mathematica
实8/7现6 。课郑后州实大验学题201可4-用20任15何学年一硕种士计研算究生工课具程完成数值。分析 Numerical Analysis
4/76
郑州大学2014-2015学年硕士研究生课程 数值分析 Numerical Analysis
预备知识
➢ 微积分和常微分方程; ➢ 线性代数; ➢ 数值计算程序设计
(C/Matlab和Mathematica)
5/76
郑州大学2014-2015学年硕士研究生课程 数值分析 Numerical Ana.1 教学内容时间安排
周次 2 3 4 5 6 7 8 9 10 11
课次 周二 周二 周二 周二 周二 周二 周二 周二 周二 周二
课时 3课时 3课时 3课时 3课时 3课时 3课时 3课时 3课时 3课时 3课时
教学内容 第一章 基础知识 第二章 代数插值[1] 第二章 代数插值[2] 第三章 数据拟合的最小二乘法[1] 第三章 数据拟合的最小二乘法[2] 第四章 数值微分与数值积分[1] 第四章 数值微分与数值积分[2] 习题课 第五章 解线性代数方程组的直接法[1] 第五章 解线性代数方程组的直接法[2]
参考教材
教材
李庆扬,王能超,易大义.数值分析(第五版).北京:清华大学出版社,2008 李清善,宋士仓. 数值方法. 郑州:郑州大学出版社,2007.
参考资料
1.关治,陈景良. 数值计算方法. 北京:清华大学出版社,1990. 2.周铁,徐树方等. 计算方法. 北京:清华大学出版社,2006. 3.徐翠微,孙绳武. 计算方法引论. 北京:高等教育出版社,2005. 4.John H.Mathews, Kurtis D.Fink. 数值方法(MATLAB版). 北京:电子
《数值分析》》课件
遗传算法
模拟生物进化过程的搜索算法,通过优胜略汰 的方式找到最优解。
模拟退火法
模拟金属退火过程的搜索算法,通过随机性和 温度控制来逼近最优解。
粒子群优化
模拟粒子群行为的算法,通过粒子之间的合作 和个体经验找到最优解。
截断误差
使用有限项进行级数展开时未考虑所有无穷项导致的误差。
舍入误差
由于数学运算符的近似计算和截取,导致了计算结果与真实结果之间的差距。
插值和拟合方法
插值和拟合方法是数值分析中常用的技术,用于根据已知数据点推导出未知数据点的值或找到拟合曲线或曲面。
插值方法
利用已知数据点之间的关系推导出处于数据点之间 位置的值。
2 物理学
求解量子力学方程、天体力学模拟和粒子物 理实验结果分析。
3 金融
风险评估、期权定价和投资组合优化。
4 医学
数值模拟手术、疾病预测和药物研发。
数值分析的历史和趋势
数值分析起源于古代文明对数学问题的解决方案。如今,随着计算机技术进步,数值分析在各个领域的 应用呈指数级增长。
1
古代
古埃及的巴比伦人使用分段直线插值法求解方程。
《数值分析》PPT课件
本课程介绍《数值分析》的学习目标,定义和应用领域。深入探讨数值分析 的历史、发展和误差分析。了解插值和拟合方法,数值微积分和数值积分。
数值分析的应用价值
数值分析在工程、物理学、金融等领域扮演着重要角色。通过数值模拟和优化算法,我们能够解决复杂问题并 做出准确的预测。
1 工程
计算结构力学、流体力学和电磁场分析,优 化设计和仿真。
2
20世纪
计算机的发明使数值分析成为可能,并发展了更高精度和快速的算法。
数值分析课件-第02章插值法
目录
• 插值法基本概念与原理 • 拉格朗日插值法 • 牛顿插值法 • 分段插值法 • 样条插值法 • 多元函数插值法简介
01 插值法基本概念与原理
插值法定义及作用
插值法定义
插值法是一种数学方法,用于通过已知的一系列数据点,构造一个新的函数, 使得该函数在已知点上取值与给定数据点相符,并可以用来估计未知点的函数 值。
06 多元函数插值法简介
二元函数插值基本概念和方法
插值定义
通过已知离散数据点构造一个连 续函数,使得该函数在已知点处
取值与给定数据相符。
插值方法分类
根据构造插值函数的方式不同, 可分为多项式插值、分段插值、
样条插值等。
二元函数插值
针对二元函数,在平面上给定一 组离散点,构造一个二元函数通 过这些点,并满足一定的光滑性
差商性质分析
分析差商的性质,如差商 的对称性、差商的差分表 示等,以便更好地理解和 应用差商。
差商与导数关系
探讨差商与原函数导数之 间的关系,以及如何利用 差商近似计算导数。
牛顿插值法优缺点比较
构造简单
牛顿插值多项式构造过程相对简 单,易于理解和实现。
差商可重用
对于新增的插值节点,只需计算 新增节点处的差商,原有差商可 重用,节省了计算量。
要求。
多元函数插值方法举例
多项式插值
分段插值
样条插值
利用多项式作为插值函数,通 过已知点构造多项式,使得多 项式在已知点处取值与给定数 据相符。该方法简单直观,但 高阶多项式可能导致Runge现 象。
将整个定义域划分为若干个子 区间,在每个子区间上分别构 造插值函数。该方法可以避免 高阶多项式插值的Runge现象 ,但可能导致分段点处的不连 续性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参考P.190
数学模型 获取数据 数值方法、程序 数据结果
4/16
误差分类:
模型误差: 建立数学模型时所引起的误差;
观测误差:测量工具的限制或在数据的获取时随 机因素所引起的物理量的误差; 截断误差:求解数学模型时,用简单代替复杂, 或者用有限过程代替无限过程所引起的误差
所以 ( y) | f (x) | (x)
同理:
r
( y)
|
xf f
( x) (x)
| r (x)
反问题:估计 r ( x)
14/16
2.多元函数 z = f(x1,x2,···,xn)误差分析
(z)
n
|
k 1
f xk
| (xk )
数据误差对算术运算影响
若近似值 x 的绝对误差限是某一位上的半个 单位,该位到 x 的第一位非零数字一共有 n 位,则称近似值 x 有 n 位有效数字.
10/16
一个有n 位有效数字的数
x 0.a1a2 an 10m
绝对误差限满足: e( x) x x 1 10mn 2
相对误差限满足:
er
(x)
所以,浮点数的有效数字位数至少应取3位。
12/16
例2.圆面积计算的误差估计
圆面积计算公式: S R2 全微分近似: S 2RR
(S) 2R (R) r (S) 2 r (R)
取 r = 50 cm, 则有 (R) 0.5 cm
(S) ≈150 cm2, r (S ) ≈2×1%=2%
求 x1 8 63 使具有4位有效数
解:直接计算 x1≈8 – 7.937 = 0.063
( x1 ) (8) (7.937) 0.0005
计算出的x1 具有两位有效数
修改算法
1
1
x1 8
0.062747
63 15.937
( x1)
(15.937)
5 a1
10n
11/16
例1 已知 30 的十进制浮点数第一位是5, 要 使 近 似 值 的 相 对 误 差 限 小 于 0.1% , 问 浮 点数的有效数字的位数至少应该为多少?
解: a1=5,利用不等式 | er
取n≥3,有
( x) |
5 a1
10 n
10n
|er(x)|≤10-3
von Neumann
1969年, 美国Apollo 登月 1994年, 美国GPS运行
2/16
求未知数据的迭代计算技术:
初始猜测数据、迭代计算格式、 迭代序列的收敛性分析、计算 复杂性分析,……
评价算法的主要指标: 速度和精度
引例: 圆内接正多边形边长计算Pi方法(P.42&177)
Ln nsin n
反问题:利用 (S) 估计 (R), r (R)
13/16
1.一元函数 y=f(x)误差分析( 准确值 y*=f(x*) ) 由Taylor 公式
f ( x*) f ( x) ( x * x) f ( x) ( x * x)2 f ( )
2
| e( y) || y * y || x * x || f (x) || f (x) | (x)
舍入误差:计算机表示的数的位数有限,通常用 四舍五入的办法取近似值,由此引起的误差.
5/16
误差的有关概念
假设某一数据的准确值为 x*,其近似值 为 x,则称
e(x)= x - x*
为 x 的绝对误差
而称
e(x) x x* er (x) x x ,
(x 0)
为 x 的相对误差
(1) (x1 x2 ) (x1) (x2 )
(2) (x1 x2 ) | x1 | (x2 ) | x2 | (x1)
(3)
( x1
/
x2
)
|
x1
|
( x2
) | x2 2
x2
|
( x1 )
15/16
例3.二次方程 x2 – 16 x + 1 = 0, 取 63 7.937
《数值分析》1
科学计算的背景 关于计算误差讨论 浮点数与有效数字 算术运算的误差估计
数值分析——研究用计算机求解
数学问题的数值计算方法及其理论 方程组求解、方程求根、数据插值、 数据拟合、数值积分、微分方程求解
von Neumann and Goldstine: “高阶矩阵的数值求逆” (1947 年) 1958年, 前苏联载人飞船
6/16
如果存在一个适当小的正数ε ,使得
e(x) x x
则称ε 为绝对误差限。
如果存在一个适当小的正数ε r ,使得
er (x)
e(x) x
x x x
r
称ε r为相对误差限。
7/16
十进制浮点数表示
一台微机价格:¥3999.00, 浮点数表示:0.3999×104
地球半径: 6378137m, (6.378137e+006) 浮点数表示: 0.6378137×107
光速: 2.99792458e+008 浮点数表示: 0.299792458×109
x 0.a1a2 an 10m
尾数部
阶码部
8/16
二进制浮点数表示(IEEE754双精度)
x 1.b1b2 bn1 2m
L2n Ln / cos 2n
n
L
192 3.1414524
384 3.1415576
error 1.4e-004 3.5e-005
Lˆ2n (4L2n Ln ) / 3
3.1415926 4.6e-010
3/16
通信卫星覆盖地球面积 实际问题
将地球考虑成一 个球体, 设R为地 球半径,h为卫星 高度,D为覆盖面 在切痕平面上的 投影(积分区域)
尾数部
阶码部
其中,正负号占2个位,尾数占52个位,阶码占
10个位.对应十进制数字长15,阶码308
二进制数1.b1b2×2m ( – 4≤ m ≤3 )分布实验
0
1
2
3
4
5
6
7
9/16
有效数字概念:
取 的有限位数如下( ≈26)
取 x1 = 3,误差限不超过0.5; 取 x2 = 3.14,误差限不超过0.005 ; 取 x3 = 3.1416,误差限不超过0.00005 ;