机械振动基础试卷

合集下载

《机械振动基础》期末复习试题5套含答案.doc

《机械振动基础》期末复习试题5套含答案.doc

中南大学考试试卷2005 - 2006学年上学期时间门o分钟《机械振动基础》课程32学时1.5学分考试形式:闭卷专业年级:机械03级总分100分,占总评成绩70 %注:此页不作答题纸,请将答案写在答题纸上一、填空题(本题15分,每空1分)1>不同情况进行分类,振动(系统)大致可分成,()和非线性振动;确定振动和();()和强迫振动;周期振动和();()和离散系统。

2、在离散系统屮,弹性元件储存(),惯性元件储存(),()元件耗散能量。

3、周期运动的最简单形式是(),它是时间的单一()或()函数。

4、叠加原理是分析()的振动性质的基础。

5、系统的固有频率是系统()的频率,它只与系统的()和()有关,与系统受到的激励无关。

二、简答题(本题40分,每小题10分)1、简述机械振动的定义和系统发生振动的原因。

(10分)2、简述振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。

(10分)3、共振具体指的是振动系统在什么状态下振动?简述其能量集聚过程?(20分)4、多自由系统振动的振型指的是什么?(10分)三、计算题(本题30分)图1 2、图2所示为3自由度无阻尼振动系统。

(1)列写系统自由振动微分方程式(含质量矩阵、刚度矩阵)(10分);(2)设k t[=k t2=k t3=k t4=k9 /, =/2/5 = /3 = 7,求系统固有频率(10 分)。

13 Kt3四、证明题(本题15分)对振动系统的任一位移{兀},证明Rayleigh商R(x)=⑷严⑷满足材 < 尺⑴ < 忒。

{x}\M\{x}这里,[K]和[M]分别是系统的刚度矩阵和质量矩阵,®和①,分别是系统的最低和最高固有频率。

(提示:用展开定理{x} = y{M} + y2{u2}+……+ y n{u n})3 •简述无阻尼单自由度系统共振的能量集聚过程。

(10 分) 4.简述线性多自由度系统动力响应分析方法。

(10 分)中南大学考试试卷2006 - 2007学年 上 学期 时间120分钟机械振动 课程 32 学时 2 学分 考试形式:闭卷专业年级: 机械04级 总分100分,占总评成绩 70%注:此页不作答题纸,请将答案写在答题纸上一、填空(15分,每空1分)1. 叠加原理在(A )中成立;在一定的条件下,可以用线性关系近似(B ) o2. 在振动系统中,弹性元件储存(C ),惯性元件储存(D ) , (E )元件耗散 能量。

机械振动基础作业(有答案-全版)

机械振动基础作业(有答案-全版)

1.2 如果把双轴汽车的质量分别离散到前、后轴上去,在考虑悬架质量和非悬架质量两个离散质量的情况下,画出前轴或后轴垂直振动的振动模型简图,并指出在这种化简情况下,汽车振动有几个自由度?解:前轴或后轴垂直振动的振动模型简图为图1.2所示,此时汽车振动简化为二自由度振动系统。

2m 为非悬架质量,1m 为悬架质量1. 3设有两个刚度分别为21,k k 的线性弹簧如图T-1.3所示, 试证明:1)它们并联时的总刚度eq k 为:21k k k eq +=2)它们串联时的总刚度eq k 为:21111k k k eq +=证明:1) 如图T-1.3(a)所示,21,k k 两个弹簧受到力的作用,变形相同, 即2211k F k F k F eq ==, 而F F F =+21,故有 F F k kF k k eq eq =+21, 从而 21k k k eq +=2)如图T-1.3(b)所示,21,k k 两个弹簧受到相同的力作用 即∆=∆=∆=eq k k k F 2211 (1)且21∆+∆=∆ (2)由(1)和(2)有:)(21k Fk F k F eq += (3) 由(3)得:21111k k k eq += 1.8证明:两个同频率但不同相角的简谐运动的合成仍是同频率的简谐运动,即)cos()cos(cos θωϕωω-=-+t C t B t A ,并讨论ϕ=0,ππ,2三种特例。

证明:因t B t B t B ωϕωϕϕωsin sin cos cos )cos(+=-从而有t B t B A t B t A ωϕωϕϕωωsin sin cos )cos ()cos(cos ++=-+令 ()ϕϕϕθ222sin cos sin sin B B A B ++=则()[]t t B B A t B t A ωθωθϕϕϕωωsin sin cos cos sin cos )cos(cos 222+++=-+=())cos(sin cos 222θωϕϕ-++t B B A令C=()ϕϕ222sin cos B B A ++,则有 )cos()cos(cos θωϕωω-=-+t C t B t A当ϕ=0时,C=A+B ;当ϕ=2π时,22B A C +=,22BA arcsin +=B θ ;当ϕ=π时,B A -=C ,0=θ1.13汽车悬架减振器机械式常规性能试验台,其结构形式之一如图T-1.13所示。

《机械振动基础》期末考试试题参考答案

《机械振动基础》期末考试试题参考答案

大学《机械振动基础》期末考试试题(参考答案)《机械振动基础》课程 32 学时 1.5 学分考试形式:闭卷注:此页不作答题纸,请将答案写在答题纸上一、填空题(本题15分,每空1分)1、机械振动大致可分成为:()和非线性振动;确定性振动和();()和强迫振动。

2、在离散系统中,弹性元件储存( ),惯性元件储存(),()元件耗散能量。

3、周期运动的最简单形式是(),它是时间的单一()或()函数。

4、叠加原理是分析()系统的基础。

5、系统固有频率主要与系统的()和()有关,与系统受到的激励无关。

6、系统的脉冲响应函数和()函数是一对傅里叶变换对,和()函数是一对拉普拉斯变换对。

7、机械振动是指机械或结构在平衡位置附近的()运动。

二、简答题(本题40分,每小题10分)1、简述振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。

(10分)2、共振具体指的是振动系统在什么状态下振动?简述其能量集聚过程?(10分)3、简述刚度矩阵[K]中元素k ij的意义。

(10分)4、简述随机振动问题的求解方法,以及与周期振动问题求解的区别。

(10分)三、计算题(45分)3.1、(14分)如图所示中,两个摩擦轮可分别绕水平轴O1,O2转动,无相对滑动;摩擦轮的半径、质量、转动惯量分别为r1、m1、I1和r2、m2、I2。

轮2的轮缘上连接一刚度为k的弹簧,轮1的轮缘上有软绳悬挂质量为m的物体,求:1)系统微振的固有频率;(10分)2)系统微振的周期;(4分)。

3.2、(16分)如图所示扭转系统。

设转动惯量I1=I2,扭转刚度K r1=K r2。

1)写出系统的动能函数和势能函数;(4分)2)求出系统的刚度矩阵和质量矩阵;(4分)3)求出系统的固有频率;(4分)4)求出系统振型矩阵,画出振型图。

(4分)3.3、(15分)根据如图所示微振系统,1)求系统的质量矩阵和刚度矩阵和频率方程;(5分)2)求出固有频率;(5分)3)求系统的振型,并做图。

机械振动试题(含答案)(2)

机械振动试题(含答案)(2)

机械振动试题(含答案)(2)一、机械振动 选择题1.下列说法中正确的有( )A .简谐运动的回复力是按效果命名的力B .振动图像描述的是振动质点的轨迹C .当驱动力的频率等于受迫振动系统的固有频率时,受迫振动的振幅最大D .两个简谐运动:x 1=4sin (100πt +3π) cm 和x 2=5sin (100πt +6π) cm ,它们的相位差恒定2.如图所示,质量为A m 的物块A 用不可伸长的细绳吊着,在A 的下方用弹簧连着质量为B m 的物块B ,开始时静止不动。

现在B 上施加一个竖直向下的力F ,缓慢拉动B 使之向下运动一段距离后静止,弹簧始终在弹性限度内,希望撤去力F 后,B 向上运动并能顶起A ,则力F 的最小值是( )A .(A m +B m )gB .(A m +2B m )gC .2(A m +B m )gD .(2A m +B m )g3.如图所示的单摆,摆球a 向右摆动到最低点时,恰好与一沿水平方向向左运动的粘性小球b 发生碰撞,并粘在一起,且摆动平面不便.已知碰撞前a 球摆动的最高点与最低点的高度差为h ,摆动的周期为T ,a 球质量是b 球质量的5倍,碰撞前a 球在最低点的速度是b 球速度的一半.则碰撞后A 56T B 65T C .摆球最高点与最低点的高度差为0.3hD .摆球最高点与最低点的高度差为0.25h4.如图所示,固定的光滑圆弧形轨道半径R =0.2m ,B 是轨道的最低点,在轨道上的A 点(弧AB 所对的圆心角小于10°)和轨道的圆心O 处各有一可视为质点的静止小球,若将它们同时由静止开始释放,则( )A .两小球同时到达B 点B .A 点释放的小球先到达B 点C .O 点释放的小球先到达B 点D .不能确定5.如图甲所示,一个单摆做小角度摆动,从某次摆球由左向右通过平衡位置时开始计时,相对平衡位置的位移x 随时间t 变化的图象如图乙所示.不计空气阻力,g 取10m/s 2.对于这个单摆的振动过程,下列说法中不正确的是( )A .单摆的位移x 随时间t 变化的关系式为8sin(π)cm x t =B .单摆的摆长约为1.0mC .从 2.5s t =到 3.0s t =的过程中,摆球的重力势能逐渐增大D .从 2.5s t =到 3.0s t =的过程中,摆球所受回复力逐渐减小6.图(甲)所示为以O 点为平衡位置、在A 、B 两点间做简谐运动的弹簧振子,图(乙)为这个弹簧振子的振动图象,由图可知下列说法中正确的是( )A .在t =0.2s 时,弹簧振子可能运动到B 位置B .在t =0.1s 与t =0.3s 两个时刻,弹簧振子的速度相同C .从t =0到t =0.2s 的时间内,弹簧振子的动能持续地增加D .在t =0.2s 与t =0.6s 两个时刻,弹簧振子的加速度相同7.如图所示,物块M 与m 叠放在一起,以O 为平衡位置,在ab 之间做简谐振动,两者始终保持相对静止,取向右为正方向,其振动的位移x 随时间t 的变化图像如图,则下列说法正确的是( )A .在1~2T t 时间内,物块m 的速度和所受摩擦力都沿负方向,且都在增大 B .从1t 时刻开始计时,接下来4T 内,两物块通过的路程为A C .在某段时间内,两物块速度增大时,加速度可能增大,也可能减小D .两物块运动到最大位移处时,若轻轻取走m ,则M 的振幅不变 8.装有一定量液体的玻璃管竖直漂浮在水中,水面足够大,如图甲所示。

机械振动考试题和答案

机械振动考试题和答案

机械振动考试题和答案一、单项选择题(每题2分,共20分)1. 简谐运动的振动周期与振幅无关,与()有关。

A. 质量B. 频率C. 弹簧常数D. 初始条件答案:C2. 阻尼振动中,振幅逐渐减小的原因是()。

A. 系统内部摩擦B. 外部阻力C. 系统内部摩擦和外部阻力D. 系统内部摩擦或外部阻力答案:C3. 两个简谐运动合成时,合成运动的频率等于()。

A. 两个简谐运动频率之和B. 两个简谐运动频率之差C. 两个简谐运动频率中较大的一个D. 两个简谐运动频率中较小的一个答案:D4. 受迫振动的频率与()有关。

A. 驱动力频率B. 系统固有频率C. 驱动力大小D. 系统阻尼系数答案:A5. 阻尼振动中,阻尼系数越大,振动周期()。

A. 越大B. 越小C. 不变D. 无法确定答案:B6. 受迫振动中,当驱动力频率接近系统固有频率时,会发生()。

A. 共振B. 反共振C. 振动增强D. 振动减弱答案:A7. 简谐运动的振动周期与()成正比。

B. 频率C. 弹簧常数D. 质量的平方根答案:D8. 阻尼振动中,阻尼系数越小,振动周期()。

A. 越大B. 越小C. 不变D. 无法确定答案:C9. 受迫振动中,当驱动力频率等于系统固有频率时,振动的振幅()。

A. 最小C. 不变D. 无法确定答案:B10. 简谐运动的振动周期与()无关。

A. 质量B. 频率C. 弹簧常数D. 初始条件答案:D二、多项选择题(每题3分,共15分)11. 简谐运动的振动周期与以下哪些因素有关?()A. 质量C. 弹簧常数D. 初始条件答案:AC12. 阻尼振动中,振幅逐渐减小的原因包括()。

A. 系统内部摩擦B. 外部阻力C. 系统内部摩擦和外部阻力D. 系统内部摩擦或外部阻力答案:CD13. 两个简谐运动合成时,合成运动的频率等于以下哪些选项?()A. 两个简谐运动频率之和B. 两个简谐运动频率之差C. 两个简谐运动频率中较大的一个D. 两个简谐运动频率中较小的一个答案:BD14. 受迫振动的频率与以下哪些因素有关?()A. 驱动力频率B. 系统固有频率C. 驱动力大小D. 系统阻尼系数答案:AB15. 阻尼振动中,阻尼系数越大,振动周期的变化情况是()。

机械振动试题(含答案)

机械振动试题(含答案)

机械振动试题(含答案)一、机械振动选择题1.悬挂在竖直方向上的弹簧振子,周期T=2s,从最低点位置向上运动时刻开始计时,在一个周期内的振动图象如图所示,关于这个图象,下列哪些说法是正确的是()A.t=1.25s时,振子的加速度为正,速度也为正B.t=1.7s时,振子的加速度为负,速度也为负C.t=1.0s时,振子的速度为零,加速度为负的最大值D.t=1.5s时,振子的速度为零,加速度为负的最大值2.下列说法中不正确的是( )A.将单摆从地球赤道移到南(北)极,振动频率将变大B.将单摆从地面移至距地面高度为地球半径的高度时,则其振动周期将变到原来的2倍C.将单摆移至绕地球运转的人造卫星中,其振动频率将不变D.在摆角很小的情况下,将单摆的振幅增大或减小,单摆的振动周期保持不变3.如图所示,一端固定于天花板上的一轻弹簧,下端悬挂了质量均为m的A、B两物体,平衡后剪断A、B间细线,此后A将做简谐运动。

已知弹簧的劲度系数为k,则下列说法中正确的是()A.细线剪断瞬间A的加速度为0B.A运动到最高点时弹簧弹力为mgC.A运动到最高点时,A的加速度为gD.A振动的振幅为2mg k4.如图所示,质量为m的物块放置在质量为M的木板上,木板与弹簧相连,它们一起在光滑水平面上做简谐振动,周期为T,振动过程中m、M之间无相对运动,设弹簧的劲度系数为k、物块和木板之间滑动摩擦因数为μ,A .若t 时刻和()t t +∆时刻物块受到的摩擦力大小相等,方向相反,则t ∆一定等于2T 的整数倍B .若2Tt ∆=,则在t 时刻和()t t +∆时刻弹簧的长度一定相同 C .研究木板的运动,弹簧弹力充当了木板做简谐运动的回复力D .当整体离开平衡位置的位移为x 时,物块与木板间的摩擦力大小等于mkx m M+ 5.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。

机械振动基础-试卷 ()

机械振动基础-试卷 ()

一、 填空题 ( 本大题共5小题,每小题2分,共10分 )1、 简谐振动的三要素是 振幅 、 频率 和 初相位 。

2、 不论隔力还是隔幅,当频率比λ满足 2λ> 时,隔振器才具有隔振效果。

3、 单自由度系统欠阻尼振动频率d ω,阻尼比ζ和固有频率n ω的关系为 21d n ωωζ=- 。

4、 多自由度系统中加速度频响函数矩阵的元素()i j H ω表示的物理意义是指: 幅值是指在系统的第j 个自由度上施加单位幅值正弦激励后系统第i 个自由度上的加速度稳态响应幅值;幅角是指上述加速度响应滞后(超前)激励的相位角 。

5、 直梁的自由端 剪力 和 弯矩 为零。

二、 判断题 ( 本大题共5小题,每小题2分,共10分 )1、 叠加原理适用于线性和非线性系统。

(×)2、 旋转机械中,不平衡质量会引起系统产生振动。

(√)3、 单自由度系统共振时系统呈阻尼特性。

(√)4、 瑞利阻尼是比例阻尼。

(√)5、 无限自由度系统的振动方程是一个常微分方程。

(×)三、 解答题 ( 本大题共4小题,共60分 )1、 图示系统中不计刚性杆的质量,试建立系统的振动微分方程,并求系统的固有频率。

(10分)解:取广义坐标为θ,顺时针为正方向,取质量块m 进行受力分析厦门大学《机械振动基础》课程试卷物理与机电工程 学院 航空系 2009年级 各 专业主考教师:张保强 试卷类型:(A 卷)根据动量矩定理得:2sin cos ml k a a θθθ=-⋅⋅对于微振动,sin ,cos 1θθθ≈≈,化简得到系统运动微分方程220ml k a θθ+⋅=系统固有频率为n ω= 2、 试推导单自由度欠阻尼振动系统的单位脉冲响应函数表达式。

(10分) 解:受单位脉冲激励的单自由度欠阻尼系统运动方程为()()()1()mu t cu t ku t t δ++=⋅初始条件(0)(0)0u u ==。

设脉冲力的作用时间区间是[0,0]+, 根据冲量定理:1(0)(0)mu mu +=- 所以1(0)u m +=,因此初始条件变为1(0)0,(0)u u m++==,所以()()()01(0)0,(0)mu t cu t ku t u u m++++===因此得到1sin ,0 ()()0, 0n td de t t mu t h t t ζωωω-⎧≥⎪==⎨⎪<⎩式中d ωω=3、 试证明多自由度无阻尼振动系统的固有振型关于质量矩阵和刚度矩阵都具有加权正交性。

物理机械振动考试题及答案

物理机械振动考试题及答案

物理机械振动考试题及答案一、单项选择题(每题3分,共30分)1. 简谐运动的振动周期与振幅无关,与以下哪个因素有关?A. 质量B. 弹簧常数C. 初始位移D. 初始速度答案:B2. 阻尼振动中,振幅逐渐减小的原因是:A. 摩擦力B. 重力C. 弹力D. 空气阻力答案:A3. 以下哪个量描述了简谐运动的振动快慢?A. 振幅B. 周期C. 频率D. 相位答案:C4. 两个简谐运动的合成,以下哪个条件可以产生拍现象?A. 频率相同B. 频率不同C. 振幅相同D. 相位相反答案:B5. 以下哪个量是矢量?A. 位移B. 速度C. 加速度D. 以上都是答案:D6. 单摆的周期与以下哪个因素无关?A. 摆长B. 摆球质量C. 重力加速度D. 摆角答案:B7. 以下哪个量描述了简谐运动的能量?A. 振幅C. 频率D. 相位答案:A8. 以下哪个因素会影响单摆的周期?A. 摆长B. 摆球质量C. 摆角D. 重力加速度答案:A9. 阻尼振动中,振幅减小到原来的1/e时,经过的时间为:A. 1/2TB. TC. 2T答案:C10. 以下哪个现象不是简谐运动?A. 弹簧振子B. 单摆C. 弹簧振子的振幅逐渐减小D. 单摆的振幅逐渐减小答案:C二、填空题(每题4分,共20分)11. 简谐运动的周期公式为:T = 2π√(____/k),其中m为质量,k为弹簧常数。

答案:m12. 单摆的周期公式为:T = 2π√(L/g),其中L为摆长,g为重力加速度。

答案:L13. 阻尼振动的振幅公式为:A(t) = A0 * e^(-γt),其中A0为初始振幅,γ为阻尼系数,t为时间。

答案:A014. 简谐运动的频率公式为:f = 1/T,其中T为周期。

答案:1/T15. 简谐运动的相位公式为:φ = ωt + φ0,其中ω为角频率,t 为时间,φ0为初始相位。

答案:ωt + φ0三、计算题(每题10分,共50分)16. 一个质量为2kg的物体,通过弹簧连接在墙上,弹簧的弹簧常数为100N/m。

《机械振动》测试题(含答案)

《机械振动》测试题(含答案)
(1)刚开始计时时,振子位移x=________;t=17s时,x=________.
(2)若纸带运动的速度为2cm/s,振动图线上1、3两点间的距离为________.
(3)写出振子的振动方程为________(用正弦函数表示).
A.h=1.7m
B.简谐运动的周期是0.8s
C.0.6s内物块运动的路程是0.2m
D.t=0.4s时,物块与小球运动方向相反
18.如图所示,光滑斜面与水平面的夹角为θ,斜面上质量为m物块A被平行于斜面的轻质弹簧拉住静止于O点,弹簧的劲度系数为k,重力加速度为g。现将A沿斜面向上推动至弹簧压缩量为 处的C点无初速度释放,B为C关于O的对称点。关于物体A后续的运动过程,下列说法正确的是( )
D.若t时刻和 时刻振子运动速度的大小相等,方向相同,则 一定等于 的整数倍
14.如图所示,弹簧振子在光滑水平杆上的A、B之间做往复运动,O为平衡位置,下列说法正确的是( )
A.弹簧振子运动过程中受重力、支持力和弹簧弹力的作用
B.弹簧振子运动过程中受重力、支持力、弹簧弹力和回复力作用
C.振子由A向O运动过程中,回复力逐渐增大
23.如图是利用DIS完成“用单摆测定当地重力加速度”实验.实验时,先量出摆球的半径与摆线的长度.单摆摆动后,点击“记录数据”.摆球每经过平衡位置时记数1次,第1次记为“0”,当记数为“50”时,点击“停止记录”,显示时间为 .
(1)则该单摆振动周期为______________.
(2)图示摆线上端的悬点处,用两块木片夹牢摆线,再用铁架台的铁夹将木片夹紧,是为了(_______)
D.振子由O向B运动过程中,回复力的方向指向平衡位置
15.如图甲所示,一个单摆做小角度摆动,从某次摆球由左向右通过平衡位置时开始计时,相对平衡位置的位移x随时间t变化的图象如图乙所示。不计空气阻力,g取10m/s2。对于这个单摆的振动过程,下列说法中正确的是( )

《机械振动》测试题(含答案)(1)

《机械振动》测试题(含答案)(1)

《机械振动》测试题(含答案)(1)一、机械振动 选择题1.如图甲所示,一个单摆做小角度摆动,从某次摆球由左向右通过平衡位置时开始计时,相对平衡位置的位移x 随时间t 变化的图象如图乙所示.不计空气阻力,g 取10m/s 2.对于这个单摆的振动过程,下列说法中不正确的是( )A .单摆的位移x 随时间t 变化的关系式为8sin(π)cm x t =B .单摆的摆长约为1.0mC .从 2.5s t =到 3.0s t =的过程中,摆球的重力势能逐渐增大D .从 2.5s t =到 3.0s t =的过程中,摆球所受回复力逐渐减小2.如图所示的单摆,摆球a 向右摆动到最低点时,恰好与一沿水平方向向左运动的粘性小球b 发生碰撞,并粘在一起,且摆动平面不便.已知碰撞前a 球摆动的最高点与最低点的高度差为h ,摆动的周期为T ,a 球质量是b 球质量的5倍,碰撞前a 球在最低点的速度是b 球速度的一半.则碰撞后A 56T B 65T C .摆球最高点与最低点的高度差为0.3hD .摆球最高点与最低点的高度差为0.25h3.如图为某简谐运动图象,若t =0时,质点正经过O 点向b 运动,则下列说法正确的是( )A .质点在0.7 s 时的位移方向向左,且正在远离平衡位置运动B .质点在1.5 s 时的位移最大,方向向左,在1.75 s 时,位移为1 cmC .质点在1.2 s 到1.4 s 过程中,质点的位移在增加,方向向左D .质点从1.6 s 到1.8 s 时间内,质点的位移正在增大,方向向右4.甲、乙两单摆的振动图像如图所示,由图像可知A .甲、乙两单摆的周期之比是3:2B .甲、乙两单摆的摆长之比是2:3C .t b 时刻甲、乙两摆球的速度相同D .t a 时刻甲、乙两单摆的摆角不等5.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。

机械振动基础期末考试卷

机械振动基础期末考试卷

机械振动基础期末考试卷题目:机械振动基础期末考试卷一、选择题1. 机械振动的定义是什么?a. 物体在响亮的声音中发生摆动b. 物体在倾斜的表面上运动c. 物体在平衡位置附近的来回运动d. 物体围绕一个固定点旋转答案:c. 物体在平衡位置附近的来回运动2. 什么是自由振动?a. 机械振动源自外力的作用b. 物体在空气中飘浮运动c. 没有外界干扰下的振动d. 物体受到弹簧的牵引答案:c. 没有外界干扰下的振动3. 以下哪个量不是描述振动速度的?a. 频率b. 振幅c. 距离d. 波长答案:c. 距离4. 当一个物体受到周期性外力作用时,发生受迫振动,这类振动的特点是?a. 振幅不固定b. 振动频率与外力频率一致c. 没有固定的平衡位置d. 振动不受外力干扰答案:b. 振动频率与外力频率一致5. 振幅越大,振动的能量越大,对吗?a. 对b. 错答案:a. 对二、简答题1. 什么是简谐振动?简谐振动的特点是什么?答案:简谐振动是指物体受到恢复力作用,并且恢复力与位移成正比的振动。

简谐振动的特点包括振幅恒定、周期固定、频率稳定、能量守恒等。

2. 请简要说明自由振动和受迫振动的区别?答案:自由振动是物体在没有外界干扰下的振动,由初始位移和初速度决定。

受迫振动是物体受到外界周期性力作用导致的振动,振动频率与外力频率一致。

三、计算题1. 一个简谐振动的物体质量为2kg,弹簧劲度系数为100N/m,振幅为0.1m,求振动的周期。

答案:振动周期T = 2 * π * sqrt(m / k)其中,m = 2kgk = 100N/mT = 2 * π * sqrt(2 / 100)T ≈ 0.89s2. 一根弹簧的振动频率为10Hz,质量为0.5kg,求弹簧的劲度系数是多少?答案:振动频率f = 1 / 2π * sqrt(k / m)其中,f = 10Hzm = 0.5kgk = ?k = (2πf)^2 * mk = (2π*10)^2 * 0.5k = 628N/m以上为机械振动基础期末考试卷的答案,请同学们核对自己的答案,祝顺利通过考试!。

机械振动试题与答案.docx

机械振动试题与答案.docx

1.一个机器内某零件的振动规律为x=0.5sinwt+0.3coswt, x的单位是cm, w=10pei 1/s.这个振动是否简谐振动,求出它的振幅,最大速度,最大加速度,并用旋转矢量表示三者之间的关系(10分)2.如图所示不计质量的杠杆系统,求坐标x的等效质量和等效刚度(10分)解(I)按能就法系统的幼能及势■能分别为T~ \ S ;z + 十叭(j x ) Z 乙> » I z=;3 + #血)>匕、、I i 'U=捉,/+ 捉(:J=2 S * 5因此简化后的弹黄质反系统的等效质用及等效刚度为M上A.虬二 + / ; m? .K,-加+ 'E设使系统在X坐标上产生单位位移需要施加力P,则在弹簧加及奴处将有图2 W)所示的弹性恢复力,对支点取矩有3.质量弹簧系统,W=150N,而=lcm,*l=0.8cm,A21=0.16cm 。

求阻尼系数 c 。

(10 分)解:_A_=. ..h^=(e nT d yo 1 A R 1 0.8 _(〃皿)20 麻一 * )i T _ 2。

奂“2 勿 1115=20奂“写= --- ,由于,很小,ln5«40^ =0.122(N-s/cm)4. 电机转速1760 W 分,由于未很好平衡,产生不平衡力70公斤使支座振动,支座弹簧常 数11000公斤/厘米,配有阻尼装置,其c=35公斤/厘米,电机重300公斤。

求:振幅,无 阻尼时的振幅,固有频率fn 。

(15分)解:激振力频率co = ------ x 1760 = 184 弧度/秒60于是 P 70 B=°, , = =0.0108 cm+(E T J(11000-|^X 1 842 )2 +352 xl 842 当c=o 时, 70 B ' = --------------- — ---------------- = 0.109 cm11000 ---------- x 184 2 981可见,由于阻尼的存在使振幅下降为原来的l/10o它与激振力频率1760转/分很接近。

《机械振动》测试题(含答案)

《机械振动》测试题(含答案)

《机械振动》测试题(含答案)一、机械振动 选择题1.甲、乙两弹簧振子,振动图象如图所示,则可知( )A .甲的速度为零时,乙的速度最大B .甲的加速度最小时,乙的速度最小C .任一时刻两个振子受到的回复力都不相同D .两个振子的振动频率之比f 甲:f 乙=1:2E.两个振子的振幅之比为A 甲:A 乙=2:1 2.如图为某简谐运动图象,若t =0时,质点正经过O 点向b 运动,则下列说法正确的是( )A .质点在0.7 s 时的位移方向向左,且正在远离平衡位置运动B .质点在1.5 s 时的位移最大,方向向左,在1.75 s 时,位移为1 cmC .质点在1.2 s 到1.4 s 过程中,质点的位移在增加,方向向左D .质点从1.6 s 到1.8 s 时间内,质点的位移正在增大,方向向右3.如图所示,弹簧的一端固定,另一端与质量为2m 的物体B 相连,质量为1m 的物体A 放在B 上,212m m =.A 、B 两物体一起在光滑水平面上的N 、N '之间做简谐运动,运动过程中A 、B 之间无相对运动,O 是平衡位置.已知当两物体运动到N '时,弹簧的弹性势能为p E ,则它们由N '运动到O 的过程中,摩擦力对A 所做的功等于( )A .p EB .12p EC .13p E D .14p E 4.如图甲所示,一个有固定转动轴的竖直圆盘转动时,固定在圆盘上的小圆柱带动一个T 形支架在竖直方向振动, T 形支架的下面系着一个由弹簧和小球组成的振动系统.圆盘静止时,让小球做简谐运动,其振动图像如图乙所示.圆盘匀速转动时,小球做受迫振动.小球振动稳定时.下列说法正确的是( )A .小球振动的固有频率是4HzB .小球做受迫振动时周期一定是4sC .圆盘转动周期在4s 附近时,小球振幅显著增大D .圆盘转动周期在4s 附近时,小球振幅显著减小5.公路上匀速行驶的货车受一扰动,车上货物随车厢底板上下振动但不脱离底板.一段时间内货物在竖直方向的振动可视为简谐运动,周期为T .取竖直向上为正方向,以t =0时刻作为计时起点,其振动图像如图所示,则A .t =14T 时,货物对车厢底板的压力最大 B .t =12T 时,货物对车厢底板的压力最小 C .t =34T 时,货物对车厢底板的压力最大 D .t =34T 时,货物对车厢底板的压力最小 6.某质点做简谐运动,其位移随时间变化的关系式为5sin 4x t π=(cm) ,则下列关于质点运动的说法中正确的是( )A .质点做简谐运动的振幅为 10cmB .质点做简谐运动的周期为 4sC .在 t=4s 时质点的加速度最大D .在 t=4s 时质点的速度最大7.一位游客在千岛湖边欲乘坐游船,当日风浪较大,游船上下浮动.可把游船浮动简化成竖直方向的简谐运动,振幅为20 cm ,周期为3.0 s .当船上升到最高点时,甲板刚好与码头地面平齐.地面与甲板的高度差不超过10 cm 时,游客能舒服地登船.在一个周期内,游客能舒服登船的时间是( )A .0.5 sB .0.75 sC .1.0 sD .1.5 s8.如右图甲所示,水平的光滑杆上有一弹簧振子,振子以O 点为平衡位置,在a 、b 两点之间做简谐运动,其振动图象如图乙所示.由振动图象可以得知( )A.振子的振动周期等于t1B.在t=0时刻,振子的位置在a点C.在t=t1时刻,振子的速度为零D.从t1到t2,振子正从O点向b点运动9.下列说法中不正确的是( )A.将单摆从地球赤道移到南(北)极,振动频率将变大B.将单摆从地面移至距地面高度为地球半径的高度时,则其振动周期将变到原来的2倍C.将单摆移至绕地球运转的人造卫星中,其振动频率将不变D.在摆角很小的情况下,将单摆的振幅增大或减小,单摆的振动周期保持不变10.如图所示,一轻质弹簧上端固定在天花板上,下端连接一物块,物块沿竖直方向以O 点为中心点,在C、D两点之间做周期为T的简谐运动。

机械振动学机械振动学试卷(练习题库)(2023版)

机械振动学机械振动学试卷(练习题库)(2023版)

机械振动学机械振动学试卷(练习题库)1、机械振动系统的固有频率与哪些因素有关?关系如何?2、简述无阻尼单自由度系统共振的能量集聚过程。

3、什么是共振,并从能量角度简述共振的形成过程。

4、简述线性系统在振动过程中动能和势能之间的关系。

5、什么是机械振动?振动发生的内在原因是什么?外在原因是什么?6、简述线性多自由度系统动力响应分析方法。

7、简述确定性振动和随机振动的区别,并说明工程上常见的随机过程的数字特征有哪些;各态遍历随机过程的主要8、简述随机振动问题的求解方法,以及与周期振动问题求解的区别。

9、简述确定性振动和随机振动的区别,并举例说明。

10、离散振动系统的三个最基本元素是什么?简述它们在线性振动条件下的基本特征。

11、简述非周期强迫振动的处理方法。

12、用数学变换方法求解振动问题的方法包括哪几种?有什么区别?13、简述动力响应分析中采用振型叠加方法的基本过程。

14、简述线性系统在振动过程中动能和势能之间的关系。

15、当振动系统受到周期激励作用时,简述系统响应的求解方法。

16、机械振动大致可分成为:()和非线性振动;确定性振动和();()和强迫振动。

17、在离散系统中,弹性元件储存(),惯性元件储存(),()元件耗散能量。

18、周期运动的最简单形式是(),它是时间的单一()或()函数。

19、叠加原理是分析O系统的基础。

20、系统固有频率主要与系统的()和()有关,与系统受到的激励无关。

21、系统的脉冲响应函数和O函数是一对傅里叶变换对,和O函数是一对拉普拉斯变换对。

22、机械振动是指机械或结构在平衡位置附近的()运动。

23、简述振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。

24、共振具体指的是振动系统在什么状态下振动?简述其能量集聚过程?25、把一个筛子用四根弹簧支起来,筛子上装一个电动偏心轮,它每转一周,给筛子一个驱动力,这就做成了一个共振26、如图所示,SKS2是两个相干波源,它们振动同步且振幅相同。

物理机械振动考试题及答案

物理机械振动考试题及答案

物理机械振动考试题及答案一、选择题1. 简谐振动的频率与振幅无关,这是由什么决定的?A. 振子的质量B. 振子的弹性系数C. 振子的阻尼D. 振子的初始条件答案:B2. 在阻尼振动中,振幅随时间如何变化?A. 保持不变B. 逐渐减小C. 逐渐增大D. 先增大后减小答案:B3. 以下哪个不是简谐振动的特点?A. 周期性B. 振幅不变C. 频率恒定D. 振子质量不变答案:D4. 什么是共振现象?A. 振子的振动频率等于系统固有频率时的现象B. 振子的振幅达到最大时的现象C. 振子的振动频率等于外部驱动频率时的现象D. 振子的振动频率等于外部阻尼频率时的现象答案:A5. 以下哪个公式描述了简谐振动的位移?A. \( x = A \sin(\omega t + \phi) \)B. \( x = A \cos(\omega t + \phi) \)C. \( x = A \tan(\omega t + \phi) \)D. \( x = A \sec(\omega t + \phi) \)答案:B二、填空题6. 一个物体在水平面上做简谐振动,其振动周期 \( T \) 与振动频率 \( f \) 的关系是 \[ T = \frac{1}{f} \]。

7. 阻尼振动中,振幅随时间的衰减速度与振子的________成正比。

8. 共振现象中,振子的振动频率等于系统的________频率。

9. 简谐振动的位移公式中,\( \omega \) 表示________,\( \phi \) 表示________。

10. 阻尼振动的振幅随时间的衰减可以表示为 \( A(t) = A_0 e^{-\alpha t} \),其中 \( \alpha \) 表示________。

三、简答题11. 简述什么是阻尼振动,并说明其振幅随时间的变化趋势。

答案:阻尼振动是指在振动过程中,由于存在阻力(如空气阻力、摩擦力等),振子的振动能量逐渐减小,导致振幅逐渐减小的振动。

【单元练】2021年高中物理选修1第二章【机械振动】基础卷(答案解析)(1)

【单元练】2021年高中物理选修1第二章【机械振动】基础卷(答案解析)(1)

一、选择题1.如图甲所示,在一条张紧的绳子上挂几个摆。

当a 摆振动的时候,其余各摆在a 摆的驱动下也逐步振动起来,不计空气阻力,达到稳定时,b 摆的振动图像如图乙。

下列说法正确的是( )A .稳定时b 摆的振幅最大B .稳定时b 摆的周期最大C .由图乙可以估算出b 摆的摆长D .由图乙可以估算出c 摆的摆长D 解析:DA .a 与c 的摆长接近,它们的固有频率接近,在a 摆的驱动下,稳定时c 摆的振幅最大,所以A 错误;B .bc 摆是在a 摆的驱动下振动起来的,则b 的周期等于外力周期,稳定时abc 摆的周期都相同,所以B 错误; CD .根据单摆的周期公式2l T g=解得224T gl π= 由图像可得a 摆周期,则可以算出a 摆的摆长,估算出c 摆的摆长,所以C 错误;D 正确; 故选D 。

2.关于简谐运动,下列说法正确的是( )A .做简谐运动物体所受的回复力方向不变,始终指向平衡位置B .在恒力的作用下,物体可能做简谐运动C .做简谐运动物体速度越来越大时,加速度一定越来越小D .做简谐运动物体的加速度方向始终与速度方向相反C 解析:CA .回复力是使做简谐运动的物体返回平衡位置并总指向平衡位置的力,所以物体在远离和靠近平衡位置时的方向不同,A 错误;B .物体做简谐运动中回复力满足F x κ=-即回复力大小与位移大小成正比,方向与位移方向相反,所以在恒力的作用下,物体不可能做简谐运动,B 错误;C .做简谐运动物体速度越来越大,说明物体向着平衡位置运动,物体受回复力越来越小,加速度一定越来越小,C 正确;D .做简谐运动物体的加速度方向始终指向平衡位置,速度方向与物体运动方向相同,物体做简谐运动过程中,加速度方向和速度方向有时相同,有时相反,D 错误。

故选C 。

3.两个弹簧振子甲的固有频率为f ,乙的固有频率为10f 。

若它们均在频率为9f 的驱动力作用下受迫振动( )A .振子甲的振幅较大,振动频率为fB .振子乙的振幅较大,振动频率为9fC .振子甲的振幅较大,振动频率为9fD .振子乙的振幅较大,振动频率为10f B解析:B物体做受迫振动时,其频率等于驱动力的频率。

《第二章 机械振动》试卷及答案_高中物理选择性必修第一册_教科版_2024-2025学年

《第二章 机械振动》试卷及答案_高中物理选择性必修第一册_教科版_2024-2025学年

《第二章机械振动》试卷(答案在后面)一、单项选择题(本大题有7小题,每小题4分,共28分)1、一个简谐振动的质点,在某一时刻具有最大加速度,那么此时质点的:A. 位移为0,速度为最大B. 位移为最大,速度为0C. 位移为0,速度为最小D. 位移为最大,速度为最大2、一个单摆在水平面上以圆锥面的顶点悬挂,若从最低点开始计时,周期为T,则当摆摆动到圆锥面边缘且位置与最低点等高时,单摆的:A. 位移为圆锥面半径,时间为T/4B. 位移为2倍圆锥面半径,时间为T/4C. 位移为圆锥面半径,时间为T/2D. 位移为2倍圆锥面半径,时间为T/23、一个单摆在振动过程中,其振动周期与以下哪个因素无关?A、摆长B、重力加速度C、摆球的质量D、振幅4、一个简谐振子的位移随时间的变化可以表示为(x(t)=Acos(ωt+ϕ)),其中(A)是振幅,(ω)是角频率,(ϕ)是初相位。

在(t=0)时,振子的速度为:)A、(Aω2B、(−Aω)C、(Aωcos(ϕ))D、(−Aωcos(ϕ))5、一个单摆的摆长为0.25米,在地球表面的重力加速度为9.8 m/s²。

若这个单摆在最大偏角为15°时振动,则其周期是()秒。

A、0.31B、0.35C、0.63D、1.046、一个质点在弹簧的位移为x时,受到的回复力为-kx,其中k为常数。

如果弹簧的劲度系数为5 N/m,当弹簧的伸长量为0.2米时,质点受到的回复力大小是()牛顿。

A、1B、2C、3D、47、一个质点在平面内做简谐振动,振幅为A,周期为T。

若质点从平衡位置向正方向运动,经过时间t,质点的位移为x,则以下哪个关系式正确?()A、x = Areatestcos(ωt)B、x = Acoth(ωt)C、x = Asin(ωt + φ)D、x = A - Acos(ωt)二、多项选择题(本大题有3小题,每小题6分,共18分)1、下列哪些现象属于机械振动?A、地球的公转B、单摆的摆动C、弹簧振子的运动D、汽车轮胎的颠簸2、关于简谐振动,以下说法正确的是:A、简谐振动的物体在平衡位置两侧运动的速度相等B、简谐振动的物体在最大位移处速度为零,加速度最大C、简谐振动的物体在任何位置的速度方向都与位移方向一致D、简谐振动的物体在任何位置处的加速度都与位移成正比3、关于简谐运动的描述,下列说法正确的是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、 填空题 ( 本大题共5小题,每小题2分,共10分 )
1、 简谐振动的三要素是 振幅 、 频率 和 初相位 。

2、 不论隔力还是隔幅,当频率比λ满足
λ> 3、 单自由度系统欠阻尼振动频率d ω,阻尼比ζ和固有频率n ω的关系为
d ωω=
4、 多自由度系统中加速度频响函数矩阵的元素()i j H ω表示的物理意义是指: 幅值是指
在系统的第j 个自由度上施加单位幅值正弦激励后系统第i 个自由度上的加速度稳态响应幅值;幅角是指上述加速度响应滞后(超前)激励的相位角 。

5、 直梁的自由端 剪力 和 弯矩 为零。

二、 判断题 ( 本大题共5小题,每小题2分,共10分 )
1、 叠加原理适用于线性和非线性系统。

(×)
2、 旋转机械中,不平衡质量会引起系统产生振动。

(√)
3、 单自由度系统共振时系统呈阻尼特性。

(√)
4、 瑞利阻尼是比例阻尼。

(√)
5、 无限自由度系统的振动方程是一个常微分方程。

(×)
三、 解答题 ( 本大题共4小题,共60分 )
1、 图示系统中不计刚性杆的质量,试建立系统的振动
微分方程,并求系统的固有频率。

(10分) 解:取广义坐标为θ,顺时针为正方向,取质量块m 进行受力分析
根据动量矩定理得: sin ,cos 1θθθ≈≈,化简得到系统运动微
对于微振动,分方程
系统固有频率为
2、 试推导单自由度欠阻尼振动系统的单位脉冲响应函数表达式。

(10分) 解:受单位脉冲激励的单自由度欠阻尼系统运动方程为 初始条件(0)(0)0u u ==。

设脉冲力的作用时间区间是[0,0]+, 根据冲量定理:1(0)(0)mu mu +=- 所以1
(0)u m +=
,因此初始条件变为1(0)0,(0)u u m
+
+==,所以 因此得到 式中d
ωω=
3、 试证明多自由度无阻尼振动系统的固有振型关于质量矩阵和刚度矩阵都具有加权正交
性。

(10分)
证明:对于多自由度无阻尼系统的固有振动,有2()0ω-=K M ϕ,对应第r 和s 阶模态有
等式两边分别乘以T
s ϕ和T r ϕ得
式(1)两边转置得到
(3)-(2)得到22()0T r s r s ωω-=M ϕϕ 对于单构系统,22,r s r s ωω≠≠,所以 将(4)代入(2)得到
即,多自由度无阻尼振动系统的固有振型关于质量矩阵和刚度矩阵都具有加权正交性。

4、 在图示振动系统中,已知:二物体的质量分别为
1m 和2m ,弹簧的刚度系数分别为1k 、2k 、3k 、4k 、5k ,物块的运动阻力不计。

试求:(1)写出
系统的动力学方程;(2)假设12m m m ==,
12k k k ==,3451
3
k k k k ===,求出系统的固有频率和相应的振型;(3)假定系统存
在初始条件12(0)2(0)4u u ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,12(0)6(0)2u u ⎡⎤⎡⎤
=⎢⎥⎢⎥⎣⎦⎣⎦,在条件(2)下采用模态叠加法求系统的响应;(4)假定质量块1m 受到激励力为sin f t ω(ω≠系统固有频率),在条件(2)下求系统的稳态响应。

(30分)
解:(1)系统为两自由度系统,分别以1u 、2u 建立广义坐标,则系统的动力学方程为
其中,质量矩阵1200m m ⎡⎤
=⎢⎥⎣⎦M ,刚度矩阵122
22345k k k k k k k k +-⎡⎤
=⎢⎥-+++⎣

K
(2)代入参数得到00m m ⎡⎤=⎢⎥⎣⎦M
,22k
k k
k -⎡⎤
=⎢⎥-⎣⎦
K 自由振动时2()0,λλω-==K M ϕ,特征方程为 所以
202k m k k
k m
λλ--=--,即()()30k m k m λλ--=
因此得到1ω=
,2ω=对应振型为⎥⎦⎤⎢⎣⎡=111ϕ,⎥⎦

⎢⎣⎡-=112ϕ
(3)令1111-⎡⎤
=⎢⎥⎣⎦Φ,取模态坐标12q q ⎡⎤=⎢⎥⎣⎦q ,进行模态坐标变换=u Φq ,则 模态坐标下的振动方程为:
两边同乘T Φ得到1122()()1101-11121-10()()-11011-11211q t q t m k
k q t q t m k k -⎡⎤⎡⎤
⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢
⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦
即1122()()20200()()0206q t q t m k q t q t m k ⎡⎤⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦
所以1111122222
()cos sin ()cos sin q t a t b t q t a t b t ωωωω=+⎧⎨=+⎩
对于初始条件
所以12a a ⎡⎤⎢⎥⎣⎦=1
1111--⎡⎤⎢⎥⎣⎦24⎡⎤⎢⎥⎣⎦=111112⎡⎤⎢⎥-⎣⎦24⎡⎤⎢⎥⎣⎦=31⎡⎤
⎢⎥⎣⎦
所以1
11221161164111211222b b ωω--⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣
⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦ 即11224/2/b b ωω⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦
所以1
11122
22
4()3cos sin 2()cos sin q t t t q t t t ωωωωωω⎧
=+⎪⎪
⎨⎪=-⎪⎩
最后物理坐标下,1212q q q q -⎡⎤
==⎢

+⎣⎦
u Φq (4)系统的受迫振动方程为 系统的频响函数矩阵为
式中()2
2
22224()234k m k k km m ωωωω∆=--=-+
系统的稳态响应2*
22sin 1()()20k m
k f t t k k m ωωωω⎡⎤⎡⎤-=⎢⎥⎢⎥∆-⎣⎦⎣⎦
u 四、 论述题 (20分 )
试论述机械结构振动领域中理论分析、数值仿真方法、振动实验测试与模态分析、结构动力学模型修正技术之间的关系以及这些技术在实际工程结构设计中的作用。

答:只要从振动理论分析,振动数值方法,试验测试已经模态分析和结构动力学模型修正的概念出发,阐述之间的相互关系以及在实际工程结构设计中的作用进行阐述就可。

振动研究的三大支柱:理论分析\数值仿真\试验技术
振动问题的数值分析方法有:有限元法、邓克莱法、逆迭代法;
有限元:将连续系统分割成有限个分区或单元,对每个单元提出一个近似解,再将所有单元按标准方法组合成一个与原有系统近似的系统。

逆迭代法是一种由低到高逐阶计算固有频率和固有振型的简便方法,很容易编制程序实现。

振动试验包括:信号采集和处理、频响函数测量和模态参数识别(频域法和时域法) 模态分析就是结构的固有振动特性分析。

1)将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦
2)成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。

坐标变换的变换矩阵为模态矩阵,其每列为模态振型。

最终的目的是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。

分为有限元模态分析和试验模态分析 应用:1.机械、结构动态分析与设计 2.机械结构振动与噪声控制 3.机械故障诊断
4.结构健康监测
模型修正的是利用静动载试验结果(频率、振型、应变、位移等)修改理论有限元模型的刚度、质量、边界约束、几何尺寸等参数,在保证模态参数自身精度的前提下,使修正后的有限元模型结果趋于试验值。

方法有:神经网络法,矩阵修正法等。

相关文档
最新文档