导数含参单调性问题

合集下载

用导数研究含参函数的单调性典型题型(学生版+解析版)

用导数研究含参函数的单调性典型题型(学生版+解析版)

用导数研究含参函数的单调性一、考情分析函数是高中数学主干知识,单调性是函数的重要性质,用导数研究函数单调性是导数的一个主要应用,可以说在高考导数解答题中单调性问题是绕不开的一个问题,这是因为单调性是解决后续问题的关键,单调性在研究函数图像、比较函数值大小、确定函数的极值与零点、解不等式及证明不等式中都起着至关重要的作用.函数单调性的讨论与应用一直是高考考查的热点、而含有参数的函数单调性的讨论与应用更是高考中的难点.二、解题秘籍连续函数单调区间的分界点就是函数的极值点,也就是导函数的零点,即方程f x =0的根,所以求解含参函数的单调性问题,一般要根据f x =0的根的情况进行分类,分类时先确定导函数是一次型还是二次型1.若导函数是一次型,分类步骤是:①判断是否有根,若没有根,会出现恒成立的情况;②若有根,求出f x =0导的根,并判断根是否在定义域内;若根不在定义域内会出现恒成立的情况;③若根在定义域内,会出现两个单调区间,根据导函数的正负,确定单调性;2.若导函数是二次型,分类步骤是:①先判断二次型函数是否有根,若没有根,会出现恒成立的情况;②判断根是否在定义域内,若仅有一个根在定义域内,会出现两个单调区间,根据导函数的正负,确定单调性;③若两个根都在定义域内,需要根据两个根的大小进行讨论,当根的大小确定后,再讨论每个单调区间上的单调性.下面我们根据f x =0的根的情况总结出10类题型及解法,帮助同学们掌握这类问题的求解方法.类型一:f x 定义域不是R,f x =0可化为单根型一次方程思路:根据根是否在定义域内进行分类例1.讨论f x =x-1-a ln x的单调性类型二:f x 定义域不是R,f x =0可化为单根型类一次方程思路:根据方程是否有根及根是否在定义域内进行分类例2.讨论f x =ax-1-aln x+1的单调性例3.讨论f x =14ax4-13x3+12ax2-x+1的单调性类型四:f x 定义域不是R,f x =0可化为单根型二次方程思路:根据方程的根是否在定义域内进行分类例4.讨论f x =x+(1-a)ln x+ax+1的单调性类型五:f x 定义域为R, f x =0可化为双根型二次方程思路:根据根的大小进行分类例5.讨论f x =x2+ax+ae x的单调性类型六:f x 定义域不是R,f x =0可化为双根型二次方程思路:根据根是否在定义域内及根的大小进行分类例6.讨论f x =12x2-a2+1a x+ln x的单调性类型七:f x 定义域是R,f x =0可化为双根型类二次方程思路:根据根的个数及根的大小进行分类例7.讨论f x =ax3-a+32x2+x-1的单调性类型八:f x 定义域不是R,f x =0可化为双根型类二次方程思路:根据根是否在定义域内、根的个数及根的大小进行分类例8.讨论f x =12ax2-a+1x+ln x的单调性类型九:f x =0先化为指数型方程,再通过拟合化为一次(或类一次)或二次(或类二次)方程例9.讨论f x =a x-2e x-12x-12的单调性类型十:f x =0先化为对数型方程,再通过拟合化为一次(或类一次)或二次(或类二次)方程例10.讨论f x =x2-2axln x-12x2+2ax+1的单调性三、典例展示例1.(2023届四川省内江市高三零模考试)已知函数f(x)=x+a ln x,a∈R(1)讨论f x 的单调性;(2)若不等式f x ≤x2+x对任意x∈(1,+∞)恒成立,求a的最大值.例2.(2022届湖北省部分学校高三下学期5月适应性考试)已知函数f x =x+1(ee x-ax2-4ax a∈R为自然对数的底数).(1)若a>0时,求函数f x 的单调区间.(2)是否存在实数a,使得x≥0时,f x ≥xe x+1-ax2+cos x-2ax恒成立?若存在,求出实数a的取值范围;若不存在,说明理由.例3.(2023届湖北省新高三摸底联考)已知a≥0,函数f x =ax+1+ax-ln x.(1)讨论函数f x 的单调性;(2)如果我们用n-m表示区间m,n的长度,试证明:对任意实数a≥1,关于x的不等式f x <2a+1的解集的区间长度小于2a+1.例4.(2022届青海省西宁市高三下学期第三次模拟)已知函数f x =x ln x-a2x2-x+a a∈R.(1)讨论函数f x 在0,+∞上的单调性;(2)已知x1,x2是函数f x 的两个不同的极值点,且x1<x2,若不等式e1+λ<x1x2λ恒成立,求正数λ的范围.四、跟踪检测1.(2023届河南省安阳市高三上学期名校调研摸底考试)已知函数f x =e x-ax+b.(1)当b=0时,讨论f x 的单调性;(2)当a>0时,若f x ≥0,求b的最小值.2.(2023届三省三校高三第一次联考)已知函数f(x)=(1-m)x-ln x.(1)讨论f(x)的单调性;(2)若m=0,设g x =f x +2-xe x在12,1上的最小值为n,求证:(n-3)(n-4)<0 .3.(2022届四川省内江市第六中学高三下学期仿真考试)已知函数f x =x -a -1 e x -x 2+2ax a ∈R .(1)讨论f x 的单调性;(2)从下面两个条件中选一个,判断f m 的符号,并说明理由.①0<a <12,0<m <ln2;②1<a <2,1<m <2.4.(2022届华大新高考联盟名校高考押题卷)设函数f x =1+a ln x x,其中a ∈R .(1)当a ≥0时,求函数f x 的单调区间;(2)若f x ≤x 2,求实数a 的取值范围.5.(2022届湖北省卓越高中千校联盟高三高考终极押题卷)已知f x =a-1ln x+x+a x(1)若a<0,讨论函数f x 的单调性;(2)g x =f x +ln x-a x有两个不同的零点x1,x20<x1<x2,若g2x1+λx22+λ>0恒成立,求λ的范围.6.(2022届河南省许平汝联盟高三下学期核心模拟卷)已知函数f x =ln x-ax2+2a∈R.(1)讨论f x 的单调性;(2)若f x -2-ax≥0在x∈1,e上恒成立,求实数a的取值范围.7.(2022届广东省潮州市瓷都中学高三下学期第三次模拟)已知函数f x =2x3+31+mx2+ 6mx x∈R.(1)讨论函数f x 的单调性;(2)若f1 =5,函数g x =a ln x+1-f xx2≤0在1,+∞上恒成立,求整数a的最大值.8.(2022四川省资阳市高三第一次质量检测)已知函数f(x)=(x-a-1)e x-12ax2+a2x.(1)讨论f(x)的单调性;(2)若f(x)在(-∞,0)上只有一个极值,且该极值小于-e a-1,求a的取值范围.9.(2021重庆市第八中学高三下学期高考适应性考试)已知函数f x =x+ln x-a x,g x =a-2xln x+ x.(1)讨论f x 的单调性;(2)若a∈1,4,记f x 的零点为x1,g x 的极大值点为x2,求证:x1<x2·10.(2021山东省烟台市高三高考适应性练习)已知函数f x =a x2-x-ln x a∈R.(1)讨论函数f x 的单调性;(2)证明:当x>1时,2e x-1ln x≥x2+1 x2-x.用导数研究含参函数的单调性一、考情分析函数是高中数学主干知识,单调性是函数的重要性质,用导数研究函数单调性是导数的一个主要应用,可以说在高考导数解答题中单调性问题是绕不开的一个问题,这是因为单调性是解决后续问题的关键,单调性在研究函数图像、比较函数值大小、确定函数的极值与零点、解不等式及证明不等式中都起着至关重要的作用.函数单调性的讨论与应用一直是高考考查的热点、而含有参数的函数单调性的讨论与应用更是高考中的难点.二、解题秘籍连续函数单调区间的分界点就是函数的极值点,也就是导函数的零点,即方程f x =0的根,所以求解含参函数的单调性问题,一般要根据f x =0的根的情况进行分类,分类时先确定导函数是一次型还是二次型1.若导函数是一次型,分类步骤是:①判断是否有根,若没有根,会出现恒成立的情况;②若有根,求出f x =0导的根,并判断根是否在定义域内;若根不在定义域内会出现恒成立的情况;③若根在定义域内,会出现两个单调区间,根据导函数的正负,确定单调性;2.若导函数是二次型,分类步骤是:①先判断二次型函数是否有根,若没有根,会出现恒成立的情况;②判断根是否在定义域内,若仅有一个根在定义域内,会出现两个单调区间,根据导函数的正负,确定单调性;③若两个根都在定义域内,需要根据两个根的大小进行讨论,当根的大小确定后,再讨论每个单调区间上的单调性.下面我们根据f x =0的根的情况总结出10类题型及解法,帮助同学们掌握这类问题的求解方法.类型一:f x 定义域不是R,f x =0可化为单根型一次方程思路:根据根是否在定义域内进行分类例1.讨论f x =x-1-a ln x的单调性分析:f x =x-ax x>0,f x =0根的情况转化为x-a=0x>0根的情况根据a是否在定义域0,+∞内进行分类答案:(1)a≤0,f x >0,f x 在0,+∞上是增函数;(2)a>0,f x 在0,a上是减函数,在a,+∞上是增函数.类型二:f x 定义域不是R,f x =0可化为单根型类一次方程思路:根据方程是否有根及根是否在定义域内进行分类例2.讨论f x =ax-1-aln x+1的单调性分析:f x =ax-1-ax x>0,f x =0根的情况转化为ax-1-a=0在0,+∞上根的情况.步骤一:讨论a=0(无实根);步骤二:讨论a<0,由ax-1-a=0得x=1-aa(不在定义域内);步骤三:讨论a >0,根据1-a a是否在定义域内再分0<a <1,a ≥1.答案:(1)a =0,f x <0,f x 在0,+∞ 上是减函数;(2)a <0,f x <0,f x 在0,+∞ 上是减函数;(3)a >0(i )a ≥1, f x >0,f x 在0,+∞ 上是增函数;(ii )0<a <1,f x 在0,1-a a 上是减函数,在1-a a,+∞ 上是增函数.类型三:f x 定义域为R , f x =0可化为单根型类二次(或高次)方程思路:根据x 的系数符号进行分类例3.讨论f x =14ax 4-13x 3+12ax 2-x +1的单调性分析:f x =x 2+1 ax -1 ,因为x 2+1>0,f x =0根的情况转化为ax -1=0根的情况,步骤一:讨论a >0;步骤二:讨论a =0,注意此时ax -1=-1<0 ;步骤三:讨论a <0,注意不等式两边除以a ,不等式要改变方向.答案:(1)a >0时f x 在1a ,+∞ 上递增,在-∞,1a上递减;(2)a =0时f x 在-∞,+∞ 上递减;(3)a <0时f x 在1a ,+∞ 上递减,在-∞,1a上递增.类型四:f x 定义域不是R ,f x =0可化为单根型二次方程思路:根据方程的根是否在定义域内进行分类例4.讨论f x =x +(1-a )ln x +a x +1的单调性分析:f x =x +1 x -a x 2x >0 ,因为x +1>0,f x =0根的情况转化为x -a =0在0,+∞ 上根的情况.步骤一:讨论a ≤0(x -a =0无实根);步骤二:讨论a >0,由x -a =0得x =a ;答案:(1)a ≤0,f x >0,f x 在0,+∞ 上是增函数;(2)a >0,x >a , f x >0,f x 在a ,+∞ 上是增函数;x <a ,f x <0,f x 在0,a 上是减函数.类型五:f x 定义域为R, f x =0可化为双根型二次方程思路:根据根的大小进行分类例5.讨论f x =x 2+ax +a e x 的单调性分析:f x =x +2 x +a e x ,f x =0根的情况转化为x +2 x +a =0的根的情况,根据-a 与-2的大小进行讨论.步骤一:讨论a <2;步骤二:讨论a =2,注意此时x +2 x +a =x +2 2≥0;步骤三:讨论a >2.答案:(1)a <2,f x 在-∞,-2 ,-a ,+∞ 上是增函数,在-2,-a 上是减函数;(2)a =2,f x 在-∞,+∞ 上是增函数;(3)a >2, f x 在-∞,-a ,-2,+∞ 上是增函数,在-a ,-2 上是减函数.类型六:f x 定义域不是R ,f x =0可化为双根型二次方程思路:根据根是否在定义域内及根的大小进行分类例6.讨论f x =12x 2-a 2+1a x +ln x 的单调性分析:f x =x -a x -1a x x >0 ,f x =0根的情况转化为x -a x -1a=0在0,+∞ 上根的情况.步骤一:讨论a <0(根不在定义域内).步骤二:讨论a >0(根据a ,1a的大小再分0<a <1,a =1,a >1)答案:(1)a <0,f x 在0,+∞ 上是增函数;(2)0<a <1,f x 在0,a ,1a ,+∞ 上是增函数,在a ,1a上是减函数;(3)a =1,f x 在0,+∞ 上是增函数;(4)a >1, f x 在0,1a ,a ,+∞ 上是增函数,在1a,a 上是减函数.类型七:f x 定义域是R ,f x =0可化为双根型类二次方程思路:根据根的个数及根的大小进行分类例7.讨论f x =ax 3-a +32x 2+x -1的单调性分析:f x =3x -1 ax -1 ,f x =0根的情况转化为3x -1 ax -1 =0根的情况.步骤一:讨论a =0(ax -1=0无实根);步骤二:讨论a <0,此时13>1a ;步骤三:讨论a >0(根据13,1a的大小再分0<a <3,a =3,a >3)答案:(1)a =0,f x 在0,13 上是增函数,在13,+∞ 上是减函数;(2)a <0, f x 在0,1a ,13,+∞ 上是减函数,在1a ,13 上是增函数;(3)0<a <3,f x 在0,13 ,1a ,+∞ 上是增函数,在13,1a上是减函数;(4)a =3,f x 在-∞,+∞ 上是增函数;(5)a >3, f x 在0,1a ,13,+∞ 上是增函数,在1a ,13上是减函数.提醒:对于类二次方程,不要忽略对x 2项的系数为零的讨论类型八:f x 定义域不是R ,f x =0可化为双根型类二次方程思路:根据根是否在定义域内、根的个数及根的大小进行分类例8.讨论f x =12ax 2-a +1 x +ln x 的单调性分析:f x =x -1 ax -1 xx >0 ,f x =0根的情况转化为x -1 ax -1 =0x >0 根的情况.步骤一:讨论a =0(有1个根).步骤二:讨论a <0(1a 不在定义域内)步骤三:讨论a >0(1,1a 均在定义域内,根据1,1a的大小再分0<a <1,a =1,a >1)答案:(1)a ≤0,f x 在0,1 上是增函数,在1,+∞ 上是减函数;(步骤一二合并)(2)0<a <1,f x 在0,1 ,1a ,+∞ 上是增函数,在1,1a 上是减函数;(3)a =1,f x 在0,+∞ 上是增函数;(4)a >1, f x 在0,1a ,1,+∞ 上是增函数,在1a,1 上是减函数.类型九:f x =0先化为指数型方程,再通过拟合化为一次(或类一次)或二次(或类二次)方程例9.讨论f x =a x -2 e x -12x -1 2的单调性分析:f x =x -1 ae x -1 ,f x =0根的情况转化为x -1 ae x -1 =0根的情况.步骤一:讨论a ≤0(有1个根).步骤二:讨论a >0,f x =x -1 ae x -1 的拟合函数为y =x -1 x +ln a (根据1,-ln a 的大小再分0<a <1e ,a =1e ,a >1e)答案:(1)a ≤0,f x 在-∞,1 上是增函数,在1,+∞ 上是减函数;(2)0<a <1e ,f x 在-∞,1 ,-ln a ,+∞ 上是增函数,在1,-ln a 上是减函数;(3)a =1e ,f x 在-∞,+∞ 上是增函数;(4)a >1e , f x 在-∞,-ln a ,1,+∞ 上是增函数,在-ln a ,1 上是减函数.类型十:f x =0先化为对数型方程,再通过拟合化为一次(或类一次)或二次(或类二次)方程例10.讨论f x =x 2-2ax ln x -12x 2+2ax +1的单调性分析:f x =x -a ln x x >0 的拟合函数为x -a x -1 (根据a 与0,1大小分类)步骤一:讨论a ≤0(x -a >0).步骤二:讨论a >0, (再分0<a <1,a =1,a >1)答案:(1)a ≤0,f x 在0,1 上是减函数,在1,+∞ 上是增函数;(2)0<a <1,f x 在0,a ,1,+∞ 上是增函数,在a ,1 上是减函数;(3)a =1,f x 在0,+∞ 上是增函数;(4)a >1, f x 在0,1 ,a ,+∞ 上是增函数,在1,a 上是减函数.三、典例展示例1.(2023届四川省内江市高三零模考试)已知函数f (x )=x +a ln x ,a ∈R(1)讨论f x 的单调性;(2)若不等式f x ≤x 2+x 对任意x ∈(1,+∞)恒成立,求a 的最大值.【解析】 (1)f '(x )=1+a x =x +a xx >0 ,当a ≥0时,f '(x )>0恒成立,∴f (x )在(0,+∞)上单调递增;当a <0时,令f '(x )>0得x >-a ,令f '(x )<0得0<x <-a ,∴f (x )在(-a ,+∞)上单调递增,在0,-a 上单调递减;综上所述:当a ≥0时, f (x )在(0,+∞)上单调递增;当a <0时, f (x )在(-a ,+∞)上单调递增,在0,-a 上单调递减;(2)依题意得:f x ≤x 2+x 对任意x ∈(1,+∞)恒成立,等价于a ≤x 2ln x x >1 恒成立.令g x =x 2ln x x >1 ,则g 'x =2x ln x -x ln x 2=x 2ln x -1 ln x2,则当x >e 时,g 'x >0,当1<x <e 时,g 'x <0,又g 'e =0,∴g x 在1,e 上单调递减,在e ,+∞ 上单调递增,∴g x min =g e =2e ,∴a ≤2e ,即a 的最大值为2e .例2.(2022届湖北省部分学校高三下学期5月适应性考试)已知函数f x =x +1 e x -ax 2-4ax a ∈R (e 为自然对数的底数).(1)若a >0时,求函数f x 的单调区间.(2)是否存在实数a ,使得x ≥0时,f x ≥xe x +1-a x 2+cos x -2ax 恒成立?若存在,求出实数a 的取值范围;若不存在,说明理由.【解析】 (1)由题知f (x )=(x +2)e x -2ax -4a =(x +2)e x -2a ,①若0<a <12e2,则ln2a <-2,当x <ln2a 或x >-2时,f (x )>0,当ln2a <x <-2时,f (x )<0,∴f (x )在(-∞,ln2a ),(-2,+∞)上单调递增,在(ln2a ,-2)上单调递减;②若a =12e 2,则ln2a =-2,f (x )≥0,∴f (x )在(-∞,+∞)上单调递增;③若a >12e2,则ln2a >-2,当x <-2或x >ln2a 时,f (x )>0,当-2<x <ln2a 时,f (x )<0,∴f (x )在(-∞,-2),(ln2a ,+∞)上单调递增,在(-2,ln2a )上单调递减.综上所述,当0<a <12e 2时,f (x )的单调增区间为(-∞,ln2a ),(-2,+∞),单调减区间为(ln2a ,-2);当a =12e 2时,f (x )的单调增区间为(-∞,+∞);当a >12e2时,f (x )的单调增区间为(-∞,-2),(ln2a ,+∞),单调减区间为(-2,ln2a ).(2)设g (x )=f (x )-xe x -(1-a )x 2-cos x +2ax =e x -x 2-2ax -cos x (x ≥0),则g (x )=e x -2x -2a +sin x ,设h (x )=e x -2x -2a +sin x (x ≥0),则h (x )=e x +cos x -2,设m (x )=e x +cos x -2(x ≥0),则m (x )=e x -sin x >0,∴m (x )在[0,+∞)上单调递增,∴h (x )=m (x )≥m (0)=0,∴h (x )在[0,+∞)上单调递增,∴g (x )=h (x )≥h (0)=1-2a ,当a ≤12时,g (x )≥0,∴g (x )在[0,+∞)上单调递增,∴g (x )≥g (0)=0;当a >12时,g (0)=1-2a <0,令t (x )=e x -x 2(x >0),则t (x )=e x -2x >0(x >0),所以t (x )在(0,+∞)上单调递增,所以t (x )>t (0)=1,所以e x >x 2(x >0),所以g (6a )=e 6a -14a +sin6a >36a 2-14a -1,设φ(a )=36a 2-14a -1a >12 ,易知φ(a )在12,+∞ 上单调递增,∴φ(a )>36×14-14×12-1=1>0,即g (6a )>0,∴存在x 0∈(0,6a ),使g x 0 =0,当0<x <x 0时,g (x )<0,∴g (x )在0,x 0 上单调递减,此时,g (x )<g (0)=0,不符合题意;综上,存在实数a ,使得当x ≥0时,f (x )≥xe x +(1-a )x 2+cos x -2ax 恒成立,且实数a 的取值范围为-∞,12 .例3.(2023届湖北省新高三摸底联考)已知a ≥0,函数f x =ax +1+a x-ln x .(1)讨论函数f x 的单调性;(2)如果我们用n -m 表示区间m ,n 的长度,试证明:对任意实数a ≥1,关于x 的不等式f x <2a +1的解集的区间长度小于2a +1.【解析】 (1)f x =ax +a +1x-ln x ,定义域为0,+∞ ,f x =a -a +1x 2-1x =ax 2-x -a +1 x 2=x +1 ax -a -1 x 2.若a =0,f x =-x +1 x 2<0恒成立,所以f x 在0,+∞ 上单调递减;若a >0,f x =a x +1 x -1-1a x 2,1+1a >0,当x ∈0,1+1a 时,f x <0;当x ∈1+1a ,+∞ 时,f x >0,所以f x 在0,1+1a 上单调递减,在1+1a ,+∞ 上单调递增.综上,a =0时,f x 在0,+∞ 上单调递减;a >0时,f x 在0,1+1a 上单调递减,在1+1a,+∞ 上单调递增.(2)令g x =f x -2a +1 =ax +a +1x -ln x -2a -1,则g 1 =0,因为a ≥1,由(1)知,g x 在0,1+1a 上单调递减,在1+1a ,+∞ 上单调递增,又1+1a >1,所以g 1+1a <0,令h a =g 2a +2 =2a 2-12-ln 2a +2 ,a ∈1,+∞ ,由h a =4a -22a +2=4a 2+4a -1a +1>0恒成立,所以h a 在1,+∞ 上单调递增.又e 3>16,所以e 316>1,即e 324>1.从而h 1 =32-ln4=ln e 324>0,所以h a >h 1 >0,即g 2a +2 >0.因为2a +2>2,1+1a <2,所以2a +2>1+1a ,所以存在唯一x 1∈1+1a ,2a +2 ,使得g x 1 =0,所以g x <0的解集为1,x 1 ,即f x <2a +1的解集为1,x 1 ,又1,x 1 的区间长度为x 1-1<2a +2 -1=2a +1,原命题得证.例4.(2022届青海省西宁市高三下学期第三次模拟)已知函数f x =x ln x -a 2x 2-x +a a ∈R .(1)讨论函数f x 在0,+∞ 上的单调性;(2)已知x 1,x 2是函数f x 的两个不同的极值点,且x 1<x 2,若不等式e 1+λ<x 1x 2λ恒成立,求正数λ的范围.【解析】 (1)f x =x ln x -a 2x 2-x +a ,所以f x =ln x -ax ,令g x =ln x -ax ,故g x =1x -a =1-ax xx >0 .当a ≤0时,g x >0在0,+∞ 上恒成立,所以g x 在0,+∞ 上单调递增,即f x 在0,+∞ 上单调递增;当a >0时,令g x >0,得0<x <1a ,令g x <0,得x >1a ,所以g x 在0,1a 上单调递增,在1a ,+∞ 上单调递减,即f x 在0,1a 上单调递增,在1a,+∞ 上单调递减.综上所述:当a ≤0时,f x 在0,+∞ 上单调递增;当a >0时,f x 在0,1a 上单调递增,在1a,+∞ 上单调递减.(2)e 1+λ<x 1x 2λ等价于1+λ<ln x 1+λln x 2,由题意可知x 1,x 2分别是方程f x =0的两个根,即ln x -ax =0的两个根,即ln x 1=ax 1,ln x 2=ax 2,原式等价于1+λ<ax 1+λax 2=a x 1+λx 2 .因为λ>0,0<x 1<x 2,所以原式等价于a >1+λx 1+λx 2,又ln x 1=ax 1,ln x 2=ax 2,作差得,ln x 1x 2=a x 1-x 2 ,即a =ln x 1x 2x 1-x 2,所以原式等价于ln x 1x 2x 1-x 2>1+λx 1+λx 2,因为0<x 1<x 2,所以ln x 1x 2<1+λ x 1-x 2 x 1+λx 2恒成立.令t =x 1x 2,t ∈0,1 ,则不等式ln t <1+λ t -1 t +λ在t ∈0,1 上恒成立,令m t =ln t -1+λ t -1 t +λ,又因为m t =1t -1+λ 2t +λ2=t -1 t -λ2 t t +λ 2,当λ2≥1时,可得t ∈0,1 时,m t >0,所以m t 在0,1 上单调递增,又因为m 1 =0,m t <0在0,1 上恒成立,符合题意;当λ2<1时,可得t ∈0,λ2 时,m t >0,t ∈λ2,1 时,m t <0,所以m t 在0,λ2 上单调递增,在λ2,1 上单调递减,又因为m 1 =0,所以m t 在0,1 上不能恒小于0,不符合题意,舍去.综上所述,若不等式e 1+λ<x 1x 2λ恒成立,只需满足λ2≥1,由于λ>0,所以λ≥1,即实数λ的取值范围为:1,+∞ .四、跟踪检测1.(2023届河南省安阳市高三上学期名校调研摸底考试)已知函数f x =e x -ax +b .(1)当b =0时,讨论f x 的单调性;(2)当a >0时,若f x ≥0,求b 的最小值.【解析】 (1)当b =0时,f x =e x -ax ,f x =e x -a ,当a ≤0时,f x =e x -a >0,f x 在R 上单调递增;当a >0时,令f x =0有x =ln a ,当x ∈-∞,ln a 时,f x <0,f x 单调递减,当x ∈ln a ,+∞ 时,f x >0,f x 单调递增.(2)当a >0时,由(1)若f x ≥0,则f ln a ≥0有解即可,即a -a ln a +b ≥0有解,即b ≥a ln a -a 有解,设g a =a ln a -a ,则g a =ln a ,故当0<a <1时,g a <0,g a 单调递减;当a >1时,g a >0,g a 单调递增.故g min a =ln1-1=-1,故当b ≥a ln a -a min =-1.故b 的最小值为-12.(2023届三省三校高三第一次联考)已知函数f (x )=(1-m )x -ln x .(1)讨论f (x )的单调性;(2)若m =0,设g x =f x +2-x e x 在12,1上的最小值为n ,求证:(n -3)(n -4)<0 .【解析】 (1)f (x )=1-m -1x =(1-m )x -1xx >0 .①当1-m ≤0,即m ≥1时:f (x )<0恒成立.故f (x )在(0,+∞)上单调递减.②当1-m >0,即m <1时:令f (x )<0,即(1-m )x -1x <0,解得:0<x <11-m ;所以f (x )在0,11-m上单调递减,在11-m ,+∞ 上单调递增.综上所述:当m ≥1时:f (x )在(0,+∞)上单调递减;当m <1时:f (x )在0,11-m 上单调递减,在11-m ,+∞ 上单调递增.(2)当m =0时,g x =x -ln x +2-x e x ,x ∈12,1 .g x =1-1x -e x +2-x e x =x -1x +1-x e x =1-x e x -1x .因为m x =e x -1x 在12,1 上单调递增,且m 12 =e -2<0,m 1 =e -1>0.所以必存在点x 0∈12,1 ,使g (x 0)=0,即e x 0=1x 0⇒x 0=-ln x 0且当x ∈12,x 0 时g (x )<0,当x ∈x 0,1 时g (x )>0,所以g (x )在区间12,x 0 上单调递减,在区间x 0,1 上单调递减.所以n =g x min =g x 0 =x 0-ln x 0+2-x 0 e x 0=2x 0+2-x 0x 0=2x 0+2x 0-1.x 0∈12,1 .又因n =2x 0+2x 0-1在12,1 上单调递减.所以2+2-1<n <2×12+2×2-1⇒3<n <4.故(n -3)(n -4)<0恒成立.3.(2022届四川省内江市第六中学高三下学期仿真考试)已知函数f x =x -a -1 e x -x 2+2ax a ∈R .(1)讨论f x 的单调性;(2)从下面两个条件中选一个,判断f m 的符号,并说明理由.①0<a <12,0<m <ln2;②1<a <2,1<m <2.【解析】 (1)f x =(x -a )e x -2x +2a =(x -a )e x -2 ,令f x =0,则x =a 或ln2,若a =ln2,f x ≥0,所以函数f x 在R 上为增函数;若a >ln2,当x >a 或x <ln2时,f x >0,当ln2<x <a 时,f x <0,所以函数f x 在(-∞,ln2)和(a ,+∞)上递增,在(ln2,a )上递减;若a <ln2,当x >ln2或x <a 时,f x >0,当a <x <ln2时,f x <0,所以函数f x 在(-∞,a )和(ln2,+∞)上递增,在(a ,ln2)上递减;综上所述,当a =ln2时,函数f x 在R 上为增函数;当a >ln2时,函数f x 在(-∞,ln2)和(a ,+∞)上递增,在(ln2,a )上递减;当a <ln2时,函数f x 在(-∞,a )和(ln2,+∞)上递增,在(a ,ln2)上递减;(2)选①,当0<a <12,0<m <ln2时,由(1)知f x 在(0,a )上递增,在(a ,ln2)上递减,所以f (m )≤f (a )=-e a +a 2,令g (a )=e a -a -10<a <12 ,则g (a )=e a -1,当0<a <12时,g (a )>0,得函数g (a )在0,12上单调递增,所以g (a )>g (0)=0,即e a -a -1>0,则-e a <-a -1,所以f (a )=-e a +a 2<a 2-a -1=a -12 2-54<-1<0,所以f m <0.选②,当1<a <2,1<m <2时.由(1)得1<a <2时,f x 在1,a 上递减,在a ,2 上递增,又f 1 =-ae -1+2a =2-e a -1<0,f 2 =1-a e 2-4+4a <41-a -4+4a =0,所以当1<x <2时,f x <0,所以f m <0.4.(2022届华大新高考联盟名校高考押题卷)设函数f x =1+a ln x x ,其中a ∈R .(1)当a ≥0时,求函数f x 的单调区间;(2)若f x ≤x 2,求实数a 的取值范围.【解析】 (1)f (x )=1+a ln x x(x >0),f (x )=a -(1+a ln x )x 2=a -1-a ln x x 2.当a =0时,f (x )=a -(1+a ln x )x 2=-1x2<0恒成立,则f x 在0,+∞ 上为减函数,当a >0时,令f (x )>0,可得a -1-a ln x >0,则ln x <a -1a,解得0<x <e a -1a ,令f (x )<0,解得x >e a -1a ,综上,当a =0时,f x 的减区间为0,+∞ ;当a >0时,f x 的单调递增区间为0,ea -1a ,单调递减区间为e a -1a ,+∞ .(2)由f (x )≤x 2,可得x 3-a ln x -1≥0设g (x )=x 3-a ln x -1(x >0),则g (x )=3x 2-a x =3x 3-a x.①当a ≤0时,g x >0,g x 单调递增,而g 12=18-a ln 12-1=-78+a ln2<0,所以不满足题意,②当a >0时,令g (x )=3x 3-a x=0,解得x =3a 3,当x ∈0,3a 3 时,g x <0,g x 为减函数,当x ∈3a 3,+∞ 时,g x >0,g x 为增函数,所以g(x)≥g3a3=13+13ln3a-13a ln a-1.令h(a)=13+13ln3a-13a ln a-1(a>0),h (a)=13+13ln3-13(ln a+1)=13(ln3-ln a),当a∈0,3时,h a >0,h a 为增函数,当a∈3,+∞时,h a <0,g x 为减函数,所以h a ≤h3 =0,又g x ≥h a ≥0.则h a =0,解得a=3,所以实数a的取值范围是3 .5.(2022届湖北省卓越高中千校联盟高三高考终极押题卷)已知f x =a-1ln x+x+a x(1)若a<0,讨论函数f x 的单调性;(2)g x =f x +ln x-a x有两个不同的零点x1,x20<x1<x2,若g2x1+λx22+λ>0恒成立,求λ的范围.【解析】(1)f x 定义域为0,+∞f x =a-11x+1-ax2=x2+a-1x-ax2=x+ax-1x2ⅰ)0<-a<1即-1<a<0时,f x <0⇒-a<x<1,f x >0⇒0<x<-a或x>1ⅱ)-a=1即a=-1时,x∈0,+∞,f x ≥0恒成立ⅲ)-a>1即a<-1,f x <0⇒1<x<-a,f x >0⇒0<x<1或x>-a综上:-1<a<0时,x∈-a,1,f x 单调递减;0,-a、1,+∞,f x 单调递增a=-1时,x∈0,+∞,f x 单调递增a<-1时,x∈1,-a,f x 单调递减;0,1、-a,+∞,f x 单调递增(2)g x =a ln x+x,由题a ln x1+x1=0a ln x2+x2=0,0<x1<x2则a ln x1-ln x2=x2-x1,设t=x1x2∈0,1∴a=x2-x1ln x1-ln x2=x2-x1ln tg x =a x+1∴g2x1+λx22+λ=a2+λ2x1+λx2+1=x2-x1ln t⋅2+λ2x1+λx2+1=2+λ1-t2t+λln t+1>0恒成立t∈0,1,∴ln t<0∴2+λ1-t2t+λ+ln t<0恒成立设h t =2+λ1-t2t+λ+ln t,∴h t <0恒成立h t =1t -2+λ 22t +λ2=2t +λ 2-t 2+λ 2t 2t +λ 2=4t -1 t -λ24 t 2t +λ 2ⅰ)λ2≥4时,t -λ24<0,∴h t >0,∴h t 在0,1 上单调递增∴h t <h 1 =0恒成立,∴λ∈-∞,-2 ∪2,+∞ 合题ⅱ)λ2<4,t ∈0,λ24,∴h t >0,∴h t 在0,λ24上单调递增t ∈λ24,1 时,h t <0,∴h t 在λ24,1 上单调递减∴t ∈λ24,1 ,h t >h 1 =0,不满足h t <0恒成立综上:λ∈-∞,-2 ∪2,+∞6.(2022届河南省许平汝联盟高三下学期核心模拟卷)已知函数f x =ln x -ax 2+2a ∈R .(1)讨论f x 的单调性;(2)若f x -2-a x ≥0在x ∈1,e 上恒成立,求实数a 的取值范围.【解析】 (1)f x 的定义域是0,+∞ ,f x =-2ax 2+1x.①当a ≤0时,f x >0恒成立,所以f x 在0,+∞ 上单调递增;②当a >0时,令f x =0,解得x =2a 2a 或-2a 2a (舍),令f x >0,解得0<x <2a 2a,令f x <0,解得x >2a 2a,所以f x 在0,2a 2a上单调递增,在2a 2a ,+∞ 上单调递减.(2)若f x -2-a x ≥0在x ∈1,e 上恒成立,即ln x -ax 2-2-a x +2≥0在x ∈1,e 上恒成立.令g x =ln x -ax 2-2-a x +2,x ∈1,e ,则g x =1x -2ax -2-a =-2ax 2-2-a x +1x =-ax +1 2x -1 x.当a =0时,g x =ln x -2x +2,g e =ln e -2e +2=3-2e <0,不符合题意;当a >0时,g x <0在x ∈1,e 上恒成立,所以g x 在1,e 上单调递减,又g 1 =0,所以g e <g 1 =0,不符合题意;当a <0时,若-1a≤1,即a ≤-1,g x ≥0在x ∈1,e 上恒成立,所以g x 在1,e 上单调递增,又g 1 =0,所以g x ≥0在x ∈1,e 上恒成立,符合题意.若1<-1a <e ,即-1<a <-1e ,令g x >0,解得-1a <x <e ,令g x <0,解得1<x <-1a ,所以g x 在1,-1a 上单调递减,在-1a ,e 上单调递增,所以g x min =g -1a<g 1 =0,不符合题意;若-1a ≥e ,即-1e≤a <0,g x ≤0在x ∈1,e 上恒成立,所以g x 在1,e 上单调递减,又g 1 =0,所以g e <g 1 =0,不符合题意.综上所述,实数a 的取值范围是-∞,-1 .7.(2022届广东省潮州市瓷都中学高三下学期第三次模拟)已知函数f x =2x 3+31+m x 2+6mx x ∈R .(1)讨论函数f x 的单调性;(2)若f 1 =5,函数g x =a ln x +1 -f x x 2≤0在1,+∞ 上恒成立,求整数a 的最大值.【解析】 (1)f x =6x 2+61+m x +6m =6x 2+1+m x +m =6(x +1)(x +m )若m =1时,f (x )≥0,f (x )在R 上单调递增;若m >1时,-m <-1,当x <-m 或x >-1时,f (x )>0,f (x )为增函数,当-m <x <-1时,f (x )<0,f (x )为减函数,若m <1时,-m >-1,当x <-1或x >-m 时,f (x )>0,f (x )为增函数,当-1<x <-m 时,f (x )<0,f (x )为减函数.综上,m =1时,f (x )在R 上单调递增;当m >1时,f (x )在(-∞,-m )和(-1,+∞)上单调递增,在(-m ,-1)上单调递减;当m <1时,f (x )在(-∞,-1)和(-m ,+∞)上单调递增,在(-1,-m )上单调递减.(2)由f (1)=2+3(1+m )+6m =5,解得 m =0,所以f (x )=2x 3+3x 2,由x ∈(1,+∞)时,ln x +1>0,可知g (x )=a (ln x +1)-2x -3≤0在(1,+∞)上恒成立可化为a ≤2x +3ln x +1在x ∈(1,+∞)上恒成立,设h (x )=2x +3ln x +1(x >1),则h (x )=2(ln x +1)-(2x +3)×1x (ln x +1)2=2ln x -3x (ln x +1)2,设φ(x )=2ln x -3x (x >1),则 φ (x )=2x +3x2>0,所以φ(x )在(1,+∞)上单调递增,又φ(2)=2ln2-32=ln16-32<0,φ52 =2ln 52-65=25ln 52-3 5>0,所以方程h (x )=0有且只有一个实根x 0,且 2<x 0<52,2ln x 0=3x 0,所以在(1,x 0)上,h (x )<0, h (x )单调递减,在x 0,+∞ 上,h (x )>0,h (x )单调递增,所以函数h (x )的最小值为h x 0 =2x 0+3ln x 0+1=2x 0+332x 0+1=2x 0∈4,5 ,从而a ≤2x 0,又a 为整数,所以a 的最大值为4.8.(2022四川省资阳市高三第一次质量检测)已知函数f (x )=(x -a -1)e x -12ax 2+a 2x .(1)讨论f (x )的单调性;(2)若f (x )在(-∞,0)上只有一个极值,且该极值小于-e a -1,求a 的取值范围.【解析】(1)由题意,函数f (x )=(x -a -1)e x -12ax 2+a 2x ,可得f (x )=(x -a )e x -ax +a 2=(x -a )e x -a ,当a ≤0时,e x -a >0,令f (x )<0,解得x <a ;令f (x )>0,解得x >a ,故f (x )在(-∞,a )递减,在(a ,+∞)递增,当a >0时,令f (x )=0,解得x 1=a 或x 2=ln a ,设g (a )=a -ln a ,可得g (a )=a -1a,当a >1时,g (a )>0;当0<a <1时,g (a )<0,故g (x )min =g (1)=1>0,故a >ln a ,由f (x )>0,解得x >a 或x <ln a ,由f (x )<0,解得ln a <x <a ,故f (x )在(-∞,ln a )递增,在(ln a ,a )递减,在(a ,+∞)递增,综上可得:当a ≤0时,f (x )在(-∞,a )递减,在(a ,+∞)递增,a >0时,f (x )在(-∞,ln a )递增,在(ln a ,a )递减,在(a ,+∞)递增;(2)当a <0时,由(1)知,f (x )在(-∞,a )递减,在(a ,+∞)递增,故f x 极小值=f (a )=-e a +12a 3<-e a -1,解得a <-32,当0<a <1时,ln a <0,由(1)知f (x )在x =ln a 处取极大值,设h (a )=f (ln a )=(ln a -a -1)a -12a ln 2a +a 2ln a =a ln a 1-12ln a +a -a 2-a ,则h (a )=-12ln 2a +2a ln a -a ,因为0<a <1,可得ln a <0,所以h (a )<0,h (a )在(0,1)递减,所以h (a )>h (1)=-2>-e a -1,所以0<a <1不合题意,当a ≥1时,ln a ≥0,由(1)知f (x )在(-∞,0)递增,此时f (x )在(-∞,0)无极值,不符合题意,综上可得,实数a 的取值范围是(-∞,-32).9.(2021重庆市第八中学高三下学期高考适应性考试)已知函数f x =x +ln x -a x,g x =a -2x ln x +x .(1)讨论f x 的单调性;(2)若a ∈1,4 ,记f x 的零点为x 1,g x 的极大值点为x 2,求证:x 1<x 2·【解析】(1)f x 的定义域为0,+∞ ,f ′x =1+1x +a x 2=x 2+x +a x 2,当a ≥0时,f ′x >0,f x 在0,+∞ 上单调递增:当a <0时,Δ=1-4a >0,f ′x =0在0,+∞ 上有唯一正根-1+1-4a 2,当x ∈0,-1+1-4a 2时,f ′x <0,单调递减;当x ∈-1+1-4a 2,+∞ 时,f ′x >0,f x 单调递增;综上,当a ≥0时,f x 在0,+∞ 上单调递增;当a <0时,f x 在0,-1+1-4a 2 上单调递减;在-1+1-4a 2,+∞ 上单调递增.(2)由(1)知,当a ∈1,4 时,f x 在0,+∞ 上单调递增,且f 1 =1-a <0,f 2 =2+ln2-a 2>0,所以f x 在0,+∞ 上有唯一零点x 1∈1,2 .又g ′x =-2ln x +a x -1,又a ∈1,4 ,由单调性运算性质可知,g ′x 在0,+∞ 上单调递减,且g ′1 =a -1>0,g ′4 =-2ln4+a 4-1<0,故存在x 0∈1,4 ,使得g ′x 0 =0,即a x 0=2ln x 0+1,当x ∈0,x 0 时,g ′x >0,g x 单调递减;当x ∈x 0,+∞ 时,g ′x <0,g x 单调递增;所以x 0是g x 唯一极大值点,所以x 0=x 2,故a x 2=2ln x 2+1,因此f x 2 =x 2+ln x 2-a x 2=x 2+ln x 2-2ln x 2-1=x 2-ln x 2-1.设h x =x -ln x -1,因为x ∈1,4 ,h ′x =1-1x >0,所以h ′x 在1,4 上单调递增,所以h x >h 1 =0.故有f x 2 >0=f x 1 ,又f x 在0,+∞ 上单调递增,所以x 1<x 2.10.(2021山东省烟台市高三高考适应性练习)已知函数f x =a x 2-x -ln x a ∈R .(1)讨论函数f x 的单调性;(2)证明:当x >1时,2e x -1ln x ≥x 2+1x 2-x.【解析】(1)函数f x 的定义域为0,+∞ ,f x =a 2x -1 -1x =2ax 2-ax -1x.令g x =2ax 2-ax -1.①当a =0时,g x =-1<0,f x =g x x<0,故f x 在0,+∞ 单调递减;②当a ≠0时,g x 为二次函数,Δ=a 2+8a .若Δ≤0,即-8≤a <0,则g x 的图象为开口向下的抛物线且g x ≤0,所以f x ≤0,故f x 在0,+∞ 单调递减;若Δ>0,即a <-8或a >0,令g x =0,得x 1=a -a 2+8a 4a ,x 2=a +a 2+8a 4a.当a <-8时,g x 图象为开口向下的抛物线,0<x 2<x 1,所以当x ∈0,x 2 或x ∈x 1,+∞ 时,g x <0,所以f x <0,f x 单调递减;当x ∈x 2,x 1 时,g x >0,所以f x >0,f x 单调递增;当a >0时,g x 图象为开口向上的抛物线,x 1<0<x 2,所以当x ∈0,x 2 ,g x ≤0,所以f x <0,故f x 单调递减;当x ∈x 2,+∞ 时,g x >0,所以f x >0,f x 单调递增.综上,当a <-8时,f x 在0,a +a 2+8a 4a 和a -a 2+8a 4a ,+∞上单调递减,在a +a 2+8a 4a ,a -a 2+8a 4a上单调递增;当a >0时,f x 在0,a +a 2+8a 4a 单调递减,在a +a 2+8a 4a ,+∞上单调递增;当-8≤a ≤0,f x 在0,+∞ 单调递减;(2)由(1)知,当a =1时,f x 在0,1 单调递减,在1,+∞ 单调递增,因此对∀x >1恒有f x >f 1 ,即x 2-x >ln x .因为0<ln x <x 2-x ,若2e x -1≥x 2+1成立,则2e x -1ln x ≥x 2+1x 2-x 成立.令φx =e x -1-12x 2+1 x ≥1 ,则φ x =e x -1-x ,φ x =e x -1-1.因为x ≥1,所以φ x ≥0,所以φ x 在1,+∞ 单调递增,又φ 1 =0,所以当x ≥1时,φ x ≥0,所以φx 在1,+∞ 单调递增,又φ1 =0,所以对∀x >1恒有φx >φ1 =0,即2e x -1≥x 2+1.1ln x>1x2-x>0,由不等式的基本性质可得2e x-1ln x≥x2+1x2-x.当x>1时,0<ln x<x2-x,则。

利用导数研究含参函数单调性

利用导数研究含参函数单调性

利用导数研究含参函数单调性函数的单调性是指函数随着自变量的变化,函数值的增减规律。

利用导数可以研究含参函数的单调性。

考虑含参函数$f(x;a)$,其中$a$是函数的参数。

我们希望研究函数$f$相对于自变量$x$和参数$a$的单调性。

首先,我们来研究函数相对于自变量$x$的单调性。

要研究函数$f(x;a)$的单调性,我们需要计算其导数。

记$f'(x;a)$为函数$f(x;a)$的导数。

根据导数的定义,我们有$$f'(x;a) = \lim_{\Delta x \to 0} \frac{f(x+\Delta x;a) - f(x;a)}{\Delta x}$$这表示了函数$f(x;a)$在$x$处的切线的斜率。

我们可以通过计算导数来研究函数的单调性。

具体来说,当导数$f'(x;a)$在一些区间内始终大于零时,函数$f(x;a)$在该区间内是递增的;当导数$f'(x;a)$在一些区间内始终小于零时,函数$f(x;a)$在该区间内是递减的。

例如,考虑函数$f(x;a) = ax^2 + bx + c$,其中$a,b,c$是参数。

我们可以计算其导数$f'(x;a) = 2ax + b$。

当$a>0$时,$f'(x;a)$在整个实数域上大于零,这表示函数$f(x;a)$是递增的;当$a<0$时,$f'(x;a)$在整个实数域上小于零,这表示函数$f(x;a)$是递减的。

接下来,我们来研究函数相对于参数$a$的单调性。

要研究函数$f(x;a)$相对于参数$a$的单调性,我们需要计算其偏导数。

记$\frac{\partial f}{\partial a}(x;a)$为函数$f(x;a)$相对于参数$a$的偏导数。

根据偏导数的定义,我们有$$\frac{\partial f}{\partial a}(x;a) = \lim_{\Delta a \to 0} \frac{f(x;a+\Delta a) - f(x;a)}{\Delta a}$$类似地,我们可以通过计算偏导数来研究函数相对于参数的单调性。

(完整版)导数讨论含参单调性习题(含详解答案).doc

(完整版)导数讨论含参单调性习题(含详解答案).doc

1.设函数.( 1)当时,函数与在处的切线互相垂直,求的值;( 2)若函数在定义域内不单调,求的取值范围;( 3)是否存在正实数,使得对任意正实数恒成立?若存在,求出满足条件的实数;若不存在,请说明理由.2.已知函数是的导函数,为自然对数的底数.( 1)讨论的单调性;( 2)当时,证明:;( 3)当时,判断函数零点的个数,并说明理由.3.已知函数(其中,).( 1)当时,若在其定义域内为单调函数,求的取值范围;( 2)当时,是否存在实数,使得当时,不等式恒成立,如果存在,求的取值范围,如果不存在,说明理由(其中是自然对数的底数,). 4.已知函数,其中为常数.( 1)讨论函数的单调性;( 2)若存在两个极值点,求证:无论实数取什么值都有.5 .已知函数(为常数)是实数集上的奇函数,函数是区间上的减函数 .( 1)求的值;( 2)若在及所在的取值范围上恒成立,求的取值范围;6.已知函数ln , x ,其中.f x ax x F x e ax x 0, a 0( 1)若f x 和 F x 在区间 0,ln3 上具有相同的单调性,求实数 a 的取值范围;( 2)若a , 1 ,且函数 g x xe ax 1 2ax f x 的最小值为 M ,求 M 的e2最小值 .7.已知函数 f ( x) e x m ln x .( 1)如x 1 是函数 f (x) 的极值点,求实数m 的值并讨论的单调性 f (x) ;( 2)若x x0是函数f ( x)的极值点,且f ( x) 0 恒成立,求实数m 的取值范围(注:已知常数 a 满足 a ln a 1 ) .8.已知函数 f x ln 1 mx x2mx ,其中0 m 1 .2( 1)当m 1时,求证: 1 x 0 时, f x x3;3( 2)试讨论函数y f x 的零点个数.9.已知e 是自然对数的底数 , F x 2e x 1 x ln x, f x a x 1 3 .(1)设T x F x f x , 当a 1 2e 1时, 求证: T x 在 0, 上单调递增;(2)若x 1, F x f x , 求实数a的取值范围 .10 .已知函数f x e x ax 2(1)若a 1 ,求函数f x 在区间[ 1,1]的最小值;(2)若a R, 讨论函数 f x 在 (0, ) 的单调性;(3)若对于任意的x1, x2 (0, ), 且 x1 x2,都有 x2 f ( x1) a x1 f ( x2 ) a 成立,求 a 的取值范围。

用导数解决含参数的函数的单调性

用导数解决含参数的函数的单调性

用导数解决含参数的函数的单调性单调性是数学中一个重要的概念,用于描述函数在特定区间内的增减性质。

在解决含参数的函数的单调性时,我们可以利用导数的概念和性质进行分析和推导。

本文将介绍如何使用导数解决含参数的函数的单调性,并给出相应的示例。

首先,我们来回顾一下导数的定义。

对于函数$f(x)$在点$x=a$处可导,其导数$f'(a)$表示函数曲线在该点处的斜率,可以通过以下公式计算:$$f'(a)=\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}$$其中,$h$为一个无限趋近于0的值。

导数可以帮助我们研究函数的变化趋势、最值以及单调性等性质。

接下来,我们将探讨含参数的函数的单调性。

含参数的函数形式可以表示为$f(x;a)$,其中$a$为参数。

我们的目标是找到使函数单调的参数范围。

解决这个问题的关键是求导。

首先,我们需要计算函数的一阶导数$f'(x;a)$和二阶导数$f''(x;a)$。

一阶导数反映了函数的变化趋势,二阶导数揭示了函数的曲率性质。

接下来,我们需要找出函数的临界点和在其定义域内的驻点。

临界点是导数为0或不存在的点,驻点是导数在该点处为0的点。

当我们求出一阶导数$f'(x;a)$后,我们可以通过求解方程$f'(x;a)=0$来计算临界点和驻点。

这些点将给出函数的极值或拐点。

通过对导数方程进行求解,我们可以找到参数$a$满足$f'(x;a)=0$,从而得到临界点和驻点。

接下来,我们需要进行符号分析,确定函数的区间性质。

具体来说,当一阶导数$f'(x;a)$在一些区间内大于0时,函数$f(x;a)$是递增的;当一阶导数在一些区间内小于0时,函数是递减的;当一阶导数的正负性在一些点发生改变时,该点可能是函数的拐点。

当我们确定函数的单调性时,还应该考虑到函数的定义域。

特别是当参数$a$对函数的定义域有影响时,我们需要对不同的参数范围进行分析,以确定函数的单调性。

使用导数来解决含参函数单调性的讨论方法的总结

使用导数来解决含参函数单调性的讨论方法的总结

155使用导数来解决含参函数单调性的讨论方法的总结蓝荣升作者发现,使用导数来解决函数的单调性,它在高中数学试卷中占有相当大的份额。

函数的单调性是求解函数极值,最值(范围)以及零点个数问题的基础,它经常出现在压轴题的第一问,并且存在一定的困难。

求函数单调性的最困难的部分是含参函数的分类讨论,而分类讨论的思想又是高中阶段着重培养的思想方法。

因此,利用分类讨论来解决带参数的函数单调性问题已成为近年来高考的重点和热点。

这类问题的难点在于学生不懂得如何讨论,或者讨论不全面,这里总结了带参函数单调性的分类讨论的一般步骤,在学会之后,没有不知道如何讨论或讨论不全面的情况。

以下是对单调性一般步骤的讨论(解决了讨论的大部分单调性问题):第一步:求定义域,单调区间是定义域的子集,因此求单调区间必须先求定义域,定义域有三种常见的情况需要讨论。

(1)偶次根式,根号下整体不小于0。

(2)分式,分母不等于0。

(3)对数,真数大于0。

第二步:求函数导数,令0)('=x f ,求出它的根21,x x ,根的个数一般有三种情况:无根、一个根,两个根。

导函数是分式一般先通分,并且还要考虑能不能因式分解。

第三步:如果方程有两根,则要考虑4种情况;如果只有一根则只需考虑第一种情况;如果根不能被求解,并且导数不能被判断出正的或负的,那么我们就需要求函数的二阶导数,利用二阶导数的正负来确定一阶导数的单调性,然后利用最值得到一阶导数的正负,进而判断出原函数的单调性。

(1)是否存在根(判断根是否在定义域中),得到参数的讨论点。

(2)21x x =,得到参数的讨论点。

(3)21x x >,得到参数的讨论点。

(4)21x x <,得到参数的讨论点。

第四步:判断21,x x 分定义域的每个区间的导数的正负情况,如果导数大于0,则函数单调递增,如果导数小于0,则函数单调递减。

以下三种常见方法可用来判断导数的正负:(1)数轴穿根法:(2)函数图像法:(3)区域判断法:只需要判断每个因式的正负。

使用导数来解决含参函数单调性的讨论方法的总结

使用导数来解决含参函数单调性的讨论方法的总结

使用导数来解决含参函数单调性的讨论方法的总结
利用导数来解决含参函数单调性问题,是一个经典的数学问题,也是高数学习者常遇到的一大难题。

要想确定一个参数函数的单调性,就要考虑它的导数变化,这就引出了利用导数来解决含参函数单调性的讨论方法。

首先,我们必须了解如何计算函数的导数。

对于一元函数,可以从原函数中求得导数的定义,即求偏导;也可以使用分部法及牛顿法,直接求出导数;而多元函数的导数一般由偏导方程式求得,其中可利用梯度、相对极值等概念计算函数的偏导数及其导数大小。

之后,可以利用导数把单调性转化为数学上的一种判断,即若一函数的导数大小符合特定条件,则该函数的单调性也得到确定,不断更新函数的参数就可以实现单调性。

如果在更新函数参数的过程中,函数的导数量一直大于0,则函数具有上升的单调性,反之,如果函数的导数量一直小于0,则函数具有下降的单调性。

此外,利用导数来解决含参函数单调性的另一个方面就是,可以根据该函数的导数表达式,计算其函数值的变化与自变量的变化。

当自变量变化时,就可以求取函数的导数值,从而归结出函数某个确定点处的单调性。

总之,利用导数来解决含参函数单调性,总结起来就是这样:首先,计算函数导数,然后根据函数的导数表达式近似计算函数某一确定点处的单调性;最后,根据函数的导数大小,可以判断该函数的单调性,并利用不断更新函数参数的过程来最大程度地实现单调性。

含参单调性讨论 解析版

含参单调性讨论 解析版

x 1 x)2 ,
令 g(x) ln x x 1,所以 g(x) 1 1 1 x ,
x
x

x
0,
1 2
时,
g ( x)
0,
g(x)
单调递增,
g( x)max
g(1 2
)
ln
2
1 2
0,
即 h(x)
0
,所以 h(x)
x 1 x ln x

0,
1 2
单调递减,所以
h(
x)
min
h( 1) 2
【分析】(1)求出函数的导数,讨论 a 的取值情况,结合解不等式即可求得答案;
(2)根据所给范围,讨论 a 的取值范围,确定导数正负,判断函数的单调性,即可求
得函数最小值.
【详解】(1)由题意得 f (x) 2x (2a 1) a (2x 1)(x a) ,
x
x
f (x) 定义域是{x | x 0} ,
当 0 a 1 时,由 f (x) 0 得 0 x a 或 x 1 ,
含参单调性讨论解析
一、解答题 1.讨论函数 f (x) ax 1 (a 1) ln x 的单调性
x
【答案】答案见解析
【分析】求导
f
x
ax
1 x
x2
1
,再分
a
0

a
0,1

a
1,
a
1,
讨论求
解.
【详解】解: f x 的定义域为 0, ,
f x a
1 x2
a 1 x
ax 2
a 1x 1
时,
f
x
0,
f

导数讨论含参函数的单调性

导数讨论含参函数的单调性

导数讨论含参函数的单调性【思想方法】上为常函数在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('⇒=∈⇒<∈⇒>∈⇔∈⇔<⇔∈⇔>讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论。

【典例讲解】例1 讨论xax x f +=)(的单调性,求其单调区间 解:xax x f +=)(的定义域为),0()0,(+∞-∞ )0(1)('222≠-=-=x xa x x a x f (它与a x x g -=2)(同号)I )当0≤a 时,)0(0)('≠>x x f 恒成立,此时)(x f 在)0,(-∞和),0(+∞都是单调增函数,即)(x f 的增区间是)0,(-∞和),0(+∞;II) 当0>a 时 a x a x x x f >-<⇔≠>或)0(0)(',a x x a x x f <<<<-⇔≠<00)0(0)('或,此时)(x f 在),(a --∞和),(+∞a 都是单调增函数,)(x f 在)0,(a -和),0(a 都是单调减函数,即)(x f 的增区间为),(a --∞和),(+∞a ;)(x f 的减区间为)0,(a -和),0(a .步骤小结:1、先求函数的定义域,2、求导函数(化为乘除分解式,便于讨论正负),3、先讨论只有一种单调区间的(导函数同号的)情况,4、再讨论有增有减的情况(导函数有正有负,以其零点分界),5、注意函数的断点,不连续的同类单调区间不要合并。

利用导数研究含参函数单调性

利用导数研究含参函数单调性

利用导数研究含参函数单调性导数是研究函数的一个重要工具,可以用来研究函数的单调性。

含参函数即包含一个或多个参数的函数,我们可以通过对导数的研究来研究含参函数的单调性,下面我们就来详细介绍。

首先,我们先回顾一下导数的定义。

对于含有一个自变量的函数y=f(x),我们可以通过求导来得到函数在其中一点的斜率。

导数的定义为:f'(x) = lim(h->0) {f(x+h)-f(x)} / h其中,f'(x)表示函数f(x)在点x处的导数。

如果函数在其中一点的导数大于0,我们可以认为该点函数是递增的;如果导数小于0,则是递减的。

如果导数恒大于0,则函数是严格递增的;如果导数恒小于0,则函数是严格递减的。

对于含参函数y=f(x,a,b,c...),其中a,b,c...为参数,我们也可以研究其单调性。

我们可以首先将含参函数看作一个关于自变量x的函数,然后求导。

求导后的函数中不再含有参数,其导数的正负号和零点即可以用来研究函数在不同参数取值情况下的单调性。

接下来,我们通过一个具体的例子来说明。

考虑函数y=f(x,a)=ax^2,其中a为参数。

我们可以先固定a的值,然后研究函数关于x的变化情况,再通过参数a的取值来研究函数的单调性。

首先,我们分别求导得到函数关于自变量x的导数:f'(x,a) = 2ax现在我们可以根据导数的正负号来研究函数的单调性。

当a>0时,f'(x,a)恒大于0,即导数恒大于0,说明函数递增;当a<0时,f'(x,a)恒小于0,即导数恒小于0,说明函数递减。

接下来,我们可以通过研究参数a的取值来研究函数的单调性。

当a>0时,函数为开口向上的抛物线,随着a的增大,函数的正值部分会更接近x轴,说明函数递减的速度会更快,即单调性变强;当a<0时,函数为开口向下的抛物线,随着a的减小,函数的负值部分会更接近x轴,说明函数递减的速度会更快,即单调性变强。

利用导数研究含参函数的单调性

利用导数研究含参函数的单调性

1 f ( x )在 ( , 2) 上 为 减 函 数 。 a
综上:
(1)当a 0时 , f ( x)在 (0,2) 上 递 增 , 在 (
2, ) 上 递 减 。
1 (2)当a 时 , f ( x )在 (0, ) 上 为 增 函 数 。 2 1 1 (3)当0 a 时 , f ( x )在 (0, 2) 和 ( ,)上 为 增 函 数 ; 2 a 1 f ( x )在 (2, ) 上 为 减 函 数 。 a 1 1 (4)当a 时 , f ( x )在 (0, ) 和 ( 2,)上 为 增 函 数 ; 2 a
1、能利用导数法判断含参函数的单调性
2、掌握讨论含参函数单调性的几种常见 分类标准
独立自学
1 用导数判断函数单调性的法则 、 :
如果在(a,b)内, f ( x)>0, 则f ( x)在此区间是增函数;
则f ( x)在此区间是减函数。 如果在(a,b)内,f ( x)<0,
2、求函数单调区间的一般步骤是 1、求定义域 2、求导f'(x) 3、令f'(x)>0,求出增区间,令f'(x)<0,求出减区间。
课题导入 安徽高考真题展示:
2 (09年)已知函数 f ( x) x a(2 ln x), a 0.讨论 f ( x)的单调性 x
含参数函数的单调性问题是历年高考中的一个重要 考点,同时也是学习中的一个难点。那么我们该如 何应对这一类问题呢?
利用导数研究含参函数的单调性
目标引领
探究: 1、在求导计算前应注意什么问题? 2、导函数中影响符号变化的部分是什么函数? 3、在利用导函数判别单调性时,应如何讨论? 无法确定导函数中二次结构的判别式符号,故应对判别式进行 分类讨论。 归纳总结: 对于二次函数取值正负,当根的情况 不能确定时,要对判别式进行讨论。

用导数研究含参函数的单调性

用导数研究含参函数的单调性

用导数研究含参函数的单调性导数是研究函数在各个点上的斜率或变化率的工具,可以用来研究含参函数的单调性。

含参函数是指函数中包含一个或多个参数的函数。

研究含参函数的单调性,既可以固定参数的值,将其视为常数,研究含参函数的单调性;也可以将参数值作为变量,研究函数在不同参数取值下的单调性。

一、固定参数的值,研究含参函数的单调性:对于含参函数$f(x,\theta)$,其中$\theta$为参数,固定参数$\theta$的值,将其视为常数。

此时,可将含参函数简化为仅含有变量$x$的函数$f(x)$。

然后利用导数的概念和性质来研究这个简化后的函数$f(x)$的单调性。

具体步骤如下:1.求出函数$f(x)$的导函数$f'(x)$,即计算$f(x)$关于$x$的导数。

这一步可以直接用导数的定义来计算,或者应用常见函数的导数公式,例如幂函数、指数函数、对数函数等的导数公式。

2.求出函数$f'(x)$的零点,即求出方程$f'(x)=0$的解。

这些零点对应于函数$f(x)$的驻点,它们是函数在一些点上的斜率为0的点。

3.利用导数的符号来研究函数$f(x)$的单调性。

若$f'(x)>0$,表示函数$f(x)$在该点处的斜率为正,则函数$f(x)$单调递增;若$f'(x)<0$,表示函数$f(x)$在该点处的斜率为负,则函数$f(x)$单调递减。

4.将求出的零点和函数的特殊点(如端点、奇点等)放在数轴上,根据导数的符号,划分函数$f(x)$的单调区间。

通过以上步骤,可以得到函数$f(x,\theta)$在固定参数$\theta$的取值下,函数$f(x)$的单调性。

二、将参数值作为变量,研究函数在不同参数取值下的单调性:对于含参函数$f(x,\theta)$,其中$\theta$为参数,可以将参数值$\theta$看作是一个变量,通过改变参数值来研究函数的单调性。

这种情况下,可以使用偏导数来研究含参函数的单调性。

导数讨论含参单调性习题含详细讲解问题详解

导数讨论含参单调性习题含详细讲解问题详解

实用标准文案m(x + n)f(x) = lnx z g(x) = --- (m > 0)1.设函数X + 1 (D 当m = 1时,函数y = f(x)与y = g(x)在x = i 处的切线互相垂直,求n 的值:(2)若函数y = f(x)-g(x)在定义域不单调,求m-n 的取值国; 满足条件的实数a ;若不存在,请说明理由.2. 已知函数= (ax + l)lnx-ax + 3z a € R /g (x)^f(x)^导函数,e 为自然对数的底数. (1) 讨论g(x)的单调性; (2) 当a>e 时,证明:g(e _a)>0.(3) 当a>e 时,判断函数f(x)零点的个数,并说明理由. bf(x) = a(x + -)+ blnx3. 已知函数 x (其中,a,b 6 R).(1) 当b = -4时,若f(x)在其定义域为单调函数,求a 的取值围;(2) 当a = 7时,是否存在实数b,使得当xe [e,e 2]时,不等式f(x)>0恒成立,如果存在, 求b的取值围,如果不存在,说明理由(其中e 是自然对数的底数,e = 2.71828 -).4. 已知函数g(x) = x 2+ ln(x + a),其中a 为常数. (1) 讨论函数g(x)的单调性;g(xj + g(x 2) x x + x 2 > g( --------- )(2) 若g(x)存在两个极值点X/2,求证:无论实数a 取什么值都有2 2・5. 已知函数f(x) = ln(e x+ a) (a 为常数)是实数集R 上的奇函数,函数g(x) = Xf(x) + sinx 是 区间【-1, 1]上的减函数.(1)求a 的值;(2)若g(x)<t 2+ Xt + l 在xEHL, 1]及入所在的取值国上恒成立,求t 的取值国:Inx 2—=x -2ex + m(3)讨论关于x 的方程f(x)的根的个数.(3)是否存在正实数6使得 2a xf(;)・f 声屮(寿 <0对任意正实数X 恒成立?若存在,求出文档大全实用标准文案6. 已知函数 f (x) = ax-\nx,F (x) = e x + ax ,其中 x>O,a <0.(1) 若/(X)和F(x)在区间(0,ln3)上具有相同的单调性,数a 的取值围;(2) 若aw -oo,-—,且函数 g (x) = xe a ^1 - 2av+ f (x)的最小值为 M,求M 的X €-最小值.7. 已知函数 f(x) = e x+m -\nx.(1 )如X = 1是函数/(X)的极值点,数〃7的值并讨论的单调性/(X):(2)若X = A O 是函数/(X)的极值点,且f(x) > 0恒成立,数加的取值围(注:已知 常数a 满足<71116/= 1)・牙3(1) 当加=1 时,求证:-lvxS 0 时,f (x) < —:(2) 试讨论函数y = /(A )的零点个数.9. 已知£ 是自然对数的底数,F(x) = 2e'~1+x+liix,/(x) = d r(x-l) + 3.⑴设T(x) = F(x)-/(x),当0 = 1 + 2以时,求证:T(x)在(0,+oo)±单调递增;(2)若 Vx>l,F(x)>/(x),数a 的取值囤. 10. 已知函数 /(x) = e v+ax-2(1) 若a = -l 求函数/(%)在区间[-1,1]的最小值; (2) 若a G /?,讨论函数/(X)在(0,+co)的单调性; (3) 若对于任意的為,耳丘(°,+8),且兀 <耳,都有xJ/CG + a ] vxJ/Vj + a ]成立,求a 的取值囲。

导数应用之含参函数单调性的讨论(含答案)

导数应用之含参函数单调性的讨论(含答案)

1
导数应用之含参函数单调性的讨论
一.预备知识:
(一)二次方程根的分布:
1.已知方程4x 2+2(m-1)x+(2m+3)=0(m ∈R )有两个正根,求实数m 的取值范围。

2.已知方程2x 2-(m+1)x+m=0有一正根和一负根,求实数m 的取值范围。

(二)穿根法拓展:
1.
02
2
2>--+x x x 2.(e x -1)(x-1)>0 3.(e x -1)(x-1)2>0
4.(e -x -1)(x-1)>0 5.(1-lnx)(x-1)>0
二.导后“一次”型:
1.已知函数f(x)=ax-(a+1)·ln(x+1),a ≥-1,求函数f(x)的单调区间。

2.已知函数f(x)=e x -ax ,讨论函数f(x)的单调性。

三.导后“二次型”:
3.已知函数f(x)=lnx+x 2-ax(a ∈R),求函数f(x)的单调区间。

2
4.已知函数f(x)=m ·ln(x+2)+2
1x 2
+1,讨论函数f(x)的单调性。

5.求函数f(x)=(1-a)lnx-x+2
2
ax 的单调区间。

6.已知函数f(x)=(ax 2-x)·lnx-2
1ax 2
+x ,讨论f(x)的单调性。

四.导后求导型
7.已知函数f(x)=e x -x 2,求函数f(x)的单调区间。

8.已知函数f(x)=
x
e
x 1
ln ,求函数f(x)的单调区间。

9.已知函数f(x)=e mx +x 2-mx ,讨论函数f(x)的单调性。

3
4。

导数单调性含参讨论问题

导数单调性含参讨论问题

导数单调性专题:导数单调性含参讨论——核心在于找临界点:导数单调性含参讨论临界点一、因为极值点二、因为二次项系数(主要是开口方向)三、因为定义域(定义域的限制)四、因为绝对值一、因为极值点的大小比较而产生的分类讨论——这是一种最主流的分类讨论1、(江苏高考)已知函数b ax x x f ++=23)((R b a ∈,)(1)讨论)(x f 的单调性:2、(四川高考)已知函数a a ax x x a x x f +--++-=2222ln )(2)(,)0(>a 其中)(x g 是)(x f 的导函数,讨论函数)(x g 单调性:二、因为二次项系数含有参数而产生的分类讨论3、(北京高考)已知函数kx e k x x f •-=2)()((1)讨论函数)(x f 单调性:三、因定义域的限制而产生的分类讨论——这是一种最容易忽略的分类讨论4、(山东高考)已知函数11ln )(--+-=xa ax x x f (R a ∈) (1)讨论函数)(x f 单调性:四、因绝对值而产生的分类讨论——这是一种天然的分类讨论5、(浙江高考)已知函数a=3(3(R+)f-xxxa∈)(1)若函数))((aM-M,求)am (x[-上的最大值和最小值分别记为)f在]1,1(),m(aa回家作业:1、已知函数x)(2++=,求)ln-2(af)1xaxxf的单调区间;(x。

导数专题:含参函数单调性讨论问题(解析版)

导数专题:含参函数单调性讨论问题(解析版)

导数专题:含参函数单调性讨论问题一、导数与函数的单调性1、用导数求函数的单调性的概念:在某个区间(,)a b 内,如果()0f x '≥,那么函数()y f x =在这个区间内单调递增;如果()0f x '≤,那么函数()y f x =在这个区间内单调递减.【注意】(1)在某区间内()0(()0)f x f x ''><是函数()f x 在此区间上为增(减)函数的充分不必要条件.(2)可导函数()f x 在(,)a b 上是增(减)函数的充要条件是对(,)x a b ∀∈,都有()0(()0)f x f x ''><且()f x '在(,)a b 上的任何子区间内都不恒为零.2、确定函数单调区间的求法(1)确定函数()f x 的定义域;(2)求()f x ';(3)解不等式()0f x '>,解集在定义域内的部分为单调递增区间;(4)解不等式()0f x '<,解集在定义域内的部分为单调递减区间.二、含参函数单调性讨论依据讨论含参函数的单调性,其本质是导函数符号的变化情况,所以讨论的关键是抓住导函数解析式中的符号变化部分,即导数的主要部分,简称导主。

讨论时要考虑参数所在的位置及参数取值对导函数符号的影响,一般需要分四个层次来分类:(1)最高次幂的系数是否为0,即“是不是”;(2)导函数是都有变号零点,即“有没有”;(3)导函数的变号零点是否在定义域或指定区间内,即“在不在”;(4)导函数有多个零点时大小关系,即“大不大”。

三、两大类含参导函数的具体方法1、含参一次函数单调性讨论(1)讨论最高次项是否为0,正负情况;(2)求解导函数的根;(3)定义域划分为若干个单调区间,分别讨论每个区间上导函数的正负值.2、含参二次函数单调性的讨论(1)确定函数的定义域;(2)讨论最高次项是否为0,正负情况;(3)可因式分解型,解得12,x x (注意讨论12x x =);不可因式分解型,讨论0∆≤及0∆>;(4)讨论1x 和2x 的大小,能因式分解的,注意讨论12x x =;(5)12,x x 将定义域划分为若干个单调区间,分别讨论每个区间上导函数的正负值,判断根和区间端点位置关系的方法有3种:端点函数值+对称轴;韦达定理;求根公式。

利用导数讨论含参函数的单调性

利用导数讨论含参函数的单调性

利用导数讨论含参函数的单调性讨论函数的单调性是研究函数问题的基础,对于函数的最值、极值、零点等性质的研究,都是以函数的单调性为基础展开的。

在此,主要讨论含参函数单调性的讨论方法。

函数的单调性由导函数的正负决定,讨论函数的单调性关键在于研究导函数的正负。

含参函数导函数正负的确定最大的困难在于参数的影响,如何对参数进行分类讨论是问题的关键。

在此,我们将提出三种方法。

一.分离参数、数形结合函数求导后,导函数中的参数可以分离,形如:m x g x f -=)()('的形式,若)(x g 有最小值,则分min )(x g m ≤,min )(x g m >两种情况进行分类讨论。

(1)当min )(x g m ≤时,0)()('≥-=m x g x f ;(2)当min )(x g m >时,若0)()('=-=m x g x f 有一个解,且)(x g 单调,设解为0x ,则0x 将定义域分为两个区间,讨论函数的单调性。

若)(x g 有最大值,则分max )(x g m ≥,max )(x g m <两种情况进行分类讨论。

1.(2012年全国卷文科21题) 设函数2)(--=ax e x f x . (1)求)(x f 的单调区间;解:函数)(x f 的定义域为()+∞∞-,,a e x f x -=)(',①若0≤a ,则0)('>x f ,)(x f 在()+∞∞-,单调递增; ②若0>a ,则由0)('=x f 得a x ln =,当()a x ln ,∞-∈时,0)('<x f ,当()+∞∈,ln a x 时,0)('>x f ; 所以)(x f 的单调减区间是()a ln ,∞-,单调增区间是()+∞,ln a ; 2.(2016年山东文科20题)设x a ax x x x f )12(ln )(2-+-=,R a ∈. (1)令)()('x f x g =,求)(x g 的单调区间. 解:函数)(x f 的定义域为()+∞,0,1221ln )()('-+-+==a ax x x f x g ,a xx g 21)('-=(1)若0≤a ,则0)('>x g ,)(x g 在()+∞,0单调递增;(2)若0>a ,则由0)('=x g 得ax 21=,当⎪⎭⎫ ⎝⎛∈a x 21,0时,0)('>x g ,当⎪⎭⎫ ⎝⎛+∞∈,21a x 时,0)('<x g ,所以)(x f 在⎪⎭⎫ ⎝⎛a 21,0单调递增,在⎪⎭⎫ ⎝⎛+∞,21a 单调递减.3.(2015年北京卷文科19题)设函数x k x x f ln 2)(2-=.(1)求)(x f 的单调区间和极值;解:函数)(x f 的定义域为()+∞,0,xkx x k x x f -=-=2')(,①若0≤k ,则0)('>x f ,)(x f 在()+∞,0单调递增; ②若0>k ,则由0)('=x f 得k x =,当()k x ,0∈时,0)('<x f ,当()+∞∈,k x 时,0)('>x f所以)(x f 的单调减区间是()k ,0,单调增区间是()+∞,k .4.(2015年全国二卷文科21题) 已知函数)1(ln )(x a x x f -+=. (1)讨论)(x f 的单调性;解:函数)(x f 的定义域为()+∞,0,xaxa x x f -=-=11)(', ①若0≤a ,则0)('>x f ,)(x f 在()+∞,0单调递增;②若0>a ,则由0)('=x f 得ax 1=,当⎪⎭⎫ ⎝⎛∈a x 1,0时,0)('>x f ,当⎪⎭⎫ ⎝⎛∈0,1a x 时,0)('<x f ;所以)(x f 在⎪⎭⎫ ⎝⎛a 1,0单调递增,在⎪⎭⎫ ⎝⎛0,1a单调递减; 5.(2016年四川卷文科21题) 设函数x a ax x f ln )(2--=. (1)讨论)(x f 的单调性; 解:函数)(x f 的定义域为()+∞,0,⎪⎭⎫⎝⎛-=-=-=22'121212)(x a x x ax x ax x f ,①若0≤a ,则0)('<x f ,)(x f 在()+∞,0单调递减;②若0>a ,则由0)('=x f 得ax 21=,当⎪⎪⎭⎫ ⎝⎛∈a x 21,0时,0)('<x f ,当⎪⎪⎭⎫ ⎝⎛+∞∈,21a x 时,0)('>x f ;所以)(x f 在⎪⎪⎭⎫ ⎝⎛a 21,0单调递减,在⎪⎪⎭⎫ ⎝⎛+∞,21a 单调递增; 若0)()('=-=m x g x f 有两个解,则可以将定义域分为三个区域进行讨论。

专题10 导数含参单调性讨论详述版(解析版)

专题10 导数含参单调性讨论详述版(解析版)

导数章节知识全归纳专题10 导数含参单调性讨论(详述版)一.知识点归纳:核心知识:1.函数的单调性与导数(1)设函数)(x f y =在某个区间),(b a 可导,如果'f )(x 0>,则)(x f 在此区间上为增函数; 如果'f 0)(<x ,则)(x f 在此区间上为减函数。

(2)如果在某区间内恒有'f 0)(=x ,则)(x f 为常函数。

总结:含参单调性讨论主要针对学生对于含有参数的函数进行单调性讨论存在严重问题,时常分不清楚何时讨论参数,以及先哪一步在哪一步:这里君哥给大家总结如下:第一类:简单含参--独立含参,先讨论恒成立,再分类。

第二类:多位置含参数:首先考虑是否可以进行十字相乘,在讨论根的大小,再讨论单调性。

第三类:二次函数型含参:必考虑∆,在讨论根的大小,最后讨论单调性。

第四类:其他函数型含参:画图看交点。

二.导数含参单调性讨论典型例题:类型一:独立含参讨论:例:1.已知函数()()ln f x x ax a R =-∈.(1)讨论函数()f x 的单调性;解:【分析】(1)求导,对参数a 进行分类讨论判断导函数的正负,最后判断原函数的单调。

【详解】(1)解:函数()f x 的定义域为()0,∞+,()()110ax f x a x x x-'=-=>, 当0a ≤时,()0f x '>恒成立,所以()f x 在()0,∞+内单调递增;当0a >时,令()0f x '=,得1x a =,所以当10,x a ⎛⎫∈ ⎪⎝⎭时()0f x '>,()f x 单调递增; 当1,x a ⎛⎫∈+∞ ⎪⎝⎭时()0f x '<,()f x 单调递减, 综上所述,当0a ≤时,()f x 在()0,∞+内单调递增;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭内单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭内单调递减. 例:2.已知函数()ln ()f x x ax a R =+∈.(1)讨论()f x 的单调性;解:【分析】(1)对参数a 分类讨论,分别求得对于范围内的单调区间;【详解】(1)函数()ln f x x ax =+的定义域为()0,∞+当0a ≥时,()10f x a x'=+>恒成立,故函数f (x )在()0,∞+上单调递增 当0a <时,令()10ax f x x +'=>,得10x a<<-;令()0f x '<,得1x a>-. 故函数()ln f x x ax =+在10,a ⎛⎫-⎪⎝⎭上递增,在1,a ⎛⎫-+∞ ⎪⎝⎭递减 变式:1.函数()ln 2.f x x mx =-+(1)求函数()y f x =的单调区间;解:【分析】(1)求导,分别讨论0m ≤和0m >两种情况()f x '的正负,即可求得()y f x =的单调区间.【详解】(1)()11,(0).mx f x m x x x-'=-=> 当0m ≤时,()0f x '>,所以()y f x =在()0,∞+为增函数,当0m >时,令()0f x '=,解得1x m=; 当10,x m ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()y f x =为增函数, 当1,x m ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<, ()y f x =为减函数, 综上:当0m ≤时,()y f x =的单调增区间为()0,∞+,当0m >时,()y f x =的单调增区间为10,m ⎛⎫ ⎪⎝⎭,单调减区间为1,m ⎛⎫+∞ ⎪⎝⎭. 变式:2.已知函数()21ln 2f x x a x =-,其中a ∈R .(1)讨论函数()f x 的单调性;解:【分析】(1)对参数a 进行分类讨论,根据导函数的正负判断函数的单调性;【详解】(1)()2a x a f x x x x-'=-=,0x >, 当0a ≤时,()0f x '>,故()f x 在()0,∞+上单调递增,当0a >时,令()0f x '=,得x =从而()f x 在(上单调递减,在)+∞上单调递增.变式:3.已知函数()e xf x ax =-,()ln xg x x a =-. (1)求函数()g x 的单调区间;解:【分析】(1)先求导得到()'g x ,再分0a <和0a >两种情况讨论()g x 的单调性和单调区间;【详解】解:(1)由题意知()g x 的定义域是()0,∞+,()11g x x a '=-, 当0a <时,()110g x x a-'=>恒成立,所以()g x 在()0,∞+上单调递增; 当0a >时,由()110a x g x x a ax -'=-=>得0x a <<,所以()g x 在()0,a 上单调递增, 由()110a x g x x a ax-'=-=<得x a >,所以()g x 在(),a +∞上单调递减.综上所述,当0a <时,()g x 的单调递增区间为()0,∞+,无单调递减区间;当0a >时,()g x 的单调递增区间为()0,a ,单调递减区间为(),a +∞.类型二:独立含参难:例:1.已知函数()x f x e ax =-,()212g x ax ax x =-+. (1)讨论函数()f x 的单调性;解:【分析】(1)求导()x f x e a '=-,分0a ≤,0a >讨论求解;【详解】(1)∵()x f x e a '=-,当0a ≤时,()0xf x e a '=->在R 上恒成立, ∵()f x 在(),-∞+∞上是递增的.当0a >时,令()0f x '>,则ln x a >;令()0f x '<,则ln x a <.∵()f x 在(),ln a -∞上递减,在()ln ,a +∞上递增.综上所述,当0a ≤时,()f x 是(),-∞+∞上的增函数,当0a >时,()f x 在(),ln a -∞是减函数,在()ln ,a +∞上是增函数.例2.已知函数()ln 1()f x a x x a =++∈R .(1)讨论()f x 的单调性;解:【分析】(1)首先对函数进行求导,通过对a 进行分类讨论,可得()f x 的单调性;【详解】(1)函数()f x 的定义域为(0,)+∞,'()1a x a f x x x+=+=, 当0a ≥时,0f x ,所以()f x 在(0,)+∞上单调递增;当0a <时,若0x a <<-,则0f x ;若x a >-,则0f x , 所以()f x 在(0,)a -上单调递减,在(,)a -+∞上单调递增.综上:当0a ≥时,()f x 在(0,)+∞上单调递增,当0a <时,()f x 在(0,)a -上单调递减,在(,)a -+∞上单调递增;例3.已知函数()2ln(1)1f x ax x =-++,a R ∈.(1)讨论()f x 的单调性;解:【分析】(1)先写定义域,对函数求导,再讨论0a ≤时和0a >时导数的正负情况,即得函数的单调性;【详解】解:(1)()f x 的定义域为 (1,)-+∞,1()21f x a x =-+', ①当0a ≤时,()0f x '<,即()f x 在(1,)-+∞上单调递减; ②当0a >时,221()1ax a f x x '+-=+,由()0f x '>解得122a x a ->,由()0f x '<解得1212a x a--<<, 即()f x 在121,2a a -⎫⎛- ⎪⎝⎭上单调递减,在12 ,2a a -⎫⎛+∞ ⎪⎝⎭上单调递增; 综上所述,当0a ≤时,()f x 在(1,)-+∞上单调递减; 当0a >时,()f x 在121,2a a -⎫⎛- ⎪⎝⎭上单调递减,在12 ,2a a -⎫⎛+∞ ⎪⎝⎭上单调递增. 变式:1.已知函数()()1x f x ax e =+.(1)讨论()f x 的单调性;解:【分析】(1)先求导函数,然后分析导函数符号只与含参一次因式有关,所以对a 分0,0,0a a a >=<三种情况进行讨论;【详解】解:(1)因为()()1x f x ax e =+,所以()()()11x x x f x ae ax e ax a e '=++=++. 若0a =,则()0f x '>,()f x 是R 上的增函数;若0a >,则当1a x a -->时,()0f x '>;当1a x a--<时,()0f x '<. 故()f x 的单调递增区间为1,a a --⎛⎫+∞⎪⎝⎭,单调递减区间为1,a a --⎛⎫-∞ ⎪⎝⎭; 若0a <,则当1a x a -->时,()0f x '<;当1a x a--<时,()0f x '>, 故()f x 的单调递减区间为1,a a --⎛⎫+∞ ⎪⎝⎭,单调递增区间为1,a a --⎛⎫-∞ ⎪⎝⎭.变式:2.已知函数2()(1)12ln f x m x x =+--.(1)讨论()f x 的单调性;解:【分析】(1)求导()22()1f x mx mx x'=+-,分0m =,0m >,0m <讨论求解; 【详解】(1)函数2()(1)12ln f x m x x =+--, 求导得:()222()2(1)1f x m x mx mx x x'=+-=+-, 当0m =时,2()0f x x=-<',所以()f x 在()0,∞+上递减; 当0m >时,240m m ∆=+>,令()0f x '=,则方程210mx mx +-=有两个不同的根,.10x =<,20x =>, 当()20,x x ∈时,()0f x '<,当()2,x x ∈+∞时,()0f x '>,所以()f x 在()20,x 上递减,在()2,x +∞上递增;当0m <时,()21y m x =+在()0,∞+上递减,1ln y x =--在()0,∞+上递减, 所以()f x 在()0,∞+递减;类型三:二次函数类型含参:例:1.已知函数()31f x x ax =-+,a R ∈. (1)讨论函数()f x 的单调性;解:【分析】(1)先求函数的导数,()23f x x a '=-,再分0a ≤和0a >两种情况讨论函数的单调性;【详解】(1)由题意()f x 的定义域为R ,()23f x x a '=-, ①若0a ≤,则()0f x '≥,所以()f x 在R 上为单调递增函数;②若0a >,由()230f x x a '=-=解得13x =-,23x =,()0f x '>的解为3x <-或3x >,()0f x '<的解为33x -<<,即()f x 的增区间为,3⎛-∞- ⎝⎭,,3⎛⎫+∞ ⎪ ⎪⎝⎭,减区间为33⎛⎫- ⎪ ⎪⎝⎭. 例2.已知函数()2()12ln ,f x a x x a R =--∈. (1)2a =时,求在(1,(1))f 处的切线方程;(2)讨论()f x 的单调性;解:【分析】(1)利用导数的几何意义,直接求切线方程;(2)首先求函数的导数()22222ax f x ax x x-'=-=,()0x >,分0a ≤和0a >两种情况讨论函数的单调性; 【详解】当2a =时,()()2212ln f x x x =--,0x >, ()22424x f x x x x-'=-=,()10f =,()12f '=, ()f x ∴在1x =处的切线方程是()21y x =-.(2)()22222ax f x ax x x-'=-=,()0x > 当0a ≤时,()0f x '<,()f x ∴在()0,∞+上单调递减,当0a >时,令()0f x '>,解得:x >,令()0f x '<,解得:0x <<,()f x ∴的增区间是⎫+∞⎪⎪⎝⎭,减区间是0,a ⎛⎫ ⎪ ⎪⎝⎭,综上可知:0a ≤时,函数的减区间是()0,∞+,无增区间;0a >时,函数的增区间是⎫+∞⎪⎪⎝⎭,减区间是⎛ ⎝⎭. 变式:1.已知函数()2ln 1f x a x x =++,其中a R ∈且0a ≠ (1)求函数()f x 的单调区间;解:【分析】(1)求出()222a x a f x x x x='+=+,然后分a >0、a <0两种情况讨论即可; 【详解】(1)函数的定义域为(0,+∞),()222a x a f x x x x ='+=+,当a >0时,()0f x '>,f (x )在(0,+∞)上单调递增,此时()f x 的增区间为(0,+∞);当a <0时,令()0f x '=,解得x =x =),则0,2x ⎛⎫∈ ⎪ ⎪⎝⎭时,()0f x '<,()f x 单调递减;,2x ⎛⎫∈+∞ ⎪ ⎪⎝⎭时,()0f x '>,()f x 单调递增.此时()f x 的单调减区间是⎛ ⎝⎭,单调增区间是⎫+∞⎪⎪⎝⎭综上,当a >0时,()f x 的增区间为(0,+∞);当a <0时,()f x 的单调减区间是⎛ ⎝⎭,单调增区间是⎫+∞⎪⎪⎝⎭变式:2.已知函数2()2ln 3f x x ax x =-+-. (1)讨论()f x 的单调性. 解:【分析】(1)求导,分2160a ∆=-≤,2160a ∆=->情况讨论导函数的正负,可得原函数的单调性; 【详解】(1)解:2222'()2x ax f x x a x x-+=-+=. 当2160a ∆=-≤,即44a -≤≤时,'()0f x ≥,所以()f x 在()0,∞+上单调递增.当2160a ∆=->,即4a或4a >时,令2220x ax -+=,得x =.当4a时,两根均为负数,则'()0f x >,所以()f x 在()0,∞+上单调递增;当4a >时,两根均为正数,所以()f x 在⎛ ⎝⎭,⎫+∞⎪⎪⎝⎭上单调递增,在44a a ⎛+⎪⎝⎭,上单调递减. 综上所述,当4a ≤时,()f x 在()0,∞+上单调递增;当4a >时,()f x 在⎛ ⎝⎭,⎫+∞⎪⎪⎝⎭上单调递增,在44a a ⎛+ ⎪⎝⎭,上单调递减.变式:3.已知函数()22ln kx f x x x +-=.(1)讨论()f x 的单调性; 解:【分析】(1)明确函数的定义域,求出导函数,对参数分类讨论,结合导函数与单调性的关系得到结果; 【详解】(1)()f x 的定义域是()0,∞+,求导得()()21221220kx x f x kx x x x+-'=+-=>.记()2221g x kx x =+-,①当0k =时,令()102g x x =⇒=, 当10,2x ⎛⎫∈ ⎪⎝⎭时,()()()00g x f x f x '<⇒<⇒单调递减,当1,2x ⎛⎫∈+∞⎪⎝⎭时,()()()00g x f x f x '>⇒>⇒单调递增;②当0k >时,480k ∆=+>,()0g x x =⇒==,当10,2x k ⎛⎫∈ ⎪ ⎪⎝⎭时,()()()00g x f x f x '<⇒<⇒单调递减,当x ⎫∈+∞⎪⎪⎝⎭时,()()()00g x f x f x '>⇒>⇒单调递增; ③当0k <时,令480k ∆=+≤得1,2k ⎛⎤∈-∞- ⎥⎝⎦,则()22210g x kx x =+-≤在()0,∞+恒成立,于是()0f x '≤在()0,∞+恒成立,()f x 在定义域()0,∞+上单调递减.若1,02k ⎛⎫∈-⎪⎝⎭,则480k ∆=+>,令()10g x x =⇒=2x =()0f x '=有2个不相等正根,()f x 在10,2k ⎛⎫ ⎪ ⎪⎝⎭上单调递减,在11,22k k ⎛⎫ ⎪ ⎪⎝⎭单调递增,在1,2k ⎛⎫+∞ ⎪ ⎪⎝⎭单调递减. 综上,当0k =时,函数增区间为1,2⎛⎫+∞⎪⎝⎭,减区间为10,2⎛⎫⎪⎝⎭;当0k >时,函数增区间为⎫+∞⎪⎪⎝⎭,减区间为⎛ ⎝⎭; 当12k ≤-时,函减区间为()0,∞+,无增区间;当102k -<<时,函数增区间为⎝⎭,减区间为10,2k ⎛⎫ ⎪ ⎪⎝⎭,1,2k ⎛⎫+∞ ⎪ ⎪⎝⎭; 类型四:多参函数讨论: 例:1.已知函数()(1),()af x x a lnx a R x=--+∈. (1)当2a =时,求()f x 的极值; (2)若0a >,求()f x 的单调区间. 解:【分析】(1)首先求函数的导数,2232()(0)x x f x x x -+'=>,判断函数的单调性后得到函数的极值;(2)222(1)()(1)()x a a x x a x f x x x +-+--'==,分1a >,1a =和01a <<三种情况讨论求函数的单调递减区间. 【详解】解:(1)因为当2a =时,2()3f x x lnx x=--, 所以2232()(0)x x f x x x-+'=>,由()0f x '=得1x =或2x =, 当x 变化时,()f x ',()f x 的变化情况列表如下:所以当1x =时,()f x 取极大值1-;当2x =时,()f x 取极小值132ln -. (2)222(1)()(1)()x a a x x a x f x x x +-+--'==,12()0,1f x x a x '=⇒==①当1a >时,当(0,1)x ∈,()0f x '>,()f x 单调递增,当(1,)x a ∈,()0f x '<,()f x 单调递减,当(,)x a ∈+∞,()0f x '>,()f x 单调递增.②当1a =时,()0f x '≥在(0,)+∞恒成立,所以()f x 在(0,)+∞上单调递增;③当01a <<时,当(0,)x a ∈,()0f x '>,()f x 单调递增,当(,1)x a ∈,()0f x '<,()f x 单调递减,当(1,)x ∈+∞,()0f x '>,()f x 单调递增,综上所述,①当1a >时,()f x 单调递增区间为(0,1),(,)a +∞.单调递减区间为(1,)a ;②当1a =时,()f x 单调增区间为(0,)+∞,无减区间;③当01a <<时,()f x 单调递增区间为(0,)a ,(1,)+∞,单调递减区间为(,1)a .例2.已知函数()221()2ln 2()2f x x ax x x ax a =--+∈R . (1)若0a =,求()f x 的最小值; (2)求函数()f x 的单调区间. 解:【分析】(1)若0a =,221()ln 2f x x x x =-利用导数得出()f x 在()0,∞+的单调性即可求解.(2)()()22ln f x x a x '=-再讨论0a ≤、01a <<、1a =、1a >函数()f x 的单调区间即可. 【详解】(1)若0a =,221()ln 2f x x x x =-定义域为()0,∞+, 21()2ln 2ln f x x x x x x x x'=+⨯-=,由()0f x '>可得1x >, 由()0f x '<可得01x <<,所以()f x 在()0,1单调递减,在()1,+∞单调递增,所以()f x 的最小值为1(1)2f =-; (2)()()()21()22ln 2222ln f x x a x x ax x a x a x x'=-+-⋅-+=- ①当0a ≤时,220x a ->,由()0f x '>可得1x >, 由()0f x '<可得01x <<,此时()f x 的单调递减区间为()0,1,单调递增区间为()1,+∞, ②当01a <<时,由()0f x '>可得0x a <<或1x > 由()0f x '<可得1<<a x ,此时()f x 的单调递减区间为(),1a ,单调递增区间为()0,a 和()1,+∞, ③当1a =时,()0f x '≥恒成立,此时()f x 的单调递增区间为()0,∞+,④当1a >时,由()0f x '>可得01x <<或x a >, 由()0f x '<可得1x a <<,此时()f x 的单调递减区间为()1,a ,单调递增区间为()0,1和(),a +∞,综上所述:当0a ≤时,()f x 的单调递减区间为()0,1,单调递增区间为()1,+∞, 当01a <<时,()f x 的单调递减区间为(),1a ,单调递增区间为()0,a 和()1,+∞, 当1a =时, ()f x 的单调递增区间为()0,∞+,当1a >时,()f x 的单调递减区间为()1,a ,单调递增区间为()0,1和(),a +∞,变式:1.已知函数()()24ln 22f x x a x a x =-+-,a R ∈.(1)当1a =时,求证:()4ln 2f x ≥-; (2)当0a ≤时,讨论函数()f x 的单调性. 解:【分析】(1)当1a =时,可得()24ln 2f x x x x =--,利用导数求得()min 4ln 2f x =-,由此可证得结论成立;(2)求得()()()22x a x f x x+-'=,对实数a 的取值进行分类讨论,分析导数的符号变化,由此可得出函数()f x 单调递增区间和递减区间. 【详解】(1)当1a =时,()24ln 2f x x x x =--,该函数的定义域为()0,∞+,()()()2212422422x x x x f x x x x x+---'=--==, 当02x <<时,()0f x '<,此时函数()f x 单调递减; 当2x >时,()0f x '>,此时函数()f x 单调递增.所以,()()min 24ln 2f x f ==-,因此,当1a =时,求证:()4ln 2f x ≥-;(2)当0a ≤时,函数()()24ln 22f x x a x a x =-+-的定义域为()0,∞+,()()()()()22224224222x a x a x a x af x x a x x x+--+-'=-+-==. ①当0a -=时,即当0a =时,则()()22f x x '=-. 由()0f x '<可得02x <<,由()0f x '>可得2x >.此时,函数()f x 的单调递减区间为()0,2,单调递增区间为()2,+∞; ②当02a <-<时,即当20a -<<时,由()0f x '<可得2a x -<<,由()0f x '>可得0x a <<-或2x >.此时,函数()f x 的单调递减区间为(),2a -,单调递增区间为()0,a -、()2,+∞;③当2a -=时,即当2a =-时,则()()2220x f x x-'=≥对任意的0x >恒成立,此时,函数()f x 的单调递增区间为()0,∞+; ④当2a ->时,即当2a <-时,由()0f x '<可得2x a <<-,由()0f x '>可得02x <<或x a >-.此时,函数()f x 的单调递减区间为()2,a -,单调递增区间为()0,2、(),a -+∞. 综上所述,当0a =时,函数()f x 的单调递减区间为()0,2,单调递增区间为()2,+∞; 当20a -<<时,函数()f x 的单调递减区间为(),2a -,单调递增区间为()0,a -、()2,+∞; 当2a =-时,函数()f x 的单调递增区间为()0,∞+;当2a <-时,函数()f x 的单调递减区间为()2,a -,单调递增区间为()0,2、(),a -+∞.变式:2.已知函数()ln ()mf x x mx m x=--∈R . (1)讨论函数()f x 的单调性; 解:【分析】(1)2221()m mx x m f x m x x x++'=---=-,0x >,分0m =,0m ≠两种情况,根据二次函数的性质,利用判别式结合函数的定义域,由导数的正负判断; 【详解】(1)2221()m mx x mf x m x x x++'=---=-,0x >, 若0m =,则1()0f x x'=-<,函数()f x 在(0,)+∞上单调递减. 若0m ≠,则二次函数2y mx x m =++的判别式214m ∆=-,当0∆≤,即12m ≤-或12m ≥时,若12m ≤-,则()0f x '≥,等号不恒成立,函数()f x 在(0,)+∞上单调递增; 若12m ≥,则()0f x '≤,等号不恒成立,函数()f x 在(0,)+∞上单调递减.当0∆>,即1122m -<<且0m ≠时, 令()0f x '=,即20mx x m ++=,此时112x m -=212x m-+=,121x x m +=-,121=x x ,若102m <<,则1x ,20x <,此时()0f x '<恒成立,函数()f x 在(0,)+∞上单调递减; 若102m -<<,则210x x <<,当()20,x x ∈时,()0f x '>, 当()21,x x x ∈时()0f x '<,当()1,x x ∈+∞时,()0f x '>, 即函数()f x 在()20,x 和()1,x +∞上单调递增,在()21,x x 上单调递减. 综上,当0m ≥时,函数()f x 在(0,)+∞上单调递减;当12m ≤-时,函数()f x 在(0,)+∞上单调递增;当102m -<<时,函数()f x 在⎛ ⎝⎭和⎫+∞⎪⎪⎝⎭上单调递增,在⎝⎭上单调递减. 变式:3.已知实数0a >,函数()22ln f x a x a x x=++,(0,10)x ∈. (1)讨论函数()f x 的单调性; 解【分析】(1)求导后得()()()()221010ax ax f x x x +-'=<<;分别在110a ≥和1010a<<两种情况下,根据()f x '的符号可确定()f x 的单调性;【详解】(1)()()()()222212010ax ax a f x a x x x x+-'=-++=<<. 0a >,010x <<,20ax ∴+>.①当110a ≥,即当10,10a ⎛⎤∈ ⎥⎝⎦时,()0f x '<, ()f x ∴在()0,10上单调递减;②当1010a <<,即1,10a ⎛⎫∈+∞ ⎪⎝⎭时, 当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<; 当1,10x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>, ()f x ∴在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,10a ⎛⎫ ⎪⎝⎭上单调递增. 综上所述:当10,10a ⎛⎤∈ ⎥⎝⎦时,()f x 在()0,10上单调递减; 当1,10a ⎛⎫∈+∞ ⎪⎝⎭时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,10a ⎛⎫ ⎪⎝⎭上单调递增. 类型五:其他函数含参讨论:例:1.已知函数()1x f x ke x -=-.(1)讨论()f x 的单调性;解:【分析】(1)对函数求导,分0k ≤和0k >两种情况,分别得出函数的单调性;【详解】(1)()11x f x ke -=-',当0k ≤时,()0f x '<,()f x 在(),-∞+∞上单调递减;当0k >时,令()0f x '=,得1ln x k =-,当(),1ln x k ∈-∞-时,()0f x '<;当()1ln ,x k ∈-+∞时,()0f x '>.故()f x '在(),1ln k -∞-上单调递减,在()1ln ,k -+∞上单调递增.例2..已知函数()22x f x xe ax ax =++,e 为自然对数的底数. (1)讨论()f x 的单调性;解:【分析】(1)求导()()()12x f x x e a '=++,分0a ≥,102a e-<<,12a e =-,12a e <-讨论求解.【详解】(1)()()()12x f x x e a '=++, ①当0a ≥时,20x e a +>,(),1x ∈-∞-,()0f x '<,()f x 单调递减,()1,x ∈-+∞,()0f x '>,()f x 单调递增.②当102a e-<<时,()ln 21a -<-, ()(),ln 2x a ∈-∞-,20x e a +<,()0f x '>,()f x 单调递增,()()ln 2,1x a ∈--,20x e a +>,()0f x '<,()f x 单调递减,()1,x ∈-+∞,20x e a +>,()0f x '>,()f x 单调递增,③当12a e =-时,()()()110x f x x e e -'=+-≥,(),x ∈-∞+∞,()f x 单调递增 ④当12a e<-时,()ln 21a ->-, (),1x ∈-∞-,20x e a +<,()0f x '>,()f x 单调递增,()()1,ln 2x a ∈--,20x e a +<,()0f x '<,()f x 单调递减,()()ln 2,x a ∈-+∞,20x e a +>,()0f x '>,()f x 单调递增.例3.已知函数()e 1xx a f x =-+(a ∈R ). (1)讨论函数()f x 的单调性;解:【分析】(1)求导后,分类讨论a ,利用导数的符号可得函数()f x 的单调性;【详解】(1)()f x 的定义域为(),-∞+∞,且()1e xf x a ='-.当0a ≤时,()0f x '>,则()f x 在(),-∞+∞上单调递增.当0a >时,若(),ln x a ∈-∞-,则()0f x '>,()f x 在(),ln a -∞-上单调递增; 若()ln ,x a ∈-+∞,则()0f x '<,()f x 在()ln ,a -+∞上单调递减.综上所述,当0a ≤时,()f x 在(),-∞+∞上单调递增;当0a >时,()f x 在(),ln a -∞-上单调递增,在()ln ,a -+∞上单调递减.变式:1.设()()ln a f x ax x =+,()11ln x g x b e x x-=⋅+,其中,a b ∈R ,且0a ≠. (1)试讨论()f x 的单调性;解:【分析】(1)分别在0a <和0a >两种情况下,结合定义域,根据导函数的正负可确定原函数的单调性;【详解】(1)()221a x a f x x x x'-=-=, ①当0a <时,由0ax >得:0x <,即()f x 定义域为(),0-∞;∴当(),x a ∈-∞时,()0f x '<;当(),0x a ∈时,()0f x '>;()f x ∴在(),a -∞上单调递减,在(),0a 上单调递增;②当0a >时,由0ax >得:0x >,即()f x 定义域为()0,∞+;∴当()0,x a ∈时,()0f x '<;当(),x a ∈+∞时,()0f x '>;()f x ∴在()0,a 上单调递减,在(),a +∞上单调递增;综上所述:当0a <时,()f x 在(),a -∞上单调递减,在(),0a 上单调递增;当0a >时,()f x 在()0,a 上单调递减,在(),a +∞上单调递增.变式:2.已知函数()()()ln 1f x a a x x a =++∈R .(1)求讨论函数()f x 的单调性;解:【分析】(1)当0a =时,()1f x =是常数函数,可得结论,当0a ≠时,求出()f x '分0a >和0a <进行讨论得到答案.【详解】(1)函数()()()ln 1f x a a x x a =++∈R 的定义域是()0,∞+,()()1a a x a f x a x x +⎛⎫'=+= ⎪⎝⎭. 当0a =时,()1f x =是常数函数,不具有单调性;当0a >时,()0f x '>对任意()0,x ∈+∞恒成立,故函数()f x 在()0,∞+上单调递增; 当0a <时,令()0f x '<,得x a >-,令()0f x '>,得0x a <<-,故函数()f x 在()0,a -上单调递增,在(),a -+∞上单调递减.综上:当0a >时,函数()f x 在()0,∞+上单调递增;当0a =时,()f x 不具有单调性;当0a <时,函数()f x 在()0,a -上单调递增,在(),a -+∞上单调递减.变式:3.已知函数()()2e 21x f x x a x x =+++,a ∈R .(1)求()f x 的单调区间;解:【分析】(1)利用导数的基本运算可得()()()12x f x x e a '=++,讨论0a ≥、102a e -<<或12a e <-,利用导数与函数单调性之间的关系即可得出结果.【详解】解:(1)由题意得()()()12xf x x e a '=++, 令()()()12xg x x e a =++, 当0a ≥时,()10g -=,即当(),1x ∈-∞-时,()()0g x f x ='<;当()1,x ∈-+∞时,()()0g x f x '=>,故()f x 的单调递减区间为(),1-∞-,单调递增区间为()1,-+∞; 当12a e<-时,令()()0g x f x '==, 则11x =-,()2ln 2x a =-,12x x <,故()f x 的单调递减区间为()()1,ln 2a --,单调递增区间为(),1-∞-,()()ln 2,a -+∞; 当12a e-=时,令()()0g x f x '==, 则11x =-,()2ln 2x a =-,12x x =,满足()()0g x f x '=≥,故()f x 在R 上单调递增;当102a e-<<时,令()()0g x f x '==, 则11x =-,()2ln 2x a =-,12x x >,故()f x 的单调递减区间为()()ln 2,1a --,单调递增区间为()(),ln 2a -∞-,()1,-+∞. 综上,当0a ≥时,()f x 的单调递减区间为(),1-∞-,单调递增区间为()1,-+∞; 当12a e -<时,()f x 的单调递减区间为()()1,ln 2a --, 单调递增区间为(),1-∞-,()()ln 2,a -+∞; 当12a e-=时,()f x 的单调递增区间为(),-∞+∞; 当102a e -<<时,()f x 的单调递减区间为()()ln 2,1a --, 单调递增区间为()(),ln 2a -∞-,()1,-+∞.。

导数讨论含参单调性习题(含详解答案)

导数讨论含参单调性习题(含详解答案)

m(x + n}f(x) - lnx T g(x) = --------- m > 0)1 •设函数x T .(1)当m= l|时,函数¥訂(刈与¥ =創刈在"1处的切线互相垂直,求n的值;(2)若函数¥“仪卜創对在定义域内不单调,求m-n的取值范围;2a 3K xf(T 他M f(—) < 0(3)是否存在正实数使得x 2a 对任意正实数K恒成立?若存在,求出满足条件的实数;若不存在,请说明理由.2•已知函数fW = (^ + l)lnx-ax + 3f aG R,g(x)是f闵的导函数,*为自然对数的底数.(1)讨论:的单调性;(2)当白X时,证明:寓(3)当白X时,判断函数f凶零点的个数,并说明理由.bf(«) = + ) + blnx3.已知函数x(其中,忆b€R).(1)当b = Y时,若f")在其定义域内为单调函数,求臼的取值范围;(2)当::八」时,是否存在实数H,使得当’■ ■时,不等式卜心■冷恒成立,如果存在,求b的取值范围,如果不存在,说明理由(其中电是自然对数的底数,“ 2一7182旷).4 •已知函数gW = x2 + ln(x + a)|,其中臼为常数.(1)讨论函数•的单调性;S(Xj) +g(x?) x t +x z(2)若或叮存在两个极值点叫*刈,求证:无论实数臼取什么值都有 2 £ 2 .5 .已知函数肛"油盧2)(玄为常数)是实数集"上的奇函数,函数屮“用刈卡商帥是区间Il上的减函数.(1)求的值;(2)若恥;-「:在卜G 及所在的取值范围上恒成立,求的取值范围;Irx ?=x -2e* + m(3)讨论关于丸的方程f⑷的根的个数.6 •已知函数f x ax ln x, F x e x ax,其中x 0, a 0.(1)若f x和F x在区间0,ln3上具有相同的单调性,求实数a的取值范围;(2) 若a最小值.1,二,且函数g x eax 1 xe 2 ax f x的最小值为M,求M的7.已知函数 f (x) e x m In x .(1)如x1是函数f(x)的极值点,求实数m的值并讨论的单调性 f (x);(2) 若x x。

导数的复习——含参单调性的讨论问题

导数的复习——含参单调性的讨论问题

JIETI JIQIAO YU FANGFA解题技巧与方法133数学学习与研究2019.9导数的复习———含参单调性的讨论问题◎靖晶陈艳宝(大庆市第四中学,黑龙江大庆163711)高考中导数问题可谓是学生拉开区分度的分水岭.而含参的单调性的讨论问题是重中之重.单调性的问题讨论清楚了,那么极值最值等问题就可迎刃而解.利用导数求函数单调区间的依据:在定义域范围内,由导数大于0解得的x 的区间为函数的增区间;由导数小于0解得的x 的区间为函数的减区间.常见的分类标准有哪些呢?一般的含参的函数单调性的讨论常见的分类标准有:1.函数类型;2.开口方向;3.判别式;4.导数等于0有根无根;5.两根大小;6.极值点是否在定义域内.通过以下两个例题进行说明.例1讨论函数f (x )=x -1x -a ln x (a ∈R)的单调性.分析根据导数的符号得函数在相应区间上的单调性,先进行求导.函数的定义域为(0,+ɕ),f'(x )=x 2-ax +1x 2分母是恒正的,只需看分子的符号.由f'(x )=0得x 2-ax +1=0.一元二次方程有根无根需看判别式.故而确定了第一个分类讨论的原因:二次函数的判别式.当Δ>0时,a >2或a <-2,方程有两个不等实根.是否需要进一步讨论呢?可以发现此时分子为零的两根记为x 1,x 2,x 1+x 2=a ,x 1x 2=1>0,而定义域为(0,+ɕ),方程的两根符号与a 相同,故而确定第二个分类讨论的标准:方程的根是否在定义域内.解函数的定义域为(0,+ɕ),f'(x )=x 2-ax +1x 2.令f'(x )=0得x 2-ax +1=0.(1)当Δ≤0时,-2≤a ≤2时,f'(x )≥0,f (x )在(0,+ɕ)上单调递增.(2)当Δ>0时,方程有两个不等的实根,x 1=a -a 2槡-42,x 2=a +a 2槡-42.①a >2时,x 1+x 2=a >0,x 1x 2=1>0,ʑx 1>0,x 2>0,ʑf (x )在(0,x 1)和(x 2,+ɕ)单调递增,在(x 1,x 2)单调递减.(根据图1)图1②a <-2时,x 1+x 2=a <0,x 1x 2=1>0ʑx 1<0,x 2<0,ʑf (x )在(0,+ɕ)上单调递增.(根据图2)图2综上,当时,f (x )在(0,+ɕ)上单调递增.当a >2时f (x )在(0,x 1)和(x 2,+ɕ)单调递增,在(x 1,x 2)单调递减.例2讨论函数f (x )=e-kxx 2+x -1()k(k ∈R)的单调性.分析函数的定义域为R,f (x )=e -kx [-kx 2+(2-k )x +2]=e -kx (x +1)(-kx +2).ȵe -kx >0,ʑf'(x )的符号只需看-kx 2+(2-k )x +2的符号,而x 2的系数含字母,影响函数的类型,故第一类讨论的原因即高次项的系数是否为0.由题意k ≠0.当k ≠0时,其正负影响开口的方向,故第二类分类讨论的原因即开口方向.当k <0时,导数等于0的两根大小不确定,故而第三类分类讨论的原因为两根大小,确定分界点-2.解函数的定义域为R,f (x )=e -kx [-kx 2+(2-k )x +2]=e -kx (x +1)(-kx +2).(1)当k >0时,f (x )在(-ɕ,-1)和2k ,+()ɕ单调递减,在-1,2()k单调递增.(2)当k <0时,2k -(-1)=2+kk.①当k <-2时,2k >-1,f (x )在(-ɕ,-1)和2k ,+()ɕ单调递增,在-1,2()k单调递减.②当k =-2时,2k =-1,f (x )在(-ɕ,+ɕ)单调递增.③当k >-2时,2k <-1,f (x )在-ɕ,2()k 和(-1,+ɕ)单调递增,在2k ,()-1单调递减.综上,当k >0时,f (x )在(-ɕ,-1)和2k ,+()ɕ单调递减,在-1,2()k单调递增.当k <-2时,f (x )在(-ɕ,-1)和2k ,+()ɕ单调递增,在-1,2()k单调递减.解题技巧与方法JIETI JIQIAO YU FANGFA134数学学习与研究2019.9当k =-2时,f (x )在(-ɕ,+ɕ)单调递增.当k >-2时,f (x )在-ɕ,2()k 和(-1,+ɕ)单调递增,在2k,()-1单调递减.一般涉及含参单调性的讨论问题,我们可按以下步骤进行:1.先求出函数的定义域,再求出导函数,有分母要通分,能因式分解要分解彻底;2.若导函数带分母,通分因式分解彻底后,判断导数分子最高次项系数是否含有参数,有可以讨论该参数得0和不得0,最高次项系数是否为0影响的是函数的类型;3.判断导数等于0是否有根,导数等于0得到的方程若为一元二次方程,可判断其判别式的符号:当判别式小于等于0时,若二次项系数为正,则导数恒大于等于0,函数在定义域内为增函数,若二次项系数为负,则导数恒小于等于0,函数在定义域内为减函数;当判别式大于0时,可以结合韦达定理分析导数等于0的两根与定义域的关系,确定单调区间;4.导数等于0得到的方程不是二次函数时,根据方程的特点判断有根无根,若有根,再判断其与定义域的关系,若根在定义域内,则根为极值点,再判断定义域内极值点分成的各段区间导数的正负从而得到函数的单调性;5.若导数等于0,方程有两个根且均在定义域内,当两根大小不确定时,可通过比较两根大小确定讨论的分界点.(上接132页)度”、有“智慧挑战”,要遵循由易及难,由简到繁,由基本到拓展的发展顺序去安排,让不同水平的学生都练有所得.如“平行四边形面积”一课,学生探讨出计算方法之后,我设计了以下的练习:1.基本性练习:计算下面平行四边形的面积,需要什么条件?这个平行四边形已知高的长度,要求它的面积还需要已知什么条件?学生回答完后教师再补充“底是18分米”,让学生独立完成.2.提高练习:(1)计算右图平行四边形的面积,算式是().(单位:厘米)A.7.5ˑ4B.7.5ˑ6C.6ˑ4(2)下面第()个平行四边形的面积算式是12ˑ8.ABC3.实践性练习:(1)选择条件,求出右边图形的面积.(单位:米)本组练习设计由浅入深,分层训练,逐步形成技能.基本练习在于检查学生是否会运用公式计算平行四边形的面积,加深对公式的巩固.提高练习是让学生明确计算平行四边形面积要选择正确的“底”和“高”.实践练习在于让学生能运用所学的知识解决生活当中的实际问题,培养学生的实践能力.发展性练习目的在于帮助学生深化知识、扩展知识,沟通知识间的内在联系,发展学生思维的广度和深度,培养学生创新的精神.四、总结反思要提炼数学思想方法数学思想方法是处理数学问题的指导思想和基本策略,是数学学习的灵魂,是学生数学素养的核心.刘云章教授认为:“重视对数学思想方法的领悟将能唤起数学学习者潜在的数学天赋,提高其数学素养,从而提高学习效益和质量”.数学思想方法的获得,一方面,需要教师进行有意识的渗透和培养,另一方面,也要靠学生的“悟”———在自身总结反思中提炼.例如,在“平面图形的面积复习”教学中,教师可引导学生思考:平行四边形、三角形、梯形的面积公式是怎样推导的?有什么共同点?学生在总结反思中理解了“转化”的数学思想方法.如学生学习完“三角形内角和”时,我让学生回顾学习过程:先计算直角三角形、等边三角形的内角和度数,再用猜测、操作、验证等方法推导一般三角形的内角和,最后归纳得出所有三角形的内角和为180度.学生回顾思维过程中总结出“归纳”的思想方法.因此,当数学学习结束后,教师要引导学生回顾自己的思维活动,总结反思自己是怎样发现和解决问题的,运用了哪些基本的思想方法等,及时对所应用的数学思想方法进行概括与提炼,从数学思想方法的高度把握知识的本质,提升课堂教学的价值.“本真数学”课堂教学,主张以“本”为核心,以“真”为重点,遵循“问题情境—探索活动—实践应用—反思提升”的教学程序,经历提出问题、分析问题、解决问题、应用问题的过程,探索数学本质,建构数学模型,提升数学素养.【参考文献】[1]刘加霞.小学数学课堂的有效教学[M ].北京:北京师范大学出版,2008.[2]陈桂香.小学数学课堂教学中应体现“数学味”[J ].教师博览(科研版),2011(11):61.。

导数单调性含参讨论问题

导数单调性含参讨论问题

导数单调性含参讨论问题
讨论导数单调性含参问题,需要找到临界点。

临界点的确定可以从以下四个方面入手:极值点、二次项系数、定义域和绝对值。

一、极值点大小比较的分类讨论是最主流的,如江苏高考和四川高考的例题。

在这种情况下,需要比较极值点的大小,然后讨论单调性。

二、二次项系数含有参数时也需要分类讨论,如北京高考的例题。

这时需要根据参数的取值讨论二次项系数的正负和单调性。

三、定义域的限制也会产生分类讨论,如山东高考的例题。

在这种情况下,需要考虑定义域的限制对单调性的影响。

四、绝对值也会产生分类讨论,如浙江高考的例题。

在这种情况下,需要分别讨论绝对值内外的函数单调性,然后综合得出结论。

回家作业:练以上四种分类讨论的方法,掌握如何确定临界点,进一步提高导数单调性问题的解题能力。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档