AFS讲义原子荧光
原子荧光光谱法(AFS) 分析技术 - 副本
二〇一二年三月
原子荧光光谱法(AFS) 分析技术 原子荧光光谱法
一 AFS基础原理概述 AFS基础原理概述 二 三 四 五 六 AFS仪器构造装置 AFS仪器构造装置
AFS仪器操作及影响测量的主要因 AFS仪器操作及影响测量的主要因 素
AFS仪器使用注意事项 AFS仪器使用注意事项 AFS仪器日常维护 AFS仪器日常维护 AFS简单故障的排除 AFS简单故障的排除
AFS仪器操作及影响原子荧光 仪器操作及影响原子荧光 测量的主要因素及注意事项
2. 6 读数时间、延迟时间 读数时间、
读数时间[t(r)]是指进行测量采样的时间,即元素灯以事先设定的 灯电流发光照射原子蒸气使之产生荧光的整个过程。操作者可根据 屏幕上的If-T关系曲线形状来确定读数时间,该时间的长短与蠕动 (注射)泵的泵速、还原剂的浓度、进样体积的大小等有关。读数 时间的确定非常重要,以峰面积积分计算时以将整个峰形全部采入 为最佳。 延迟时间[t(d)]是指当样品与还原剂开始反应后,产生的氢化物 进入原子化器需要一个过程,其所用时间即为延迟时间。延迟时间 设置准确,可以有效地延长灯的使用寿命,并减少空白噪声。 在读数时间固定的情况下,如果延迟时间过长,会导致读数采样 滞后,损失测量信号;延迟时间过短,会减少灯的使用寿命,增加 空白噪声。
AFS仪器操作及影响原子荧光 仪器操作及影响原子荧光 测量的主要因素及注意事项
1、操作规程 、 打开氩气→安装待测元素灯→依次打开稳压电源、电 脑、AFS仪器主机、顺序注射泵(或蠕动泵) →调节光路 →加水于二级气液分离器→打开操作软件→设置仪器参数 →仪器预热→压紧蠕动泵(在顺序注射反应系统中承担排 废作用)→插进样管路于试剂瓶中→检测→打印报告→清 洗仪器→松开蠕动泵→退出软件→依次关闭→顺序注射泵 (或蠕动泵)、 AFS仪器主机、电脑、稳压电源、氩气 操作规程链接: 操作规程链接: 原子荧光分光光度计操作规程.doc 原子荧光分光光度计操作规程.doc
AFS仪器结构讲义-原子荧光参考幻灯片
发展历史、基本原理和设计思路
1
氢化物发生 原子荧光技术的发展历史
▪ 1974年Tsujii和Kuga首次将氢化物进样技术和无色散原 子荧光光谱技术相结合,开创了氢化物发生—无色散原 子荧光光谱分析技术(HG-AFS)。
▪ 1975年杜文虎等介绍了原子荧光法,次年研制了冷原子 荧光测汞仪.
还原反应,氩气--氢气火焰提供原子化温度 金属--酸体系;氯化亚锡--酸;硼氢化物--酸; 后者反应速度快,性能稳定,适合大多数元素
16
2.3.4 氢化物发生的特点
▪ 没有基体干扰 ▪ 原子化效率高 ▪ 氢化物蒸汽易于原子化 ,不需要高温 ▪ 不同价态的元素发身个氢化物反应的条件不同,
因此可以做价态分析
▪ 在此后的20多年中,北京科创海光仪器有限公司在开发原 子荧光分析方法,仪器的设计研制;尤其在氢化物发生原 子荧光分析方面做了大量卓有成效的工作.使我国在HGAFS技术领域处于国际领先地位。
3
我国学者的工作中主要突破 有以下几方面
▪ 用溴化物无极放电灯代替碘化物无极放电灯,成功地解 决了铋的光谱干扰问题;
▪ 20世纪70年代末,郭小伟等研制成功研制了溴化物无极 放电灯,为原子荧光分析技术的进一步深入研究和发展 奠定了基础.
2
氢化物发生 原子荧光技术的发展历史
▪ 1983年北京地质仪器厂,即现在的北京科创海光仪器有 限公司等研制了双通道原子荧光光谱仪,开创了领先世 界水平的有我国自主知识产权分析仪器的先河。
12
1.7 产品型号和特点
▪ 早期分立元件,微波源,无极放电灯,间断手动
进样 --主要XDY-1,2
▪ 计算机技术(单片机、系统机),空心阴极灯, 间断进样--3型,2A,120 ,220
AFS原子荧光
干扰情况 HG-AAS与HG-AFS在液相中干扰基本相同, 但气相干扰原子荧光法要小得多,在测复杂 样品时一般不需分离或加抗干扰剂即可直接 测定。
线性范围 HG-AFS一般可达3个数量级,可减少稀释; HG-AAS一般只仅1个数量级。
4.原子荧光光谱仪发展现状 1)原子荧光光谱仪的优势 检出限低、灵敏度高
AFS原子荧光
主要内容
1.原子荧光光谱法简介 2. 原子荧光光谱法(AFS)的原理 3. 氢化物反应的种类 4. 原子荧光分析仪与原子吸收光谱仪比较 5.原子荧光光谱法的应用
1. 原子荧光光谱法简介
原子荧光发展简史
1.一九六四年威博尼尔提出原子荧光光谱 法,可作为一种化学分析方法 2.八十年代,我国科技工作者对原子荧光 光谱仪作出很大贡献,郭小伟等人研制 的非色散原子荧光光谱仪,由采用无极 放电灯到以空心阴极灯作光源的氢化物 法对仪器商品化作了突出贡献
Em+
EHn +H2(过剩)(m可以等于或不等于n) E— 被测元素 H—氢自由基
氢化物发生进样方式及流程 进样方式采用直接传输法:分为连续流动 法、流动注射法、断续流动(间歇泵法),顺 序注射法。
1) 连续流动—样品及硼氢化钠溶液均以不同速度 在管子中流动并在混合器中混合,然后通过气 液分离器将氢化物送至原子化器,此法提供连 续信号,原理图见图一。
更稳定
PF6技术指标
元素 检出限 (ng/ml) 精密度 线性范围 As Se Pb Bi Te Sn Sb < 0.01 Hg Cd Zn Ge < 0.05
< 0.001 < 1.0 < 1.0% > 103
2)高度自动化 气路自动控制,流量全程可控,自动进样器 能够实现样品自动稀释,有自动保护、自动 报警系统,安全可靠。 3)高稳定性低温点火石英原子化器 升温速度快,控温精度好,使用寿命长。
AFS讲义分析
1.3 荧光猝灭
使用氩气做载气和屏蔽气
氩气作用: a)载气(内气:包括产生的氢化物蒸汽、氢气) b)屏蔽气(防止氢化物被氧化、抑制荧光猝灭、
稳定原子化环境)
1.4 AFS的优点
• 非色散系统、光程短、能量损失少 • 结构简单,故障率低 • 灵敏度高,检出限低,与激发光源强度成正比 • 接收多条荧光谱线 • 适合于多元素分析 • 原子化效率高,理论上可达到100% • 采用日盲管检测器,降低火焰噪声 • 线性范围宽,3个量级 • 没有基体干扰 • 可做价态分析 • 只使用氩气,运行成本低 • 采用氩氢焰,紫外透射强,背景干扰小
1.7 产品型号和ຫໍສະໝຸດ 点• 早期分立元件,微波源,无极放电灯,间断手
动进样 --主要XDY-1,2
• 计算机技术(单片机、系统机),空心阴极灯, 间断进样--3型,2A,120 ,220
• 计算机技术和断续流动----进样方式改革 2201,老230(自动进样)DOS系统
• Windows系统,串口控制----2202,230,2202E, 230E,3000,3100,9800系列
a)原子发射光谱AES
有多种类型,从激发光源的类别分为火花、电弧、 直流等离子体(DCP)、微波等离子体(MWP)、 和电感耦合等离子体(ICP)以及激光等
b)原子吸收AAS
光源有无极放电灯、空心阴极灯,目前还有连续光 源,从原子化器上分为火焰和无火焰,从扣背景方 式上有塞曼、氘灯、自吸;
c)原子荧光AFS
2.3.4 氢化物发生的主要特点 • 没有基体干扰 • 原子化效率高 • 氢化物蒸汽易于原子化 ,共价氢化物易于解
AFS原子荧光光度计讲义课件PPT
高灵敏度、低检出限、宽线性范围、 无基体干扰等。
工作原理
原子化
通过高温加热或化学反应将样 品中的元素转化为原子态。
激发
原子吸收特定波长的光能后跃 迁至激发态。
荧光发射
激发态原子返回基态时释放出 特定波长的荧光。
检测
荧光信号被光电倍增管转换为 电信号,经放大和信号处理后
输出。
应用领域
01
02
03
样品处理与前处理
样品采集
根据测量需求采集具有代表性的 样品,并确保样品的数量和品质
满足测量要求。
样品处理
对采集的样品进行破碎、研磨、溶 解等处理,以便提取出待测元素。
样品前处理
采用适当的化学或物理方法对样品 进行前处理,如消解、分离、富集 等,以提高待测元素的测量准确度。
测量参数设置
01
测量波长
数据分析
采用适当的统计方法对数据进行处理 和分析,如线性回归、曲线拟合等, 以揭示数据间的内在关系和变化规律。
04 AFS原子荧光光度计的优 缺点与注意事项
优点
高灵敏度
AFS原子荧光光度计具有较高的检测 灵敏度,能够检测低浓度的元素,适 用于痕量分析。
宽线性范围
该仪器具有较宽的线性范围,能够适 应不同浓度范围的样品检测。
根据待测元素的特征光谱,选择合 适的测量波长。
测量时间
根据待测元素的浓度和仪器响应特 性,设置合适的测量时间。
03
02ห้องสมุดไป่ตู้
灯电流
根据待测元素的性质和测量精度要 求,选择合适的灯电流。
测量条件
根据实际情况选择适当的仪器工作 条件,如泵速、气体流量等。
04
数据处理与分析
原子荧光光谱精讲
4.检测器
•
常用的是日盲光电倍增管,在多元素原子荧光分析仪中, 也用光导摄象管、析象管做检测器。检测器与激发光束成 直角配置,以避免激发光源对检测原子荧光信号的影响。
5.氢化物发生器 • • • • (1) (2) (3) (4) 间断法 连续流动法 断续流动法 流动注射氢化物技术
4.原子荧光法测定原理 • 在一定实验条件下,荧光强度与被测元素的浓度成正比。 据此可以进行定量分析(线性关系,只在低浓度时成立) • 随着原子浓度的增加,由于谱线展宽效应、自吸、散射等 因素的影响会使得曲线出现弯曲
5.氢化物(蒸气)发生原子荧光法 • 1)原理 • 氢化物发生进样方法,是利用某些能产生初生态氢的还原 剂或化学反应,将样品溶液中的待测组分还原为挥发性共 价氢化物,然后借助载气流(氩气)将其导入原子光谱分 析系统进行测量。
2) 谱线简单、干扰小;
3) 线性范围宽(可达 3 ~ 5个数量级);
4) 易实现多元素同时测定(产生的荧光向各个方向发射)。
缺点 存在荧光淬灭效应、散射光干扰等问题。
二、原子荧光光谱法的基本原理
1.原子荧光的产生过程
+ e
e
原子荧光
基态的原子蒸气吸收特定波长光辐射的能量而被激发到较高的激发态, 然后受激原子去活化回到较低的激发态或基态时便发射出一定波长的辐射 ———原子荧光
氢化物发生的优点: 分析元素能够与可能引起干扰的样品基体分离,消除了干 扰。 与溶液直接喷雾进样相比,氢化物法能将待测元素充分预 富集,进样效率接近100%。 连续氢化物发生装置易实现自动化。 不同价态的元素氢化物发生的条件不同,可进行价态分析。
氢化物反应种类 • 1)金属酸还原(Marsh反应) • 2)硼氢化物酸还原体系
原子荧光光谱法
原子荧光光谱法原子荧光谱(AFS)是介于原子发射光谱(AES)和原子吸收光谱(AAS)之间的光谱分析技术,它的基本原理就是:基态原子(一般蒸气状态)吸收合适的特定频率的辐射而被激发至高能态,而后激发过程中以光辐射的形式发射出特征波长的荧光。
一、原子荧光光谱法原理1.1原子荧光的类型以及荧光猝灭(1)共振荧光当原子受到波长为入A的光能照射时,处于基态E0(或处于E0邻近的亚稳态E1)的电子跃迁到激发态E2,被激发的原子由E2回到基态E0(或亚稳态E1)时,它就放出波长入F的荧光。
这一类荧光称为共振荧光。
(2)直跃线荧光荧光辐射一般发生在二个激发态之间,处于基态E0的电子被激发到E2能级,当电子回到E1能级时,放出直跃荧光。
(3)阶跃线荧光当处于激发态E2的电子在放出荧光之前,由于受激碰撞损失部分能量而至E1回到基态时,放出阶跃线荧光。
(4)热助阶跃线荧光原子通过吸收光辐射由基态E0激发至E2能级,由于受到热能的进一步激发,电子可能跃迁至E2相近的较高能级E3,当其E3跃迁至较低的能级E1(不是基态E0)时所发射的荧光称为热助阶跃荧光。
小于光源波长称为反stoke效应。
(5)热助反stokes荧光(略)某一元素的荧光光谱可包括具有不同波长的数条谱线。
一般来说,共振线是最灵敏的谱线。
处于激发态的原子寿命是十分短暂的。
当它从高能级阶跃到低能级时原子将发出荧光。
M*TM+hr除上述以外,处于激发态的原子也可能在原子化器中与其他分子、原子或电子发生非弹性碰撞而丧失其能量。
在这种情况下,荧光将减弱或完全不产生,这种现象称为荧光的猝灭。
荧光猝灭有下列几类型:1)与自由原子碰撞M*+X=M+XM*T激发原子X、MT中性原子2)与分子碰撞M*+AB=M+AB这是形成荧光猝灭的主要原因。
AB可能是火焰的燃烧产物;3)与电子碰撞M*+e-=M+E-此反应主要发生在离子焰中4)与自由原子碰撞后,形成不同激发态M*+A=M x+AM*、M x为原子M的不同激发态5)与分子碰撞后,形成不同的激发态M*+AB=M x+AB6)化学猝灭反应M*+AB=M+A+BA、B为火焰中存在的分子或稳定的游离基2.荧光强度与分析物浓度间关系原子荧光强度I f与试样浓度C以及激发态光源的辐射强度I0存在以下函数关系I f二①I根据比尔一朗伯定律厅叫口•e-KLN]式中:①-原子荧光量子效率I-被吸收的光强I0-光源辐射强度K一峰值吸收系数L一吸收光程N一单位长度内基态原子数按泰勒级数展开,当N很小,则原子荧光强度I f表达式可简化为:I f二①I0KIN当所有实验条件固定时,原子荧光强度与能吸收辐射线的原子密度成正比,当原子化效率固定时,I f与试样浓度C成正比,即I=aC f上式线性关系,只在浓度低时成立。
原子荧光光谱法原理
原子荧光光谱法原理
原子荧光光谱法( AFS) 因化学蒸气分离、非色散光学系统等特性,是测定微量砷、锑、铋、汞、硒、碲、锗等元素最成功的分析方法之一。
原子荧光光谱法(AFS)是介于原子发射光谱(AES)和原子吸收光谱(AAS)之间的光谱分析技术。
原子荧光光谱法原理:基态原子(一般蒸汽状态)吸收合适的特定频率的辐射而被激发至高能态,而后激发过程中以光辐射的形式发射出特征波长的荧光。
测量待测元素的原子蒸气在一定波长的辐射能激发下发射的荧光强度进行定量分析的方法。
原子荧光的波长在紫外、可见光区。
气态自由原子吸收特征波长的辐射后,原子的外层电子从基态或低能态跃迁到高能态,约经10-8秒,又跃迁至基态或低能态,同时发射出荧光。
若原子荧光的波长与吸收线波长相同,称为共振荧光;若不同,则称为非共振荧光。
共振荧光强度大,分析中应用最多。
在一定条件下,共振荧光强度与样品中某元素浓度成正比。
该法的优点是灵敏度高,目前已有20多种元素的检出限优于原子吸收光谱法和原子发射光谱法;谱线简单;在低浓度时校准曲线的线性范围宽达3~5个数量级,特别是用激光做激发光源时更佳。
主要用于金属元素的测定,在环境科学、高纯物质、矿物、水质监控、生物制品和医学分析等方面有广泛的应用。
原子荧光光谱分析法具有很高的灵敏度,校正曲线的线性范围宽,能进行多元素同时测定。
这些优点使得它在冶金、地质、石油、农业、生物医学、地球化学、材料科学、环境科学等各个领域内获得了相当广泛的应用。
原子荧光讲义
3、荧光猝灭:
• 定义:处于激发态的原子,随时可能在
原子化器中与其他分子、原子或电子发 生非弹性碰撞而丧失其能量,荧光将减 弱或完全不产生的现象。 • 荧光猝灭的程度与被测元素以及猝灭 剂的种类有关。 • 猝灭剂:火焰燃烧的产物最严重。
4、荧光强度与浓度的关系:
Sn
价态
3+ 3+ 3+ 2+ 、4+ 4+ 4+ 4+ 4+
4、干扰
• 1)、种类
• 液相干扰(化学干扰) • ------氢化反应过程中 • 气相干扰(物理) • ------传输过程中 • 散射干扰 • ------ 检测过程中
• 2)、干扰的消除
• 液相干扰: • 络合掩蔽、分离(沉淀、萃取)、加入
负高压越大,放大倍数越大,但同时暗电流等噪 声也相应增大。
图1 荧光强度与负高压的关系
• 据文献介绍,当光电倍增管负高压在200V~500V之间时,光电倍增管 的信号(S)/噪声(N)比是恒定的,见图2。因此,在满足分析要 求的前提下,尽量不要将光电倍增管的负高压设置太高。
图2 光电倍增管的信噪比(S/ N)与负高压的关系
阳极灯)。所有的灯均不能反击激发。
主流产品分类
• 蠕动泵(连续流动、断续流动、间歇泵)
为进样氢化物反应系统的原子荧光光度计
• 以顺序注射泵为进样氢化物反应系统的双
道原子荧光光度计
原子荧光的衍生产品有:
• 形态分析仪(As、Hg、Se、Pb、Sn、Ge
•
等)
• 血铅测定仪(还可以测Cd)
• N+D原子荧光分析仪(可测Cr)
原子荧光培训课件
(4)实验室的环境对仪器也有较大的影 响,例如在刚装修过的实验室内进行测量, 环境残余的汞蒸汽造成汞的空白猛增,给测 量造成很大影响。实验室中其他仪器也可能 带来影响,如:测汞仪也会引起仪器空白的 增大,从而影响测定。而环境中的污染时很 难清除的,用户在使用过程中一定要注意环 境的影响。
三、仪器的维护保养
(2)仪器测定的元素含量均为痕量级, 分析过程中使用的化学试剂是造成污染的 重要原因,因此必须使用足够纯度的酸或 必要时在使用前对其提纯。盐酸中常含有 砷,硫酸中常含有硒,在测量痕量的砷、 硒时都要注意这些试剂可能带来的影响。 化学试剂(特别是酸)在使用之前可以进 行杂质的检查。
(3)特别要注意使用者在操作仪器时 不要带来人为的污染,例如用手去掐毛细 管的末端。样品之间由于浓度相差太大而 造成交叉污染的情况也必须注意。测定前 最好对样品的含量有个大致的了解,以免 样品含量过大对仪器进样系统管路和原子 化器造成污染,严重时甚至还可能污染实 验室的环境。其中汞的污染要特别注意, 管路一旦被污染,短时间内很难清除,必 要时更换被污染的部件。环境污染后大约 要一个星期的时间来消除。
1、在测量前,一定要打开氩气钢瓶(次压控制 在0.3~0.5MPa)。 0.3~0.5MPa)。 2、测量完毕后一定要拿纯水清洗。 3、载流液和还原剂应注意及时更换,不要使用 放置时间较长的载流液和还原剂。 4、每半年更换一次元素灯。更换时一定要在主 机电源关闭的情况下,不得带电拔灯。 5、每个月要给泵和泵管加硅油,延长使用寿命。
过量氢气和气态氢化物与载气(氩气)混合, 进入原子化器,氢气和氩气在特制点火装置的作 用下形成氩氢火焰,使待测元素原子化。 待测元素的激发光源(一般为空芯阴极灯或 无极放电灯)发射的特征谱线通过聚焦,激发氩 氢焰中待测物原子,得到的荧光信号被日盲光电 倍增管接收,然后经放大,解调,再由数据处理 系统得到结果。
原子荧光光谱法的原理
原子荧光光谱法原理原子荧光光谱法(AFS)是一种用于测定痕量元素的方法,其原理基于原子在特定波长的辐射激发下产生的荧光发射。
这种方法具有高灵敏度、高精度和低检测限的优点,因此在环境监测、食品分析、地质学等领域得到广泛应用。
以下是原子荧光光谱法的原理的详细介绍:1. 原子荧光的产生原子荧光产生的过程可以分为两个主要阶段:激发和发射。
在激发阶段,原子吸收特定波长的辐射(通常是紫外光或可见光),使电子从基态跃迁至激发态。
这些激发态的原子不稳定,经过一段时间后会回到基态。
在返回过程中,会释放出光子,形成荧光。
每种元素都有其独特的荧光发射波长,这使得可以通过测量荧光波长来确定元素的种类。
2. 荧光信号的检测荧光信号的检测是原子荧光光谱法的核心步骤。
当原子发射出的荧光通过特定波长的滤光片后,可以将其聚焦到光电倍增管(PMT)上。
光电倍增管能够将光信号转化为电信号,进一步放大后传输到数据采集系统。
通过测量电信号的强度,可以推算出原子的荧光发射率,从而确定元素的浓度。
3. 校准和定量分析为了准确测定元素的浓度,需要进行校准和定量分析。
在校准过程中,使用已知浓度的标准溶液对仪器进行校准,建立荧光信号与元素浓度的关系。
通过这种方法,可以确定仪器对目标元素的响应因子。
在定量分析中,将未知浓度的样品通过仪器进行分析,根据已知的响应因子计算出元素的浓度。
总之,原子荧光光谱法通过测量原子在特定波长辐射激发下产生的荧光发射,实现了对痕量元素的测定。
该方法具有高灵敏度、高精度和低检测限的优点,可广泛应用于各种领域中的元素分析。
通过校准和定量分析,能够准确地测定元素的浓度,为相关研究和应用提供可靠的数据支持。
AFS原子荧光解析
原子化器温度 200°C左右
应用实例1—水样中痕量汞的测定
样品前处理 取50ml水样于100ml烧瓶中
加5mlHNO3-HClO4(1+1)和1-2滴50g/L KMnO4溶液
于电热板上加热至冒白烟,保持紫色不褪,并蒸至近 干,取下冷却 滴加100 g/L 硫脲溶液,使紫色刚好褪掉 加盐酸(1+1)10 mI ,加热至沸,冷却,移于50 mI 容量 瓶中定容
干扰情况 HG-AAS与HG-AFS在液相中干扰基本相同, 但气相干扰原子荧光法要小得多,在测复杂 样品时一般不需分离或加抗干扰剂即可直接 测定。
线性范围 HG-AFS一般可达3个数量级,可减少稀释; HG-AAS一般只仅1个数量级。
4.原子荧光光谱仪发展现状 1)原子荧光光谱仪的优势 检出限低、灵敏度高
优缺点:发生氢化物元素太少,但空白低选择性好
3)碱性体系 在碱性试样中加入NaBH4和酸进行氢化反 应。与酸模式相比:Sb、Bi产率较低,其余 元素相近。
优缺点:排除了铁、铂、铜族元素的化学 干扰
4)硼氢化物酸还原体系 目前广泛采用的体系 NaBH4 + 3H2O + H + H3BO3 + Na + +8 H
多元素同时测定能力:HG-AFS同时可测定2种 或两种以上元素,提高工作效率,节约成本。而 HG-AAS一般只能一次测定一种元素。 由于荧光强度在各个方向几乎相同,可从原子化 器的任意角度检测荧光信号,因此较易设计多道 、多元素同时分析仪器。 每个元素都有各自的激发光源在原子化器周围, 共同使用一个火焰,一个检测器。
气流量的选择 范围 主气: 300~500 L/min 屏蔽气:600~1000 L/min 测试时,仔细观察火焰状态来调节流 量,保持比较稳定的最佳状态; 测汞时,无火焰状态,可以采用适 宜的某一标准溶液进行试验,确定最佳 载气流量。
原子荧光光谱法(afs)
原子荧光光谱法(afs)这一周我们继续推送各种分析方法的干货知识,今天推送的是有关原子荧光光谱的内容。
按照惯例,我们先来看看纲要——一概述二基本原理三仪器结构四应用情况下面,让我们开始今天的学习吧!一概述原子荧光光谱法(AFS)是一种痕量分析技术,是原子光谱法中的一个重要分支。
是介于原子发射光谱法(AES)和原子吸收光谱法(AAS)之间的光谱分析技术,所用仪器及操作技术与原子吸收光谱法相近。
(一)AFS的发展历程•1859年开始原子荧光理论的研究•1902年首次观察到钠的原子荧光•1962年提出将原子荧光用于化学分析•1964年得出原子荧光的基本方程式•1964年对Zn、Cd、Hg进行了原子荧光法的分析•1974年首次将氢化物进样技术和无色散原子荧光光谱技术相结合,开创了氢化物发生—无色散原子荧光光谱分析技术(HG-AFS)(二)AFS在我国的发展•1975年杜文虎等介绍了原子荧光法,次年研制了冷原子荧光测汞仪;•20世纪70年代末,郭小伟等研制成功研制了溴化物无极放电灯,为原子荧光分析技术的进一步深入研究和发展奠定了基础;•1983年郭小伟等研制了双通道原子荧光光谱仪,后将技术转让给北京地质仪器厂,即现在的海光仪器公司,开创了领先世界水平的有我国自主知识产权分析仪器的先河。
在此后的20多年中,郭小伟等在开发原子荧光分析方法仪器的设计研制,尤其在氢化物发生原子荧光分析方面做了大量卓有成效的工作,使我国在HG-AFS技术领域处于国际领先地位。
(三)我国在AFS的主要突破•用溴化物无极放电灯代替碘化物无极放电灯,成功地解决了铋的光谱干扰问题;•利用氢化物发生所产生的氢气使之在电热石英炉口形成氢氩小火焰作为原子化器,从而使整个装置简单实用;•将高强度脉冲供电空心阴极灯成功地用于作AFS光源,解决了无极放电灯制作工艺不完善和调谐困难等对使用带来的不便;•将流动注射(FIA)技术、断续流动注射技术与AFS联用开创了FIA-AFS全自动分析,并研制开发出全自动原子荧光光谱仪。
AFS原子荧光解析
? EHn +H2? (过剩)(m可以等于或不等于n) E— 被测元素 H?—氢自由基
? 氢化物发生进样方式及流程 进样方式采用直接传输法:分为连续流动
法、流动注射法、断续流动(间歇泵法),顺 序注射法。
1) 连续流动—样品及硼氢化钠溶液均以不同速度 在管子中流动并在混合器中混合,然后通过气 液分离器将氢化物送至原子化器,此法提供连 续信号,原理图见图一。
原子荧光的产生过程
e
+
e
原子荧光
? 原子荧光为 光致发光,二次发光 ,激发光 源停止时,再发射过程立即停止。 原子荧光光谱法的应用原理
2. 原子荧光光谱法( AFS)的原理
原子蒸气通过吸收特定波长的光辐 射能量而被激发,受激原子在去激发过 程中发射出波长相同或不同的光辐射时 产生原子荧光。
原子荧光光谱分析法是用激发光源 照射含有一定浓度的待测元素的原子蒸 气,处于基态的原子吸收光源的光子后 被激发到高能级,然后去激发回到较低 能级或基态,发出原子荧光。测定原子 荧光的强度即可求得待测样品中该元素 的含量。
? 图一 连续流动法原理图
2)流动注射法—样品通过采用阀进行采样“注射” 切换间隔送入反应器中然后经分离器分离进入 原子化器,信号为峰状信号,原理图见图二。
优点: 自动 定量进样,相对连续流动节省试剂; 分析速度快
缺点: 结构复杂;国产电磁阀容易漏液; 容易产生交叉污染,记忆效应
?
图二 流动注射法原理图
对某些元素原子化不够充分,如锗在T型管 中难以得到满意结果,石英管使用寿命短。
? 由于原子荧光辐射强度比较弱、谱线少,因而 要求单色器有很强的集光本领(色散元件有较 大的通光孔径),并不要求很高的分辨率。采 用200~300 mm焦距的单色器即可满足要求。
AFS仪器结构讲义原子荧光PPT课件
2.3.5 干扰
a) 液相--样品溶液中干扰元素优先反应,或形
成络合物吸附被测元素 的氢化物,消耗还原剂
消除:加入一些基体改进剂或选择合适的酸 度以及还原剂用量。 b) 气相--氢化物传输过程或原子化过程的的干
扰,消耗氢基,降低被测元素的原子化效率
消除:抑制干扰元素形成氢化物,或加入改
▪ 清洗与测定同时进行,从而大大缩短了分析时 间;
▪ 在清洗阶段明显提高了蠕动泵的转速,减小了 清洗时间;
▪ 选取断续流动方式采样,采样时间很短,一般在 5s左右;
▪ 分析一个样品的时间为20~30s,分析频率为 120~150次/h.
第25页/共30页
炉芯结构示意图
在更换或清洗 炉丝 炉芯时要注意不要 打碎,另外气管不 要接错,载气接内 管。
第1页/共30页
氢化物发生 原子荧光技术的发展历史
▪ 1983年北京地质仪器厂,即现在的北京科创海光仪器 有限公司等研制了双通道原子荧光光谱仪,开创了 领先世界水平的有我国自主知识产权分析仪器的先 河。
▪ 在此后的20多年中,北京科创海光仪器有限公司在开 发原子荧光分析方法,仪器的设计研制;尤其在氢化物 发生原子荧光分析方面做了大量卓有成效的工作.使 我国在HG-AFS技术领域处于国际领先地位。
第19页/共30页
2.4.5 反应系统和氢化物通路
载流/样品 反 还原剂 应 块
载气 汽液隔离
气液 分离
废水
二级分离 (水封)
废水
炉芯
第20页/共30页
断续流动氢化物发生技术
1992年,断续流动氢化物发生器应用于原子荧 光光度计,它是一种集结了连续流动与流动注射氢 化物发生技术各自优点而发展起来的一种新的氢化 物发生装置。由海光公司将这种氢化物发生器配备 在一系列商品化的原子荧光仪器上,从而开创了半 自动化及全自动化氢化物发生—原子荧光光谱仪器 的新时代。
原子荧光谱法(afs)
原子荧光谱法(afs)
原子荧光谱法(Atomic Fluorescence Spectroscopy,AFS)是一种使用原子或离子的荧光发射来进行元素分析的技术。
它是一种高灵敏度、高选择性的分析方法,可以检测和测量微量到超微量级别的某些金属元素。
AFS的工作原理如下:
1.光源:使用具有特定波长的入射光源照射样品。
常见的光
源包括中空阴极灯或电极化气体放电灯,这些光源能够提供特定元素的激发辐射。
2.激发:入射光源的能量激发样品中的目标元素原子或离子
到高能级。
当目标元素经历能级跃迁时,将发出与元素特征有关的荧光辐射。
3.荧光辐射检测:使用光谱仪或光电倍增管等检测器来测量
样品中发出的荧光辐射的强度和波长。
荧光辐射的强度与目标元素的浓度相关。
4.分析和定量:通过将测量的荧光辐射强度与标准曲线进行
比较或校准,可以定量分析样品中的目标元素浓度。
AFS在环境分析、食品检测、药物研究、地质学和金属材料等领域中得到广泛应用。
相比于其他分析技术,AFS具有许多优点,如高选择性、高灵敏度、宽线性范围、低检出限和抗干扰能力强等。
需要注意的是,不同的原子或离子具有不同的能级结构和发射
特征,因此在使用AFS时,需要适当选择光源和测量条件以实现所需元素的分析。
此外,对于复杂的样品分析,可能需要进行样品预处理和矩阵校正等步骤,以确保准确和可靠的分析结果。
原子荧光法基本原理
原子荧光法基本原理
原子荧光光谱法(AFS)是一种光谱分析技术,其基本原理是原子蒸气吸收特征波长的光辐射后,原子被激发至高能级,在跃迁回低能级的过程中,以光辐射的形式发射出特征波长的荧光。
通过测量待测元素的原子蒸气在一定波长的辐射能激发下发射的荧光强度,可以进行定量分析。
原子荧光光谱法具有较低的检出限和较高的灵敏度,特别适用于Cd、Zn等元素的微量分析。
此外,该方法还具有干扰较少、谱线简单、线性范围宽、能进行多元素同时测定等优点。
在原子荧光光谱法中,荧光的发射包括荧光激发和荧光发射两个过程。
荧光激发是指原子吸收特定频率的辐射后被激发至高能态,而荧光发射则是激发态原子在跃迁回低能级时发射出特征波长的荧光。
荧光的波长和强度与元素的种类和含量有关,因此可以通过测量荧光的波长和强度来确定物质中的元素种类和含量。
总之,原子荧光光谱法是一种基于原子荧光发射的光谱分析技术,具有高灵敏度、低检出限、干扰少、谱线简单、线性范围宽、能进行多元素同时测定等优点,广泛应用于环境科学、材料科学、医学等领域中的元素分析。
原子荧光光谱法课件
(1)共振荧光 发射与原吸收线波长相同的荧 光为共振荧光。 (2)非共振荧光 荧光的波长与激发光不同时, 称非共振荧光。 ( i. 直跃线荧光,ii. 阶跃线荧光,iii. anti— stores荧光。i和ii均为Stores荧光。) (3)敏化荧光 受激发的原子与另一种原子碰 撞时,把激发能传递给另一个原子使其激发, 后者再从辐射形式去激发而发射荧光即为敏化 荧光。
3.anti -Stokes荧光 当自由原子跃迁至某一能级,其获得的能量一 部分是由光源激发能供给,另一部分是热能供给, 然后返回低能级所发射的荧光为 anti-Stokes 荧光。 其荧光能大于激发能,荧光波长小于激发线波长。 例如铟吸收热能后处于一较低的亚稳能级,再吸 收450.13nm的光后,发射410.18nm的荧光,见图 (d).
(2)非共振荧光
当荧光与激发光的波长不相 同时,产生非共振荧光。非共 振荧光又分为直跃线荧光、阶 跃线荧光、anti Stokes(反斯托 克斯)荧光。
1. 直跃线荧光 激发态原子跃迁回至高于基态的亚稳态时所 发射的荧光称为直跃线荧光,见图(b). 由于荧光 的能级间隔小于激发线的能线间隔,所以荧光 的波长大于激发线的波长。如铅原子吸收 283 . 31nm 的光,而发射 405 . 78nm 的荧光。 它是激发线和荧光线具有相同的高能级,而低 能级不同。 如果荧光线激发能大于荧光能,
原子荧光光谱法
Atomic Fluorescence Spectrometry(AFS)
概述
原子荧光光谱法是 1964 年以 后发展起来的分析方法。原子荧 光光谱法是以原子在辐射能激发 下发射的荧光强度进行定量分析 的发射光谱分析法。但所用仪器 与原子吸收光谱法相近。