固井和完井

合集下载

《固井与完井作业》1

《固井与完井作业》1

组合回压凡尔可起双保险作用,应用 广泛;
五、扶正器
1.定义 装在套管体外面,起扶正、居中套管作用的装置称为套管扶正器。 2.作用 a、用来扶正套管,保持套管在井眼中居中,为驱替洗井液提供均匀畅通 的流道,保证套管柱与井壁环形空间的水泥浆分布均匀,提高水泥环 质量。 b、防止套管在高渗透地层段粘卡,减少套管磨损,保证套管顺利下井。 c、还可刮掉井壁上的疏松泥饼,提高水泥与地层的胶结质量。 3.安放原则 要使扶正器能起到扶正作用,必须合理设计扶正器的安放位置、数量及 相邻两个扶正器之间的距离。 一般原则是:安放在油气层部位、井径和井斜方位变化较大的井段。
三、固井胶塞
胶塞结构:
由内心、胶皮碗和帘布层组成。心体用生
铁、铸铝、玻璃钢或硬质橡胶等制成,然后将
其硫化在内心体上即成胶塞。现在大多内心用 硬橡胶,在底部加铝板制成。 上胶塞的作用:当全部水泥浆注完后,压 上胶塞,它顶着水泥浆下行,用来刮净粘附在
套管内壁上的水泥浆,并防止驱替钻井液与水
泥浆混合,避免尾部水泥浆污染,保证底部水 泥胶结质量。当到达阻流板时,显示碰压,则
3.作用
(1)下套管过程中,进行中途循环 洗井。
(2)下套管结束后,进行循环洗 井。
一、循环接头
4.结构
(1)大小头式循环接头一端为套 管外螺纹,另一端为钻杆内螺纹 式的大小头。 (2)活接头式循环接头一端为套
管外螺纹,另一端顶部(或侧面)焊
一活接头短节的两通接头。
二、固井水泥头
1.定义
水泥头是联接联顶节和固井管汇之 间的完成注水泥作业的井口装置。 2.作用 (1)联接套管串和各种管汇,通过它 来完成循环、注隔离液、注水泥浆、释 放胶塞、替浆等施工工序。它是固井作 业地面管汇井口总枢纽。 (2)承受高压,适应各种工艺固井。 (3)如果回压阀失灵,可实现憋压, 控制水泥浆倒流。 (4)通过它实现活动套管操作。

固井与完井

固井与完井

比较△Prn和△P(压差允值,正常压力地层用△PN,异常压 力地层用△Pa)。 当△Prn<△P时,则不易发生压差卡钻,Hm即为该层套管 下入深度。 当△Prn>△P时,则可能发生压差卡钻,这时,该层套管下 深Hn应浅于初选点Hni。Hn的计算如下: 令△Prn=△P,则允许的最大地层孔隙压力ρpper为:
2、套管和井眼尺寸的选择和确定方法
1)、确定井身结构尺寸一般由内向外依次进行,首先确定生产 套管尺寸,再确定下入生产套管的井眼尺寸,然后确定中层套管尺 寸等,依此类推,直到表层套管的井眼尺寸,最后确定导管尺寸。
2)、生产套管根据采油方面要求来定。勘探井则按照勘探方面 要求来定。 3)、套管与井眼之间有一定间隙,间隙过大则不经济,过小会 导致下套管困难及注水泥后水泥过早脱水形成水泥桥。间隙值 一般最小在9.5~12.7mm(3/8~1/2in)范围,最好为19mm (3/4in)。
考虑到井壁的稳定,还需要补充另一个与时间关系有关的不等 式,即: Gm(t)≥Gs(t) (3)
式中 Gs(t)——某截面岩石的坍塌压力梯度,MPa/m,即岩层不发生坍塌,缩径 等情况的最小井内压力梯度。
以上条件的存在是钻进工艺中所必须的,是在施工中所 要遵守的,否则会导致钻井事故,以致钻井失败及破坏油藏。 当这些压力体系能共存于一个井段时,即在一系列截面上能 满足以上条件时,则这些截面间不需套管分隔,否则就需要 用套管去分隔开这些不能共存的压力体系。井身结构中,相 邻套管深度间隔的井段应满足以上要求并依此来确定。只有 充分掌握上述压力体系的分布规律才能做出合理的井身结构 设计。
Pf≥Pm≥Pp
(1)
式中 Pf——地层的破裂压力,MPa; Pm——钻井液的液柱压力,MPa; Pp——地层孔隙压力,MPa。

固井完井精简版

固井完井精简版

固井完井工程(精简版)一名词解释1.完井:在不同的储层特征和采油工程技术要求下,建立油气井筒与油气层合理的连接方式的工程.2.油气层损害室内评价:借助各种仪器设备,测定油气层的岩心与外来流体作用前后渗透率的变化,来认识和评价油气层损害的一种手段3.速敏:当流体在油气层中流动时,引起油气层中微粒运移并堵塞喉道造成油气层渗透率下降的现象4.完井液:钻开油气层,具有保护储层,使钻井完全钻进的钻井液5.固井:钻井后向井内下入套管,将套管与井壁间的环空注水泥封固的工程。

6.稠化时间:在一定温度和压力下,水与水泥混合后稠度达到100Bc所需要的时间7.水灰比:配置水泥浆时,配浆水的重量与干水泥的重量之比8.水泥浆失水:水泥浆中的自由水通过井壁相地层渗入的现象9.水泥浆流变性:水泥浆在外剪切应力下流动变形的特征10.水泥石的抗压强度:水泥是在压力作用下破坏前单位面积上所能承受得力11.挤水泥:补救注水泥或修井作业方式,是利用液体压力挤压水泥浆,使之进入底层缝隙或环形空间的一种方法12.失重:由于一定的原因,水泥浆在凝结过程中对其下部或底层所作用的压力逐渐降低就好像失掉啦一部分重量。

13.射孔:利用射孔器,射穿套管,水泥环直至产层,沟通井筒与产层间流体通道的技术。

14.聚能效应:利用装药一端空穴以提高爆炸后局部破坏作用的效应。

15.压降曲线:对于试油后的探井或生产井,关井后达到稳定静止时,以某一稳定的产量开井生产,通过压力计测量不同开井时间的井底流压,将井底流压与开井时间在直角坐标系上作图所得到的曲线16.表皮系数:油田的每个作业都可能对储层造成伤害,在井底周围形成一个损害带,其渗透率不小于为损害带的渗透率,描述损害程度大小的量称为表皮系数17.压力恢复曲线:当一口井以某一产量生产一定时间后,将井关闭,通过压力计测出井底压力恢复值随关井时间的变化,二者之间的关系曲线18.储层岩心敏感性:储层岩心在外来流体或压力作用下渗透率下降的现象,渗透率下降越大,说明储层岩心对此流体和压力的敏感性越大19.水泥的凝结过程(硬化过程):水泥与水混合后,迅速与水发生法反应,生成各种水化物,水泥浆也逐渐有液态转变为固态的过程20.屏蔽暂堵技术:把近井壁地带的地层堵死以防止外来物质进入以保护油气层的技术。

第12章固井与完井

第12章固井与完井

第十二章固井与完井为了安全钻进和采油的需要,在井眼中下入钢质套管,并在套管和井壁之间注入水泥浆的过程,称为固井。

固井是钻井工程中一个十分重要的环节,它可分为设计和施工两部分,设计部分包括:井身结构设计、套管柱设计和注水泥设计;施工部分包括:下套管和注水泥两部分。

如果固井质量出了问题将给钻井和采油带来许多麻烦(如套管断裂、套管变形、环空串槽),影响井的寿命,甚至使一口井报废。

因此,钻井工程技术人员对固井都是非常重视的,固井设计都是由钻井公司或钻井科进行的,并且由井队钻井技术员复查,尽量作到万无一失。

第一节井身结构井身结构是一口井下入套管的层次、套管尺和下入深度以及相应钻头尺寸的配合。

井身结构设计的依据是地层地质条件、地层孔隙压力和地层破裂压力。

一口井的套管可分为:表层套管(surfacecasing)、技术(中间)套管(protection casing、intermediate casing)和油层套管(production casing、oil string)。

1、表层套管封隔地表疏松层。

2、技术(中间)套管解决钻进过程中难以处理的各种漏、塌、喷等复杂地层问题。

3、油层套管为采油目的而下的套管。

除了要考虑到采油方面的要求外,在钻井方面还应根据地层压力、地层破裂压力以及其它特殊的地质因素来设计。

第二节固井目的1、封隔地下不同油、气、水层,防止串槽;2、为井的投产建立生产通道;3、封闭暂不开采的油、气层;4、为安装井口防喷装置创造条件;5、提供油、气井压力控制的基本条件;6、封闭复杂地层,保护井壁,防止坍塌、井漏等。

第三节固井工艺过程一、下套管套管柱结构casing string structur1、套管2、引鞋——引导套管入井;3、套管鞋——起钻防挂;4、回压阀——套管入井时增加浮力、控制水泥塞高度、防止回流;5、扶正器——扶正套管,提高顶替效率,提高固井质量;6、泥饼刷——提高固井质量;二、注水泥1、注水泥地面设备水泥车、储灰罐、水泥混合漏斗、压风机组、水泥浆管线、水管线、气管线。

15 固井与完井 well cementing and completion

15 固井与完井 well cementing and completion

15 固井与完井well cementing and completion15.1 油井水泥oil-well cement:适用于油气井或水井固井的水泥或水泥与其他材料的任何混合物。

15.1.1 硅酸盐水泥(波特兰水泥) portland cement:以硅酸钙为主要成分的水泥总称。

是指不加外掺料,只在熟料中加适量石膏共同磨细而成的一种强度较高的水泥。

15.1.1.1 API水泥API cement:美国石油协会(API)把用于油井的水泥称API水泥。

且制定了标准。

15.1.1.2 API水泥分级API cement classification:美国石油协会把油井水泥分为A,B,C,D,E,F,G,H,J九个等级。

15.1.1.3 基本水泥basic cement:指API油井水泥系列中的G,H级水泥。

加入外加剂后使用更大的范围。

15.1.1.4 抗硫酸盐水泥sulfate resistant cement:具有较高抗硫酸盐侵蚀性能的水泥,即C3A矿物受到限制的水泥。

按GB10238规定:C3A<8%者为中抗硫酸盐型(MSR);C3A <3%,C4AF+2C3A<24%者为高抗硫酸盐型水泥(HSR)。

15.1.1.5 净水泥neat cement:没有外加剂或外掺料的水泥。

15.1.1.6 水硬性水泥hydraulic cement:在水环境中不被稀释而加速硬化或凝固的水泥。

15.1.2 火山灰水泥pozzolanic cement:由火山灰、烧粘土、粉煤灰等硅质物质与石灰或奎酸盐水泥混合,具有抗高温、高强度、抗腐蚀的水泥。

15.1.3 高铝水泥high alumina cement:铝矾土与石灰石混合,经烧结,磨细而制成耐火度在1650度以上的一种铝酸盐水泥。

15.1.4 改性水泥modified cement:通过外加剂改变化学或物理性能的水泥。

15.1.4.1 早强水泥high early strength cement(high initial strength cement):提高水泥石早期强度的水泥。

固井、完井与试油

固井、完井与试油
薄金属带连起来,直接下井射孔。
.
聚能式射孔器

最常用,是利用炸药爆轰的聚能效应产生的高
温高压高速聚能射流来射穿套管、水泥环及地层,
完成射孔作业。

按结构分有枪身射孔器和无枪身射孔器两类,核
心组成部分是聚能射孔弹。
.
1)聚能射孔弹
根据火药爆燃时聚能效应原理制造的,不同形状火药
在爆燃时能量传递方式不同。主要由弹壳、主炸药、
油管下入到所要射孔井段上部,电缆输送小直径射孔器,穿过油
管下到射孔井段,在套管中定位射孔。

可采用有枪身射孔器和无枪身射孔器。
可以降低油管内液面,使之达到负压射孔,减少储层伤害
适合于生产井不停产补孔和射开新层位,减少压井和起下油管作

过油管射孔枪直径受油管内径限制,无法实现高孔密、深穿透。
.
.
2-3 油管输送式射孔
地层和孔眼内爆炸残余物,畅通油流通道,同时避免井内液
体进入地层,防止油层内发生土锁和水锁。
•降低射孔损害、减少孔眼堵塞、提高产能有效方法
.
3、尾管射孔完井方法
特点 除具有套管射孔完井方
法的优点外,还可以减少套
管用量和固井水泥的用量,
从而降低完井成本。
完井方法(Completiom)
oil
zone
大类。
先期裸眼完井:
钻至油气层顶部时,先下入油层套管固井,然后换小尺寸的
钻头,用符合打开油气层条件的优质钻井液打开油气层裸眼
完成的完井方法。
后期裸眼完井:
先打开储集层,后将油层套管下入油气层顶部固井。
先期裸眼完井方法
后期裸眼完井方法
产层全部钻穿后应继续钻进一段,留足口袋停钻。口袋长度一般在

固井、完井与试油

固井、完井与试油
多学科交叉融合
未来固井、完井与试油技术的发展将更加注重多学科交叉 融合,包括地质学、物理学、化学、材料科学等领域,为 解决技术难题提供更多思路和方法。
谢谢观看
利用数字化技术,实现远程控制和智能化操作,提高试油效率。
环保试油技术
在试油过程中,注重环境保护,减少对地层和周边环境的污染。
04
固井、完井与试油的关 系
三者之间的相互影响
01
固井对完井的影响
固井是完井的基础,固井质量的好坏直接影响到完井的顺利进行。固井
的目的是封隔地层,防止地层流体互相渗透,为完井提供良好的基础。
固井的工艺流程
下套管
将套管下入井眼,并固定在预 定深度。
候凝
等待水泥浆凝固,期间需进行 加压、循环等操作,以确保水 泥浆充分凝固。
钻井准备
在钻达设计深度后,进行通井、 洗井等作业,确保井眼畅通无 阻。
注水泥浆
将水泥浆注入套管和井壁之间 的环形空间,以固定套管并封 隔地层。
起出套管
待水泥浆完全凝固后,将套管 起出井眼。
试油前的准备
包括钻井、测井等 前期工作,确保井 筒干净、无阻。
诱流
通过加压等方式, 使油、气、水层中 的流体流入井筒。
封堵
对已测试的层位进 行封堵,确保其他 层位不受影响。
试油技术的发展趋势
高压、高温、高含硫化氢等复杂油气藏的试油技术
针对复杂油气藏,发展相应的试油技术,提高测试成功率。
数字试油技术
完井技术的发展趋势
智能化完井
环保型完井
利用物联网、大数据等技术手段,实现完 井过程的智能化监测与控制,提高生产效 率和安全性。
注重环境保护,采用低毒、环保的化学剂 和材料,降低对环境的污染和破坏。

固井完井

固井完井

名词解释1完井工程的定义:完井工程是衔接钻井和采油工程而又相对独立的工程,是从钻开油层开始,到下套管注水泥固井、射孔、下生产管柱、排液,直至投产的一项系统工程。

2盐敏:当高于地层水矿化度的工作液进入油气层后,可能引起粘土的收缩,失稳,脱落,当低于地层水矿化度的工作液进入地层后,则引起的粘土的膨胀和分散,这些都将导致油气层孔隙空间的缩小及堵塞,引起渗透率的下降从而伤害油气层的现象。

3水敏:油气层中的粘土矿物在原始的地层条件下处于一定的矿化度环境中,当淡水进入地层时,某些粘土矿物发生膨胀,分散和运移,从而减小或堵塞地层孔隙和吼道,造成渗透率下降的现象4绿泥石构成:由两个硅氧四面体夹一个铝氧八面体形成晶层,两个晶层间又有Mg(OH)2晶层,如此重叠形成绿泥石5水泥石:硬化后的水泥浆体6水泥浆:水为分散介质(连续相),粘土为分散相7水灰比:水与干水泥重量之比,一般为0.58稠化时间:水与水泥混合后稠度达到100Bc所需要的时间9水泥浆的失水:水泥浆中自由水通过井壁向地层中渗入的现象10水泥浆的流变性:水泥浆在外加剪切应力作用下流动变形的特性11水泥浆的顶替效率:水泥浆在环行空间顶替泥浆的程度。

顶替效率越低,固井质量越差。

12提高顶替效率的主要措施:13加扶正器:是最有效的措施,特别在定向井中。

一般在封隔层段及附近30~50m内,每根套管加一个扶正器,其余井段3~5根套管加一个扶正器。

14活动套管:上下活动套管或旋转套管是提高顶替效率极有理的措施15水泥浆失重:水泥浆在凝结过程中,液柱压力降低的现象.16聚能效应:利用装药一端空穴以提高爆炸后的局部破坏作用的效应,称为聚能效应17正压射孔:是指射孔时的井底压力高于油藏压力。

18负压射孔:是指射孔时的井底压力低于油藏压力。

19射孔液:射孔时的一种液体,也称完井液,既有钻井液的功能也有完井液的功能20表层套管:封隔地表浅水层及疏松复杂地层,悬挂和支撑各级套管并安装井口21中间套管(技术套管):在表层和油层套管间的,固技术需要的套管,一层,二层,多层22固井工程的定义:为了加固井壁,保证继续钻进,封隔油,气和水层,保证勘探期间的分层试油及整个开采中合理的油气生产,为此下入优质钢管,并在井筒与钢管环空充填好水泥的系统工程简答1完井工程的理论基础:1)通过对油气层的研究以及对油气层潜在损害的评价,要求从钻开油层开始到投产每一道工序都要保护油气层,以保证油气层发挥其最大产能2)通过节点分析,优化压力系统,根据油藏工程和油田开发全过程特点以及开发过程中所采取的各项措施,来选择完井方式及方法和选定套管直径。

《固井与完井》课件

《固井与完井》课件
能节约油井的投资、缩短建造周期、减小井外占地。
固井与完井的挑战与解决方案
1
难点
需要在井下完成工作,不同的地层和介质需要不同的技术和工具。
2
解决方案
引入网络、AI和机器学习技术,以改进工效和精度,并开发更好的工具和设备。
3
难点
成本高。
4
解决方案
提高研发水平,简化流程,优化成本。
5
难点
开采难度大。
固井的重要性与目的
确保井下安全
防止井壁塌陷,防止井下物质 泄漏。
维持井型
保持井壁的固定,确保井型和 完井的有效性。
加强流体控制
控制地层油气和水的流动,以 及砂、泥浆和黏土等井下杂质 的管控。
固井的基本步骤
1
配制及注入水泥
准备好所需的混合物,注入沉淀后的水泥。
2
放置套筒
在油井中放置一根管子,以容纳水泥。
钻井
用钻具从地面或海底向下钻井。
套管
钻好一个地层后,套管是为了下次在这里钻井时, 能快速的进入下一块地层。
泵抽
将油从地下抽到地上,分离油和水。
常见的固井与完井技术
口径控制井完井
通过多次剖分管柱,让砂层上的油渗透到管柱中。
开孔完井
通过改变油管中的压力,让油在砂层上形成一条缝隙,这样油可以向上流动。
抽油杆完井
3
打开井口
只有在套管放置到位时才可打开井口,使水泥注入井壁。
完井的定义和作用
1 定义
完井是将油管接到天然气或石油井上以便生 产的过程。
2 作用
完井的目的是使井中石油或天然气充分流动, 直到被攫取;可以隔离不同水平的油气,适 当控制产油和产水。
完井的流程与技术

《固井与完井作业》2

《固井与完井作业》2

4、常规固井作业要求
(1)下完套管、开泵循环时,先低泵冲小排量顶通,后分逐步提排量。 (2)提至施工排量后,至少循环二至三周才能施工。 (3)循环结束到注前置液开始间隔不超3分钟,否则应再循环。 (4)管线试压应大于设计的最高施工压力。 (5)施工过程中,返出的混浆、水泥浆不得返入循环系统。 (6)钻水泥塞时,转速宜在45~60转/分,钻压在0.8~1.5吨。
项目一 油井水泥认识 二、水泥浆的性能
(四)流变性;(湍流、层流、塞流)
(五)容积变化; (六)稠化时间; 三、油井水泥分类 (一)API水泥级别(八个) (二)API水泥的特性 (三)其他油井水泥 1、超细水泥;2、抗高温水泥;3、快凝早强水泥;
项目二 油井水泥的测定 一、水泥浆的性能的要求
(1)可变密度,不沉淀、易流动、无气泡;
(九)减少或阻止高温强度衰退的硅质材 料:用于防止水泥浆在高温下的强度 衰退。
(十)减少或防止井漏的外加剂和掺料剂: 在注水泥施工期间,用来堵住地层中 的裂缝、洞穴及渗透层等。
项目一 常用外加剂的使用 二、前置液
(一)冲洗液 1、定义:是在隔离液或水泥浆前面注入的一种能清洗井壁、套管 壁及稀释钻井液的液体,同时对稀释的接触段,钻井液能改善 流变性能。
二、水泥浆的性能
(一)密度:(干水泥:3.15g/cm3、水泥浆:1.78~1.98g/cm3) (二)水灰比:(最小水量:<30BC、大水量:<清液3.5mL) (三)失水控制:(普通:100~300mL/30min) (挤水泥:50~150mL/30min) (控串:30~50mL/30min) (标准:50~200mL/30min)
2、注水泥选择:
水泥浆性能:高、中、低密度、缓凝、耐高温、耐腐蚀; 注水泥方式:一次注水泥、多级注水泥、套管外封隔器注水泥(水泥充

9-1固井、完井、试油、采油

9-1固井、完井、试油、采油

第九章 固井、完井与试油 §9-2 油气井完成
3. 裸眼完井
1) 定义:完井 时井底的储 集层是裸露 的,只在储 集层以上用 套管封固的 完井方法。
裸眼完井 先期裸眼完井 后期裸眼完井
先期裸眼完井:先 下油层套管至产层 顶部,后钻开生产 层。 后期裸眼完井:先 钻开生产层,后下 油层套管至产层顶 部。

§9-1 固井
注水泥设备包括:水泥车、水泥罐车、供液车 和压塞车。 底胶塞 • 注水泥工具包括:水泥头、 顶胶塞和底胶塞。
第九章 固井、完井与试油 §9-1 固井
4. 注水泥工艺流程
装水泥头、循环洗井
放下底胶塞、打隔离液
注水泥浆
压顶胶塞
井筒中替换成洗井液
碰压
第九章 固井、完井与试油
§9-2 油气井完成
3. 套管柱设计
安全原则:抗拉、抗挤、抗内压; 经济原则:
4. 下套管
基本工艺过程与下钻相同。
第九章 固井、完井与试油 §9-1 固井
四、注水泥
用一套专用设备将设计用量的水泥浆注入井内,并使其返 至套管外设计的位置称为注水泥。
1. 油井水泥
• • 为硅酸盐水泥的一种; 油井水泥需要具有:
– – – – 耐高温、高压能力; 较高的早期强度; 较短的候凝时间; 较强的耐腐蚀能力。

缺点:
– –
第九章 固井、完井与试油 §9-2 油气井完成
三、完井井底和井口装置
1. 完井井底装置
1) 2) 3) 4) 油管:使油气通过 它流到地面。 油管鞋:防止油管 内落物掉入井眼内。 筛管:减小油气进 入油管的阻力。 口袋:避免因油层 附近出砂造成砂堵 而不得不频繁地洗 井。
表层 套管 油管 中间套管 筛管 油层套管

《固井与完井作业》3

《固井与完井作业》3
(3)泥浆清洁情况; (4)遇阻卡情况; (5)井壁稳定性: (6)产层的压稳情况;
项目二:影响固井质量的因素
7、地质情况:
影响井眼质量的关键因素;
(1)软泥岩、膏泥岩等塑性蠕变地层,易缩径;
(2)山前高陡构造地层,导致井斜、狗腿等;
(3)煤层、盐层等坍塌、水溶地层,易形成糖葫 芦井眼; (4)多套压力体系地层,存在井漏和压稳问题;
(c) 起 出 钻 具 , 侯 凝 。
(九)延迟凝固注水泥工艺技术 1、延迟固井工艺技术概述 延迟固井是在下套管前先把缓凝水
泥浆替入井中,再下套管到井底。方
法:用钻杆将下入井内,注定量缓凝 水泥浆,之后起出钻杆,下入套管至 井底(主要用于无油管完井)。 优点:形成的水泥环比较均匀。 缺点:施工时间长且受井深和温度 条件限制。
法,部分或全部掏空井内液体,并关井一段
时间,观察井内变化。
项目一:固井质量评价方法 3、声波幅度测井(CBL)技术
只记录声波波列中的首波幅度,因而只能
提供水泥环与套管之间(第一界面)的封固 情况。若水泥环与地层之间(第二界面)封
固不好,而形成窜槽,用声波幅度测井资料
就不能判断。CBL/VDL测井解决了这一问题。 4、声波变密度测井仪(CBL/VDL) 除记录首波外,还记录到后继波,不仅可 以评价第一界面的水泥胶结质量,还能较好
(五)管外封隔器工艺技术 1、封隔器概述 按 封 隔 件 工 作 原 理 分 类
* 自封式Z:靠封隔件外径与套管内径的过盈和工
作压差实现密封。 * 压缩式Y:靠轴向力压缩封隔器,使封隔器件外 径变大实现密封。 * 扩张式K :靠经向力作用于封隔器内腔,使封 隔器件外径扩大实现密封。 * 组合式:由自封式、压缩式、扩张式任意组合

第4章固井、完井与试油 ppt课件

第4章固井、完井与试油  ppt课件

PPT课件
19
1.枪身;2.导爆索;3.射孔弹;4.弹架;5.固弹卡;6.安装架;7.旋塞
(a)多次使用型有枪身射孔器;(b)一次销毁型有枪身射孔器
PPT课件
20
无枪身射孔器:
由无枪身聚能射孔弹、弹架(或非密封的钢管)、起爆 传爆部件(或装置)等构成的射孔总成。
无枪身射孔器按照射孔弹结构和固弹方式:
套管下到油气层底部,固井后射孔打开油气层。 世界各主要产油国广泛使用的完井方法,70%~90%。 射孔(perforating):射孔枪在油层某一层段套管、水泥环
和地层之间打开孔道,使地层中流体能流出。 炮弹射孔的孔眼也称为炮眼。 在射孔完井的油气井中,射孔孔眼是沟通产层和井筒的唯
PPT课件
2
PPT课件
3
二.井身结构
定义: 一口井中下入套管的层次
、下入深度、井眼尺寸与套管 尺寸的配合,以及各层套管外 水泥返高等。
水泥返高:指固井时套管与井 壁之间水泥环上升的高度。
PPT课件
4
各层套管的作用
导 管:封隔地表疏松地层,防止钻井液渗入地基影响井 架稳定以及在钻表层井眼时将钻井液从地表引导到钻井装置 平面上来形成有控循环。
PPT课件
5
三、注水泥
下完套管之后,把水泥浆泵入套管内,再用钻井液把水泥浆 顶替到管外环形空间设计位置的作业称之为注水泥。
注水泥质量的基本要求: 1、依照地质及工程设计要求,套管下入深度、水泥浆返 高和管内水泥塞高度符合规定 2、注水泥井段环空内的钻井液全部被水泥浆替走 3、水泥环与套管和井壁岩石之间的连接良好 4、水泥石能抵抗油、气、水完井方法
尾管射孔完井
PPT课件
13
优点 可选择性地射开油层,避免 层间干扰;有利于进行分层试油、 分层开采、分层酸化压裂、分层注 水等作业。

石油钻井行业——固井与完井

石油钻井行业——固井与完井

p N 0.00981 Dmin
p min Sb
在地层压力曲线上找出 ρpper 所在的深度即 为中间套管下深D2。
12
3、求钻井尾管下入深度的初选点D31
根据中间套管鞋 D2处的地层破裂压力当量密度 ρf2 ,求出 继续向下钻进时裸眼井段所允许的最大地层压力当量密度:
pper f 2 Sb S f
2
3
二、井身结构设计的原则
1、有效地保护油气层;
2、有效避免漏、喷、塌、卡等井下复杂事故的发生 ,保证安全、快速钻进; 3、当实际地层压力超过预测值而发生井涌时,在一 定压力范围内,具有压井处理溢流的 能力。
4
三、井身结构设计的基础数据
地层岩性剖面、地层孔隙压力剖面、地层破裂压力剖面 、地层坍塌压力剖面。 6个设计系数: 抽系压力系数Sb;0.024 ~0.048 g/cm3
根据中间套管鞋处的地层压力当量密度 ρp2 ,计算出若
钻进到深度D2发生井涌关井时,表层套管鞋D1处所承受 的井内压力的当量密度:
fE p 2 S b S f
D2 D1
Sk
用试算法确定 D1。试取一个 D1,计算 ρfE ,计算值与 D1 处的地层破裂压力当量密度值比较;若计算值接近且小
于地层破裂压力值,则确定 D1为表层套管下深。否则,
重新试取D1进行试算。
14
七、套管尺寸与钻头尺寸的选择
1. 原则:
(1)套管能顺利下入井眼内,并具有一定的环空间隙柱水泥。
(2)钻头能够顺利通过上一层套管。
2. 经验配合关系
长期实践形成的经验配合关系(P 256,图7-3) 国内常用的配合关系: (17 ½) 13 3/8——(12 ¼) 9 5/8——(8 ½) 5 ½

第三章固井、完井

第三章固井、完井

a、定义:A、B、C、D、E与F级油井水泥,是硅酸钙为主要成分的水泥熟料, 加入适量石膏和助磨剂,磨细制成的产品。 在粉磨与混合D、E、F级水泥般的过程中,允许掺加适宜的调凝剂, 并要求助磨剂对强度没有负面影响。
G、H级油井水泥,主要成分与前面相同。加入适量的石膏或石膏和 水,磨细制成的产品,在粉磨与混合 G、H级水泥过程中不允许掺加任何 其它外加物。
a、地层压力;b、破裂压力;c、坍塌压力;d、地应力
所谓地层压力剖面就是地层压力随井深的变化。如图 8-2 , 就是随井深的加深而增大的。
3、按实际情况决定各层套管下入深度 如确知井下压力不高,不压裂地层之时,可不
必按破裂压力来确定各层套管的下入深度。而按该地区
的实际情况而定,这样节省套管,节省水泥,减少施工 程序。
三、下套管
(一)、套管柱的外载 1、轴向载荷:主要是拉力。拉力过大,将引起连接丝扣(圆
扣)被拉坏而断裂。而管体被拉断的情况很少,不允许存在 轴向压力,只在较少场合下出现受拉压力(为什么?防止弯 曲,不居中) 1)浮力:套管在井内钻井液中因管体排开钻井液而受到浮力。 套管受浮力的效果可以认为是套管的线密度因浮力作用而变 小,其影响用浮力系数计算,表示管柱受浮力后剩余重量为 其在空气中重要的百分数。
它是下在表层套管与油层之间的。 可以下多层,也可以不下,由具体情况条件而定。
浅井:地质条件不复杂,技术套管少或没有
深井:地质条件复杂,技术套管层多。 技术套管保证满足不等式Pf≥Pd≥Pp。
4、油层套管:油井钻完以后下的最后一层套管,直径最 小。 功用以封隔油、气、水层,以及不同物性的油气 层,以利于分层开采,防止底水并形成生产通道,或
弯曲应力等,多以安全系数的方式计入。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n----组成套管柱的套管种类(钢级、壁厚)。 ②套管弯曲引起的附加拉力 经验公式: F 0.073 d A kN
bd co

c
在为定向井、水平井以及狗腿度严重的直井中设计套管 柱时,应考虑弯曲引起的附加拉力。
第二节 套管柱设计 ③注水泥引起的附加拉力
Fc
( m d )
4000
第一节 井身结构设计
二、井身结构设计的原则
1.有效地保护油气层;
2.有效避免漏、喷、塌、卡等井下复杂事故的发生,保证安
全、快速钻进; 3.钻下部地层采用重钻井液时产生的井内压力,不致压裂上 层套管鞋处最薄弱的裸露地层; 4.下套管过程中,井内钻井液液柱压力和地层压力间的压差 不致于压差卡套管; 5.当实际地层压力超过预测值而发生井涌时,在一定压力范 围内,具有压井处理溢流的 能力。
8- 5/8",9 -5/8",10- 3/4",11- 3/4",13 -3/8",16",18 5/8",20";共14种。
– 壁厚:5.21~16.13 mm。
– 小直径的套管直径小一些,大直径的套管直径大一些。 – 另外有非标准的钢级和壁厚。
第二节 套管柱设计 •套管的钢级: –API标准:H-40,J-55,K-55,C-75,L-80,N-80,C-90, C-95,P-110,Q-125。(数字×1000为套管的最小屈服强度 kpsi)。 –1kpsi=6.8947MPa –其中, H-40,J-55,K-55,C-75,L-80,C-90是抗硫d 。
五、井身结构设计方法
1、求中间套管下入深度的假定点
第一节 井身结构设计
(1)不考虑发生井涌 由 ρf =ρpmax+ Sb + Sg + Sf ρdmax 计算出ρf ,在破裂压力曲线上查出ρf 所在的井深D21 ,即为 中间套管下深假定点。 (2)考虑可能发生井涌 由 ρf =ρpmax+Sb+ Sf + Sk ×Dpmax/ D21 用试算法求 D21;先试取一个D21,计算ρf ;将计算出的 ρf 与D21处查得的ρf 进行比较,若计算值与实际值相差不大且 略小于实际值,可以确定D21为中间套管假定点。否则,重新 进行试算。
( 26〞 ) 20 〞 - (17½ 〞)133/8 〞 - (12¼ 〞)95/8 〞-(8½ 〞)5-1/2 “. 7 〞-(5 7/8 〞)4 1/2"
套管和井眼尺寸的确定一般是由内到外进行,首先根据采 油工程等方面的要求确定油层套管的尺寸,然后确定与油层套 管相匹配的钻头。 套管与井眼之间的间隙与井身质量、固井水泥环强度要求、 下套管时的井内波动压力、套管尺寸等因素有关。最小间隙为 9.5mm,最大间隙达76mm。 每次开钻钻头直径与上层套管最小内径之间保持6.4~13mm (1/4~1/2英寸)的间隙。 目前,根据套管层次不同,已基本形成了较稳定的系列。
3、中间套管(技术套管) 在表层套管和生产套管之间由于技术要求下入的套管,可 以是一层、两层或更多层。 主要用来封隔不同地层压力层系或易漏、易塌、易卡等井下 复杂地层。 4、尾管(衬管) 是在已下入一层技术套管后采用,即在裸眼井段下套管、注 水泥,而套管柱不延伸到井口。 减轻下套管时钻机的负荷和固井后套管头负荷;节省套管 和水泥。 一般深井和超深井。
z
/σ s 的百分
第二节 套管柱设计 考虑轴向拉力影响时的抗外挤强度公式推导:
pcc d c t 2t 由双向应力椭圆方程,当σ z=0时: σ t2 = σ s2 根据上式,则有:

s
pc d c 2t
将σ t和σ s的表达式代入双向应力椭圆方程,并进行适当 简化,即可得到考虑轴向拉力影响时的抗外挤强度近似公式:
第一节 井身结构设计
三、井身结构设计的基础数据
•地层岩性剖面、地层孔隙压力剖面、地层破裂压力剖面、地
层坍塌压力剖面。 •6个设计系数:
抽吸压力系数Sb: 0.024 ~0.048 g/cm3
激动压力系数Sg: 0.024 ~0.048 g/cm3 压裂安全系数Sf: 0.03 ~0.06 g/cm3 井涌允量Sk:0.05 ~0.08 g/cm3 压差允值p: PN: 15~18 MPa ,
变换为椭圆方程:
z 2 s

z t 2 s
1
按拉为正、压为负,根据以上方程可画出椭圆图形。
第二节 套管柱设计
双向应力椭圆
第二节 套管柱设计 在椭圆图上, σ t/σ s 的百分比为纵坐标,σ 比为横坐标。 由强度条件的双向应力椭圆可以看出: • 第一象限:拉伸与内压联合作用,轴向拉力的存在下使套 管的抗内压强度增加。 • 第二象限:轴向压缩与内压联合作用。在轴向受压条件下 套管抗内压强度降低。 • 第三象限:轴向压应力与外挤压力联合作用。在轴向受压 条件下套管抗外挤强度增加。 • 第四象限:轴向拉应力与外挤压力联合作用。轴向拉力的 存在使套管的抗挤强度降低。由于这种情况在套管柱中是 经常出现的。因此在套管柱设计中应当考虑轴向拉力对抗 挤强度的影响。
1、轴向拉力及套管的抗拉强度
(1)套管的轴向拉力
自重产生的拉力、弯曲产生的附加拉力、注水泥时产生
的附加力、动载、摩阻等。
第二节 套管柱设计 ①自重引起的拉力
Fm qi Li (1
i 1
n
d s
) 103 qmi Li 103
i 1
n
kN
qmi----第I种套管在钻井液中的单位长度重力,N; Li----第I种套管的长度,m;
•连接螺纹的类型:
–API标准:短圆(STC)、长圆(LTC)、梯形(BTC)、直 连型(XL)
•套管柱:由同一内径、不同钢级、不同壁厚的套管用接箍连接 组成的管柱。特殊情况下也使用无接箍套管柱。
第二节 套管柱设计
二、套管柱受力分析及套管强度
• 套管柱在井内所受外载复杂。在不同时期(下套管过程中、 注水泥时、后期开采等过程中)套管柱的受力也不同。 • 在分析和设计中主要考虑基本载荷:轴向拉力、外挤压力 及内压力。 • 套管柱设计时按最危险情况考虑。
PA: 21~23 MPa
第一节 井身结构设计
四、裸眼井段应满足的力学平衡条件
(1) ρdmax≥ρpmax+ Sb (2) (ρdmax-ρpmin)×Dpmin×0.00981≤△P (3) ρdmax+ Sg + Sf ≤ρfmin (4) ρdmax+ Sf + Sk ×Dpmax/ Dc1≤ρfc1 防井涌 防压差卡钻 防井漏 防关井井漏
pper
p N 0.00981 Dmin
p min Sb
在地层压力曲线上找出ρpper 所在的深度即为中间套管下深D2。
第一节 井身结构设计
3、求钻井尾管下入深度的假定点D31
根据中间套管鞋处的地层破裂压力当量密度 ρf2 ,求出继续 向下钻进时c 1.03 0.74

Fm Fs

第二节 套管柱设计
3、内压力及抗内压强度
(1)内压力 考虑到套管外的平衡压力,一般情况下,套管在井口所受的 内压力最大。计算时,考虑三种最危险的情况。 • 套管内完全充满天然气并关井时的内压力:
校核方法与中间套管的校核方法相同。只是将压差允值△PN 变为△PA 。
第一节 井身结构设计
5、计算表层套管下入深度D1
根据中间套管鞋处的地层压力当量密度ρp2 ,计算出若 钻进到深度 D2发生井涌关井时,表层套管鞋 D1处所承受的 井内压力的当量密度:
fE p 2 S b S f
各层套管外水泥返高,以及套管和井眼尺寸
的配合。
一、套管的分类作用
1、表层套管
主要用途: •封隔地表浅水层及浅部疏松和复杂地层 •安装井口、悬挂和支撑后续各层套管 下深位置:
根据钻井的目的层深度和地表状况而定,
一般为上百米甚至上千米。
套管的基本类型
第一节 井身结构设计
2、生产套管(油层套管)
主要用途:用以保护生产层,提供油气生产通道。 下深位置:由目的层位置及完井方式而定。
其中:
ρdmax----裸眼井段内使用的最大钻井液密度,g/cm3; ρpmax----裸眼井段钻遇的最大地层压力的当量泥浆密度,g/cm3; Dpmax----最大地层孔隙压力所处的井深,m; ρpmin----裸眼井段钻遇的最小地层压力的当量泥浆密度,g/cm3; Dpmin----最小地层孔隙压力所处的最大井深,m; ρfmin----裸眼井段最小地层破裂压力的当量泥浆密度,g/cm3; Dc1----套管下入深度,m; ρfc1----套管鞋处地层破裂压力的当量泥浆密度, g/cm3;
第二节
套管柱设计
一、套管和套管柱 二、套管柱受力分析及套管强度 三、套管柱强度设计
第二节 套管柱设计
一、套管和套管柱
• 套管:优质无缝钢管。一端为公扣,直接车在管体上;一端 为带母扣的套管接箍。 • 套管的尺寸系列:
– API标准套管:4 -1/2",5",5 -1/2",6- 5/8",7", 7- 5/8",
固井和完井技术
第一节 井身结构设计
第二节 套管柱设计
第三节 固井技术
第四节 完井技术
第一节 井身结构设计
一、套管的分类作用 二、井身结构设计的原则 三、井身结构设计的基础数据
四、裸眼井段应满足的力学平衡条件
五、井身结构设计方法 六、套管尺寸与钻头尺寸的选择
第一节 井身结构设计 主要包括套管层次和每层套管的下深,
h dcin kN
④其它附加拉力 • 上提或下放套管时的动载、井壁摩擦力等。 • 一般在安全系数中考虑。 (2)套管的抗拉强度 • 套管所受轴向拉力一般在井口最大。 • 由拉应力引起的破坏形式:本体被拉断、脱扣。 • 通常用套管的抗滑扣力表示套管的抗拉强度。
相关文档
最新文档