弹塑性力学定理和公式

合集下载

弹性力学公式

弹性力学公式

(位移单值条件)
应用弹塑性力学考试用基本公式-16
弹性力学极坐标求解归结为
+ fρ
=0
平衡微分方程:
1
ρ
∂σ ϕ ∂ϕ
+
∂τ ρϕ ∂ρ
+
2τ ρϕ ρ
+

=
0
几何方程:
ερ
=
∂uρ
∂ρ
εϕ
=

ρ
+
1
ρ
∂uϕ
∂ϕ
(4-1) (4-2)
γ ρϕ
=
1
ρ
∂uρ
∂ϕ
+
∂uϕ
∂ρ


ρ
物理方程:
ερ
=
1 E

ρ
− μσϕ )
γ ρϕ
=
1 G
τ
ρϕ
=
2(1 + E
μ)τ
ρϕ
εϕ
+ +
∂u ∂y ∂v ∂z
⎫ ⎪ ⎪⎪ ⎬ ⎪
γ zx
=
∂u ∂z
+
∂w ⎪ ∂ x ⎪⎭
θr
ϕ
简记为: ε ij
=
1 2
(u

j ,i
+ ui, j )
体积应变 θ = ∂u + ∂v + ∂w
∂x ∂y ∂z
应用弹塑性力学考试用基本公式-3
<ii>在柱坐标系中
εr
=
∂ur ∂r
εθ
= 1 ∂uθ
双调和函数:
1、提出:由于弹性力学方程的复杂性,为了在求解弹性力学问 题时减少盲目性,考察应力、应变、位移函数的特点。

弹塑性力学——精选推荐

弹塑性力学——精选推荐

1-5 已知1σσ=x ,2σσ=y ,0====zx yz xy z τττσ,试求与xy 平面垂直的任意斜截面上的正应力和剪应力。

解:由公式2221m l σσσυ+=, αcos =l ,αsin =m ,所以有:ασσσσασασσυ2cos )(21)(21sin cos 21212221-++=+= [注意:)αααα2cos 1(21cos )2cos 1(21sin 22+=-=•]法二:根据已知条件,建立如图所示的坐标系,设将外力沿外法线方向投影,得:sin sin cos cos =⋅⋅-⋅⋅-αασαασσυds ds ds y x 即 0sin cos 2221=⋅⋅-⋅⋅-ασασσυds ds dsασσσσασασσυ2cos )(21)(21sin cos 21212221-++=+=⇒与前同。

同理,将外力沿切线方向投影,得:cos sin sin cos =⋅⋅+⋅⋅-αασααστυds ds ds y x 即: 02sin 212sin 2121=⋅⋅+⋅⋅-ασαστυds ds ds ασστυ2sin 2)(21-=⇒ [注意:ααααααcos sin 22sin 2sin 21sin cos •••==] 综上,与xoy 平面垂直的任意斜截面上的正应力为:ασσσσασασσυ2cos )(21)(21sin cos 21212221-++=+=剪应力为:ασστυ2sin 2)(21-=。

1-6 当321σσσ>>时,如令313122σσσσσμσ---=,试证明3)3(22max 0σμττ+=,且该值在0.816~0.943之间。

解:0τ为等倾面上的剪应力,212132322210])()()[(31σσσσσστ-+-+-=由于剪应力的极值为2321σστ-±=,2132σστ-±=,2213σστ-±=232221032ττττ++=,另外有:max 2ττ=,max 121τμτσ+-=,max 321τμτσ--= 所以,212max 22max 0]426[324)1(4)1(132σσσμτμμττ+=-+++=3)3(22max 0σμττ+=⇒ 由于)30(3-=σσωμtg ,)30cos(136)]30(1[36212max 0-=-+=⇒σσωωττtg 因为:11≤≤-σμ,[当0=σω时,1-=σμ;当3πωσ=时,1=σμ;当6πωσ=时,0=σμ]将1=σμ和0=σμ代入maxττ则有: 943.0816.0max 0≤≤ττ,(816.030max 0==ττωσ时,当,943.060max0==ττωσ时,当 )。

弹塑性力学——物理方程

弹塑性力学——物理方程
• 弹性系数cmn也应具有对称性
cmn=cnm
材料对称性
• 弹性对称面
该面对称的两个方向具有相同的弹性关系

x
xy

xz

yx y yz


zx
zy
z


x


1 2

yx

1 2

zx
1 2 xy
y
1 2
zy
1 2

单轴拉伸
x 0 0
ij


0
0
0
0 0 0
使用物理关系,有:
x = 2Gx+(x+y+z) 0 = 2Gy+(x+y+z) y = z
x G(2G 3)
x
G
y x 2(G )
G E 2(1 )
2 1
1 2
x y z
2


2 x


2 y


2 z

1 2

2 xy


2 yz


2 zx

• 应变能分解
应变能可分解为体积改变能和形状改变能。
W=
1 2
ijij
=
1 2
(sij
+0ij)(eij
+
1 3
kkij)=
1 2
0kk+

E
(1 )(1 2)
纯剪实验
0 xy 0


ij yx 0 0

弹塑性力学——精选推荐

弹塑性力学——精选推荐

弹塑性⼒学应⼒应变关系应⼒应变都是物体受到外界载荷产⽣的响应。

物体由于受到外界载荷后,在物体内部各部分之间要产⽣互相之间的⼒的作⽤,由于受到⼒的作⽤就会产⽣相应的变形;或者由于变形引起相应的⼒的作⽤。

则⼀定材料的物体其产⽣的应⼒和应变也必然存在⼀定的关系。

在⼒学上由于平衡⽅程仅建⽴了⼒学参数(应⼒分量与外⼒分量)之间的关系,⽽⼏何⽅程也仅建⽴了运动学参数(位移分量与应变分量)之间的连系。

所以平衡⽅程与⼏何⽅程是两类完全相互独⽴的⽅程,它们之间还缺乏必要的联系,这种联系即应⼒和应变之间的关系。

有了可变形材料应⼒和应变之间关系和⼒学参数及运动学参数即可分析具体的⼒学问题。

由平衡⽅程和⼏何⽅程加上⼀组反映材料应⼒和应变之间关系的⽅程就可求解具体的⼒学问题。

这样的⼀组⽅程即所谓的本构⽅程。

讨论应⼒和应变之间的关系即可变为⼀定的材料建⽴合适的本构⽅程。

⼀.典型应⼒-应变关系图1-1 典型应⼒-应变曲线1)弹性阶段(OC段)该弹性阶段为初始弹性阶段OC(严格讲应该为CA’),包括:线性弹性分阶段OA段,⾮线性弹性阶段AB段和初始屈服阶段BC 段。

该阶段应⼒和应变满⾜线性关系,⽐例常数即弹性模量或杨⽒模量,记作:εσE =,即在应⼒-应变曲线的初始部分(⼩应变阶段),许多材料都服从全量型胡克定律。

2)塑性阶段(CDEF 段)CDE 段为强化阶段,在此阶段如图1中所⽰,应⼒超过屈服极限,应变超过⽐例极限后,要使应变再增加,所需的应⼒必须在超出⽐例极限后继续增加,这⼀现象称为应变硬化。

CDE 段的强化阶段在E 点达到应⼒的最⾼点,荷载达到最⼤值,相应的应⼒值称为材料的强度极限(ultimate strength ),并⽤σb 表⽰。

超过强度极限后应变变⼤应⼒却下降,直到最后试件断裂。

这⼀阶段试件截⾯积的减⼩不是在整个试件长度范围发⽣,⽽是试件的⼀个局部区域截⾯积急剧减⼩。

这⼀现象称为“颈缩”(necking )。

弹塑性力学基本知识

弹塑性力学基本知识

dε p =
塑性功增量: dW = σ ij dε ij
p p
2 p p deij deij 3
(13) (14)
等效剪应变 (或剪应变强度) : Γ=
2eij eij
(15)
T = 等效剪应力 (或剪应力强度) : 4 3 1 3
1 2
sij sij
(16)
八面体剪应变: γ8 =
eij eij 2 3
P dε ij = dλ1
∂f1 ∂σ ij
(49)
特殊情况, 若σ1 = σ 2 ≥ σ 3 , 则应力状态处于 f1 = σ 2 − σ 3 − σ s = 0 和 f 2 = σ 1 − σ 3 − σ s = 0
的交点处,则:
dε iP = dλ1
z 硬化模型(三类) 等向硬化:
∂f1 ∂σ i
加载
中性变载
(37)
卸载
⎛ P ⎜ dε pq ∂f ∂g dσ ij = ⎜ 1 − i ∂σ ij ⎜ ∂ε pq ∂g dε mn ⎜ ∂ε mn ⎝
⎞ ⎟ ∂g ⎟ dε kl ⎟ ∂ε kl ⎟ ⎠
(条件:
∂g ∂ε ij
dε ij > 0 )
(38)
注意:当材料处于硬化阶段时,采用
∂g ∂ε ij
第一、第二、第三偏应力不变张量:
⎫ ⎪ ⎬ ⎪ ⎭
(7)
J1 = skk = 0 J2 = 1 2
2 sij sij = I 2 + 3σ m
J 3 = det ( sij ) = sij s jk ski
第二偏应力不变张量:
⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭
(8)
J2 =
1

弹塑性力学之结构的塑性极限分析

弹塑性力学之结构的塑性极限分析
25
塑性极限载荷
4"6
确定塑性区位置
截面的上下两塑性区相连,使 跨中左右两截面产生像结构
・特点:
-塑性较的存在是由于该截面 上的弯矩等于塑性极限弯矩; 故不能传递大于塑性极限弯 矩的弯矩。
<]
ax(x9z\ay=az= rxy=ryz= rzx=0
♦:・小挠度假设:在梁达到塑性极限状态瞬 间之前,挠度与横截面尺寸相比为一微 小量,可用变形前梁的尺寸进行计算。
二.弹性阶段

P1
6M
♦ Mises屈服条件:
xmax
bh2
弹性极限弯矩

2bh2
弹性极限载荷
三.弹塑性阶段(约束塑性变形阶段)
>Mp塑性区扩展
第十章结构的塑性极限分析
矗塑性极限分析定理和方法
❖梁的极限分析❖圆板的极限分析
❖梁模型法计算圆板和环板的塑性极限 載荷
§10-1梁的弹塑性弯曲
1.基本假定
•:•平截面假设:在变形过程中,变形 前为平面的横截面,变形后仍保持 为平面,且与变形后梁的轴线垂直。
z5=— P
・纵向纤维互不挤压:不计挤压应力, 横截面上只有正应力。
heh/2
陆=2町(yxzdz+ 2町aszdz
0he

0叽he
“Me
Ms=—-
s2
h2
弹塑性区交界线:
h/2
(Jszdz
陆=
£
弹塑性区交界线:饥=±丄3
h~2\
<]
►P(lΒιβλιοθήκη 2x)2ALPl/4
四.全塑性阶段
X—6
x = 0
塑性极限弯矩
n
A

弹塑性力学基础

弹塑性力学基础

Q
AK (e w ) L
V
K (e w ) L
流网
(二)数值解法 主要是有限元法,能求解稳定渗流和非稳定渗流,渗流与扩散 的耦合,渗流与力场的耦合即后文中可能提到的比奥固结理论。
流网
(三)流网法
流网渗流力及渗透变形 3.4
(三)流网法 流网法的特点: (1)流网的等势线与流线垂直(参考文献) (2)在做流网时,为分析方便而做成正方形的网格 (3)两等势线之间的水头损失相等,两流线之间的单位 渗流量相等。 要求:能对流网进行分析,能根据流网求渗流速度,渗 流量和孔隙水压力。
5. 了解平面稳定流的控制方程及流网的使用
3、平衡分析 (3)斜截面应力公式 取四面体进行分析。除斜截面外,另外3个面与坐标面 重合。则斜截面上应力在三个坐标轴上的投影分别为
t nx l x m yx n zx
t ny l xy m y n zy
t nz l xz m yz n z
应力理论
A
A'l h1 k ln( ) A(t2 t1 ) h2
变水头试验适用于透水性较小的粘性土等。
渗透理论
三、渗透系数的确定
(二)现场试验确定 在(x,y)处的过水断面面积为 A=2 π xy
2xy
Y
x,y
i=dy/dx 由达西定律: q=kiA,得:q 2xyk
dy dx
X
两边积分,得2-9,即:
发生的判别方法:
1. 图解法 见图2-15 2. 用d85/ d15来判别。
小结
1. 达西定律 2. 渗透系数的确定方法 3. 渗流的控制方程及流网的利用 4. 土的渗透力的定义和渗透变形灾害表现形式及 判断

弹塑性力学-15 屈服理论

弹塑性力学-15 屈服理论

S
等倾线
L P
2
一点的应力矢量 OP 1e1 2e2 3e3
15.1 屈服理论分析
2. 屈服条件的一般形式
3 QL
OP 1e1 2e2 3e3
P
n
1 3
e1
1 3
e2
1 3 e3
平面 o S
2
1
OQ OP n
1 3
(1
2
3
)
15.1 屈服理论分析
3. 屈服条件的一般形式
ij
0
ABCA
对整个循环,附加应力
( ij
0 ij
)d
p ij
0
在弹性变形上做功为零 ABCA
AB ( ij
0 ij
)d
p ij
BC
( ij
0 ij
)d
p ij
CA ( ij
0 ij
)d
p ij
0
15.1 屈服理论分析
6. Drucker公设
AB ( ij
0 ij
)d
p ij
BC ( ij
4
xy s
2
1
均为
x s
2
3
xy s
2
1
椭圆
15.2 经典屈服准则
3. 屈服准则的验证 M
P
薄壁圆筒承受拉扭
M P
Mises准 则更好!
xy / s
0.6
Mises准则
0.4 铜 0.2 软钢 Tresca准则

0 0.2 0.4 0.6 0.8 x / s
塑性屈服理论
15.1 屈服理论分析 15.2 经典屈服准则 15.3 后继屈服与硬化

弹塑性力学基本方程

弹塑性力学基本方程

弹性力学基本方程平衡微分方程:0⋅+=σ∇f指标符号写为,0ji j i f σ+=在直角坐标系中分量形式311121112332122221231323333123000f x x x f x x x f x x x σσσσσσσσσ⎧∂∂∂+++=⎪∂∂∂⎪⎪∂∂∂+++=⎨∂∂∂⎪⎪∂∂∂+++=⎪∂∂∂⎩在柱坐标系中分量形式1012010r r r rz r r zr z zr z rzz f r r z rf r r z r f r r z r θθθθθθθθτσσστθτσττθττστθ∂-∂∂⎧++++=⎪∂∂∂⎪∂∂∂⎪++++=⎨∂∂∂⎪∂∂∂⎪++++=⎪∂∂∂⎩在球坐标系中分量形式211cot 0sin 113cot 0sin 1132cot 0sin r r r r r r r r r r f r r r r r f rr r r r f r r r r r ϕθϕθθθϕθϕθθθθϕϕθϕϕϕθϕτσσσττσθθθϕτσστστθθθϕττσττθθθϕ∂--⎧∂∂+++++=⎪∂∂∂⎪⎪∂-∂∂⎪+++++=⎨∂∂∂⎪⎪∂∂∂+++++=⎪∂∂∂⎪⎩几何方程:1()2=+ε∇∇u u指标符号写为,,1()2ij i j j i u u ε=+在直角坐标系中分量形式1211221112113222223322333313331133131()21()21()2u u u x x x u u u x x x u u u x x x εεεεεεεεε⎧⎧∂∂∂==+=⎪⎪∂∂∂⎪⎪⎪⎪∂∂∂===+⎨⎨∂∂∂⎪⎪⎪⎪∂∂∂===+⎪⎪∂∂∂⎩⎩在柱坐标系中分量形式111r r z z zr u u v v r r r r v u v w r r z r w w u z r z θθθεγθεγθθεγ∂∂∂⎧⎧==+-⎪⎪∂∂∂⎪⎪∂∂∂⎪⎪=+=+⎨⎨∂∂∂⎪⎪∂∂∂⎪⎪==+⎪⎪∂∂∂⎩⎩在球坐标系中分量形式1111sin 11sin sin r rr r r r r r u u u u r r r r u u u u ctg u r r r r r u u ctg u u u u r r r r r r θθθϕθθθθϕϕϕϕϕϕθϕγεθθεγθθϕθθεγθϕθϕ⎧⎧∂∂∂=+-=⎪⎪∂∂∂⎪⎪⎪∂∂∂⎪=+=+-⎨⎨∂∂∂⎪⎪∂⎪⎪∂∂=++=+-⎪⎪∂∂∂⎩⎩应变协调方程:0⨯⨯=ε∇∇指标符号写为,0mjk nil ij kl e e ε=在直角坐标系中常用形式222112212222112222332322223223222331311221313223311112231123231232212312231233120001()21()21x x x x x x x x x x x x x x x x x x x x x x x x x x εεγεγεεγεγγεγγγεγε∂∂∂+-=∂∂∂∂∂∂∂+-=∂∂∂∂∂∂∂+-=∂∂∂∂∂∂∂∂∂=-++∂∂∂∂∂∂∂∂∂∂∂=-++∂∂∂∂∂∂∂=∂∂2331123312()2x x x x γγγ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪∂∂∂∂-++⎪∂∂∂∂⎩本构方程::=σεC指标符号写为ij ijkl klC σε=对各向同性弹性体的线弹性本构关系的指标符号写为2ij ij kk ijG σελεδ=+在直角坐标系中分量形式222x x yy z z xy xy yz yz zx zxG G G G G G σελθσελθσελθτγτγτγ=+⎧⎪=+⎪⎪=+⎪⎨=⎪⎪=⎪=⎪⎩边界条件:力边界条件指标形式写为 j i ijp νσ=在指标坐标系分量形式x yx zx xy y zy xz yz z X l m n Y l m n Z l m n στττστττσ⎧=++⎪⎪=++⎨⎪=++⎪⎩位移边界条件指标形式写为 i iu u =在直角坐标系分量形式112233u u u u u u ⎧=⎪⎪=⎨⎪=⎪⎩位移解法:L-N 方程及力边界条件指标形式,,,,,()0[()]i jj j ji i i j j i k k ij j iGu G u f G u u u X λλδν+++=++=在直角坐标系中分量形式212223()0()0()0(2)()()()(2)()()()(2)G u G f x G v G f y G w G f z u v u w uG l G m G n X x x y x z u v v w vG l G m G n Yy xy y z u w v w wG l G m G n Zz xz y z θλθλθλλθλθλθ⎧∂∇+++=⎪∂⎪∂⎪∇+++=⎨∂⎪⎪∂∇+++=⎪∂⎩⎧∂∂∂∂∂+++++=⎪∂∂∂∂∂⎪⎪∂∂∂∂∂+++++=⎨∂∂∂∂∂⎪⎪∂∂∂∂∂+++++=∂∂∂∂∂⎩⎪应力解法:B-M 方程指标形式2,,,,1()11ij ij i j j i ij k kf f f νσδνν∇+Θ=-+-+-平面问题本构方程平面应变平面应力平面应力(极坐标系)αβαβαβδλεεσkk G +=2, 平面应力→平面应变:21υ-→E E 、υυυ-→1xyxyx y y y x x G G G γτευυευυσευυευυσ=-+--=-+--=)1(21)1(2)1(21)1(2 xyxyx y y y x x G G Gγτυεευσυεευσ=+-=+-=)(12)(12 θθθθθγτυεευσυεευσr r r r r G G G=+-=+-=)(12)(12 0)()(==+=+=zx zx y x y x z ττεελσσυσ===zx zx z ττσ0=z σ 0==θττz zrαβαβαβδσυσυεkk EE -+=1 xyxy xy x y y y x x GE E τεγσυυσυεσυυσυε12)1(1)1(122==---=---= xyxy xy x y y y x x GEEτεγυσσευσσε12)(1)(1==-=-=θθθθθτγυσσευσσεr r r r r GE E1)(1)(1=-=-====zy zx z γγε)(==+-=zy zx y x z Eγγσσυε)(θσσυε+-=r z E0==θγγz z r协调方程:y x yx xy x y ∂∂∂=∂∂+∂∂γεε22222,0112112222222=∂∂-∂∂-∂∂+∂∂∂-∂∂+∂∂θγεεθγθεεθθθθr r r r r r r r r r r r r))(1()(,,2y y x x y x f f ++-=+∇νσσ,如x x V f ,-=,y y V f ,-=,引入Airy 应力函数:V yy x +=,φσ V xx y +=,φσ,xy xy,φτ-=→V 222)1(∇--=∇∇νφ;22222yx ∂∂+∂∂=∇,4422444222yy x x ∂∂+∂∂∂+∂∂=∇∇极坐标系:02101=++∂∂+∂∂=+-+∂∂+∂∂θθθθθθτθστσσθτσf rr r f r r r r r r r r rrv r v u r ru v r r u r r rr r θθθθθθγθεε-∂∂+∂∂=+∂∂=∂∂=11 ,⎪⎭⎫ ⎝⎛∂∂∂∂-=∂∂=∂∂+∂∂=θφτφσθφφσθθr r rr r r r r 1 ,1122222V222)1(∇--=∇∇νφ,22222211θ∂∂+∂∂+∂∂=∇r r r r,⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛θθθθσττσθθθθσττσθθθcos sin sin cos cos sin sin cos r r ry xyxy x塑性力学基本公式:一维随动强化模型材料后继屈服限与先期拉(压)塑性应变的关系**p s ps h d h d σσεσσε+-=+=-+⎰⎰一维等向强化模型材料后继屈服限与先期拉(压)塑性应变的关系***||p s h d σσεσσ+-+=+=-⎰应力偏量的第二不变量22222222112222333311122331221'21'[()()()6()]6'3'ij ij ijij J S S J J S J σσσσσστττσσ==-+-+-+++∂=∂=应变偏量的第二不变量2222222211222233331112233121'213'[()()()()]624'3ij ijI e e I I εεεεεεγγγε==-+-+-+++=金属材料的屈服条件:Mises 屈服条件2()03'ij s J σσσσ-==其中Tresca 屈服条件max ()02sij στσ-=三维随动强化模型后继屈服条件(,)()0p p pij ij ij s ij ij K c d σσσεσεεΦ=--==⎰其中三维等向强化模型后继屈服条件41(,)()()0032p p p pij ij s ij ij K h d d d d σσσσεεεεΦ=-+==⋅≥⎰其中全量形式的应力-应变关系2()1()33ij kk ij ij kk ij K σεσεδεεδε=+-全量形式的应变-应力方程13()1()923ij kk ij ij kk ij K εσεσδσσδσ=+-σε-关系为**3,3(),33',122(1)'3s s ss G GE G G E EE G E E E σεεσσσσεενν⎧⋅<⎪⎪=⎨⎪+->⎪⎩==-+-增量形式的应变-应力方程(指标符号)()011ij ij kk ij ij d d d d S E ευσυσδλ⎡⎤=+-+⎣⎦增量形式的应力-应变方程(矩阵形式)0000T e e e ep T e D D d D d D d D ασσασεεσαασ⎛⎫=-= ⎪⎝⎭线性等向强化材料加载时的增量本构关系(指标符号)()()0020191114ij ij kk ij kl kl ij d d d S d S E h ευσυσδσσ⎡⎤=+-+⎣⎦线性等向强化材料加载时的增量本构关系(矩阵形式)()()000209114T e ep d F d d F d hεσασσασσσσ=+=。

《弹塑性力学》课件

《弹塑性力学》课件
结构弹塑性分析的方法包括有限元法、有限差分法、边界元法等数值计算 方法。
材料的弹塑性行为模拟
材料的弹塑性行为模拟是研究材料在 不同应力状态下表现出的弹塑性性质 ,对于理解材料的力学行为和优化材 料设计具有重要意义。
材料弹塑性行为模拟的方法包括分子 动力学模拟、有限元分析等。
通过实验和数值模拟相结合的方法, 可以研究材料的微观结构和宏观性能 之间的关系,预测材料的弹塑性行为 。
THANKS
感谢观看
弹塑性力学在工程实践中的挑战与解决方案
工程实践中,由于材料和结 构的复杂性,弹塑性力学应 用面临诸多挑战,如非线性 行为、边界条件和初始条件
的确定等。
为了解决这些挑战,需要采 用先进的数值计算方法和实 验技术,提高模拟精度和可
靠性。
此外,加强跨学科合作,将 弹塑性力学与计算机科学、 物理学等学科相结合,可以 推动工程实践中的弹塑性力 学应用不断发展。
《弹塑性力学》课件
目录
• 弹塑性力学概述 • 弹性力学基础 • 塑性力学基础 • 材料弹塑性性质 • 弹塑性力学在工程中的应用
01
弹塑性力学概述
弹塑性力学的定义

弹塑性力学是一门研究材料在弹性和 塑性范围内行为的学科。它主要关注 材料在外力作用下发生的变形行为, 以及这种行为与材料内部应力、应变 的关系。
塑性
材料在应力超过屈服极限后发生的不可逆变形。
屈服准则
描述材料开始进入塑性状态的应力条件。
塑性力学的基本方程
应力平衡方程
01
描述受力物体内部应力分布的平衡关系。
几何方程
02
描述材料在塑性变形过程中应变与位移的关系。
屈服准则
03
确定材料进入塑性状态的条件。

弹塑性力学(浙大通用课件)通用课件

弹塑性力学(浙大通用课件)通用课件

塑性力学
研究材料在塑性状态下应 力和应变行为的科学。
塑性力学的基本假 设
塑性变形是连续的,且不改变物质的性质。 塑性变形过程中,应力和应变之间存在单值关系,且该关系是连续的。 塑性变形过程中,材料内部的应力状态是稳定的,不会出现应力振荡或波动。
塑性力学的基本方程
应力平衡方程
在塑性状态下,物体的内部应力场满 足平衡方程,即合力为零。
应变协调方程
本构方程
在塑性状态下,应力和应变之间的关 系由本构方程描述,该方程反映了材 料的塑性行为特性。
在塑性状态下,物体的应变状态满足 应变协调方程,即应变是连续的。
塑性力学的边值问题
01
塑性力学中的边值问题是指给定 物体的边界条件和初始条件,求 解物体内部的应力和应变状态的 问题。
02
边值问题可以通过求解微分方程 或积分方程来解决,具体方法取 决于问题的具体形式和条件。
04
材料弹塑性性质
材料弹性性质
弹性模量
材料在弹性变形阶段所表现出的 刚度,反映了材料抵抗弹性变形
的能力。
泊松比
描述材料在受到压力时横向膨胀 的程度,反映了材料在弹性变形
阶段的横向变形特性。
弹性极限
材料在弹性变形阶段所能承受的 最大应力,超过该应力值材料将
发生不可逆的塑性变形。
材料塑性性 质
屈服点
解析法的优点是精度高、理论严 谨,但缺点是适用范围较窄,对
于复杂问题难以得到解析解。
有限元法
有限元法是一种将连续的求解域离散化为有限个小的单元,通过求解这些小单元的 解来逼近原问题的求解方法。
它适用于各种复杂的几何形状和边界条件,能够处理大规模的问题,并且可以方便 地处理非线性问题。

清华大学研究生弹塑性力学讲义 5弹塑性_弹性力学的基本方程与解法

清华大学研究生弹塑性力学讲义 5弹塑性_弹性力学的基本方程与解法

弹塑性力学第四章 弹性力学的基本方程与解法一、线性弹性理论适定问题的基本方程和边界条件对于在空间占有体积域V 的线弹性体在外加恒定载荷和固定几何约束条件下引起的小变形问题,若以, ,u εσ作为求解变量,则可以建立如下偏微分方程边值问题: 几何方程()1,,2ij i j j i u u ε=+ ()12∇+∇u u ε= (1a)广义胡克定律 ij ijkl kl E σε= :E σ=ε(1b)平衡方程 ,0ij j i f σ+= ∇⋅+=f 0σ V∀∈x (1c)以上方程均要求在域内各点均满足。

边界条件 u u i i = ∀∈x S ui (2a)n t j ji i σ= ∀∈x S ti(2b)对于适定问题,即不仅要求保证解存在唯一,而且有较好的稳定性。

当载荷或边界条件给定值有微小摄动时,应能保证问题解的变化也是微小的。

对于边界条件的提法就有严格的要求。

即要求:S S S S S ui ti ui ti U I ==∅(2c)对于各向同性材料,其广义胡克定律可具体写成 σλεδεij kk ij ij G =+2 ()tr 2G λ+I σ=εε (3a)()11ij ij kk ij E ενσνσδ⎡⎤=+−⎣⎦ ()()1tr Eνν=⎡⎤⎣⎦I ε1+σ−σ (3b)以上就域内方程来说,一共是对于u ,,σ ε的15个独立分量u i ij ij ,, σε的15个方程。

对于边界条件来说,三维问题每点有三个边界条件,而且是在三个正交方向上每个方向有一个边界条件,这个边界条件或者给定位移、或者给定面力。

这三个正交第四章 弹性力学的基本方程与解法方向可以是整体笛卡儿坐标系的三个方向,也可以是边界自然坐标系的三个方向(即法向和两个切向)。

从更一般来说,除去给定位移或面力外,还有另一种线性的边界条件t K u c i ij j i +=(4)这是一种弹性约束条件。

用这个条件可以取代给定位移或给定面力的条件。

弹塑性力学-04

弹塑性力学-04

x E y
其中E为弹性常数,这就是熟知的 胡克定律。
在三维应力状态下,描绘一点处的 应力状态需要9个应力分量,与之 相应的应变状态也要用9个应力分 量来表示。在线弹性阶段,应力与 应变间仍有线性关系存在,但在一 般情况下,任一应变分量要受9个 应力分量 制约。
3
由于应力张量与应变张量的对称性
10
x e 2 x , xy xy
y e 2 y , yz yz z e 2 z , zx zx
x x ( y z ) (3 2 ) 2 (3 2 )
正交各向异性的弹性材料的本构关系,可根据任一坐标轴 反转时弹性常数保持不变的要求
c12 x c22 y c23 z c11 , c22 , c33 , c12 , c13 , c23 , c44 , c55 , c66 c13 x c23 y c33 z c44 xy 共9个弹性常数 c55 yz c66 zx
1 x ( x v y ) E 1 y ( y v z ) E v z ( x y ) E 1 xy xy G
如用应变分量表示应力分量
14
对于平面应变问题
z yz zx 0
E x [(1 v) x v y ] (1 v)(1 2v) E y [v x (1 v) y ] (1 v)(1 2v) vE z ( x y ) (1 v)(1 2v) xy G xy
c 41 x c 42 y c 43 z c 44 xy c 45 yz c 46 zx c51 x c52 y c53 z c54 xy c55 yz c56 zx c61 x c62 y c63 z c64 xy c65 yz c66 zx

塑性力学-简单弹塑性问题

塑性力学-简单弹塑性问题
ys
h2
理想弹塑性材料、矩形截面 b × h −σ s −
σ = Φ (ε ) = σ s
ys ys
其中:
⎤ ⎡ I (A ) M = σs ⎢ z e + Sp⎥ ⎦ ⎣ ys
2 3 I z ( Ae ) = b ⋅ y s 3
h2 2 S p = b( − y s ) 4
6
σs
+
M 3 1 y = − ( s )2 Me 2 2 h 2
+
ε=
y
+
σ

+
σs
σ
ρ
σ*
卸载前的应力、应变:σ 残余应力: σ * = σ − σ
ε
卸载过程应力改变量: σ = M y
I
10
2. 等截面梁的横向弯曲
•弯矩是变化的 M = M (x) •存在剪应力 忽略剪应力对屈服的影响
y ⎧ σs ⎪ σ ( x, y ) = ⎨ y s ( x ) ⎪Φ ( ε ) ⎩ 在 y ≤ ys ( x )时 在 y ≥ ys ( x )时
中性层曲率:
ρ
=
σs
Ey s
5
M = 2 ∫ σ ⋅ dA ⋅ y = 2 ∫ σ ⋅ dA ⋅ y + 2 ∫ σ ⋅ dA ⋅ y
0
h2
ys
h2
0
ys
= =
E
ρ σs
ys
I z ( Ae ) + 2 ∫ Φ (ε ) ⋅ dA ⋅ y
ys
h2
I z ( Ae ) + 2 ∫ Φ (ε ) ⋅ dA ⋅ y
z
该问题是球对称的。采用 球坐标 不为零的应力分量 σ θ σ ϕ σ r

弹塑性力学定理和公式

弹塑性力学定理和公式

弹塑性⼒学定理和公式应⼒应变关系弹性模量||⼴义虎克定律1.弹性模量对于应⼒分量与应变分量成线性关系的各向同性弹性体,常⽤的弹性常数包括:a弹性模量单向拉伸或压缩时正应⼒与线应变之⽐,即b切变模量切应⼒与相应的切应变之⽐,即c体积弹性模量三向平均应⼒与体积应变θ(=εx+εy+εz)之⽐,即d泊松⽐单向正应⼒引起的横向线应变ε1的绝对值与轴向线应变ε的绝对值之⽐,即此外还有拉梅常数λ。

对于各向同性材料,这五个常数中只有两个是独⽴的。

常⽤弹性常数之间的关系见表3-1 弹性常数间的关系。

室温下弹性常数的典型值见表3-2 弹性常数的典型值。

2.⼴义虎克定律线弹性材料在复杂应⼒状态下的应⼒应变关系称为⼴义虎克定律。

它是由实验确定,通常称为物性⽅程,反映弹性体变形的物理本质。

A各向同性材料的⼴义虎克定律表达式(见表3-3 ⼴义胡克定律表达式)对于圆柱坐标和球坐标,表中三向应⼒公式中的x 、y、z分别⽤r、θ、z和r、θ、φ代替。

对于平⾯极坐标,表中平⾯应⼒和平⾯应变公式中的x、y、z⽤r、θ、z代替。

B⽤偏量形式和体积弹性定律表⽰的⼴义虎克定律应⼒和应变量分解为球量和偏量两部分时,虎克定律可写成更简单的形式,即体积弹性定律应⼒偏量与应变偏量关系式在直⾓坐标中,i,j=x,y,z;在圆柱坐标中,i,j=r,θ,z,在球坐标中i,j=r,θ,φ。

弹性⼒学基本⽅程及其解法弹性⼒学基本⽅程|| 边界条件|| 按位移求解的弹性⼒学基本⽅法|| 按应⼒求解的弹性⼒学基本⽅程|| 平⾯问题的基本⽅程|| 基本⽅程的解法|| ⼆维和三维问题常⽤的应⼒、位移公式1.弹性⼒学基本⽅程在弹性⼒学⼀般问题中,需要确定15个未知量,即6个应⼒分量,6个应变分量和3个位移分量。

这15个未知量可由15个线性⽅程确定,即(1)3个平衡⽅程[式(2-1-22)],或⽤脚标形式简写为(2)6个变形⼏何⽅程[式(2-1-29)],或简写为(3)6个物性⽅程[式(3-5)或式(3-6)],简写为或2.边界条件弹性⼒学⼀般问题的解,在物体部满⾜上述线性⽅程组,在边界上必须满⾜给定的边界条件。

弹塑性力学公式合集.doc

弹塑性力学公式合集.doc

弹性力学假设:连续性假设、均匀性假设、各向同性假设、完全弹性假设、小变形假设、无初应力假设任意斜截而上的应力Cauchy 公式:T x= o xl+ T x〉m + T zxn> T y = T xy 1+ o ym +T zy n、T y=T xz I+T y zm +Q z n 弹性体的应力边界条件:—0 + mT^ + =X•I,人右I%+〃9;、+浒.、=「>yZr +g、・_ +Z・" y<.主应力、应力张量、不变量当一点处于某种应力状态时,在过该点的所有截面中,一般情况下存在着三个互相垂直的特殊截面,在这些截面上没有刃应力,这种剪应力等于零的截面称为过该点的主平面,主平面上的正应力称为该点的主应力,主平面的法线所指示方向称为该点的主方向。

4 = J + + %~ 2 2 j"/■I = + CT..C7. + — r 二——了二应力偏•不变si ♦勺+$3=q~~I=!(4+$;+日)=打(0 ,S ■成 + 0 - 0)' 1____ ©儿何方程:dx+ —dy+ —dx物理方程-y q)]*q+E)】7 _2Q +咯1 2(1+y)”=科=一r-^T F牛妇弘=.-,七-是体积弹形模量,3 3 (1-2。

三个基本原理:解的唯一性原理、叠加原理、圣维南原理。

圣维南原理:由作用在物体局部边界表面上的自平衡力系,所引起的应力和应变,在远离作用区的地方将衰减到可以忽略不计的程度。

另一种提法:如果把物体局部边界表面上的力系,使用分布不同但静力等效(主失相等,绕-点的主矩也相等)的力系来代替,则这种等效代换处理使得物体内的应力分布仅在作用区附近有显著影响,而在远离作用区的地方所受影响很小,可以忽略不计。

为什么要用:1、在弹性力学的边值问题中,要求在边界上任意点,应力与面力相等,方向一致,往往难以满足。

2、有时只知道边界而上的合力和合力矩,并不知道面力的分布形式。

弹塑性力学公式

弹塑性力学公式

形变协调方程yx x y xyy x ∂∂∂=∂∂+∂∂γεε22222。

几何方程:x u x ∂∂=ε,y v y∂∂=ε,y u x v xy ∂∂+∂∂=γ 应力问题()()⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+-=+⎪⎪⎭⎫⎝⎛∂∂+∂∂y f x f y x y x y xμσσ12222 应变问题()()⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+-=+⎪⎪⎭⎫⎝⎛∂∂+∂∂y f x f y x y x y x μσσ12222 应力分量22211ϕϕρρφρσρ∂∂+∂∂=,22ρφσϕ∂∂=,⎪⎪⎭⎫ ⎝⎛∂∂∂∂-=ϕφρρτρϕ1 极坐标相容方程011222222=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂φϕρρρρ圆环:边界条件()()()()b n a a b aq q -=-=======ρρρρρρϕρρϕσσττ,,0,0,圆环问题与ϕ无关,由此可得ρϕϕρτσσ,,,相容方程为01222=⎪⎪⎭⎫⎝⎛+φρρρd d d d ,()()πϕρμϕρμ2,,+=。

所以B=0,()aq C a B a A -=+++2ln 212,()b q C b B b A-=+++2ln 212,得到 ()222222222,ab b q a q C a b q q b a A b a a b --=--=,b a q b a a q a b b 222222221111------=ρρσρ, b a q ba a q ab b 222222221111-+--+-=ρρσϕ,两球之间接触:设两球体表面上距公共法线未r 的M1点及M2点,他们距公共切面的距离为z1及z2。

222211212,2z R r z z R r z -=-=,z 远小于2R 。

认为2221212,2R r z R r z ==,命M1沿z1方向位移为w1,命z1、z2轴上距O 较远处的两点相互趋近的距离为α,M1、M2之间距离缩短为()2121z z w w +=+-α,()2121221212,)(R R R R r z z w w +=-=+-=+ββαα.22221211211121,11r qdsd E E qdsd E βαψπμπμωωψπμω-=⎪⎪⎭⎫ ⎝⎛-+-=+-=⎰⎰⎰⎰ 如果在接触面的边界上作半圆球面,用它在各点的高度代表压力q 在该点处的大小。

弹塑性力学

弹塑性力学

max p0
2K 2 K 2 1
(a)仅受内压
(b)仅受外压
11
图2-3 厚壁圆筒中各应力分量分布
3.讨论
仅在内压作用下,筒壁中的应力分布规律:
r ①周向应力 及轴向应力 均为拉应力 ,径向应力 为压应力。 z
②在数值上有如下规律: 周向应力 :内壁有最大值,其值为: max

r r rt ,


t ,
z z zt
(2-39)
具体计算公式见表2-3,分布情况见图2-21。
23
表2-3 厚壁圆筒在内压与温差作用下的总应力
筒体内壁处 r Ri p
K2 1 1lnK pPt 2 Pt lnK K 1
解之得
代入式( 2-26)得 。 的通解。将 r r
d 2 r d r r 2 3 0 dr dr
B r A 2 ; r
B A 2 r
(2-9)
边界条件为:当 r Ri 时, r pi ;
当 r R0 时, r p0 。
2 pi Ri2 p0 R0 A 2 R0 Ri2
pi
K 2 1 Pi 2 K 1
2 2K 2 po K 2 R 1 i p o K 2 1 2 2 K 1 r
z
1 pi 2 K 1
K2 po 2 K 1
13
温度变化引起的弹性热应力
1.热应力 因温度变化引起的自由膨胀或收缩受到约束,在弹 性体内所引起的应力,称为热应力。
(a)自由膨胀 图2-18热应变
14 返回

弹塑性力学基本知识

弹塑性力学基本知识
2
面在 π 平面上的投影为圆形。根据式(18)可知,Mises 屈服条件的物理意义为:当材料的 八面体剪应力达到一定值时,材料屈服;根据式(26)可知,Mises 屈服条件的物理意义也 为:当材料的剪切应变能达到一定值时,材料屈服。注意,Mises 屈服条件考虑了中间主应 力的影响,但也忽略了静水压力的影响。
0
则材料稳定, (2) 加载面 f σ ij , ξ β = 0 外凸。这也可以由式(42)推出。 (3) 正交流动法则( dλ 的物理意义:反映塑性应变增量的大小,称作比例因子。 ) :
P dε ij = dλ
(
)
∂f ∂σ ij ∂f s ∂σ ij
(43)
或: dε ij = dλs
P
(44)
p
得:
h=−

( ∫ dε )
p
∂f
2 ∂f
∂f
3 ∂σ ij ∂σ ij
(60)
对于 Mises 材料,设材料等向硬化,且内变量为累积塑性应变,结合式(51) ,有:
2 ∂f
∂f
3 ∂σ ij ∂σ ij
=1
(61)
结合式(61) , (59) , (60) ,可得:
dλ = d ε p ; h =
( 2σ 2 − σ 1 − σ 3 )
当采用极坐标表示时,则有:
⎧ rσ = x 2 + y 2 = 2 J 2 ⎪ ⎨ y 1 ⎛ 2σ 2 − σ 1 − σ 3 ⎞ 1 μσ ⎪ tan θσ = = ⎜ ⎟= x 3 ⎝ σ1 − σ 3 3 ⎩ ⎠
z Tresca 屈服条件 当 τ max =
(59)
结合式(43)和式(14) , (注意:当屈服与静水压力无关,体积应力不产生塑性应变) , 可得:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弹塑性力学定理和公式应力应变关系弹性模量 ||广义虎克定律1.弹性模量对于应力分量与应变分量成线性关系的各向同性弹性体,常用的弹性常数包括:a 弹性模量单向拉伸或压缩时正应力与线应变之比,即b 切变模量切应力与相应的切应变之比,即c 体积弹性模量三向平均应力与体积应变θ(=εx+εy+εz)之比,即d 泊松比单向正应力引起的横向线应变ε1的绝对值与轴向线应变ε的绝对值之比,即此外还有拉梅常数λ。

对于各向同性材料,这五个常数中只有两个是独立的。

常用弹性常数之间的关系见表3-1 弹性常数间的关系。

室温下弹性常数的典型值见表3-2 弹性常数的典型值。

2.广义虎克定律线弹性材料在复杂应力状态下的应力应变关系称为广义虎克定律。

它是由实验确定,通常称为物性方程,反映弹性体变形的物理本质。

A 各向同性材料的广义虎克定律表达式(见表3-3 广义胡克定律表达式)对于圆柱坐标和球坐标,表中三向应力公式中的x 、y、z分别用r、θ、z和r、θ、φ代替。

对于平面极坐标,表中平面应力和平面应变公式中的x、y、z用r、θ、z代替。

B 用偏量形式和体积弹性定律表示的广义虎克定律应力和应变张量分解为球张量和偏张量两部分时,虎克定律可写成更简单的形式,即体积弹性定律应力偏量与应变偏量关系式在直角坐标中,i,j=x,y,z;在圆柱坐标中,i,j=r,θ,z,在球坐标中i,j=r,θ,φ。

弹性力学基本方程及其解法弹性力学基本方程 || 边界条件 || 按位移求解的弹性力学基本方法 || 按应力求解的弹性力学基本方程 || 平面问题的基本方程 || 基本方程的解法 || 二维和三维问题常用的应力、位移公式1.弹性力学基本方程在弹性力学一般问题中,需要确定15个未知量,即6个应力分量,6个应变分量和3个位移分量。

这15个未知量可由15个线性方程确定,即(1)3个平衡方程[式(2-1-22)],或用脚标形式简写为(2)6个变形几何方程[式(2-1-29)],或简写为(3)6个物性方程[式(3-5)或式(3-6)],简写为或2.边界条件弹性力学一般问题的解,在物体内部满足上述线性方程组,在边界上必须满足给定的边界条件。

弹性力学问题按边界条件分为三类。

a 应力边界问题在边界Sσ表面上作用的表面力分量为F x、F y、F z.。

面力与该点在物体内的应力分量之间的关系,即力的边界条件为式中,l nj=cos(n,j)为边界上一点的外法线n对j轴的方向余弦。

这一类问题中体积力和表面力是已知的,求解体内各点的位移、应变和应力。

b 位移边界问题在边界S x上给定的几何边界条件为式中,U*i为表面上给定的位移分量。

这一类问题是已知体积力和表面各点的位移,求解体内各点的位移、应变和应力。

c 混合问题部分边界上给定力,部分边界上给定位移。

3.按位移求解的弹性力学基本方法按位移求解时,以3个位移分量为基本未知量,利用几何方程和物性方程,15个基本方程简化为以位移表示的平衡方程:求解时位移分量在物体内部满足式(3-14),在位移边界S u上满足式(3-13),在应力边界Sσ上满足式(3-12),但式中的应力分量应利用应力-应变关系和应变-位移关系变换为位移的形式。

求出位移分量后,再利用几何方程和物性方程,求出应变和应力分量。

4.按应力求解的弹性力学基本方程按应力求解时,以6个应力分量为基本未知量。

它们必须满足平衡方程,同时还要满足以应力表示的协调方程,即式(3-15)和平衡方程式(2-1-22)一起,成为按应力求解弹性问题的基本方程组。

按应力求解弹性问题,就是寻求满足基本方程式(2-1-22)和式(3-15),以及边界条件[式(3-12)]的解。

5.平面问题的基本方程弹性力学平面问题,包括平面应力和平面应变问题两类。

通常利用应力函数将弹性力学平面问题简化为解双调和方程的边值问题。

平面问题基本方程的直角坐标和极坐标表达式见表3-4 平面问题的基本方程。

表中除物性方程外,对于其他方程,平面应力和平面应变问题中的形式是相同的。

比较一下这两类问题的基本方程后可知,只要将平面应力问题的解中的弹性常数E、v改为E/(1-V2)、V/(1-V)后,就得到对应的平面应变问题的解。

因此,对于截面形状和边界条件相同的物体,平面应力问题与平面应变问题中的应力分布(σx、σy、τxy、σz除外)是相同的。

6.基本方程的解法15个弹性力学基本方程简化为以位移表示的3个平衡方程[式(3-14)]或以应力表示的6个协调方程[式(3-15)]。

求解上述方程时,类似在平面问题中应用艾雷应力函数所用的方法,常引用应力函数或位移函数,以消去应力分量或位移分量,求解以应力函数表示的协调方程,或以位移函数表示的平衡方程。

表3-5 帕普科维奇-诺埃伯谢函数和勒夫谢函数列出用帕普科维奇-诺埃伯函数和勒夫函数表示的无体积力时平衡方程的齐次解。

勒夫函数常用于求解轴对称问题。

7.二维和三维问题常用的应力、位移公式(见表3-6 二维和三维问题常用的应力、位移公式)能量原理应变能、应变余能与应变能定理 || 虚位移定理 || 最小势能原理 || 虚力原理||最小余能原理 || 卡氏定理 || 互等定理 || 李兹法直接求解弹性力学基本方程在数学上存在困难,只有一些比较简单的问题已求得精确解。

而能量法把求解问题的过程转变为一种极值问题,它比直接求解偏微分方程边值问题能更方便地得到近似解。

因此能量原理是目前广泛应用的近似计算方法的基础。

1.应变能、应变余能与应变能定理a 应变能单位体积的应变能称为应变能密度,以W表示。

W为应变分量εij的函数,W可用脚标形式表示为对于线弹性体,其值为线弹性体的总应变能为对各向同性材料,利用虎克定律,应变能密度可用单一的应力分量或应变分量表示为b 应变余能单位体积的应变余能W*为应力分量σij的函数,W*(σij)定义为对线弹性体,c 用应变能和应变余能表示力与应变的关系应变能密度函数W(εij),表示因弹性变形而储存于单位体积内的弹性势能。

应力与应变之间的关系,通过弹性势函数W表示为如果把应变分量表示为应力分量的函数时,则存在如下关系式,即对线弹性体,W*=W,式(3-34)变为d 应变能定理如果弹性体在变形过程中无能量耗损,则弹性体内的应变能在数值上等于外力在变形过程中所作的功,即式中,A为外力所作的功,包括体积力和面力所作的功。

2.虚位移定理弹性体在外力作用下处于平衡状态时,体内各点如果发生一虚位移δui(所谓虚位移,是指几何约束容许的任意、微小的位移,也就是指符合物体的连续条件和位移边界条件的可能位移),则外力对虚位移所作的功(虚功),等于虚位移所引起的弹性体的虚应变能,即式中,虚功δA包括体积力fi和面力pi在虚位移δui上所作的功,即因虚位移而引起的虚应变能为式(3-37)称为虚功原理或虚位移原理。

虚位移原理等价于平衡条件。

如结构上的外力在虚位移上所作的虚功等于结构的应变能,则结构必处于平衡状态。

在虚位移原理推导过程中并未应用虎克定律,虚位移原理也适用于非弹性体。

3.最小势能原理如果外力可由一个势函数V导出,外力势V=-A,则δV=-δA.由式(3-37),得变分方程式中,称为系统的总势能,是位移的函数。

式(3-38)表明:弹性体处于平衡状态时,其内力和外力的总势能取驻值。

可以证明,线弹性体处于平衡状态时,其总势能取最小值。

因此,式(3-38)称为最小势能原理。

也就是说,在所有几何容许位移中,满足势能驻值条件δⅡ=0的位移解,使总势能Ⅱ取最小值。

在应用中,可根据势能驻值条件去求解弹性力学问题。

在分析结构稳定问题时,在平衡状态(δⅡ=0),总势能Ⅱ可能取极大值(δ2Ⅱ<0,不稳定平衡),驻值(δ2Ⅱ=0,临界状态)或极小值(δ2Ⅱ>0,稳定平衡)。

4.虚力原理如对变形协调的弹性体施加某种虚力(即平衡条件所容许的,任意微小的力的改变,包括虚应力δσij和虚面力δpI),则虚外力在真实位移上的虚余功δA*等于虚应变余能,即式中(3-40)称虚力原理或余能原理,它和以位移为变量的虚位移原理相对应。

式中虚力原理将给出协调条件,如对弹性体施加某种虚力,当外虚余功等于虚应变余能时,弹性体必满足变形协调条件。

5.最小余能原理令式中,Ⅱ*称为系统的总余能。

由式(4·5-40)得变分方程式(3-42)表明,在满足平衡方程和静力边界条件的所有应力中,能适合几何边界条件并能产生协调应变场的正确解,使余能取胜驻值。

可以证明,在线弹性小就形情况下,在平衡条件容许的所有应力中,使余能取驻值的应力,就是使余能为最小值的应力,也就是线弹性小变形问题的正确应力解。

因此,式(3-42)称为最小余能原理。

6.卡氏定理当物体的表面力为集中力时,虚力原理的余能驻值表达式可写为式中,Qi--广义力qi--广义位移由上式得对于线弹性系统,Ⅱ*=Ⅱ,U*=U,式(3-43)变为对于线弹性系统,卡氏定理表述为:系统的应变能对任一集中的偏导数,等于力作用点以力方向的位移。

7.互等定理设弹性体有两种平衡状态。

第一种平衡状态为面力pi',体积力fi'和相应的位移ui'(i=x,y,z);第二种状态为面力pi″体积力fi″和相应的位移ui″。

互等定理表述为:第一组外力在第二组外力引起的位移上所作的功,等于第二组外力在第一组外力引起的位移上所作的功,即互等定理应用于梁的问题时,得影响系数对称性关系。

设载荷为横向力p,挠度为y,式(3-45)写成如果梁上只在x1,x2,…,xn处作用有集中力p1,p2, …,pn。

把在xj处作用单位集中引起的在xI处的挠度记为aij,aij称为影响系数,由互等定理得8.李兹法李兹法是基于变位移的最小势能原理的直接近似求解方法。

根据问题的几何边界条件,假设的一组位移解中含有待定参数aj、bj、cj。

由最小势能原理,在所有假定的几何容许的位移函数中,真实的位移使总势取驻值。

因此可取如下一系列位移函数的近似解,即式中,aj、bj、cj为待定参数;uxj(x,y,z)、uyj(x,y,z)、uz(x,y,z)为满足位移边界条件的位移函数。

由势能驻值条件,令得到3n个线性方程组,解出aj、bj、cj后,代入式(3-47),就得到问题的位移解。

一般只要位移数选择得当,只须取有限几个待定参数,就可得到足够精确的位移解。

李兹法也可以基于最小余能原理的余能驻值条件,直接求得近似应力解。

表3-7 弹性基础梁的近似解与精确解的比较热应力热弹性方程 || 热传导方程与温度场 || 热应力问题的应用物体加热或冷却时,体内各部分因温度变化而伸缩,如果受到约束就产生热应力。

一种约束是由于物体表面的边界条件产生的。

例如,不同形状的物体均匀升高温度T时产生的热应力为棒状物体,两端固定σ=-αET平板物体,周边固定σ=-αET/(1-v)块状物体,外表面固定σ=-αET/(1-2v)式中,σ为线膨胀系数,负号表示压应力。

相关文档
最新文档