《第十三章 轴对称》单元测试卷及答案(共6套)

合集下载

人教版八年级数学上册 第13章 《轴对称》单元测试 (含解析)

人教版八年级数学上册 第13章 《轴对称》单元测试 (含解析)

第13章 《轴对称》单元测试一、单选题(本大题共10小题,每小题3分,共30分)1.书法是我国传统文化的重要组成部分,被誉为:无言的诗,无形的舞,无图的画,无声的乐.下列是用小篆书写的“魅力宁德”四个字,其中是轴对称图形的是( )A .B .C .D .2.如图,是线段的垂直平分线,垂足为点,,是上两点.下列结论不正确的是( )A .B .C .D .3.将长方形纸片沿AC 折叠后点B 落在点E 处,则线段BE 与AC 的关系是( )A .B .C .且D .且平分4.在平面直角坐标系xOy 中,点A (2,1)与点B (0,1)关于某条直线成轴对称,这条直线是( )AB CD G E F AB EC CD =EC ED =CF DF =CG DG=AC BE =AC BE ⊥AC BE ⊥AC BE =AC BE ⊥AC BEA .轴B .轴C .直线(直线上各点横坐标均为1)D .直线(直线上各点纵坐标均为1)5.一副三角板和如图摆放,,,若,,则下列结论错误的是( )A .平分B .平分C .D .6.如图,在中,点O 是内一点,连接、,垂直平分,若,,则点A 、O 之间的距离为( )A .4B .8C .2D .67.四边形的边长如图所示,对角线的长度随四边形形状的改变而变化.当为等腰三角形时,对角线的长为( )A .2B .3C .4D .58.如图,中,,是边上的高,是延长线上一点,平分,若,,,则下列等式一定成立的是()x y 1x =1y =ABC DEF 45BAC ∠=︒60EDF ∠=︒GA FD ∥AB EF ∥EC FED ∠CB FCE ∠BC DE ∥30GAB ∠=︒ABC ABC OB OC OD AB OBC OCB ∠=∠4OC =ABCD AC ABC AC ABC 2B C ∠=∠AD BC E BA AC DAE ∠AB m =BC p =BD q =A .B .C .D .9.如图所示,点为内一定点,点,分别在的两边上,若的周长最小,则与的关系为( )A .B .C .D .10.如图,和是两个等边三角形,是以为斜边的等腰直角三角形,连接,,,下列三个结论:①;②;③点在线段的中垂线上;④;⑤;⑥.其中正确的结论的个数是( )A .3B .4C .5D .6二、填空题(本大题共8小题,每小题4分,共32分)11.若点与点关于x 轴对称,则 .12.如图,在平面直角坐标系中,是由经过平移和关于坐标轴对称等变换得到的,m q p +=2m q p +=2m q p +=12q m p +=P O ∠A B O ∠PAB ∆O ∠APB ∠2O APB∠=∠2O APB ∠=∠180O APB ∠+∠=︒2180O APB ∠+∠=︒ABP CDP △APD △AD AC BC BD APC BPD △≌△ABD BCA △≌△P BC 15PBC ∠=︒AD BC ∥PC AB ⊥()12A a -,()21B b -,a b +=A B C ''' ABC其中点P 与是变换前后图形上的一对对应点.若点P 的坐标为,则点的坐标为 (用含a 、b 的代数式表示).13.如图,在一张纸片上将翻折得到三角形,并以为边作等腰,其中,且E ,A ,C 三点共线,,则的度数是 .14.如图,,,,,若,,且长为奇数,则的长为 .15.如图,是等腰三角形,,且B ,C ,D 三点共线.连接,分别交于点M ,N ,连接,则= .16.如图,A 是直线外的一点,于点H ,,P 是上一动点,是等边三角形,连接,则线段的最小值是 .P '(),a b P 'BED AED AB ABC AB AC =42EBC ∠=︒BAC ∠AE BD =CE CD =E D ∠=∠60DCE ∠=︒52BD =32CD =AB AB ,ABC ECD 60ACB ECD ∠=∠=︒,BE AD ,AC EC MN NMC ∠︒MN AH MN ⊥4AH =MN APQ △HQ HQ17.如图,一位同学拿了两块同样的含45°的三角尺,即等腰直角,等题直角做了一个探究活动:将的直角顶点M 放在的斜边的中点处,设,猜想此时重叠部分四边形的面积为 .18.如图,等边和等边的边长都是4,点在同一条直线上,点P 在线段上,则的最小值为 .三、解答题(本大题共6小题,共58分)19.(8分)已知如图所示,(1)画出中边上的高线,在内部作射线使得,交边于点,请你依题意补全图形;MNK △ACB △MNK △ACB △AB AC BC a ==CEMF ABC A B C ''△B C B ',,A C 'AP BP +ABC ABC BC AD ADC ∠DE EDC C ∠=∠AC E(2)判断与之间的关系,并说明理由.20.(8分)如图,,.求证:直线是线段的垂直平分线.DAE ∠ADE ∠AB AC =MB MC =AM BC21.(10分)如图,为等腰直角三角形,,点D 在上,点E 在的延长线上,且.(1)求证:;(2)若,求的度数.22.(10分)如图,,,垂足分别为D 、C ,,且.连接.(1)求证:.(2)若,,求的度数.ABC 90BCA ∠=︒CA BC BD AE =BCD ACE ≌△△80BAE ∠=︒DBA ∠ED AB ⊥FC AB ⊥AE BF ∥AE BF =CE AC BD =CD DE =25A ∠=︒AEC ∠23.(10分)如图,在中,, ,点在线段上运动(不与、重合),连接,作,交线段于.(1)当时, , ;点从向的运动过程中,逐渐变 (填“大”或“小”);(2)当等于多少时,,请说明理由.(3)在点的运动过程中,与的长度可能相等吗?若可以,请直接写出的度数,请说明理由.24.(12分)解答题(1)问题发现如图1,把一块三角板(,)放入一个“”形槽中,使三角形的三个顶点、、分别在槽的两壁及底边上滑动,已知,在滑动过程中,发现与始终相等的角是 ,与线段相等的线段是;ABC 2AB AC ==40B C ∠=∠=︒D BC D B C AD 40ADE ∠=︒DE AC E 115BDA ∠=︒EDC ∠=︒DEC ∠=︒D B C BDA ∠DC ABD DCE △△≌D DA DE BDA ∠AB BC =90ABC ∠=︒U A B C 90D E ∠=∠=︒DAB ∠AD(2)拓展探究如图2,在中,点在边上,并且,.求证:.(3)能力提升如图3,在等边中,,分别为、边上的点,,连接,以为边在内作等边,连接,当时,请直接写出的长度.ABC D BC DA DE =B ADE C ∠=∠=∠ADB DEC △≌△DEF A C DE DF 4AE =AC AC DEF ABC BF 30CFB ∠=︒CD答案一、单选题1.C【分析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁部分能够完全重合的图形;由此问题可求解.【详解】解:C 选项是轴对称图形,A 、B 、D 选项都不是轴对称图形;故选:C .2.A【分析】根据垂直平分线的性质分析选项即可.【详解】解:∵是线段的垂直平分线,∴,,故D 选项结论正确,不符合题意;在和中,∴,∴,故B 选项结论正确,不符合题意;同理可知:,∴,故C 选项结论正确,不符合题意;利用排除法可知选项A 结论不正确,符合题意.故选:A3.D【分析】由翻折得到AE=AB ,CE=CB ,再根据线段的垂直平分线的判定即可得到答案.【详解】解:∵ACE 是由ABC 翻折得到,∴AE=AB,CE=CB∴AC ⊥BE 且AC 平分BE ,AB CD 90∠==︒CGE DGE CG DG =ECG EDG △CGE DGE CG DGEG EG ∠=⎧⎪=⎨⎪=⎩()≌ECG EDG SAS △△EC ED =()≌FCG FDG SAS △△FC FD =故选D .4.C【分析】利用成轴对称的两个点的坐标的特征,即可解题.【详解】根据A 点和B 点的纵坐标相等,即可知它们的对称轴为.故选:C .5.B【分析】根据三角形板各角的特点,平行线的判定和性质即可求解.【详解】解:∵,,,∴,则,∴平分,故选项正确;∵,,如图所示,设与交于点,∴,由选项正确可得,∴在中,,在中,,∴,∴,∴平分错误,故选项错误;由上述证明可得,,∴,故选项正确;根据上述证明可得,,∵,且,∴,∴,20122A B x x x ++===90DEF ∠=︒45BAC ∠=︒AB EF ∥45BAC FEC ∠=∠=︒90904545DEC FEC ∠=︒-∠=︒-︒=︒EC FED ∠A 90B Ð=°AB EF ∥BC EF H 90EHC B ∠=∠=︒A 45FEC ∠=︒Rt CEH △45ECH ∠=︒Rt FCH △30EFC ∠=︒60FCH ∠=︒ECH FCH ∠≠∠CB FCE ∠B 60FCH EDF ∠=︒=∠BC DE ∥C 4560105ECF ECH FCH ∠=∠+∠=︒+︒=︒GA FD ∥45BAC ∠=︒180GAC ECF ∠+∠=︒180********GAC ECF ∠=︒-∠=︒-︒=︒∴,故选项正确;故选:.6.A【分析】连接,由垂直平分线的性质可得,由等角对等边可得,即可求解.【详解】解:如图,连接,∵垂直平分,∴,∵,,∴,∴,故选:A .7.B【分析】利用三角形三边关系求得,再利用等腰三角形的定义即可求解.【详解】解:在中,,∴,即,当时,为等腰三角形,但不合题意,舍去;若时,为等腰三角形,故选:B .8.B【分析】过点C 作于点F ,易证(AAS ),得到,,,进而得到,因此.由于得到,又,得到,因此,所以.由得,变形得到.754530GAB GAC BAC ∠=∠-∠=︒-︒=︒D B OA OA OB =4OB OC ==OA OD AB OA OB =OBC OCB ∠=∠4OC =4OB OC ==4OA OB OC ===04AC <<ACD 2AD CD ==2222AC -<<+04AC <<4AC BC ==ABC 3AC AB ==ABC CF BE ⊥ACF ACD ≌CF CD BC BD p q ==-=-AD AF =DCA FCA ∠=∠22BCF BCA B ∠=∠=∠BF CF p q ==-90DAC CAF BCA ∠=∠=︒-∠()180121802902BAD BCA BCA ∠=︒-∠-∠=︒-︒-∠=∠2B BCA ∠=∠BAD B =∠∠AD BD =AF BD q ==FB CF =m q p q +=-2m q p +=【详解】如图,过点C 作于点F是高,平分在和中(),,∵在中,,又,,即CF BE ⊥AD CF BE⊥90ADC AFC ∴∠=∠=︒AC DAF∠12∴∠=∠ADC △AFC △12ADC AFC AC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩ACF ACD ∴ ≌AAS AD AF ∴=CD CF =DCA FCA∠=∠Rt ACD △190ACD ∠=︒-∠12∠=∠()18012180211802902BAD ACD ACD∴∠=︒-∠-∠=︒-∠=︒-︒-∠=∠2B ACD∠=∠ BAD B∴∠=∠AD BD q∴==AF AD q ∴==BF AB AF m q=+=+CD BC BD p q=-=- CF CD p q∴==-DCA FCA∠=∠ 2BCF DCA FCA DCA∴∠=∠+∠=∠2B DCA∠=∠ B BCF∴∠=∠BF CF∴=m q p q ∴+=-2m q p+=故选:B9.D【分析】作点关于的对称点,点关于的对称点,其中交于,交于,此时的周长最小值等于的长,由轴对称的性质可知△是等腰三角形,所以,推出,所以,即得出答案.【详解】解:如图,作点关于的对称点,点关于的对称点,连接,,,其中交于,交于,此时的周长最小值等于的长,由轴对称性质可知:,,,,,,,即,故选:D .10.C【分析】利用等边三角形和等腰直角三角形的性质得到PA =PB =PD =PC ,∠APB =∠DPC =∠PAB =∠PDC =60°,∠APD =90°,∠PAD =∠PDA =45°,则根据“SAS ”可证明△APC ≌△BPD ,则可对①进行判断;根据线段垂直平分线的判定可对③进行判断;计算出∠BPC =150°,再利用PB =PC 和三角形内角和可计算出∠PBC =15°,则可对④进行判断;由于∠ABC =75°,∠BAD =105°加上BD =CA ,则可判断△ABD 与△BCA 不全等,从而可对②进行判断;求出∠ABC +∠BAD =75°+105°=180°,根据平行线的判定方法可对⑤进行判断;延长CP 交AB 于H ,计P OM P 'P ON P ''P P '''OM A ON B PAB ∆P P '''OP P '''2P OP AOP '''=∠180180222P OP AOB P P '''︒-∠︒-∠'''∠=∠==1802APB P P AOB '''∠=∠+∠=︒-∠P OM P 'P ON P ''OP 'OP ''P P '''P P '''OM A ON B PAB ∆P P '''OP OP '=OP OP ''=AOP AOP '∠=∠BOP BOP ''∠=∠2P OP AOP '''∴∠=∠180180222P OP AOB P P '''︒-∠︒-∠'''∴∠=∠==1802APB P P AOB '''∴∠=∠+∠=︒-∠2180O APB ∠+∠=︒算出∠CHB =90°,则可对⑥进行判断.【详解】解:∵△ABP 和△CDP 是两个等边三角形,△APD 是以AD 为斜边的等腰直角三角形,∴PA =PB =PD =PC ,∠APB =∠DPC =∠PAB =∠PDC =60°,∠APD =90°,∠PAD =∠PDA =45°,∴∠APC =∠BPD =150°,在△APC 和△BPD 中,,∴△APC ≌△BPD (SAS ),所以①正确;∵PB =PC ,∴点P 在线段BC 的中垂线上,所以③正确;∵∠BPA =∠CPD =60°,∠APD =90°,∴∠BPC =150°,∵PB =PC ,∴∠PBC =15°,所以④正确;∵∠ABC =60°+15°=75°,∠BAD =∠PAB +∠PAD =60°+45°=105°,BD =AC ,∴∠ABC ≠∠BAD ,∴△ABD 与△BCA 不全等,所以②错误;∵∠ABC +∠BAD =75°+105°=180°,∴AD ∥BC ,所以⑤正确;延长CP 交AB 于H ,如图,∵∠PCB =15°,∠ABC =75°,∴∠ABC +∠PCB =90°,∴∠CHB =90°,∴PC ⊥AB,所以⑥正确.PA PB APC BPD PC PD =⎧⎪∠=∠⎨⎪=⎩正确的有5个,故选:C .二、填空题11.2【分析】根据若两点关于轴对称,则横坐标不变,纵坐标互为相反数,即可求解.【详解】解:∵点与点关于轴对称,∴,解得,∴.故答案为:2.12.【分析】根据点B 和的位置判断出平移方式和对称变换方式,继而求解.【详解】解:由图中可以看出,点只有向右平移2个单位才能和点的纵坐标相等,翻折可得到两点关于轴对称,此时两点的横坐标相等,纵坐标互为相反数.那么点也是如此转换得到.点的坐标为,向右平移2个单位后变为这点关于轴的对称点是.故答案为:.13.【分析】根据折叠得出,根据等腰三角形的性质得出,,根据三角形外角的性质得出,求出,根据三角形内角和定理求出结果即可.【详解】解:根据折叠可知,,∴,∵,∴,∵,∴,x ()12A a -,()21B b -,x 1212a b -=-=-,31,==-a b 312a b +=-=()2,a b +-B 'B B 'x P P ' P (,)a b (2,)a b +x (2,)a b +-(2,)a b +-152︒EA EB =EAB EBA ∠=∠A ABC CB =∠∠42EBC EBA ABC ∠=∠+∠=︒14ACB ABC ∠=∠=︒EA EB =EAB EBA ∠=∠AB AC =A ABC CB =∠∠EAB ABC ACB ∠=∠+∠2EBA EAB ABC ∠=∠=∠∵,∴,∴,∴,∴.故答案为:.14.3【分析】由已知条件得,进而得出,,再根据得到为等边三角形,进而得到,最后根据三角形的三边关系即可求出.【详解】解:在和中,,,,,,为等边三角形,,,,,即,,长为奇数,,故答案为3.15.6042EBC EBA ABC ∠=∠+∠=︒242ABC ABC ∠+∠=︒14ABC ∠=︒14ACB ABC ∠=∠=︒180152BAC ABC ACB ∠=︒-∠-∠=︒152︒AEC BDC ≌△△BC AC =BCD ACE ∠=∠60ACB DCE ︒∠=∠=ABC AB BC AC ==AEC △BCD △AE BD E DCE CD =⎧⎪∠=∠⎨⎪=⎩()SAS AEC BDC ∴ ≌BC AC ∴=BCD ACE ∠=∠DCE BCD ECB ∠=∠+∠ ACB ACE ECB ∠=∠+∠60ACB DCE ∴∠=∠=︒ABC ∴ AB BC AC ∴==52BD = 32CD =BD CD BC BD CD ∴-<<+14BC <<14AB ∴<<AB 3AB ∴=【分析】根据已知证明都是等边三角形,得到,即可证明,推出,进一步证明,可得,求出,证明是等边三角形,可得结果.【详解】解:∵都是等腰三角形,且,∴都是等边三角形,∴,∵,∴.在与中,,∴,∴.∵,∴.在与中,,∴,∴.∵,∴是等边三角形,∴,故答案为:60.16.2【分析】以为边作等边,连接,证明,得出,说明当最,ABC ECD ,AC BC CD CE ==()SAS ACD BCE △≌△CAN CBM ∠=∠(ASA)ACN BCM △≌△CM CN =MCN ∠MCN △,ABC ECD 60ACB ECD ∠=∠=︒,ABC ECD ,AC BC CD CE ==ACB ACE ECD ACE ∠+∠=∠+∠ACD BCE ∠=∠ACD BCE AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩()SAS ACD BCE △≌△CAN CBM ∠=∠60ACB ECD ∠=∠=︒60MCN ∠=︒ACN △BCM CAN CBM AC BCACN BCM ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA)ACN BCM △≌△CM CN =6,0MCN CM CN ︒∠==MCN △60NMC ∠=︒AH AEH △PE AEP AHQ ≌HQ EP =EP小时,最小,根据垂线段最短,过点E 作于点B ,当点P 在点B 时,最小,即最小,根据含角的直角三角形的性质求出.【详解】解:以为边作等边,连接,如图所示:∴,,∴,∵为等边三角形,∴,,∴,∴,∴,∴,∴,∴当最小时,最小,∵垂线段最短,∴过点E 作于点B ,当点P 在点B 时,最小,即最小,∵,,∴.故答案为:2.17.18.8【分析】连接,根据和都是边长为4的等边三角形,证明,可得,所以,进而可得当点P 与点C 重合时,的值最小,正好等于的长,即可求解.HQ EB MN ⊥EP HQ 30︒122EB EH ==AH AEH △PE 4AE EH AH ===60EAH AHE ∠=∠=︒906030EHM ∠=︒-︒=︒APQ △AP AQ =60PAQ ∠=︒PAQ EAH ∠=∠EAH HAP HAP PAQ ∠+∠=∠+∠EAP HAQ ∠=∠AEP AHQ ≌HQ EP =EP HQ EB MN ⊥EP HQ 906030EHM ∠=︒-︒=︒90EBH ∠=︒122EB EH ==214a PE ABC A B C ''△ACP B CP '△≌△AP B P '=AP BP BP B P '+=+AP BP +BB '【详解】解:如图,连接,∵和都是边长为4的等边三角形,∴,∴,∴,在和中,,∴,∴,∴,∴当点P 与点C 重合时,点A 与点关于对称,的值最小,正好等于的长,∴的最小值为,故答案为:8.三、解答题19.(1)解:如图:先作交于点,作的垂直平分线与交于点,即为所求.(2)解:,理由如下:∵,即,∴,PB 'ABC A B C ''△60AC B C ACB A CB '''=∠=∠=︒,60ACA '∠=︒ACA A CB '''∠=∠ACP △B CP '△AC B C ACA A CB CP CP =⎧⎪∠=∠⎨⎪='''⎩'()SAS ACP B CP '△≌△AP B P '=AP BP BP B P '+=+B 'A C 'AP BP +BB 'AP BP +448+=AD BC ⊥BC D CD AC E D AE AD E ∠=∠AD BC ⊥90ADC ∠=︒90C DAE +=︒∠∠∵,且,∴.20.证明:,点在线段的垂直平分线上.,点在线段的垂直平分线上.直线是线段的垂直平分线.21.(1)解:∵为等腰直角三角形,∴,∵,∴,在和中,∴;(2)∵为等腰直角三角形,∴,∵,∴,∵,∴,∴.22.(1)证明:∵,,∴,∵,∴,在△ADE 与中,90EDC ADE ∠+∠=︒EDC C ∠=∠D AE AD E ∠=∠ AB AC =∴A BC MB MC =∴M BC ∴AM BC ABC AC BC =90BCA ∠=︒90ACE ∠=︒Rt BCD Rt ACE BC AC BD AE=⎧⎨=⎩()Rt Rt HL BCD ACE ≌△△ABC 45CAB CBA ∠=∠=︒80BAE ∠=︒35CAE BAE CAB ∠=∠-∠=︒BCD ACE ≌△△35CAE CBD ∠=∠=︒10DBA CBA CBD ∠=∠-∠=︒ED AB ⊥FC AB ⊥90ADE BCF ∠=∠=︒AE BF ∥A B ∠=∠BCF △,∴,∴,∴;(2)解:∵,,∴,∵,∴.23.(1)解:,,,,,,,,点从向的运动过程中,逐渐增大,逐渐变小,故答案为:;;小;(2)解:当时,,理由如下:,,又,,,,当时,ADE BCF A BAE BF ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ADE BCF ≌△△AD BC =AC BD =CD DE =90CDE ∠=︒45DCE CED ∠=∠=︒25A ∠=︒452520AEC DCE A ∠=∠-∠=︒-︒=︒115BDA ∠=︒ 18011565ADC ∴∠=︒-︒=︒40ADE ∠=︒ 25EDC ADC ADE ∴∠=∠-∠=︒40C ∠=︒ 180115DEC EDC C ∴∠=︒-∠-∠=︒180B BAD BDA ∠+∠+∠=︒ 180BDA BAD B ∴∠=︒-∠-∠ D B C BAD ∠BDA ∴∠251152DC =ABD DCE △△≌40B C ∠=∠=︒ 180140DEC EDC C ∴∠+∠=︒-∠=︒40ADE ∠=︒ 180ADB ADE EDC ∠+∠+∠=︒140ADB EDC ∴∠+∠=︒ADB DEC ∴∠=∠2DC =,,在和中,,,即当时,,;(3)解:在点的运动过程中,与的长度可能相等,理由如下:,,,,,,,,.24.(1)解:,,,,在和中,,,,故答案为:,;(2),,2AB AC == AB DC ∴=ABD △DCE △B C ADB DEC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ABD DCE ∴≌ 2DC =ABD DCE △△≌D DA DE DA DE = DAE DEA ∴∠=∠40ADE ∠=︒ ()1180702DEA ADE ∴∠=︒-∠=︒AED C EDC ∠=∠+∠ 40C ∠=︒30EDC DEA C ∴∠=∠-∠=︒70ADC ADE EDC ∴∠=∠+∠=︒180110BDA ADC ∴∠=︒-∠=︒90D ABC ∠=∠=︒ 90DAB ABD ∴∠+∠=︒90ABD EBC ∠+∠=︒BAD EBC ∴∠=∠ABD △BCE D E DAB EBC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ABD BCE ∴ ≌AD BE ∴=EBC ∠BE ADC ADE CDE B BAD ∠=∠+∠=∠+∠ B ADE ∠=∠,在和中,,;(3)如图,过点作交于点,、是等边三角形,,,,,,,,,,,,,,在和中,,,,,,,CDE BAD ∴∠=∠ADB DEC B C BAD CDE AD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ADB DEC ∴ ≌3B BM EF ∥DF M DEF ABC DE DF ∴=AC BC =60D DFE ACB ∠=∠=∠=︒30CFB ∠=︒ BM EF ∥603030BFE MBF ∴∠=︒-︒=︒=∠MBF CFB ∴∠=∠60CMB MBF CFB ∠=∠+∠=︒BM FM ∴=60D ACB ∠=∠=︒ 120DAC ACD ∴∠+∠=︒120ACD BCM ∠+∠=︒DAC BCM ∴∠=∠ACD CBM D CMB DAC BCM AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ACD CBM ∴ ≌CD BM FM ∴==AD CM =22DF CD CM FM CD CM CD AD ∴=++=+=+DE AD AE DF =+=,,.2AE CD ∴=4AE = 2CD ∴=。

【】八年级上册数学:第13章《轴对称》单元测试(含答案)

【】八年级上册数学:第13章《轴对称》单元测试(含答案)

第十三章轴对称单元测试一、单选题(共10题;共30分)1、下列图形中一定是轴对称图形的是 ()A 、梯形B 、直角三角形C 、角D 、平行四边形4、已知两角及夹边作三角形,所用的基本作图方法是() A 、 作已知角的平分线B 、 作已知线段的垂直平分线C 、过一点作已知直线的高D 、作一个角等于已知角和作一条线段等于已知线段长为( )6、如图,直线I: y=- x+b ,点M (3, 2)关于直线I 的对称点M1落在y 轴上,则b 的值等于()3、点A ( 3,4)关于x 轴对称的点B 的坐标为( )。

A (6,4)B 、(-3,5) C(-3,-4) D 、(3,-4)5、已知等腰三角形的一边长为5,另两边的长是方程 x 2-6x+m=0的两根,则此等腰三角形的周A 、10B 、11C 、10 或 11D 、 11 或12锌话棉序7、把经过点(-1, 1 )和(1, 3 )的直线向右移动2个单位后过点(3, a ),则a 的值为()A 、1B 、2C 、3D 、4&点N (a ,- b )关于y 轴的对称点是坐标是() A 、 (- a , b ) B 、( - a , - b ) C 、( a , b ) D 、( - b , a )9、 若等腰三角形的两边长分别是 3和6,则这个三角形的周长是( )A 12B 、15C 、12 或 15D 、910、 下列几何图形中,既是轴对称图形,又是中心对称图形的是( )A 、等腰三角形B 、正三角形C 、平行四边形D 、正方形二、填空题(共8题;共24分)11、 一个大的等腰三角形能被分割为两个小等腰三角形,则该大等腰三角形顶角的度数是12、 已知等腰三角形的一边长等于4cm ,另一边长等于 9cm ,则此三角形的周长为 cm 。

13、 如图,矩形 ABCD 中, AB=2, BC=3对角线AC 的垂直平分线分别交 AD BC 于点E 、F ,连接 CE 贝U CE 的长为 _________14、如图,在厶 ABC 中,AB 的垂直平分线分别交 AB, AC 于D, E 两点,若 AC=9cm BC=5cm 则 △ BCE 的周长为 ________ emoA 、3B 、2C 、1 或 2D 、2 或315、如图,在△ ABC 中,/ BAC=90°, AB=3, AC=4, BC=5, EF 垂直平分 BC,点P 为直线 EF 上的 任一点,则△ ABP 周长的最小值是 ____________ 。

八年级数学第13章《轴对称》测试题(附参考答案)

八年级数学第13章《轴对称》测试题(附参考答案)

八年级数学第13章《轴对称》测试题〔附参考答案〕一、填空题1、几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的,再这些对应点,就可得到原图形的轴对称图形;对于一些由直线、•线段或射线组成的图形,只要作出图形中的一些〔如线段端点〕的对应点,连结这些对应点,就可以得到原图形的轴对称图形.2、点M(-2,3)关于直线x=1的对称点M'的坐标为.3、已知点P1(a-1,5)与点P2(2,b+2)关于x 轴对称,则a-b =。

4、已知两点A(x 1,y 1),B(x 2,y 2),如果x 1+x 2=0,y 1-y 2=0,那么以A 和B 关于对称。

5、如图,在△ABC 中,AC=BC=2,∠ACB=90º,D 是BC 边的中点, E 是AB 边上一动点,则EC+ED 的最小值是。

6、如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为。

7、如图,Rt △ABC ,∠C =90°,∠B =30°,BC =8,D 为AB 中点,P 为BC 上一动点,连接AP 、DP,则AP +DP 的最小值是 8、如图,∠BAC =30°,P 是∠BAC 平分线上一点,PM ∥AC ,PD ⊥AC ,PD =30 , 则AM =9、如图,AB =AC ,DE ⊥AB 于E ,DF ⊥AC 于F ,∠BAC =120o ,BC =6,则DE +DF =10、点(x ,y)关于x 轴对称的点的坐标为,即横坐标相等,纵坐标互为相反数;点(x ,y)关于y 轴对称的点的坐标为,即横坐标互为相反数,纵坐标相等.利用点关于x 轴、y 轴对称的点的坐标规律,我们可以很容易地在平面直角坐标系中作出与一个图形关于x 轴、y 轴对称的图形.11、〔1〕在图3所示编号为①、②、③、④的四个三角形中,关于y 轴对称的两个三角形的编号为;关于坐标原点O 对称的两个三角形的编号为;〔(4)(3)(2)(1)yx -1-2-4-3-1-2-4-5-31243512435O y x-1-2-4-3-1-2-4-5-31243512435BAOD ECBAP 2P 1N MOPB AMDP B CA(B)〔B图 1DCB A 折叠2〕在图4中,画出与△ABC 关于x 轴对称的△A 1B 1C 1二、选择题:1、右边图形中,是轴对称图形的有〔 〕 (A) 1个 (B) 2个 (C) 3个 (D) 4个2、下列图形中,为轴对称图形的是〔 〕3、如图1,将矩形沿对称轴折叠,在对称轴处剪下一块,余下部分的展开图为 ( )4、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是〔〕.A .75°或15°B .75°C .15°D .75°和30°5、将一矩形纸片按如图方式折叠,BC 、BD 为折痕,折叠后B E B A ''与与在同一条直线上,则∠CBD 的度数〔 〕A. 大于90°B.等于90°C. 小于90°D.不能确定6、在直角坐标系中,A 〔1,2〕点的横坐标乘以-1,纵坐标不变,得到A ’点,则A 与A ′的关系是〔 〕A 、关于x 轴对称B 、关于y 轴对称C 、关于原点对称D 、将A 点向x 轴负方向平移一个单位7、如图,在矩形ABCD 中,68AB BC ==,,若将矩形折叠,使B 点与D 点重合,则折痕EF 的长为〔 〕A .152B .154C .5D .6(A)(C)x(D)EF8、下列说法正确的是〔 〕.A .轴对称涉与两个图形,轴对称图形涉与一个图形B .如果两条线段互相垂直平分,那么这两条线段互为对称轴C .所有直角三角形都不是轴对称图形D .有两个内角相等的三角形不是轴对称图形 9、下列图形中对称轴最多的是( ) .A .等腰三角形B .正方形C .圆D .线段10、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为〔〕.A .11cmB .7.5cmC .11cm 或7.5cmD .以上都不对11、如图:DE 是△ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC 的周长为〔〕厘米.A .16B .18C .26D .28 三、求证题1、某班举行文艺晚会,桌子摆成两直条〔如图中的AO ,BO 〕,AO 桌面上摆满了桔子,OB 桌面上摆满了糖果,坐在C 处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮助他设计一条行走路线,使其所走的总路程最短?〔尺规作图,并写出作法〕2、如图5,AC 、BC 是两条交叉的街道,P 为邮局,现在要在AC ,BC 街上各安装一个邮筒,使得邮递员从邮局出发,先去AC 街取信件,再到BC 街取信件后,最后回到邮局P 所走的路径最短,试确定安装的地点.·PCAE DCBABCA3、某地有两所大学和两条相交叉的公路,如图12-32所示〔点M ,N 表示大学,AO ,BO 表示公路〕.现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等.〔1〕你能确定仓库应该建在什么位置吗?在所给的图形中画出你的设计方案;〔2〕阐述你设计的理由.4、一面镜子MN 竖直悬挂在墙壁上,人眼O 的位置.如图所示,•有三个物体A 、B 、C 放在镜子前面,人眼能从镜子看见哪个物体?5、已知:如图,已知△ABC ,〔1〕分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1和△A 2B 2C 2 ; 〔2〕写出△A 1B 1C 1和△A 2B 2C 2各顶点坐标; 〔3〕求△ABC 的面积.ADEF BCF6、如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等,•且到∠AOB 的两边的距离相等.7、已知:△ABC 中,∠B 、∠C 的角平分线相交于点D ,过D 作EF//BC 交AB 于点E ,交AC 于点F .求证:BE+CF=EF .8、在ABC △中,120AB AC A =∠=︒,,AB 的垂直平分线交BC 于点D ,交AB 于点E .如果1DE =,求BC 的长9、如图,已知:在△ABC 中,AB =AC ,∠BAC =120°,AB 的垂直平分线交AB 于E ,交BC 于F. 求证:CF =2BF.OEDCBA10如图,点P 是等边△ABC 内一点,点P 到三边的距离分别为PE 、PF 、PG ,等边△ABC 的高为AD ,求证:PE +PF +PG =AD11、如图,等边三角形ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD ,DM ⊥BC ,垂足为M 。

人教版八年级数学上册第13章《轴对称》单元练习题(含答案)

人教版八年级数学上册第13章《轴对称》单元练习题(含答案)

人教版八年级数学上册第13章《轴对称》单元练习题(含答案)一、单选题1.下列倡导节约的图案中,是轴对称图形的是( )A .B .C .D . 2.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-3.下列黑体字中,属于轴对称图形的是( )A .善B .勤C .健D .朴4.如图,在已知的ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ; ②作直线MN 交AB 于点D ,连接CD .若4AC =,10AB =,则ACD 的周长为( )A .8B .9C .10D .145.图1是光的反射规律示意图.其中,PO 是入射光线,OQ 是反射光线,法线KO ⊥MN ,∠POK 是入射角,∠KOQ 是反射角,∠KOQ =∠POK .图2中,光线自点P 射入,经镜面EF 反射后经过的点是( )A .A 点B .B 点C .C 点D .D 点6.如图,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠AED '=50°,则∠EFC 等于( )A .65°B .110°C .115°D .130°7.如图,在ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若7AB =,12AC =,6BC =,则ABD △的周长为( )A .25B .22C .19D .188.如图,在ABC 中,AB AC =,40A ︒∠=,//CD AB ,则BCD ∠=( )A .40︒B .50︒C .60︒D .70︒9.如图是A ,B ,C 三岛的平面图,C 岛在A 岛的北偏东35度方向,B 岛在A 岛的北偏东80度方向,C 岛在B 岛的北偏西55度方向,则A ,B ,C 三岛组成一个( )A .等腰直角三角形B .等腰三角形C .直角三角形D .等边三角形10.如图,在等边ABC 中,BC 边上的高6AD =,E 是高AD 上的一个动点,F 是边AB 的中点,在点E 运动的过程中,EB EF +存在最小值,则这个最小值是( )A .5B .6C .7D .811.如图,在△ABC 中,AD 是BC 边上的高,∠BAF =∠CAG =90°,AB =AF ,AC =AG ,连接FG ,交DA 的延长线于点E ,连接BG ,CF , 则下列结论:①BG =CF ;②BG ⊥CF ;③∠EAF =∠ABC ;④EF =EG ,其中正确的有( )A .①②③B .①②④C .①③④D .①②③④ 12.如图,在ABC 中,45,ABC AD BE ∠=︒,分别为,BC AC 边上的高,,AD BE 相交于点F ,连接CF ,则下列结论:①BF AC =;②FCD DAC ∠=∠;③CF AB ⊥;④若2BF EC =,则FDC △周长等于AB 的长.其中正确的有( )A .①②B .①③④C .①③D .②③④二、填空题13.已知△ABC 是等腰三角形.若∠A =40°,则△ABC 的顶角度数是____.14.如图,,AC BD 在AB 的同侧,2,8,8AC BD AB ===,点M 为AB 的中点,若120CMD ∠=,则CD 的最大值是_____.15.如图,△ABC 的边CB 关于CA 的对称线段是CB ',边CA 关于CB 的对称线段是CA ',连结BB ',若点A '落在BB '所在的直线上,∠ABB '=56°,则∠ACB =___度.16.如图,在ABC 中,BC 的垂直平分线分别交BC 、AB 于点E 、F .若AFC △是等边三角形,则B ∠=_________°.17.如图,在等边△ABC 中,点E 是边AC 上一点,AD 为BC 边上的中线,AD 、BE 相交于点F ,若∠AEB =100°,则∠AFB 的度数为_____.18.如图,在Rt ABC 中,90C ∠=︒,20B ∠=︒,PQ 垂直平分AB ,垂足为Q ,交BC 于点P .按以下步骤作图:①以点A 为圆心,以适当的长为半径作弧,分别交边,AC AB 于点D ,E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;⑤作射线AF .若AF 与PQ 的夹角为α,则α=________°.三、解答题19.已知ABC 的三边长分别为a ,b ,c .(1)若2a =,3b =,求c 的取值范围;(2)在(1)的条件下,若c 为奇数,试判断ABC 的形状,并说明理由.20.如图,在ABC 和ADE 中,AB AC =,AD AE =,90BAC DAE ∠=∠=︒.(1)当点D 在AC 上时,如图①,线段BD ,CE 有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的ADE 绕点A 顺时针旋转()090αα︒<<︒,如图②,线段BD ,CE 有怎样的数量关系和位置关系?请说明理由.(3)拓展应用:已知等边ABC 和等边ADE 如图③所示,求线段BD 的延长线和线段CE 所夹锐角的度数.21.如图,在四边形ABCD 中,AD BC ∥,E 为CD 的中点,连接AE 、BE ,BE AE ⊥,延长AE 交BC 的延长线于点F .(1)请判断FC 与AD 的数量关系,并说明理由;(2)若AB =6,AD =2,求BC 的长度.22.已知△ABC 和△DEF 为等腰三角形,AB =AC ,DE =DF ,∠BAC =∠EDF ,点E 在AB 上,点F 在射线AC 上.(1)如图1,若∠BAC =60°,点F 与点C 重合,求证:AF =AE +AD ;(2)如图2,若AD =AB ,求证:AF =AE +BC .23.(1)如图1,在等边三角形ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 与CE 相交于点O .求证:OA =2DO ;(2)如图2,若点G 是线段AD 上一点,CG 平分∠BCE ,∠BGF =60°,GF 交CE 所在直线于点F .求证:GB =GF .(3)如图3,若点G 是线段OA 上一点(不与点O 重合),连接BG ,在BG 下方作∠BGF =60°边GF 交CE 所在直线于点F .猜想:OG 、OF 、OA 三条线段之间的数量关系,并证明.24.如图,在ABC 中,AD BC ⊥,AD BD =;点F 在AD 上,DF DC =.连接BF 并延长交AC 于E .(1)求证:BF AC =;(2)求证:BE AC ⊥;(3)若AB BC =,BF 与AE 有什么数量关系?请说明理由.25.如图,在Rt ABC 中,9030C A ∠=︒∠=︒,.点D 是AB 中点,点E 为边AC 上一点,连接CD DE ,,以DE 为边在DE 的左侧作等边三角形DEF ,连接BF .△的形状为______;(1)BCD(2)随着点E位置的变化,DBF∠的度数是否变化?并结合图说明你的理由;AC=,请直接写出DE的长.(3)当点F落在边AC上时,若626.在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:△ABE≌△CBF;(2)若∠CAE=30°,求∠ACF度数.27.如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.(1)求证:AE=2CE;(2)连接CD,请判断△BCD的形状,并说明理由.28.已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P.(1)求证:△ABE≌△CAD;(2)求∠BPQ的度数;(3)若BQ⊥AD于Q,PQ=6,PE=2,求AD的长。

最新人教版初中八年级上册数学第13章《轴对称》单元测试含答案解析

最新人教版初中八年级上册数学第13章《轴对称》单元测试含答案解析

《第13章轴对称》一、选择题1.如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个B.2个C.3个D.4个2.已知点A(4,3)和点B是坐标平面内的两个点,且它们关于直线x=﹣3对称,则平面内点B 的坐标为()A.(0,﹣3)B.(4,﹣9)C.(4,0) D.(﹣10,3)3.如图,已知△ABC中,AB=AC,∠C=30°,AB⊥AD,则下列关系式正确的为()A.BD=CD B.BD=2CD C.BD=3CD D.BD=4CD4.桌面上有A,B两球,若要将B球射向桌面任意一边,使一次反弹后击中A球,则如图所示8个点中,可以瞄准的点有()个.A.1 B.2 C.4 D.65.把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()A.B. C.D.6.如图,△ABC中∠ACB=90°,CD是AB边上的高,∠BAC的平分线AF交CD于E,则△CEF必为()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形二、填空题7.把一张纸各按图中那样折叠后,若得到∠AOB′=70°,则∠B′OG=度.8.如图,黑颜色的三角形与哪些图形成轴对称(填写序号)9.如图,△ABC中,AB=AC=8,BC=6,DE垂直平分AC,则△BDC的周长是.10.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E= 度.11.在平面直角坐标系xOy中,已知点A(2,﹣2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有个.12.如图,从镜子中看到一钟表的时针和分针,此时的实际时刻是.13.已知:等腰三角形的周长为50厘米,若底边长为x厘米,则x的取值范围是.三、画图题14.直线l的两旁分别有点A、B,在直线l求作一点P使|PB﹣PA|最大.15.如图,某住宅小区拟在休闲场地的三条道路上修建三个凉亭A、B、C且凉亭与长廊两两连通.如果凉亭A、B的位置己经选定,那么凉亭C建在什么位置,才能使工程造价最低?请用尺规作出图形(不写作法,但保留作图痕迹),并简要说明理由.四、证明题16.已知:如图,△ABC和△BDE均为等边三角形,B、D、C三点在一条直线上,AC⊥CE,判断线段DE与AC的数量关系,并加以证明.判断:证明:17.如图,在△ABC中,AB=AC,∠ABD=∠ACD,AD的延长线交BC于E.求证:AE⊥BC.四、综合题18.已知:AD是等腰△ABC一边上的高,且∠DAB=60°,∠ABC= 度.19.已知:如图,△ABC中,点D、E分别在AB、AC边上,点F是CD中点,连BF交AC于点E,∠ABE+∠CEB=180°,比较线段BD与CE的大小,并证明你的结论.20.如图,四边形ABCD中,AC、BD是对角线,AB=AC,∠ABD=60°,过D作ED⊥AD,交AC于点E,恰有DE平分∠BDC.试判断线段CD、BD与AC之间有怎样的数量关系?并证明你的结论.《第13章轴对称》参考答案与试题解析一、选择题1.如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此可知只有第三个图形不是轴对称图形.【解答】解:根据轴对称图形的定义:第一个图形和第二个图形有2条对称轴,是轴对称图形,符合题意;第三个图形找不到对称轴,则不是轴对称图形,不符合题意.第四个图形有1条对称轴,是轴对称图形,符合题意;轴对称图形共有3个.故选:C.【点评】本题考查了轴对称与轴对称图形的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.已知点A(4,3)和点B是坐标平面内的两个点,且它们关于直线x=﹣3对称,则平面内点B的坐标为()A.(0,﹣3)B.(4,﹣9)C.(4,0) D.(﹣10,3)【考点】坐标与图形变化-对称.【分析】根据轴对称的定义列式求出点B的横坐标,然后解答即可.【解答】解:设点B的横坐标为x,∵点A(4,3)与点B关于直线x=﹣3对称,∴=﹣3,解得x=﹣10,∵点A、B关于直线x=﹣3对称,∴点A、B的纵坐标相等,∴点B(﹣10,3).故选D.【点评】本题考查了坐标与图形变化﹣对称,熟记对称的性质并列出方程求出点B的横坐标是解题的关键.3.如图,已知△ABC中,AB=AC,∠C=30°,AB⊥AD,则下列关系式正确的为()A.BD=CD B.BD=2CD C.BD=3CD D.BD=4CD【考点】含30度角的直角三角形;等腰三角形的性质.【专题】计算题.【分析】根据AB=AC,判断出∠B=∠C=30°,从而求出∠BAC=120°,然后根据∠BAD=90°,求出∠1=30°,得到DC=AD,然后根据30°的角所对的直角边是斜边的一半解答.【解答】解:∵AB=AC,∠C=30°,∴∠B=∠C=30°,∴∠BAC=180﹣30°×2=120°,又∵BAD=90°,∴∠1=120°﹣90°=30°,∴∠1=∠C=30°,∴DC=AD,∵在Rt△ABD中,∠B=30°,∴AD=BD,则CD=BD.∴BD=2CD.故选B.【点评】本题考查了含30°角的直角三角形和等腰三角形的性质,知道30度的角所对的直角边是斜边的一半是解题的关键.4.桌面上有A,B两球,若要将B球射向桌面任意一边,使一次反弹后击中A球,则如图所示8个点中,可以瞄准的点有()个.A.1 B.2 C.4 D.6【考点】生活中的轴对称现象.【专题】应用题.【分析】根据题意分析可得:分别找出入射点B和反射点B,看看是否符合即可.【解答】解:由图可知可以瞄准的点有2个..故选B.【点评】本题考查轴对称图形的定义.如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.解此题关键是找准入射点和反射点.5.把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()A.B. C.D.【考点】剪纸问题.【专题】操作型.【分析】把一个正方形的纸片向上对折,向右对折,向右下方对折,从上部剪去一个等腰直角三角形,展开,看得到的图形为选项中的哪个即可.【解答】解:从折叠的图形中剪去8个等腰直角三角形,易得将从正方形纸片中剪去4个小正方形,故选C.【点评】考查学生的动手操作能力,也可从剪去的图形入手思考.6.如图,△ABC中∠ACB=90°,CD是AB边上的高,∠BAC的平分线AF交CD于E,则△CEF必为()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形【考点】等腰三角形的判定.【分析】根据角平分线的定义求出∠1=∠2,再根据等角的余角相等求出∠3=∠4,根据对顶角相等可得∠5=∠4,然后求出∠3=∠5,再利用等角对等边可得CE=CF,从而得解.【解答】解:如图,∵AF是∠BAC的平分线,∴∠1=∠2,∵∠ACB=90°,CD是AB边上的高,∴∠1+∠3=90°,∠2+∠4=90°,∴∠3=∠4,∵∠5=∠4(对顶角相等),∴∠3=∠5,∴CE=CF,∴△CEF是等腰三角形.故选B.【点评】本题考查了等腰三角形的判定,角平分线的定义,直角三角形两锐角互余的性质,等角的余角相等的性质,利用阿拉伯数字加弧线表示角更形象.二、填空题7.把一张纸各按图中那样折叠后,若得到∠AOB′=70°,则∠B′OG=55 度.【考点】角的计算.【专题】计算题.【分析】根据题意∠B′OG=∠BOG,根据平角和角平分线的定义即可求得.【解答】解:由题意可得∠B′OG=∠BOG,则∠B′OG=(180﹣∠AOB′)÷2=55°.故答案为55.【点评】已知折叠问题就是已知图形全等,因而得到相等的角.8.如图,黑颜色的三角形与哪些图形成轴对称1,3,5,7 (填写序号)【考点】轴对称的性质.【分析】根据轴对称的性质即可得出结论.【解答】解:由轴对称的性质可知,黑颜色的三角形与1,3,5,7可形成轴对称图形.故答案为:1,3,5,7.【点评】本题考查的是轴对称的性质,熟知如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线是解答此题的关键.9.如图,△ABC中,AB=AC=8,BC=6,DE垂直平分AC,则△BDC的周长是14 .【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】先根据线段垂直平分线的性质得出AD=CD,进而可得出结论.【解答】解:∵DE垂直平分AC,∴AD=CD.∵AB=AC=8,BC=6,∴△BDC的周长=BC+(BD+CD)=BC+(BD+AD)=BC+AB=6+8=14.故答案为:14.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.10.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E= 15 度.【考点】等边三角形的性质;三角形的外角性质;等腰三角形的性质.【专题】几何图形问题.【分析】根据等边三角形三个角相等,可知∠ACB=60°,根据等腰三角形底角相等即可得出∠E的度数.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.【点评】本题考查了等边三角形的性质,互补两角和为180°以及等腰三角形的性质,难度适中.11.在平面直角坐标系xOy中,已知点A(2,﹣2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有 4 个.【考点】坐标与图形性质;等腰三角形的判定.【分析】如果OA为等腰三角形的腰,有两种可能,以O为圆心OA为半径的圆弧与y轴有两个交点,以A为圆心AO为半径的圆弧与y轴有一个交点;如果OA为等腰三角形的底,只有一种可能,作线段OA的垂直平分线,与y轴有一个交点;符合条件的点一共4个.【解答】解:分二种情况进行讨论:当OA为等腰三角形的腰时,以O为圆心OA为半径的圆弧与y轴有两个交点,以A为圆心AO为半径的圆弧与y轴有一个交点;当OA为等腰三角形的底时,作线段OA的垂直平分线,与y轴有一个交点.∴符合条件的点一共4个.故答案为:4.【点评】本题考查了等腰三角形的判定及坐标与图形的性质;针对线段OA在等腰三角形中的地位,分类讨论用画圆弧的方式,找与y轴的交点,比较形象易懂.12.如图,从镜子中看到一钟表的时针和分针,此时的实际时刻是8:00 .【考点】镜面对称.【分析】镜子中的时间和实际时间关于钟表上过6和12的直线对称,作出相应图形,即可得到准确时间.【解答】解:由图中可以看出,此时的时间为8:00.故答案为:8:00.【点评】考查了镜面对称的知识,解决本题的关键是找到相应的对称轴;难点是作出相应的对称图形.13.已知:等腰三角形的周长为50厘米,若底边长为x厘米,则x的取值范围是0<x<25 .【考点】等腰三角形的性质;三角形三边关系.【分析】已知周长和底边,可表示腰长.根据三角形三边关系得不等式求解.【解答】解:∵等腰三角形的周长为50,底边长为x,∴两腰和=50﹣x.∴50﹣x>x>0,解得 0<x<25.故答案是:0<x<25.【点评】此题考查等腰三角形的性质及三角形三边关系定理,解题的关键是设出的底边的长表示出两腰的和,难度不大.三、画图题14.直线l的两旁分别有点A、B,在直线l求作一点P使|PB﹣PA|最大.【考点】轴对称-最短路线问题.【分析】点A关于直线l的对称点A′,则PA=PA′,因而|PA﹣PB|=|PA′﹣PB|,则当A′,B、P 在一条直线上时,|PA﹣PB|的值最大.【解答】解:如图所示:作点A关于直线l的对称点A′,连A′B并延长交直线l于P.【点评】本题考查的是作图﹣轴对称变换,熟知“两点之间线段最短”是解答此题的关键.15.如图,某住宅小区拟在休闲场地的三条道路上修建三个凉亭A、B、C且凉亭与长廊两两连通.如果凉亭A、B的位置己经选定,那么凉亭C建在什么位置,才能使工程造价最低?请用尺规作出图形(不写作法,但保留作图痕迹),并简要说明理由.【考点】作图—应用与设计作图.【分析】工程造价最低,那么三个凉亭间的距离最短,又在直线l上,那么应作出点A关于直线l 的对称点A′,连接A′B交直线l于点C,点C就是所求的点.【解答】解:三个凉亭间的距离实际相当于A'B的距离,两点之间,线段最短,所以符合题意.【点评】涉及在同一条直线的一旁的两点与这条直线上的一点的最短路线问题,一般属于点关于直线对称问题.四、证明题16.已知:如图,△ABC和△BDE均为等边三角形,B、D、C三点在一条直线上,AC⊥CE,判断线段DE与AC的数量关系,并加以证明.判断:DE=AC证明:【考点】等边三角形的性质;含30度角的直角三角形.【专题】探究型.【分析】根据等边三角形的性质,由△ABC为等边三角形得到AC=BC,∠ACB=60°,则由AC⊥CE可计算出∠BCE=30°,再利用△BDE为等边三角形得到DE=BE,∠DBE=60°,于是根据三角形内角和定理可计算出∠BEC=90°,然后在Rt△BEC中利用含30度的直角三角形三边的关系可得BE=BC,所以DE=AC.【解答】解:DE=AC.证明如下:∵△ABC为等边三角形,∴AC=BC,∠ACB=60°,∵AC⊥CE,∴∠ACE=90°,∴∠BCE=90°﹣60°=30°,∵△BDE为等边三角形,∴DE=BE,∠DBE=60°,∴∠BEC=180°﹣60°﹣30°=90°,在Rt△BEC中,∵∠BCE=30°,∴BE=BC,∴DE=AC.故答案为DE=AC.【点评】本题考查了等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.也考查了含30度的直角三角形三边的关系.17.如图,在△ABC中,AB=AC,∠ABD=∠ACD,AD的延长线交BC于E.求证:AE⊥BC.【考点】线段垂直平分线的性质;等腰三角形的性质.【专题】证明题.【分析】首先证明∠DBC=∠DCB,可得DB=DC,根据线段垂直平分线的判定可得D在BC的垂直平分线上,由AB=AC,得出A在BC的垂直平分线上,于是AD垂直平分BC,即AE⊥BC.【解答】证明:∵AB=AC,∴∠ABC=∠ACB,∵∠ABD=∠ACD,∴∠ABC﹣∠ABD=∠ACB﹣∠ACD,即∠DBC=∠DCB,∴DB=DC,∴D在BC的垂直平分线上,∵AB=AC,∴A在BC的垂直平分线上,∵两点确定一条直线,∴AD垂直平分BC,∴AE⊥BC.【点评】此题考查了等腰三角形的判定,线段垂直平分线的判定,难度适中.证明出D在BC的垂直平分线上是解题的关键.四、综合题18.已知:AD是等腰△ABC一边上的高,且∠DAB=60°,∠ABC= 30或150 度.【考点】等腰三角形的性质.【分析】由于BC为腰,则点B可为顶角的顶点,也可为底角的顶点,高AD可在三角形内部也可在三角形外部,故应分三种情况分析计算.【解答】解:由题意得,分三种情况:(1)当点B为顶角的顶点时,且AD在三角形内部,∠ABC=90°﹣∠DAB=90°﹣60°=30°;(2)当点B为顶角的顶点时,且AD在三角形外部,∠ABC=∠D+∠DAB=90°+∠60°=150°;(3)当点C为顶角的顶点时,∠ABC=90°﹣∠DAB=90°﹣60°=30°,当点A为顶角的顶点时,AD在三角形内部,∠ABC=﹣∠ADB﹣∠DAB=90°﹣60°=30°,故答案为:30或150【点评】本题考查了等腰三角形的性质,三角形的内角和定理,直角三角形的性质.注意分类讨论是正确解答本题的关键.19.已知:如图,△ABC中,点D、E分别在AB、AC边上,点F是CD中点,连BF交AC于点E,∠ABE+∠CEB=180°,比较线段BD与CE的大小,并证明你的结论.【考点】等腰三角形的判定与性质.【分析】延长BF至点G,使FG=BF,连CG,证△GFC≌△BFD,∠CGF=∠FBD,CG=DB,求出∠CGF=∠CEG,推出CG=CE,即可得出答案.【解答】结论:BD=CE证明:延长BF至点G,使FG=BF,连CG,∵F为CD中点,∴CF=DF,在△GFC和△BFD中∴△GFC≌△BFD(SAS),∴∠CGF=∠FBD,CG=DB,又∵∠ABE+∠CEB=180°,∠CEG+∠CEB=180°,∴∠CGF=∠CEG,∴CG=CE,∴BD=CE.【点评】本题考查了全等三角形的性质和判定的应用.正确添加辅助线构造全等三角形是解题的关键.20.如图,四边形ABCD中,AC、BD是对角线,AB=AC,∠ABD=60°,过D作ED⊥AD,交AC于点E,恰有DE平分∠BDC.试判断线段CD、BD与AC之间有怎样的数量关系?并证明你的结论.【考点】全等三角形的判定与性质.【分析】求出∠ADB=∠ADF,根据SAS证△ABD≌△FED,推出∠F=∠ABD=60°,AB=AF=AC,得出△ACF是等边三角形,推出AC=CF即可.【解答】解:AC=BD+CD,理由是:延长CD到F,使DF=BD,连接AF,∵ED⊥AD,DE平分∠BDC,∴∠ADB=90°﹣∠BDC,∴∠AD F=180°﹣(90°﹣∠BDC)﹣∠BDC=90°﹣,∴∠ADB=∠ADF,在△ABD和△AFD中,,∴△ABD≌△AFD(SAS),∴∠F=∠ABD=60°,AB=AF,∵AB=AC,∴AF=AC,∴△ACF是等边三角形,∴AC=CF=CD+DF=BD+CD.【点评】本题考查了全等三角形的性质和判定,等边三角形的性质和判定,正确的作出辅助线是解题的关键.作者留言:非常感谢!您浏览到此文档。

RJ人教版八年级上册第十三章《轴对称》单元测试卷内有答案与解析

RJ人教版八年级上册第十三章《轴对称》单元测试卷内有答案与解析

第十三章《轴对称》单元测试卷(时间:120 分钟满分:120 分)第Ⅰ卷选择题(共42 分)一、选择题(本大题共16个小题,1~6小题,每小题2 分;7~16 小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填入后面的括号里)1.下列图形中,不是轴对称图形的是【】2.点(3,-2)关与x 轴的对称点的坐标为【】A.(-3,-2)B.(3,2)C.(-3,-2)D.(3,-2)3.等腰三角形的一个外角为60°,则底角为【】A.120°B.30°C.30°或120°D.30°或60°4.如图,直角三角形ABC 中,∠C=90°,AB 的垂直平分线交AC于D,则AD与BC 的大小关系是【】A.AD<BCB.AD=BCC.AD>BCD.不能确定第4题图第6题图5.等腰三角形的周长为13,其中一边的长为5,则其他两边的长可能是【】A.5 和3B.4 和4C.5和3 或4 和4D.不能确定6.如图,梯形ABCD 与梯形EFGH 成轴对称,则它们组成的图形的对称轴有【】A.1 条B.2 条C.3 条D.4条7.如图,公路BC 所在的直线恰为书店与学校连线AD 的垂直平分线,小花家与小梅家住在公路边,则下列说法中正确的是【】①小梅从家到书店与小花从家到书店的距离一样远;②小梅从家到书店与从家到学校一样远;③小花从家到书店与从家到学校一样远;④小梅从家到学校与小花从家到学校一样远.A.①②B.②③C.③④D.①④第7题图第8题图第9题图8.如图,在△ABC 中,CD⊥AB,∠A=30°,AB=6,△ACB 的面积为6,则AC的长为【】A.2B.4C.12D.169.如图,四边形ABCD 中,AC 垂直平分BD,垂足为E,下列结论不一定成立的是【】A.AB=ADB.AC平分∠BCDC.AB=BDD.△BEC≌△DEC10.如图,在△ABC中,边AB的垂直平分线分别交AB,BC点于D,E,边AC的垂直平分线分别交AC,BC于点F,G,若BC=4,则△AEG的周长为【】A.12 B.10 C.8 D.4第10题图第11 题图11.如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=70°,则∠DAO+∠DCO 的大小为【】A.70°B.110°C.140°D.150°12.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,过点D 作DE∥AB交AC于点E,则△CDE 的周长为【】A.20 B.12 C.14 D.13第12 题图第13题图13.如图,小华把长方形纸片ABCD沿对角线折叠,重叠部分为△EBD,那么以下四种说法:①△EBD 是等腰三角形,EB=ED;②折叠后∠ABE 和∠CBD 一定相等;③折叠后得到的图形是轴对称图形;④△EBA 和△EDC 一定是全等三角形.其中正确的有【】A.1 个B.2 个C.3个D.4 个14.将一张等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是【】15.如图,在网格中有一个直角三角形(网格中的每一个小正方形的边长均为1个单位长度),若以该三角形一边为公共边画一个新三角形与原来的直角三角形一起组成一个等腰三角形,要求新三角形与原来的直角三角形除了有一条公共边外,没有其他的公共点,新三角形的顶点不一定在格点上,那么符合要求的新三角形有【】A.4 个 B.6 个 C.7个 D.9 个第15题图第16 题图16.如图,在直角坐标系中,点A、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,且A、B、C 三点不在同一条直线上,当△ABC 的周长最小时,点C 的坐标是【】A.(0,0)B.(0,1)C.(0,2)D.(0,3)第Ⅱ卷非选择题(共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案填入题内的横线上)17.在十二地支“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”这12 个字中,可以看作接近于轴对称图形的有个.18.等腰三角形的对称轴有条.19.将一张长方形纸片ABCD按如图所示的方式折叠,EF、EG 是折痕,且使AE与BE 折叠后所对应的边EA´和EB´重合在同一条直线上.如果∠CFE=110°,那么∠AEG=°.第19题图第20题图20.在三角形纸片ABC 中,AB=10 cm,BC=7 cm,AC=6 cm,沿过点B的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD(如图),则△AED 的周长为__________.三、解答题(本大题共6个小题,共66 分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分9 分)如图,∠A =90°,BD 是△ABC 的角平分线,DE 是BC 的垂直平分线,请分别求∠CDE 和∠ABC 的度数.22.(本小题满分10 分)找出下图中的轴对称图形,并画出它们的对称轴.23.(本小题满分10 分)如图,在游艺室的水平地面上,沿着地面AB边放一行球,参赛者从起点C 起步,跑向边AB任取一球,再折向D点跑去,将球放入D 点的纸箱内便完成任务,完成任务的时间最短者获得胜利.如果邀请你参加,你将跑去选取什么位置上的球?为什么?24.(本小题满分11 分)将一个等腰三角形沿对称轴对折后,剪掉一个60°的角,展开后得到如图所示形状.若∠B=15°,求∠A 的度数.25.(本小题满分12 分)如图,△ABC 是等腰直角三角形,∠BAC=90°,BE 是∠ABC 的平分线,DE⊥BC,垂足为D.(1)请写出图中所有等腰三角形;(2)请判断AD与BE 是否垂直?为什么?(3)请比较AB垣AE与BC 的大小,并说明理由.26.(本小题满分14 分)如图,△ABC 是边长为6 的等边三角形,P是AC 边上一动点,由A 向C 运动(与A、C 不重合),Q 是CB 延长线上一动点,与点P 同时以相同的速度由B 沿CB 延长线方向运动(Q 不与B重合),过P 作PE⊥AB于E,连接PQ 交AB于D.(1)当∠BQD=30°时,求AP的长;(2)在运动过程中线段DE的长是否发生变化?如果不变,求出线段DE 的长;如果发生改变,请说明理由答案第十三章《轴对称》达标检测一、1.A 点拨:判断是否为轴对称图形关键是找对称轴,选项A 无对称轴,故不是轴对称图形.2.B 点拨:点(x,y)关于x 轴对称的点的坐标为(x,-y),关于y 轴对称的点的坐标为(-x,y).3.B 点拨:60°的外角只能是顶角的外角,故底角=12×60°=30°.4.C 点拨:连接BD,则BD=AD,又在直角三角形BDC 中,BD>BC,故AD>BC.5.C 点拨:本题应分情况讨论:当长为5 的边为腰时,另两条边的长为5 和3;当长为5的边为底边时,另两条边的长为4 和4.6.A7.B 点拨:∵BC 垂直平分AD,∴AB=BD,AC=CD,但AB 不一定等于AC,BD不一定等于CD.8.B 点拨:∵∠A =30°,∠CDA =90°,∴AC=2CD. 又∵S△ACB=12CD·AB=6,AB=6,∴CD=2.∴AC=2CD=2×2=4.9.C 点拨:由中垂线定理,知AB=AD,故A 正确,由三线合一知B正确,且有BC=CD,故D也正确,只有C 不一定成立.10.D 点拨:本题主要考查线段垂直平分线的性质,△AEG 的周长等于BC的长.11.D 点拨:因为OA=OB=OC,∴∠BAO=∠ABO,∠CBO=∠BCO,∴∠BAO+∠BCO=∠ABO+∠CBO=∠ABC=70°,∴∠DAO+∠DCO=360°-∠ABC-(∠BAO+∠BCO)-∠ADC=150°.12.C 点拨:由AB=AC及AD 平分∠BAC得BD=CD= 12BC=4.由DE∥AB及AD平分∠BAC得∠ADE=∠EAD,∴AE=DE.故△CDE 的周长=CE+DE+CD=CE+AE+CD=AC+CD=14.13.C 点拨:①③④正确,②中两角不一定相等.14.A 点拨:通过两次对折后,得到的三角形仍是等腰直角三角形.对于这个题目,可以通过动手操作解决问题,也可以利用轴对称的性质进行分析.15.C 点拨:解:如图所示,∵根据题意可知:以4 为腰的等腰三角形有2 个,以5 为腰的三角形有4 个,以5 为底边的等腰三角形有1个,∴符合要求的新三角形有2+4+1=7 个.第15 题图16.D 点拨:本题考查最短路线问题. 作B 点关于y 轴对称点B´点,连接AB´,交y 轴于点C,此时△ABC 的周长最小,∵点A、B 的坐标分别为(1,4)和(3,0),∴B´点坐标为:(-3,0),点C 的坐标是(0,3),故选D.二、17.4 点拨:“寅、未、申、酉”可以看作接近于轴对称图形.18.1 或3 点拨:本题应分类讨论,当等腰三角形底与腰不相等时,其对称轴只有1 条;当等腰三角形底与腰相等,即为等边三角形时,其对称轴有3 条.考虑问题不全面时,易漏掉其中的一种情况.19.20 点拨:由折叠易知∠GEF=90°,∠FEB=180°-110°=70°,∴∠AEG=90°-70°=20°.20.9 cm 点拨:由折叠易知BE=BC=7,DE=CD.故△AED 的周长=AD+DE+AE=AC+(AB-BE)=AC+(AB-BC)=6+(10-7)=9(cm).三、21.解:因为DE 垂直平分BC,所以DB=DC.所以∠C=∠DBC.又因为BD 平分∠ABC,所以∠ABD=∠DBC. 所以∠C=∠ABD=∠DBC=13×(180°-90°)=30°.所以∠CDE=90°-30°=60°,∠ABC=2∠ABD=2×30°=60°.22.解:第1个和第4个为轴对称图形.图略.23.解:作点D 关于AB 的对称点M,连接CM交AB于点P,则点P所在的球就是选取的球.利用了轴对称的知识.24.解:∠A=30°.25.解:(1)△ABC,△ABD,△ADE,△CDE都是等腰三角形;(2)AD与BE互相垂直.理由是:因为BE 平分∠ABC,DE⊥BC,AE ⊥AB,所以AE=DE(角平分线上的点到这个角两边的距离相等),所以∠DAE=∠ADE,从而∠BAD=∠BDA,所以AB=BD,所以BE⊥AD(“三线合一”);(3)AB+AE=BC.理由如下:因为△ABC 是等腰直角三角形,所以∠C=45°,因为∠CDE=90°,所以∠DEC =45°,所以CD=DE(等角对等边),由(2)知AB=BD,BE⊥AD.所以AF=DF,∠AFE=∠DFE=90°.又EF=EF.所以△AFE≌△DFE.所以AE=DE.所以AE=CD,所以AB+AE=BD+DC=BC.26.解:(1)过P 作PF∥QC 交AB 于点F,则△AFP是等边三角形.因为P,Q 同时出发,速度相同,即BQ=AP,所以BQ=PF,所以△DBQ≌△DFP,所以BD=DF.因为∠BQD=∠BDQ=∠FDP=∠FPD=30°,所以BD=DF=FP=AF=13AB=13×6=2,所以AP=2.(2)由(1)知BD=DF,而△APF是等边三角形,PE⊥AF,因为AE=EF,又DE+(BD+AE)=AB=6,所以DE+(DF+EF)=6,即DE+DE=6,所以DE=3 为定值,即DE 的长不变.。

人教版八年级上册数学第13章 轴对称 单元练习卷(配套练习附答案)

人教版八年级上册数学第13章 轴对称 单元练习卷(配套练习附答案)
【答案】C
【解析】
【分析】
首先要进行分析题意,“等腰三角形的一个内角”没明确是顶角还是底角,所以要分两种情况进行讨论.
【详解】本题可分两种情况:
①当70°角为底角时,顶角为180°−2×70°=40°;
②70°角为等腰三角形的顶角;
因此这个等腰三角形的顶角为40°或70°.
故选C
【点睛】考查等腰三角形的性质,注意分类讨论,不要漏解.
∴BM=AM,CN=AN,∴∠MAB=∠B,∠CAN=∠C,∵∠BAC=120°,AB=AC,∴∠B=∠C=30°,
∴∠BAM+∠CAN=60°,∠AMN=∠ANM=60°,∴△AMN是等边三角形,∴AM=AN=MN,∴BM=MN=NC,
∵BC=9cm,∴MN=3cm.
故答案为3cm.
考点:1.线段垂直平分线的性质;2.等腰三角形的性质;
【点睛】考查等边三角形 性质,熟练掌握等边三角形的性质是解题的关键.
4.等腰三角形的周长为16,其一边长为6,则另两边为_____.
【答案】6和4或5和5.
【解析】
当腰是6时,则另两边是4,6,且4+6>6,满足三边关系定理;
当底边是6时,另两边长是5,5,5+5>6,满足三边关系定理.
故该等腰三角形的另两边为6和4或5和5.
A. B. C. D. 7
【答案】A
【解析】
【分析】
根据轴对称性质可得出PM=MQ,PN=RN,因此先求出QN的长度,然后根据QR=QN+NR进一步计算即可.
【详解】由轴对称性质可得:PM=MQ=2.5cm,PN=RN=3cm,
∴QN=MN−MQ=1.5cm,
∴QR=QN+RN=4.5cm,

人教版八年级数学上册《第十三章轴对称》单元测试卷(附答案)

人教版八年级数学上册《第十三章轴对称》单元测试卷(附答案)

人教版八年级数学上册《第十三章轴对称》单元测试卷(附答案)一.选择题(满分30分)1.2024年是甲辰龙年,龙常用来象征祥瑞,是中华民族最具代表性的传统文化之一.下面龙的图案是轴对称图形的是()A.B.C.D.2.下列说法不正确的有()A.三边相等的三角形是等边三角形B.三个角相等的三角形是等边三角形C.有一个角是60°的三角形是等边三角形D.顶角为60°的等腰三角形是等边三角形3.已知点P1(a﹣1,5)和点P2(2,b﹣1)关于x轴对称,则(a+b)2022的值为()A.﹣1B.0C.1D.24.如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后将落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋5.如图,在△ABC中,∠ABC=60°,BC=10,点D在BA的延长线上,CA=CD,BD=6,则AD=()A.1B.2C.3D.46.如图,AD是△ABC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC的长是()A.3B.4C.6D.57.如图所示∠ABC=50°,AD垂直平分线段BC于点D,∠ABC的平分线BE交AD于点E,连接EC,则∠AEC的度数是()A.100°B.105°C.115°D.120°8.如图,在Rt△ABC中∠C=90°,直线BD交AC于点D,把直角三角形ABC沿着直线BD翻折,点C恰好落在斜边AB上的点E处,并且△ABD是等腰三角形,那么∠A等于()A.60°B.40°C.30°D.22.5°9.如图∠AOB=30∘,P是它内部一点OP=2,Q,R分别是OA,OB上的两个动点,则PQ+QR+RP的最小值是()A.4cm B.3cm C.2cm D.6cm10.如图,在平面直角坐标系中,对△ABC进行循环往复地轴对称变换,若原来点A坐标是(1,2),则经过第2022次变换后点A的对应点的坐标为()A.(1,﹣2)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)二.填空题(满分18分)11.如果点A(−3,a)和点B(b,2)关于y轴对称,那么a+b的值是.12.在等腰三角形ABC中,它的两边长分别为8cm和4cm,则它的周长为.13.如图,已知BD=BC=AD,∠DBC=20°,则∠A=.14.在Rt△ABC中∠B=90°,点D在BC上AD=3,在AC上找一点E,使得∠EDC=∠ADB,连接DE,若DE= DC=1,则BD的长度为.15.如图,在△ABC中AC=4,线段AB的垂直平分线交AB,AC于点M,N,若BN=3,则NC的长为.16.如图,∠AOB是一角度为10°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…且OE=EF=FG=GH…在OA、OB足够长的情况下,最多能添加这样的钢管的根数为.三.解答题(满分72分)17.画出如图的图形关于直线l的对称图形.18.若a、b是△ABC的两边且|a﹣3|+(b﹣4)2=0(1)试求a、b的值,并求第三边c的取值范围.(2)若△ABC是等腰三角形,试求此三角形的周长.(3)若另一等腰△DEF,其中一内角为x°,另一个内角为(2x﹣20)°试求此三角形各内角度数.19.如图,在△ABC中DM,EN分别垂直平分边AC和边BC,交边AB于M,N两点,DM与EN相交于点F.(1)若AB=5,则△CMN的周长为;(2)若∠MFN=70°,求∠MCN的度数.20.如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△A1B1C1;(2)△AB1C的面积为;(3)在直线l上找点P使得PB+PC最小;(4)直线l上找一点Q使得|QB−QC|最大.21.在边长为9的等边三角形ABC中,点Q是BC上一点,点P是AB上一动点,以每秒1个单位的速度从点A向点B移动,设运动时间为t秒.(1)如图1,若BQ=6,PQ∥AC,求t的值;(2)如图2,若点P从点A向点B运动,同时点Q以每秒2个单位的速度从点B经点C向点A运动,当t为何值时,△APQ为等边三角形?22.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M.(1)若∠B=65°,则∠NMA的度数是;(2)连接MB,若AB=6cm,△MBC的周长是10cm.①求BC的长;②在直线MN上是否存在点D,使由B、C、D三点构成的△DBC的周长值最小?若存在,标出点D的位置并求△DBC的周长最小值;若不存在,说明理由.23.如图1,在等腰直角三角形ABC中AB=AC,∠BAC=90°点D在BC边上,连接AD,AE⊥AD,AE=AD 连接CE,DE.(1)∠ACE=∠B=45°,请你说明理由.(2)求∠BCE的度数.(3)点A关于直线CE的对称点为A1,连接CA1,EA1.补全图形,判断∠EA1C与∠BAD之间的数量关系并说明理由.参考答案一.选择题(满分30分)1.解:A、不是轴对称图形,故不符合题意;B、不是轴对称图形,故不符合题意;C、不是轴对称图形,故不符合题意;D、是轴对称图形,故符合题意;故选D.2.解:三边相等的三角形是等边三角形故A选项不符合题意;三个角都相等的三角形是等边三角形故B选项不符合题意;有一个角是60°的三角形,其他两个角度数不能确定故C选项符合题意;顶角为60°的等腰三角形,即三个角都是60°的三角形是等边三角形故D选项不符合题意.故选:C.3.解:∵点P1(a﹣1,5)和点P2(2,b﹣1)关于x轴对称∴a﹣1=2,b﹣1=﹣5解得a=3,b=﹣4∴(a+b)2022=(3﹣4)2022=(﹣1)2022=1.故选:C.4.解:如图所示,该球最后落入2号袋.故选:B.5.解:过C点作CE⊥AD于E∵CA=CD∴AD=2DE∵∠ABC=60°,∠CEB=90°∴∠BCE=30°∴BE=BC=5∵BD=6∴DE=BD﹣BE=6﹣5=1∴AD=2.故选:B.6.解:过D作DF⊥AC于F∵AD是△ABC的角平分线DE⊥AB ∵DE=DF=2∵S△ADB=12AB⋅DE=12×4×2=4∵△ABC的面积为7∵S△ADC=S△ABC−S△ADB=12AC⋅DF即12AC×2=7−4解得:AC=3故选:A.7.解:∵∠ABC=50°,BE平分∠ABC∵∠CBE=12∠ABC=25°∵AD垂直平分线段BC于点D∵EB=EC ∠EDC=90°∵∠C=∠CBE=25°∵∠AEC=∠EDC+∠C=115°故选:C.8.解:因为△ABD是等腰三角形所以∠DBA=∠A.由折叠的性质可得:△CDB≌△EDB所以∠CBD=∠DBA=∠A.又因为∠C=90°所以∠CBD+∠DBA+∠A=90°×90°=30°所以∠A=13故选C.9.解:先作点P关于OA,OB的对称点P1,P2,连接P1P2∵∠AOB=30°∴∠P1OP2=60°∵OP1=OP2∴△OP1P2是等边三角形∴P1P2=OP1=OP=2∴△PQR的周长的最小值是2即PQ+QR+RP的最小值是2故选:C10.解:点A第一次关于y轴对称后在第二象限点A第二次关于x轴对称后在第三象限点A第三次关于y轴对称后在第四象限点A第四次关于x轴对称后在第一象限,即点A回到原始位置所以,每四次对称为一个循环组依次循环∵2022÷4=505余2∴经过第2022次变换后所得的A点与第二次变换的位置相同,在第三象限,坐标为(﹣1,﹣2).故选:B.二.填空题(满分18分)11.解:∵A(−3,a)和点B(b,2)关于y轴对称∵b=−(−3)=3,a=2∵a+b=2+3=5故答案为:5.12.解:等腰三角形的两条腰相等①当腰为8cm时:三角形的周长为:8+8+4=20cm;②当腰为4cm时:因为4+4=8,此时不存在三角形.故答案为:20cm.13.解:∵BD=BC=AD,∠DBC=20°∵∠BDC=∠C=180°−∠DBC2=80°,∠A=∠DBA∵∠A+∠DBA=∠BDC∵∠A=40°故答案为:40°.14.解:如图,作GA⊥AB,与DE的延长线交于点G,作FD⊥BC,交AG于点F∵∠B=90°,∠BAG=90°∴∠B+∠BAG=180°∴AG∥BC∴∠C=∠5同理,DF∥AB∴AF=BD,DF⊥AG∴∠AFD=∠GFD∵∠EDC=∠ADB,∠EDC+∠2=90°,∠ADB+∠1=90°∴∠1=∠2在△AFD和△GFD中{∠GFD=∠AFD DF=DF∠2=∠1∴△GFD≌△AFD(ASA)∴GF=AF,GD=AD∵AD=3,DE=DC=1∴GE=2,∠C=∠3∵∠3=∠4,∠C=∠5∴∠4=∠5∴GA=GE=2∴AF=GF=1∴BD=AF=1.故答案为:1.15.解:∵MN是线段AB的垂直平分线∵NA=NB∵CN=AC−AN=AC−BN=4−3=1故答案为:1.16.解:∵添加的钢管长度都与OE相等∠AOB=10°∴∠GEF=∠FGE=20°从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,第四个是40°⋯第九个是90°就不存在了.所以最多能添加这样的钢管的三.解答题(满分70分)17.解:如图所示:18.解:(1)∵|a﹣3|+(b﹣4)2=0∴a=3 b=4∵b﹣a<c<b+a∴1<c<7;(2)当腰长为3时,此时三角形的三边为3、3、4,满足三角形三边关系,周长为10;当腰长为4时,此时三角形的三边长为4、4、3,满足三角形三边关系,周长为11;综上可知等腰三角形的周长为10或11;(3)当底角为x°、顶角为(2x﹣20)°时,则根据三角形内角和为180°可得x+x+2x﹣20=180解得x=50此时三个内角分别为50°、50°、80°;当顶角为x°、底角为(2x﹣20)°时,则根据三角形内角和为180°可得x+2x﹣20+2x﹣20=180解得x=44此时三个内角分别为44°、68°、68°;当底角为x°、(2x﹣20)°时,则等腰三角形性质可得x=2x﹣20解得x=20此时三个内角分别为20°、20°、140°;综上可知三角形三个内角为50度、50度、80度或44度、68度、68度或20度、20度、140度.19.(1)解:∵DM,EN分别垂直平分边AC和边BC∵MA=MC,NB=NC∵△CMN的周长=MC+MN+NC=MA+MN+NB=AB∵AB=5∵△CMN的周长=5故答案为:5;(2)解:∵∠MFN=70°∵∠FMN+∠FNM=180°−∠MFN=110°∵∠AMD+∠BNE=∠FMN+∠FNM=110°∵∠A+∠B=180°−(∠AMD+∠BNE)=70°∵MA=MC,NB=NC∵∠A=∠MCA,∠B=∠NCB∵∠MCN=180°−(∠A+∠B+∠MCA+∠NCB)=40°.20.(1)解:如图,△A1B1C1即为所作;(2)解:如图,△AB1C的面积为3×8−12×3×1−12×1×7−12×2×8=11.故答案为:11;(3)解:如图,点P即为所作;(4)解:如图,点Q即为所作;.21.解:(1)如图1,∵△ABC是等边三角形PQ∥AC ∴∠BQP=∠C=60°,∠BPQ=∠A=60°又∠B=60°∴∠B=∠BQP=∠BPQ∴△BPQ是等边三角形∴BP=BQ由题意可知:AP=t,则BP=9﹣t∴9﹣t=6解得:t=3∴当t的值为3时,PQ∥AC;(2)如图2,①当点Q在边BC上时此时△APQ不可能为等边三角形;②当点Q在边AC上时若△APQ为等边三角形,则AP=AQ由题意可知,AP=t,BC+CQ=2t∴AQ=BC+AC﹣(BC+CQ)=9+9﹣2t=18﹣2t即:18﹣2t=t,解得:t=6∴当t=6时,△APQ为等边三角形.22.解:(1)∵AB=AC∴∠B=∠C∴∠A=180°﹣2∠B又∵MN垂直平分AB∴∠NMA=90°﹣∠A=90°﹣(180°﹣2∠B)=2∠B﹣90°=40°故答案为:40°;(2)如图:①∵MN垂直平分AB.∴MB=MA又∵△MBC的周长是10cm∴AC+BC=10cm∴BC=4cm.②当点D与点M重合时,△DBC的周长最小,最小值是10cm.23.(1)证明:∵AB=AC,∠BAC=90°∵∠B=∠ACB=45°∵∠BAC=∠DAE=90°∵∠BAD+∠DAC=∠CAE+∠DAC∵∠BAD=∠CAE又∵AB=AC,AD=AE∵△ABD≌△ACE(SAS)∵∠ACE=∠B=45°;(2)解:由(1)可知∠ACE=45°,∠ACB=45°∵∠BCE=∠ACE+∠ACB=45°+45°=90°;(3)如图∠EA1C=∠BAD,理由如下:∵点A与A1关于CE对称∵EA=EA1,CA=CA1,CE=CE∵△ACE≌△A1CE(SSS)∵∠EA1C=∠EAC∵△ABD≌△ACE∵∠CAE=∠BAD∵∠EA1C=∠BAD.。

人教版八年级数学上册第13章轴对称单元测试题含答案

人教版八年级数学上册第13章轴对称单元测试题含答案

第十三章 轴对称 单元测试题一、选择题1.已知点A 与点(-4,5)关于y 轴对称,则A 点坐标是( ) A.(4,-5)B.(-4,-5)C.(-5,-4)D.(4,5)2.如果点P(a,2 015)与点Q(2 016,b)关于x 轴对称,那么a+b 的值等于( ) A.-4 031B.-1C.1D.4 0313.图,在已知的△ABC 中,按以下步骤作图:①分别以B,C 为圆心,以大于BC 的长为半径作弧,两弧相交于两点M,N;②作直线MN 交AB 于点D,连接CD.若CD=AC,∠A=50°,则∠ACB 的度数为( )A.90°B.95°C.100°D.105°4.如图:∠EAF=15°,AB=BC=CD=DE=EF ,则∠DEF 等于( ).A 、90°B 、 75°C 、70°D 、 60°FE DCBA5.已知点P 在线段AB 的中垂线上,点Q 在线段AB 的中垂线外,则 ( ) A 、PA+PB >QA+QB B 、PA+PB <QA+QB D 、PA+PB =QA+QBD 、不能确定6.如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 的对称点1P 、2P ,连接1P 2P 交OA 于M ,交OB 于N ,若1P 2P =6,则△PMN 的周长为( ).B MN P 1AP 2OPA 、4B 、5C 、6D 、77.如图,先将正方形纸片对折,折痕为MN ,再把B 点折叠在折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,沿AH 和DH 剪下,这样剪得的三角形中( ).N MDC HE BAA 、AD DH AH ≠=B 、AD DH AH ==C 、DH AD AH ≠= D 、AD DH AH ≠≠8、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( ). A .11cm B .7.5cm C .11cm 或7.5cm D .以上都不对 9.如图,把一个正方形三次对折后沿虚线剪下,则所得图形大致是( ).10.如图所示,Rt △ABC 中,∠C =90°,AB 的垂直平分线DE 交BC 于D ,交AB 于点E.当∠B =30°时,图中一定不相等的线段有( ).A .AC =AE =BEB .AD =BDC .CD =DE D .AC =BD 二、填空题(每小题4分,共16分)11.如图,在△ABC 中,AB,AC 的垂直平分线交BC 于点E,G,若∠B+∠C=40°,则∠EAG= .12.如图,分别作出点P 关于OA,OB 的对称点P 1,P 2,连接P 1P 2,分别交OA,OB 于点M,N,若P 1P 2=5 cm,则△PMN 的周长为.13. 平面直角坐标系中,点A (2,0)关于y 轴对称的点A ′的坐标为___________.14.如图,现要利用尺规作图作△ABC 关于BC 的轴对称图形△A'BC.若AB=5 cm,AC=6 cm,BC=7 cm,则分别以点B,C 为圆心,依次以 cm, cm 为半径画弧,使得两弧相交于点A',再连接A'C,A'B,即可得△A'BC.15. 如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是___________.16. 如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为_____度.三、解答题:17.(6分)如图所示,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别为E,F,连接EF,EF与AD交于点G,求证:AD垂直平分EF.18.(7分)如图,已知点M、N和∠AOB,求作一点P,使P到点M、N的距离相等,•且到∠AOB的两边的距离相等.19.(8分)如图,AD 是△ABC 的角平分线,BE ⊥AD 交AD 的延长线于点E,EF ∥AC 交AB 于点F,求证:AF=FB.20. (7分)已知:如图,ABC ∆中,AB CD AC AB ⊥=,于D. 求证:DCB 2BAC ∠=∠。

人教版八年级数学上第十三章轴对称单元试卷含答案

人教版八年级数学上第十三章轴对称单元试卷含答案

第十三章《轴对称》测试题班别 姓名 成绩(一)、选择题(每题5分,共35分)1、下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是( )A :B :C :D :2、点M (1,2)关于x 轴对称的点的坐标为( )A :(-1,-2)B :(-1,2)C :(1,-2)D :(2,-1) 3、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( )A :11cmB :7.5cmC :11cm 或7.5cmD : 以上都不对 4、如图,DE 是∆ABC 中AC 边的垂直平分线,若BC=8厘米,厘米,则∆EBC 的周长为( )厘米A :16B :18C :26D :285、如图,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出 下列结论:①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( )A :1个B :2个C :3个D :4个6.如图,△ABC 中,∠ABC 与∠ACB 的平分线交于点F ,过点F 作 DE ∥BC 交AB 于点D ,交AC 于点E ,那么下列结论:①△BDF 和△CEF 都是等腰三角形;②DE=BD+CE ;•③△ADE 的周长等于AB 与AC 的和; ④BF=CF .其中正确的有( )A .①②③B .①②③④C .①②D .①7.如图,Rt △ABC 中,CD 是斜边AB 上的高,角平分线AE 交CD第6题第7题(二)、填空题(每小题5分,共35分)8、等腰三角形的一内角等于50°,则其它两个内角各为 ; 9、如图,在Rt △ABC 中,∠C=90°,∠A=30°, AB +BC=12㎝,则AB= ㎝;10、如图,从镜子中看到一钟表的时针和分针,此时的实际时刻是________;11.已知P 1点关于x 轴的对称点P 2(3-2a ,2a -5)是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则P 1点的坐标是__________.12.等腰三角形的腰长与底边的比为4:3,一边长为24,则三角形的周长为_____________ ;13.如右图,在△ABC 中,BC=8,AB 的垂直平分线交BC 于D , AC 的垂直平分线交BC 与E ,则△ADE 的周长等于________.14.如下图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换, 若原来点A 坐标是(a ,b ),则经过第2013次变换后所得的A 点坐标是________.(三)、解答题(共50分)15、(6分) 如图所示,∠ABC 内有一点P ,在BA 、BC边上各取一点P 1、P 2,使△PP 1P 2的周长最小.(保留作图痕迹)CBA第1次关于x 轴对称第2次 关于y 轴对称 第3次 关于x 轴对称 第4次 关于y 轴对称16、(6分)已知A(a+b,1),B(―2,2a―b),若点A,B关于x轴对称,求a,b的值.15、(7分)如图,在△ABC中,∠B=90°,AB=BD,AD=CD,求∠CAD的度数。

人教版八年级数学上册《第十三章轴对称》单元测试卷及答案

人教版八年级数学上册《第十三章轴对称》单元测试卷及答案

人教版八年级数学上册《第十三章轴对称》单元测试卷及答案一、选择题(共8题)1.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称图形的是( )A.B.C.D.2.等腰三角形的两边长分别为4cm和8cm,则它的周长为( )A.16cm B.17cmC.20cm D.16cm或20cm3.如图,已知△ABC中∠ABC=40∘,∠ACB=60∘,DE垂直平分AC,连接AE,则∠BAE的度数是( )A.10∘B.15∘C.20∘D.25∘4.如图,在△ABC中BC=8cm,AB的垂直平分线交AB于点D,交AC于点E,△BCE的周长等于18cm,则AC的长等于( )A.6cm B.8cm C.10cm D.12cm5.如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB,AC于点D,E,若DE=5,BD=3,则线段CE的长为( )A.2B.1C.3D.46.如图,△ABC中AC=6,BC=3,边AB的垂直平分线交AC于点D,则△BDC的周长等于( )A.8B.9C.10D.117.如图,在△ABC中AB,AC的垂直平分线分别交BC于点E,F,若∠BAC=112∘,则∠EAF为( )A.38∘B.40∘C.42∘D.44∘8.如图所示,在△PMN中∠P=36∘,PM=PN=12,MQ平分∠PMN交PN于点Q,延长MN至点G,取NG=NQ,若MQ=a,则NG的长是( )A.a B.12+a C.12−a D.12+2a二、填空题(共5题)9.在直角坐标系中,点A(1,−2)关于原点对称的点的坐标是.10.如图,在△ABC中,高AD,BE相交于H点,若BH=AC,则∠ABC=°.11.如图,在△ABC中AB=AC=4,CD=1,AB的垂直平分线MN交AC于点D,则BD=.12.如图,在△ABC中∠C=90∘,DE是AB的垂直平分线,分别交AB,BC于点D,E,若∠B=30∘,DE=3则BC=.13.已知:如图,在△ABC中AB=AC,∠A=30∘,线段AB的垂直平分线交AB于点D,交AC于点,连接BE,则∠CBE=.三、解答题(共5题)14.完成下列各题.(1)画出△ABC关于y轴对称的图形△A1B1C1.(2)在x轴上找出点P,使得点P到点A、点B的距离之和最短(保留作图痕迹).15.如图,在△ABC中AB=AC,BD⊥AC于D,CE⊥AB于E,BD,CE相交于F.求证:AF平分∠BAC.16.如图,△ABC中,O是BC的中点,D是∠BAC平分线上的一点,且DO⊥BC,过点D分别作DM⊥AB于M,DN⊥AC于N,若AB=15,AC=6,求AM的长度.17.如图,在四边形ABCD中,M,N分别是CD,BC的中点,且AM⊥CD,AN⊥BC.(1) 求证:∠BAD=2∠MAN.(2) 连接BD,若∠MAN=70∘,∠DBC=40∘,求∠ADC.18.如图,△ABC中∠ABC,∠ACB的平分线相交于点P,过点P且平行于BC的直线分别交AB,AC于点D,点E.(1) 求证:DB=DP;(2) 若DB=5,DE=9,求CE的长.参考答案一、选择题(共8题)1. D2. C3. C4. C5. A6. B7. D8. C二、填空题(共5题)9. (−1,2)10. 4511. 312. 913. 45°三、解答题(共5题)14. 略15. ∵AB=AC(已知)∴∠ABC=∠ACB(等边对等角).∵BD,CE分别是高∴BD⊥AC,CE⊥AB(高的定义).∴∠CEB=∠BDC=90∘.∴∠ECB=90∘−∠ABC,∠DBC=90∘−∠ACB.∴∠ECB=∠DBC(等量代换).∴FB=FC(等角对等边)在△ABF和△ACF中{AB=AC, AF=AF, FB=FC,∴△ABF≌△ACF(SSS)∴∠BAF=∠CAF(全等三角形对应角相等)∴AF平分∠BAC.16. 连接BD,CD,如图∵O为BC中点DO⊥BC∴OD是BC的垂直平分线∴BD=CD∵AD是∠BAC的平分线DM⊥AB,DN⊥AC ∴DM=DN在Rt△BMD和Rt△CND中{BD=CD, DM=DN,∴Rt△BMD≌Rt△CND(HL)∴BM=CN∵DM⊥AB,DN⊥AC∴∠AMD=∠N=90∘在Rt△AMD和Rt△AND中{AD=AD, DM=DN,∴Rt△AMD≌Rt△AND(HL)∴AM=AN=AC+CN=AC+MB ∴AB+AC=AM+MB+AN−CN=AM+AN=2AM=21,∴AM=212.17.(1) 连接AC∵M是CD的中点AM⊥CD∴AM是线段CD的垂直平分线∴AC=AD又AM⊥CD∴∠3=∠4同理,∠1=∠2∠BAD即∠BAD=2∠MAN.∴∠2+∠3=12(2) ∵AM⊥CD,AN⊥BC,∠MAN=70∘∴∠BCD=360∘−90∘−90∘−70∘=110∘∴∠BDC=180∘−∠DBC−∠BCD=30∘∠BAD=2∠MAN=140∘∵AB=AC,AD=AC∴AB=AD∴∠ADB=∠ABD=20∘∴∠ADC=∠ADB+∠BDC=50∘.18.(1) ∵DE∥BC∴∠DPB=∠PBC∵BP平分∠ABC∴∠PBA=∠PBC∴∠DPB=∠PBA∴DB=DP.(2) 由(1)同理可得EC=EP∴DE=DP+EP=DB+CE∵DB=5,DE=9∴CE=4.。

人教版八年级上册数学 第13章 轴对称 单元测试卷(含答案)

人教版八年级上册数学 第13章 轴对称 单元测试卷(含答案)

人教版八年级上册数学第13章轴对称单元测试卷一.选择题1.点A(﹣3,1)关于x轴的对称点为()A.(﹣3,1)B.(﹣3,﹣1)C.(3,1)D.(3,﹣1)2.下列图形中,是轴对称图形的是()A.B.C.D.3.如图,在△ABC中,AB的垂直平分线交AB于点E,交BC于点D,△ADC的周长为10,且BC﹣AC=2,则BC的长为()A.4 B.6 C.8 D.104.作已知点关于某直线的对称点的第一步是()A.过已知点作一条直线与已知直线相交B.过已知点作一条直线与已知直线垂直C.过已知点作一条直线与已知直线平行D.不确定5.琪琪从镜中看到电子钟示数,则此时时间是()A.12:01 B.10:51 C.11:59 D.10:216.如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔,若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋7.如图,在平面直角坐标系中,△ABC的顶点都在格点上,如果将△ABC先沿y轴翻折,再向上平移3个单位长度,得到△A'B'C',那么点B的对应点B'的坐标为()A.(1,7)B.(0,5)C.(3,4)D.(﹣3,2)8.一个六边形的六个内角都是120°(如图),连续四条边的长依次为1,3,3,2,则这个六边形的周长是() A.13 B.14 C.15 D.169.如图,在∠MON内有一点P,点P关于OM的对称点是点G,点P关于ON的对称点是点H,连接GH分别交OM,ON 于点A,B.若GH的长是12cm,则△PAB的周长为()A.12 B.13 C.14 D.1510.等腰三角形的一边长为6,一边长为2,则该等腰三角形的周长为()A.8 B.10 C.14 D.10或14二.填空题11.已知点A(m,3)与点B(2,n)关于x轴对称,则(m+n)2020的值为.12.如图,在△ABC中,AB=AC,BD是∠ABC的平分线,DE∥AB与BC边相交于点E,若BE=3,CE=5,则△CDE的周长是.13.在Rt△ABC中,∠C=90°,∠A=30°,BC=5,斜边AB的长为.14.如图,在△ABC中,D为AB上一点,AD=DC=BC,且∠A=30°,AD=5,则AB=.15.在平面直角坐标系中,O为坐标原点,已知点A(2,﹣1),在x轴上确定一点P,使得△AOP为等腰三角形,则符合条件的点P有个.16.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(a,b),经过第1次变换后所得的A1坐标是(a,﹣b),则经过第2020次变换后所得的点A2020坐标是.17.如图,在△ABC中,AB=4,AC=6,BC=7,EF垂直平分BC,点P为直线EF上的任一点,则△ABP周长的最小值是.18.如果一个三角形是轴对称图形,且有一个角为60°,那么这个三角形是,它有条对称轴.19.已知a、b、c是△ABC的三边的长,且满足a2+2b2+c2﹣2b(a+c)=0,则此三角形的形状为.20.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n次碰到矩形的边时的点为P n,点P2019的坐标是.三.解答题21.如图所示,在△ABC中,AB,AC的垂直平分线分别交BC于D,E,垂足分别是M,N.(1)若△ADE的周长为6,求BC的长;(2)若∠BAC=100°,求∠DAE的度数.22.已知点A(a+2b,﹣1),B(﹣2,a﹣b),若点A、B关于y轴对称,求a+b的值.23.如图,在△ABC中,AB=AC=10cm,BC=6cm,∠A=50°,DE为AB的垂直平分线,分别交AB、AC于点E、D.(1)求△BCD的周长;(2)求∠CBD的度数.24.如图,在平面直角坐标系中,每个小正方形网格的边长为1个单位,格点三角形(顶点是网格线的交点的三角形)ABC如图所示.(1)请写出点A,B,C的坐标;(2)求△ABC的面积;(3)请作出△ABC关于y轴对称的△A1B1C1.25.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠MNA的度数是.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.26.如图,△ABC是等边三角形,DF⊥AB,DE⊥CB,EF⊥AC,求证:△DEF是等边三角形.27.如图,在△ABC中,CD是AB边上的高,BE是AC边上的中线,且BD=CE.(1)求证:点D在BE的垂直平分线上;(2)若∠ABE=20°,请求出∠BEC的度数.答案一.选择题1.B.2.C.3.B.4.B.5.D.6.D.7.C.8.C.9.A.10.C.二.填空题11.1.12.11.13.10.14.10.15.4.16.(a,﹣b).17.10.18.等边三角形,319..等边三角形. 20.(8,3).三.解答题21.解:(1)∵DM和EN分别垂直平分AB和AC,∴AD=BD,EA=EC,∵△ADE的周长为6,∴AD+DE+EA=6.∴BD+DE+EC=6,即BC=6;(2)∵DM和EN分别垂直平分AB和AC,∴AD=BD,EA=EC,∴∠B=∠BAD=∠ADE,∠C=∠EAC=∠AED.∵∠BAC=∠BAD+∠DAE+∠EAC=∠B+∠DAE+∠C=100°,∴∠B+∠C=100°﹣∠DAE,在△ADE中,∠DAE=180°﹣(∠ADE+∠AED)=180°﹣(2∠B+2∠C)∴∠DAE=180°﹣2(100°﹣∠DAE)∴∠DAE=20°.22.解:∵点A(a+2b,﹣1),B(﹣2,a﹣b)关于y轴对称,∴,解得.故a+b=0+1=1.23.(1)解:∵DE为AB的垂直平分线,∴DA=DB,∴△BCD的周长=AC+BC=10+6=16(cm);(2)解:∵AB=AC,∠A=50°,∴∠ABC=∠C=65°,∵DA=DB,∠A=∠ABD=50°,∴∠CBD=65°﹣50°=15°.24.解:(1)由图知,A(﹣4,5)、B(﹣2,1)、C(﹣1,3);(2)△ABC的面积为3×4﹣×2×3﹣×1×2﹣×2×4=4;(3)如图所示,△A1B1C1即为所求.25.解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°,∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°,故答案为:50°;(2)①∵MN是AB的垂直平分线,∴AM=BM,∴△BCM的周长=BM+CM+BC=AM+MC+BC=AC+BC,∵AB=AC=8cm,△MBC的周长是14cm,∴BC=14﹣8=6(cm);②当P与M重合时,△PBC的周长最小.理由:∵PB+PC=PA+PC,PA+PC≥AC,∴当P与M重合时,PA+PC=AC,此时PB+PC最小值等于AC的长,∴△PBC的周长最小值=AC+BC=8+6=14(cm).26.证明:∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=∠ACB=∠CAB=60°,∵DF⊥AB,DE⊥CB,EF⊥AC,∴∠DAB=∠ACF=∠CBE=90°,∴∠FAC=∠BCE=∠DBA=30°,∴∠D=∠E=∠F=180°﹣90°﹣30°=60°,∴DF=DE=EF,∴△DEF是等边三角形.27.(1)证明:连接DE,∵CD是AB边上的高,∴∠ADC=∠BDC=90°,∵BE是AC边上的中线,∴AE=CE,∴DE=CE,∵BD=CE,∴BD=DE,∴点D在BE的垂直平分线上;(2)解:∵DE=AE,∴∠A=∠ADE,∵∠ADE=∠DBE+∠DEB,∵BD=DE,∴∠DBE=∠DEB,∴∠A=∠ADE=2∠ABE,∵∠BEC=∠A+∠ABE,∴∠BEC=3∠ABE,∵∠ABE=20°,∴∠BEC=60°.。

八年级上册《数学》第13章轴对称练习题(含答案)

八年级上册《数学》第13章轴对称练习题(含答案)

113.1.1 轴对称练习题一、能力提升1.在下列图形中,成轴对称的是( )2.在如图所示的图形中,对称轴的数量小于3的是( )3.将一正方形纸片按如图所示的顺序折叠,将最后折叠的纸片沿虚线剪去上方的小三角形,然后将纸片展开,得到的图形是( )4.如图,正六边形ABCDEF 关于直线l 的轴对称图形是六边形A'B'C'D'E'F'.下列判断错误的是( )A.AB=A'B'B.BC ∥B'C'C.直线l ⊥BB'D.∠A'=120° 5.如图,图中的两个图形( )A.是轴对称图形B.成轴对称C.既是轴对称图形,又成轴对称D.既不是轴对称图形,又不成轴对称6.如图,正方形ABCD的边长是4cm,则图中阴影部分的面积是cm2.7.如图,△ABC与△ADE关于直线MN对称,BC与DE的交点F在直线MN 上.(1)指出两个三角形中的对称点;(2)指出图中相等的线段;(3)图中还有对称的三角形吗?8.两个大小不同的圆可以组成如图中的五种图形,请找出每个图形的对称轴,并说一说它们的对称轴有什么共同的特点.9.观察下面的图形,回答问题.(1)图形中有阴影的半圆与哪些半圆成轴对称?(2)整个图形是轴对称图形吗?它共有几条对称轴?二、创新应用10.我们知道,正三角形有三条对称轴,正方形有四条对称轴(如图).(1)请你再分别画出有三条对称轴、五条对称轴、六条对称轴的图形各一个.(2)正多边形对称轴的条数与边数n有什么关系?3答案:一、能力提升1.B2.D3.C剪下的小三角形展开恰好是两个小长方形.原正方形的上、下边不变,左右两边各剪去一个小长方形.4.B5.B因为题图中给出的是“两个图形”,所以只能是成轴对称.6.87.解:(1)对称点:点A与点A,点B与点D,点C与点E.(2)相等的线段:AB=AD,AE=AC,BC=DE,CF=EF,BF=DF.(3)有,为△AEF与△ACF,△ABF与△ADF.8.解:图略.五种图形的对称轴都是经过两圆心的直线,即直线O1O2是对称轴.9.分析:动手动脑,从两个不同的角度去观察:(1)将四个半圆形分开看,去找成轴对称的图形;(2)将它们看作一个图形,看它是否具有轴对称图形的特征.解:(1)半圆1分别与半圆2,4成轴对称.(2)整个图形是轴对称图形,它共有2条对称轴.二、创新应用10.解:(1)答案不唯一.例如:(2)正多边形对称轴的条数等于边数n.5。

人教版八年级数学上《第13章轴对称》单元测试含答案

人教版八年级数学上《第13章轴对称》单元测试含答案

第13章轴对称一、选择题(共9小题)1.在平面直角坐标系中,点A(﹣1,2)关于x轴对称的点B的坐标为()A.(﹣1,2)B.(1,2) C.(1,﹣2)D.(﹣1,﹣2)2.如图,△ABC与△DEF关于y轴对称,已知A(﹣4,6),B(﹣6,2),E(2,1),则点D的坐标为()A.(﹣4,6)B.(4,6) C.(﹣2,1)D.(6,2)3.在平面直角坐标系中,与点(1,2)关于y轴对称的点的坐标是()A.(﹣1,2)B.(1,﹣2)C.(﹣1,﹣2) D.(﹣2,﹣1)4.点(3,2)关于x轴的对称点为()A.(3,﹣2)B.(﹣3,2)C.(﹣3,﹣2) D.(2,﹣3)5.在平面直角坐标系中,点P(﹣3,2)关于直线y=x对称点的坐标是()A.(﹣3,﹣2) B.(3,2) C.(2,﹣3)D.(3,﹣2)6.在平面直角坐标系中,已知点A(2,3),则点A关于x轴的对称点的坐标为()A.(3,2) B.(2,﹣3)C.(﹣2,3)D.(﹣2,﹣3)7.点P(2,﹣5)关于x轴对称的点的坐标为()A.(﹣2,5)B.(2,5) C.(﹣2,﹣5) D.(2,﹣5)8.点A(1,﹣2)关于x轴对称的点的坐标是()A.(1,﹣2)B.(﹣1,2)C.(﹣1,﹣2) D.(1,2)9.已知点A(a,2013)与点B(2014,b)关于x轴对称,则a+b的值为()A.﹣1 B.1 C.2 D.3二、填空题(共16小题)10.平面直角坐标系中,点A(2,0)关于y轴对称的点A′的坐标为______.11.在平面直角坐标系中,点A的坐标是(2,﹣3),作点A关于x轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是(______,______).12.在平面直角坐标系中,点(﹣3,2)关于y轴的对称点的坐标是______.13.已知点P(3,a)关于y轴的对称点为Q(b,2),则ab=______.14.若点M(3,a)关于y轴的对称点是点N(b,2),则(a+b)2014=______.15.已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为______.16.点A(﹣3,0)关于y轴的对称点的坐标是______.17.点P(2,﹣1)关于x轴对称的点P′的坐标是______.18.在平面直角坐标系中,点A(2,﹣3)关于y轴对称的点的坐标为______.19.点P(﹣2,3)关于x轴的对称点P′的坐标为______.20.点P(3,2)关于y轴对称的点的坐标是______.21.点P(1,﹣2)关于y轴对称的点的坐标为______.22.点A(﹣3,2)关于x轴的对称点A′的坐标为______.23.若点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,则m+n=______.24.点P(2,3)关于x轴的对称点的坐标为______.25.已知P(1,﹣2),则点P关于x轴的对称点的坐标是______.三、解答题26.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).(1)将△ABC沿y轴正方向平移3个单位得到△A1B1C1,画出△A1B1C1,并写出点B1坐标;(2)画出△A1B1C1关于y轴对称的△A2B2C2,并写出点C2的坐标.27.如图,在边长为1个单位长度的小正方形网格中,给出了△ABC (顶点是网格线的交点).(1)请画出△ABC 关于直线l 对称的△A 1B 1C 1;(2)将线段AC 向左平移3个单位,再向下平移5个单位,画出平移得到的线段A 2C 2,并以它为一边作一个格点△A 2B 2C 2,使A 2B 2=C 2B 2.28.在平面直角坐标系中,△ABC 的顶点坐标A (﹣4,1),B (﹣2,1),C (﹣2,3)(1)作△ABC 关于y 轴的对称图形△A 1B 1C 1;(2)将△ABC 向下平移4个单位长度,作出平移后的△A 2B 2C 2;(3)求四边形AA 2B 2C 的面积.29.在平面直角坐标系中,已知点A (﹣3,1),B (﹣1,0),C (﹣2,﹣1),请在图中画出△ABC ,并画出与△ABC 关于y 轴对称的图形.30.如图,△ABC 与△DEF 关于直线l 对称,请仅用无刻度的直尺,在下面两个图中分别作出直线l .第13章轴对称参考答案一、选择题(共9小题)1.D;2.B;3.A;4.A;5.C;6.B;7.B;8.D;9.B;二、填空题(共16小题)10.(-2,0);11.-2;3;12.(3,2);13.-6;14.1;15.25;16.(3,0);17.(2,1);18.(-2,-3);19.(-2,-3);20.(-3,2);21.(-1,-2);22.(-3,-2);23.0;24.(2,-3);25.(1,2);三、解答题(共5小题)26.27.28.29.30.。

人教版八年级上册第13章《轴对称》单元测试含答案

人教版八年级上册第13章《轴对称》单元测试含答案

人教版八年级上册第13章《轴对称》单元测试考试分值:120分;考试时间:100分钟;姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共7小题,满分35分,每小题5分)1.(5分)下列体育运动标志中,从图案看不是轴对称图形的有()个.A.4 B.3 C.2 D.12.(5分)在平面直角坐标系中,点(1,1)关于y轴对称的点的坐标是()A.(﹣1,﹣1)B.(1,﹣1)C.(﹣1,1)D.(1,1)3.(5分)如图,△ABC中,AB=AC,∠A=100°,BD平分∠ABC,则∠ABD的度数为()A.30°B.40°C.20°D.25°4.(5分)已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm5.(5分)如图,在2×2的方格纸中有一个以格点为顶点的△ABC,则与△ABC 成轴对称且以格点为顶点三角形共有()个.A.3个 B.4个 C.5个 D.6个6.(5分)△ABC中,AD是中线,点D到AB,AC的距离相等,则△ABC一定是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形7.(5分)如图,△ABC中,∠BAC=60°,∠ABC、∠ACB的平分线交于E,D是AE延长线上一点,且∠BDC=120°.下列结论:①∠BEC=120°;②DB=DE;③∠BDE=2∠BCE.其中正确结论的个数为()A.0 B.1 C.2 D.3评卷人得分二.填空题(共7小题,满分35分,每小题5分)8.(5分)一个三角形可被剖成两个等腰三角形,原三角形的一个内角为36度,求原三角形最大内角的所有可能值.9.(5分)在Rt△ABC中,若∠C=90°,AB=,∠A=30°,则BC=.10.(5分)如图所示,一排数字是球衣数字在镜中的像,则原数是.11.(5分)已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m 的取值范围是.12.(5分)已知一个等腰三角形的两边长分别是2和5,那么这个等腰三角形的周长为.13.(5分)如下图,在Rt△ABC中,∠C=90°,DE垂直平分AB,垂足为E,D 在BC上,已知∠CAD=32°,则∠B=度.14.(5分)图中的正五角星有条对称轴,图中与∠A的2倍互补的角有个.评卷人得分三.解答题(共7小题,满分50分)15.(6分)用三角板和直尺作图.(不写作法,保留痕迹)如图,点A,B在直线l的同侧.(1)试在直线l上取一点M,使MA+MB的值最小.(2)试在直线l上取一点N,使NB﹣NA最大.16.(6分)在平面直角坐标系中,O为坐标原点,点A的坐标为(2x+y﹣3,x ﹣2y),它关于x轴的对称点A1的坐标为(x+3,y﹣4),关于y轴的对称点为A2.(1)求A1、A2的坐标;(2)证明:O为线段A1A2的中点.17.(7分)已知:如图,BD=DE=EF=FG.(1)若∠ABC=20°,∠ABC内符合条件BD=DE=EF=FG的折线(如DE、EF、FG)共有几条?若∠ABC=10°呢?试一试,并简述理由.(2)若∠ABC=m°(0<m<90),你能找出一个折线条数n与m之间的关系吗?若有,请找出来;若无,请说明理由.18.(6分)如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.19.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.20.(8分)如图△ABC为等边三角形,直线a∥AB,D为直线BC上一点,∠ADE交直线a于点E,且∠ADE=60°.(1)若D在BC上(如图1)求证CD+CE=CA;(2)若D在CB延长线上,CD、CE、CA存在怎样数量关系,给出你的结论并证明.21.(10分)已知:△ABC中,∠B、∠C的角平分线相交于点D,过D作EF∥BC交AB于点E,交AC于点F,求证:BE+CF=EF.参考答案与试题解析一.选择题(共7小题,满分35分,每小题5分)1.(5分)下列体育运动标志中,从图案看不是轴对称图形的有()个.A.4 B.3 C.2 D.1【分析】根据轴对称图形的概念:关于某条直线对称的图形叫轴对称图形.求解【解答】解:(1)(2)(4)都不是轴对称图形,只有(3)是轴对称图形.故选:B.【点评】轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.2.(5分)在平面直角坐标系中,点(1,1)关于y轴对称的点的坐标是()A.(﹣1,﹣1)B.(1,﹣1)C.(﹣1,1)D.(1,1)【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;即点(x,y)关于y轴的对称点的坐标是(﹣x,y)即可得到点(1,1)关于y轴对称的点的坐标.【解答】解:点(1,1)关于y轴的对称点的坐标是(﹣1,1),故选:C.【点评】此题主要考查了关于x轴、y轴对称的点的坐标规律,比较容易,关键是熟记规律:(1)关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.(2)关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.3.(5分)如图,△ABC中,AB=AC,∠A=100°,BD平分∠ABC,则∠ABD的度数为()A.30°B.40°C.20°D.25°【分析】根据等腰三角形的性质就可以求出∠ABC和∠C的度数,由角平分线的性质就可以求出∠ABD的度数.【解答】解:∵AB=AC,∠A=100°,∴∠ABC=∠C=40°.∵BD平分∠ABC,∴∠ABD=∠DBC=20°.故选:C.【点评】本题主要考查了等腰三角形的性质,解题的关键是掌握角平分线的性质,此题比较简单.4.(5分)已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm【分析】根据线段的垂直平分线的性质得到GA=GB,根据三角形的周长公式计算即可.【解答】解:∵DG是AB的垂直平分线,∴GA=GB,∵△AGC的周长为31cm,∴AG+GC+AC=BC+AC=31cm,又AB=20cm,∴△ABC的周长=AB+AC+BC=51cm,故选:C .【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5.(5分)如图,在2×2的方格纸中有一个以格点为顶点的△ABC ,则与△ABC 成轴对称且以格点为顶点三角形共有( )个.A .3个B .4个C .5个D .6个【分析】解答此题首先找到△ABC 的对称轴,EH 、GC 、AD ,BF 等都可以是它的对称轴,然后依据对称找出相应的三角形即可.【解答】解:与△ABC 成轴对称且以格点为顶点三角形有△ABG 、△CDF 、△AEF 、△DBH ,△BCG 共5个,故选:C .【点评】本题主要考查轴对称的性质;找着对称轴后画图是正确解答本题的关键.6.(5分)△ABC 中,AD 是中线,点D 到AB ,AC 的距离相等,则△ABC 一定是( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形【分析】根据中线的性质得出S △ABD =S △ACD ,再由点D 到AB ,AC 的距离相等,得出AB=AC ,从而得出△ABC 一定是等腰三角形.【解答】解:∵AD是中线,=S△ACD,∴S△ABD∵D到AB,AC的距离相等,∴AB=AC,∴△ABC一定是等腰三角形,故选:B.【点评】本题考查了等腰三角形的判定以及中线的性质,掌握三角形的中线把三角形的面积分成相等的两部分是解题的关键.7.(5分)如图,△ABC中,∠BAC=60°,∠ABC、∠ACB的平分线交于E,D是AE延长线上一点,且∠BDC=120°.下列结论:①∠BEC=120°;②DB=DE;③∠BDE=2∠BCE.其中正确结论的个数为()A.0 B.1 C.2 D.3【分析】根据三角形内角和等于180°求出∠ABC+∠ACB,再根据角平分线的定义求出∠EBC+∠ECB,然后求出∠BEC=120°,判断①正确;过点D作DF⊥AB于F,DG⊥AC的延长线于G,根据角平分线上的点到角的两边的距离相等可得DF=DG,再求出∠BDF=∠CDG,然后利用“角边角”证明△BDF和△CDG全等,根据全等三角形对应边相等可得BD=CD,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB,根据等角对等边可得BD=DE,判断②正确,再求出B,C,E三点在以D 为圆心,以BD为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE,判断③正确.【解答】解:∵∠BAC=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∵BE、CE分别为∠ABC、∠ACB的平分线,∴∠EBC=∠ABC,∠ECB=∠ACB,∴∠EBC+∠ECB=(∠ABC+∠ACB)=×120°=60°,∴∠BEC=180°﹣(∠EBC+∠ECB)=180°﹣60°=120°,故①正确;如图,过点D作DF⊥AB于F,DG⊥AC的延长线于G,∵BE、CE分别为∠ABC、∠ACB的平分线,∴AD为∠BAC的平分线,∴DF=DG,∴∠FDG=360°﹣90°×2﹣60°=120°,又∵∠BDC=120°,∴∠BDF+∠CDF=120°,∠CDG+∠CDF=120°,∴∠BDF=∠CDG,∵在△BDF和△CDG中,,∴△BDF≌△CDG(ASA),∴DB=CD,∴∠DBC=(180°﹣120°)=30°,∴∠DBE=∠DBC+∠CBE=30°+∠CBE,∵BE平分∠ABC,AE平分∠BAC,∴∠ABE=∠CBE,∠BAE=∠BAC=30°,根据三角形的外角性质,∠DEB=∠ABE+∠BAE=∠ABE+30°,∴∠DBE=∠DEB,∴DB=DE,故②正确;∵DB=DE=DC,∴B,C,E三点在以D为圆心,以BD为半径的圆上,∴∠BDE=2∠BCE,故③正确;综上所述,正确的结论有①②③共3个.故选:D.【点评】本题考查了角平分线的性质,全等三角形的判定与性质,等角对等边的性质,圆内接四边形的判定,同弧所对的圆周角等于圆心角的一半性质,综合性较强,难度较大,特别是③的证明.二.填空题(共7小题,满分35分,每小题5分)8.(5分)一个三角形可被剖成两个等腰三角形,原三角形的一个内角为36度,求原三角形最大内角的所有可能值.【分析】分为以下情况:①原三角形是锐角三角形,最大角是72°的情况;②原三角形是直角三角形,最大角是90°的情况;③原三角形是钝角三角形,最大角是108°的情况;④原三角形是钝角三角形,最大角是126°的情况;⑤原三角形是钝角三角形,最大角是132°的情况.【解答】解:①原三角形是锐角三角形,最大角是72°的情况如图所示:∠ABC=∠ACB=72°,∠A=36°,AD=BD=BC;②原三角形是直角三角形,最大角是90°的情况如图所示:∠ABC=90°,∠A=36°,AD=CD=BD;③原三角形是钝角三角形,最大角是108°的情况如图所示:④原三角形是钝角三角形,最大角是126°的情况如图所示:∠ABC=126°,∠C=36°,AD=BD=BC;⑤原三角形是钝角三角形,最大角是132°的情况如图所示:∠C=132°,∠ABC=36°,AD=BD,CD=CB.综上,原三角形最大内角的所有可能值为72°,90°,108°,132°,126°.【点评】本题主要考查了等腰三角形的性质及三角形内角和定理;分情况讨论是解决本题的关键,本题有一定的难度.9.(5分)在Rt△ABC中,若∠C=90°,AB=,∠A=30°,则BC=5.【分析】根据含30度角的直角三角形的性质推出BC=AB,代入求出即可.【解答】解:∵∠C=90°,∠A=30°,AB=10,∴BC=AB=×10=5,故答案为:5.【点评】本题主要考查对含30度角的直角三角形的性质的理解和掌握,能熟练地运用性质进行计算是解此题的关键.10.(5分)如图所示,一排数字是球衣数字在镜中的像,则原数是251.【分析】易得所求的号码与看到的号码关于竖直的一条直线成轴对称,作出相应图形即可求解.【解答】解:由题意得:251|125.故答案为:251.【点评】考查了镜面对称,解决本题的关键是找到相应的对称轴;难点是作出相应的对称图形;注意2,5的关于竖直的一条直线的轴对称图形是5,2.11.(5分)已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m 的取值范围是m<.【分析】直接利用关于x轴对称点的性质得出M点位置,进而得出答案.【解答】解:∵点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,∴点M在第四象限,∴,解得:m<.故答案为:m<.【点评】此题主要考查了关于x轴对称点的性质以及不等式组的解法,正确解不等式是解题关键.12.(5分)已知一个等腰三角形的两边长分别是2和5,那么这个等腰三角形的周长为12.【分析】题目给出等腰三角形有两条边长为2和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:分情况讨论:①当三边是2,2,5时,2+2<5,不符合三角形的三边关系,应舍去;②当三角形的三边是2,5,5时,符合三角形的三边关系,此时周长是12.故填12.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.(5分)如下图,在Rt△ABC中,∠C=90°,DE垂直平分AB,垂足为E,D 在BC上,已知∠CAD=32°,则∠B=29度.【分析】利用中垂线和三角形外角性质计算.【解答】解:∠C=90°,∠CAD=32°⇒∠ADC=58°,DE为AB的中垂线⇒∠BAD=∠B又∠BAD+∠B=58°⇒∠B=29°故填29°【点评】本题涉及中垂线和三角形外角性质,难度中等.14.(5分)图中的正五角星有5条对称轴,图中与∠A的2倍互补的角有10个.【分析】正五角星经过角的顶点和中心点的直线都是它的对称轴,有5条对称轴,且五角星的五个角相等,从而求得答案.【解答】解:正五角星经过角的顶点和中心点的直线都是它的对称轴,所以有5条对称轴.与∠A的2倍即是∠AIE,与该角互为补角的角有∠AIC和∠DIE共两个,同理可得出其他八个符合条件的角.故答案为:5,10.【点评】本题考查了轴对称的性质,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形,这条直线是它的对称轴.三.解答题(共7小题,满分50分)15.(6分)用三角板和直尺作图.(不写作法,保留痕迹)如图,点A,B在直线l的同侧.(1)试在直线l上取一点M,使MA+MB的值最小.(2)试在直线l上取一点N,使NB﹣NA最大.【分析】(1)作点A关于直线l的对称点,再连接解答即可;(2)连接BA,延长BA交直线l于N,当N即为所求;【解答】解:(1)如图所示:(2)如图所示;理由:∵NB﹣NA≤AB,∴当A、B、N共线时,BN﹣NA的值最大.【点评】此题主要考查有关轴对称﹣﹣最短路线的问题中的作图步骤,是此类问题的基础,需熟练掌握.16.(6分)在平面直角坐标系中,O为坐标原点,点A的坐标为(2x+y﹣3,x ﹣2y),它关于x轴的对称点A1的坐标为(x+3,y﹣4),关于y轴的对称点为A2.(1)求A1、A2的坐标;(2)证明:O为线段A1A2的中点.【分析】(1)根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”列方程组求出x、y的值,从而得到点A的坐标,再根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”写出点A1的坐标,根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”写出点A2的坐标;(2)设经过OA1的直线解析式为y=kx,利用待定系数法求一次函数解析式求出直线解析式,再求出点A2在直线上,然后利用勾股定理列式求出OA1=OA2,最后根据线段中点的定义证明即可.【解答】(1)解:∵点A(2x+y﹣3,x﹣2y)与A1(x+3,y﹣4)关于x轴对称,∴,解得,所以,A(8,3),所以,A1(8,﹣3),A2(﹣8,3);(2)证明:设经过O、A1的直线解析式为y=kx,易得:y OA1=﹣x,又∵A2(﹣8,3),∴A2在直线OA1上,∴A1、O、A2在同一直线上,由勾股定理知OA1=OA2==,∴O为线段A1A2的中点.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.17.(7分)已知:如图,BD=DE=EF=FG.(1)若∠ABC=20°,∠ABC内符合条件BD=DE=EF=FG的折线(如DE、EF、FG)共有几条?若∠ABC=10°呢?试一试,并简述理由.(2)若∠ABC=m°(0<m<90),你能找出一个折线条数n与m之间的关系吗?若有,请找出来;若无,请说明理由.【分析】(1)由已知可得到几组相等的角,再根据三角形外角的性质可得到∠EDF,∠FEG,∠AFG,∠AMG分别与∠B的关系,再根据三角形内角和定理即可求解.(2)结合第(1)题,根据三角形内角和定理可知,需满足mn<90°,从而不难求解.【解答】解:(1)有4条,若∠ABC=10°,有8条.当∠ABC=20°,∵BD=DE=EF=FG=GM,∴∠DEB=∠B,∠EDF=∠EFD,∠FEG=∠FGE,∠GFM=∠FMG∵∠EDF=2∠B=40°,∠FEG=3∠B=60°,∠AFG=4∠B=80°,∠AMG=5∠B=100°,∴同理:∠AMG将成为下一个等腰三角形的底角∵100°+100°>180°∴不会再由下一条折线∴共有四条拆线,分别是:DE、EF、FG,GM.同理:当∠ABC=10°,有8条符合条件的折线.(2)由(1)可知∠EDF=2∠B=2m°,∠FEG=3∠B=3m°,∠AFG=4∠B=4m°,∵根据三角形内角和定理可知,需满足mn<90°,∴n<的整数.【点评】此题主要考查等腰三角形的性质,三角形外角和性质及三角形内角和定理的综合运用.18.(6分)如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.【分析】(1)由于AB′是AB的折叠后形成的,所以∠AB′E=∠B=∠D=90°,∴B′E ∥DC;(2)利用平行线的性质和全等三角形求解.【解答】解:(1)由于AB′是AB的折叠后形成的,∠AB′E=∠B=∠D=90°,∴B′E∥DC;(2)∵折叠,∴△ABE≌△AB′E,∴∠AEB′=∠AEB,即∠AEB=∠BEB′,∵B′E∥DC,∴∠BEB′=∠C=130°,∴∠AEB=∠BEB′=65°.【点评】本题考查了三角形全等的判定及性质;把纸片按如图所示折叠,使点B 落在AD边上的B′点,则△ABE≌△AB′E,利用全等三角形的性质和平行线的性质及判定求解.19.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.【分析】欲证明AO垂直平分BC,只要证明AB=AC,BO=CO即可;【解答】证明:∵BD⊥AC,CE⊥AB,∴∠BEC=∠BDC=90°,在Rt△BEC和Rt△CDB中,∴Rt△BEC≌Rt△CDB (HL),∴∠ABC=∠ACB,∠ECB=∠DBC,∴AB=AC,BO=OC,∴点A、O在BC的垂直平分线上,∴AO垂直平分BC.【点评】本题考查全等三角形的判定和性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.20.(8分)如图△ABC为等边三角形,直线a∥AB,D为直线BC上一点,∠ADE 交直线a于点E,且∠ADE=60°.(1)若D在BC上(如图1)求证CD+CE=CA;(2)若D在CB延长线上,CD、CE、CA存在怎样数量关系,给出你的结论并证明.【分析】(1)实际上也就是求两条线段相等,在AC上取一点F,使CF=CD,然后求证△ADF≌△EDC即可.(2)归根究底仍是求两条线段的问题,通过求证全等,最终得出几条边之间的关系.【解答】(1)证明:在AC上取点F,使CF=CD,连接DF.∵∠ACB=60°,∴△DCF为等边三角形.∴∠3+∠4=∠4+∠5=60°.∴∠3=∠5.∵∠1+∠ADE=∠2+∠ACE,∴∠1=∠2.在△ADF和△EDC中,,∴△ADF≌△EDC(AAS).∴CE=AF.∴CD+CE=CF+AF=CA.(2)解:CD、CE、CA满足CE+CA=CD;证明:在CA延长线上取CF=CD,连接DF.∵△ABC为等边三角形,∴∠ACD=60°,∵CF=CD,∴△FCD为等边三角形.∵∠1+∠2=60°,∵∠ADE=∠2+∠3=60°,∴∠1=∠3.在△DFA和△DCE中,∴△DFA≌△DCE(ASA).∴AF=CE.∴CE+CA=FA+CA=CF=CD.注:证法(二)以CD为边向下作等边三角形,可证.证法(三)过点D分别向CA、CE作垂线,也可证.【点评】本题考查了全等三角形的判定与性质及等边三角形的性质;可围绕结论寻找全等三角形,运用全等三角形的性质判定线段相等,证得三角形全等是正确解答本题的关键.21.(10分)已知:△ABC中,∠B、∠C的角平分线相交于点D,过D作EF∥BC交AB于点E,交AC于点F,求证:BE+CF=EF.【分析】根据角平分线定义和平行线性质求出∠EDB=∠EBD,推出DE=BE,同理得出CF=DF,即可求出答案.【解答】证明:∵BD平分∠ABC,∴∠EBD=∠DBC,∵EF∥BC,∴∠EDB=∠DBC,∴∠EDB=∠EBD,∴DE=BE,同理CF=DF,∴EF=DE+DF=BE+CF,即BE+CF=EF.【点评】本题考查了角平分线定义,平行线性质,等腰三角形的判定的应用,注意:等角对等边.。

2022-2023学年人教版数学八年级上册第十三章《轴对称》单元测试

2022-2023学年人教版数学八年级上册第十三章《轴对称》单元测试

人教版数学八年级上册《第十三章轴对称》单元测试一、单选题(本大题共15小题,共45分)1.(3分)在平面直角坐标系中,点P(3,-2)关于y轴的对称点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.(3分)如图,∠DAE=∠ADE=15°,DE//AB,DF⊥AB,若AE=6,则DF等于()A. 2B. 3C. 4D. 63.(3分)直角坐标系中,点(-2,3)与(-2,-3)关于()A. 原点中心对称B. x轴轴对称C. y轴轴对称D. 以上都不对4.(3分)一个等腰三角形的顶角是50°,则它的底角是()A. 65°B. 70°C. 75°D. 100°5.(3分)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A. 9cmB. 12cmC. 15cmD. 12cm或15cm6.(3分)在等腰三角形ABC中,AB=AC,那么下列说法中不正确的是()A. BC边上的高线和中线互相重合B. AB和AC边上的中线相等C. 三角形ABC中∠B和∠C的角平分线相等D. 等腰三角形最多有一条对称轴7.(3分)2022年北京和张家口成功举办了第24届冬奥会和冬残奥会.下面关于奥运会的剪纸图片中是轴对称图形的是()A. B.C. D.8.(3分)下列轴对称图形中,只用一把无刻度的直尺不能画出对称轴的是()A. 菱形B. 矩形C. 等腰梯形D. 正五边形9.(3分)若ΔABC是等边三角形,且点D、E分别是AC、BC上动点,始终保持CD=BE,不与顶点重合,则∠AFD的度数是()度.A. 30B. 45C. 60D. 无法确定10.(3分)下列图形中,是轴对称图形的个数是()A. 1B. 2C. 3D. 411.(3分)点M(3,-4)关于x轴的对称点M′的坐标是()A. (3,4)B. (-3,-4)C. (-3,4)D. (-4,3)12.(3分)ΔABC中,∠A:∠B:∠C=1:2:3,最小边BC=3cm,则最长边AB的长为()A. 9cmB. 8cmC. 7cmD. 6cm13.(3分)点(5,-6)关于x轴的对称点的坐标是()A. (-6,5)B. (-5,-6)C. (5,6)D. (-5,6)14.(3分)在四边形ABCD中,AB=AD,BC=CD,则两对角线AC与BD的关系是()A. AC垂直平分BDB. BD垂直平分ACC. AC与BD互相垂直平分D. BD平分∠ADC15.(3分)七巧板是我国古代劳动人民的发明之一,被誉为“东方魔板”.将右图的七巧板的其中几块,拼成一个多边形,为轴对称图形的是()A. B.C. D.二、填空题(本大题共5小题,共15分)16.(3分)如图,在3×3的正方形网格中,网格纸的交点称为格点.已知A,B是两格点,C 也是图中的格点,且以A,B,C为顶点的三角形是等腰三角形,则满足条件的点C的个数是________.17.(3分)已知点P(−1,2),那么点P关于直线x=1的对称点Q的坐标是______.18.(3分)已知点P(a-1,5)和点Q(2,b-1)关于x轴对称,则(a+b)2012=____.19.(3分)有一三角形纸片ABC,∠A=80°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两纸片均为等腰三角形,则∠C的度数可以是______.20.(3分)已知等腰三角形周长为12,一边长为5,则它另外两边差的绝对值是______.三、解答题(本大题共5小题,共40分)21.(8分)如图,在正方形网格中,每个小正方形的边长为1,格点ΔABC的顶点A、C的坐标分别为(−4,5)、(−1,3).(1)请在图中正确作出平面直角坐标系;(2)请作出ΔABC关于y轴对称的ΔA′B′C′;(3)点B′的坐标为 ______ ,ΔA′B′C′的面积为 ______ .22.(8分)如图,在平面直角坐标系中,A(1,3),B(−4,1),C(−3,−2)(1)画出ΔABC关于y轴对称的ΔA1B1C1;(2)ΔA1B1C1的面积是______;(3)在如图的网格中规定每个小正方形的顶点叫做格低,点D是第二象限内的格点,若ΔDBC是等腰三角形,则点D的坐标是______.23.(8分)在图示的方格纸中:(1)作出ΔABC关于MN对称的图形ΔA1B1C1;(2)说明ΔA2B2C2是由ΔA1B1C1经过怎样的平移得到的?(3)若方格的边长为1,求出四边形A1A2C2C1的面积.24.(8分)在等边ΔABC中,点E是AB上的动点,点E与点A、B不重合,点D在CB的延长线上,且EC=ED.(1)如图1,若点E是AB的中点,求证:BD=AE;(2)如图2,若点E不是AB的中点时,(1)中的结论“BD=AE”能否成立?若不成立,请直接写出BD与AE数理关系,若成立,请给予证明.25.(8分)如图1,等边ΔABC中,D是AB上一点,以CD为边向上作等边ΔCDE,连结AE.(1)求证:AE//BC;(2)如图2,若点D在AB的延长线上,其余条件均不变,(1)中结论是否成立?请说明理由.答案和解析1.【答案】C;【解析】∵点P(3,-2)关于y轴的对称点是(-3,-2),∴点P(3,-2)关于y轴的对称点在第三象限.故选C.2.【答案】B;【解析】解:如图,∵∠DAE=∠ADE=15°,∴∠DEG=∠DAE+∠ADE=15°+15°=30°,DE=AE=6,过D作DG⊥AC于G,则DG=12DE=12×6=3,∵DE//AB,∴∠BAD=∠ADE,∴∠BAD=∠CAD,∵DF⊥AB,DG⊥AC,∴DF=DG=3.故选:B.过D作DG⊥AC于G,根据三角形的一个外角等于和它不相邻的两个内角的和求出∠DEG= 30°,再根据直角三角形30°角所对的直角边等于斜边的一半求出DG的长度是3,又DE//AB,所以∠BAD=∠ADE,所以AD是∠BAC的平分线,根据角平分线上的点到角的两边的距离相等,得DF=DG.这道题主要考查三角形的外角性质,直角三角形30°角所对的直角边等于斜边的一半的性质,平行线的性质和角平分线上的点到角的两边的距离相等的性质,熟练掌握性质是解答该题的关键.3.【答案】B;【解析】解:点(-2,3)与(-2,-3)关于x轴轴对称.故选:B.4.【答案】A;【解析】解:∵三角形为等腰三角形,且顶角为50°,∴底角=(180°−50°)÷2=65°.故选:A.等腰三角形中,给出了顶角为50°,可以结合等腰三角形的性质及三角形的内角和定理直接求出底角,答案可得.这道题主要考查了等腰三角形的性质;等腰三角形中只要知道一个角,就可求出另外两个角,这种方法经常用到,要熟练掌握.5.【答案】C;【解析】解:(1)当3cm为腰时,因为3+3=6cm,不能构成三角形,故舍去;(2)当6cm为腰时,符合三角形三边关系,所以其周长=6+6+3=15cm.故选:C.题中没有指明哪个是底哪个是腰,则应该分两种情况进行分析,从而得到答案.该题考查了三角形三边关系与周长的求解.6.【答案】D;【解析】该题考查了等腰三角形的两腰相等,等边对等角,三线合一的性质以及轴对称图形的定义,是基础题型,比较简单.根据等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等.(简称:等边对等角);③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(三线合一),和根据轴对称图形的对称轴的定义即可求解.解:A、BC边上的高线和中线互相重合,故本选项正确,不符合题意;B、AB和AC边上的中线相等,故本选项正确,不符合题意;C、三角形ABC中∠B和∠C的角平分线相等,故本选项正确,不符合题意;D、等腰三角形最多有3条对称轴,故本选项不正确,符合题意.故选D.7.【答案】D;【解析】解:A.不是轴对称图形,故A选项不符合题意;B.不是轴对称图形,故B选项不符合题意;C.不是轴对称图形,故C选项不符合题意;D.是轴对称图形,故D选项符合题意;故选:D.根据轴对称图形的定义,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,进行判定即可得出答案.此题主要考查了轴对称图形,熟练掌握轴对称图形的定义进行求解是解决本题的关键.8.【答案】B;【解析】解:A、菱形,对角线所在的直线即为对称轴,可以用直尺画出,故A选项错误;B、矩形,对边中点的所在的直线,只用一把无刻度的直尺无法画出,故B选项正确;C、等腰梯形,延长两腰相交于一点,作两对角线相交于一点,根据等腰梯形的对称性,过这两点的直线即为对称轴,故C选项错误;D、正五边形,作一条对角线把正五边形分成一等腰三角形与以等腰梯形,根据正五边形的对称性,过等腰三角形的顶点与梯形的对角线的交点的直线即为对称轴,故D选项错误.故选:B.针对各图形的对称轴,对各选项分析判断后利用排除法求解.这道题主要考查了轴对称图形的对称轴,熟练掌握常见多边形的对称轴是解答该题的关键.9.【答案】C;【解析】解:∵ΔABC是等边三角形,∴AB=AC,∠ABE=∠BCD,∠ABF+∠CBF=60°,在ΔABE和ΔBCD中,{AB=AC∠ABE=∠BCDCD=BE,∴ΔABE≌ΔBCD(SAS),∴∠BAF=∠CBF,∴∠AFD=∠ABF+∠BAF=∠ABF+∠CBF=60°,故选:C.抓住题中“等边三角形的每个内角是60度”这一关键点入手,三角形全等后,再利用对应角相等进行等量代换,结合外角的知识,得出∠AFD的大小.此题主要考查了全等三角形的判定与性质,结合等边三角形的性质,外角等知识解决问题,体现数学的转化思想,培养学生的推理能力,综合应用能力.10.【答案】B;【解析】解:第一个图形、第三个图形是轴对称图形,共2个.故选:B.根据轴对称图形的概念求解.此题主要考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.11.【答案】A;【解析】点M(3,-4)关于x轴的对称点M′的坐标是(3,4).故选A.12.【答案】D;【解析】解:设∠A、∠B、∠C分别为k、2k、3k,则k+2k+3k=180°,解得k=30°,2k=60°,3k=90°,∵最小边BC=3cm,∴最长边AB=2BC=2×3=6cm.故选D.根据比例设∠A、∠B、∠C分别为k、2k、3k,利用三角形内角和定理求出三个角,判断出ΔABC是直角三角形,并且有一个角是30°,然后根据30°角所对的直角边等于斜边的一半解答.该题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,利用“设k法”表示出三个角求解更加简便.13.【答案】C;【解析】解:点(5,-6)关于x轴的对称点的坐标是(5,6).故选C.14.【答案】A;【解析】解:∵AB=AD,∴点A在线段BD的垂直平分线,∵BC=CD,∴点C在线段BD的垂直平分线,∴AC垂直平分线段BD,故选:A.只要证明直线AC是线段BD的垂直平分线即可;此题主要考查线段的垂直平分线的判定,解答该题的关键是熟练掌握基本知识,属于中考常考题型,本题也可以用全等三角形的知识解决问题.15.【答案】C;【解析】解:A.不是轴对称图形,故A选项不符合题意;B.不是轴对称图形,故B选项不符合题意;C.是轴对称图形,故C选项符合题意;D.不是轴对称图形,故D选项不符合题意;故选:C.根据轴对称图形的定义,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,进行判定即可得出答案.此题主要考查了轴对称图形,熟练掌握轴对称图形的定义进行求解是解决本题的关键.16.【答案】8;【解析】该题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形.分类讨论思想是数学解题中很重要的解题思想.分AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,AB是底边时,根据线段垂直平分线上的点到线段两端点的距离相等,AB垂直平分线上的格点都可以作为点C,然后相加即可得解.解:如图,分情况讨论:①AB为等腰ΔABC的底边时,符合条件的C点有4个;②AB为等腰ΔABC其中的一条腰时,符合条件的C点有4个.故答案为8.17.【答案】(3,2);【解析】解:设点Q的坐标为(x,y),∵点P(−1,2)与点Q(x,y)关于直线x=1的对称,∴y=2,−1+x2=1,∴x=3,∴点Q的坐标为(3,2),故答案为:(3,2).根据关于直线x=1的对称点的连线的中点在对称轴上,纵坐标相等进行解答.考查了坐标与图形变化−对称,熟练掌握轴对称的性质以及对称点的坐标关系是解答该题的关键.18.【答案】1;【解析】解:∵点P(a-1,5)和点Q(2,b-1)关于x轴对称,∴a-1=2,b-1=-5,解得a=3,b=-4,∴(a+b)2012=(3-4)2012=1.故答案为:1.19.【答案】25°或40°或10°;【解析】解:由题意知ΔABD与ΔDBC均为等腰三角形,对于ΔABD可能有①AB=BD,此时∠ADB=∠A=80°,∴∠BDC=180°−∠ADB=180°−80°=100°,∠C=12(180°−100°)=40°,①AB=AD,此时∠ADB=12(180°−∠A)=12(180°−80°)=50°,∴∠BDC=180°−∠ADB=180°−50°=130°,∠C=12(180°−130°)=25°,①AD=BD,此时,∠ADB=180°−2×80°=20°,∴∠BDC=180°−∠ADB=180°−20°=160°,(180°−160°)=10°,∠C=12综上所述,∠C度数可以为25°或40°或10°.故答案为:25°或40°或10°.分AB=AD或AB=BD或AD=BD三种情况根据等腰三角形的性质求出∠ADB,再求出∠BDC,然后根据等腰三角形两底角相等列式计算即可得解.该题考查了等腰三角形的性质,难点在于分情况讨论.20.【答案】0或3;【解析】解:∵等腰三角形的一边长为5,周长为12,∴当5为底时,其它两边都为3.5、3.5;当5为腰时,其它两边为5和2;∴另外两边差的绝对值是0或3.故答案为:0或3.已知给出的等腰三角形的一边长为5,但没有明确指明是底边还是腰,因此要分两种情况,分类讨论解答.此题主要考查了等腰三角形的性质及三角形三边关系;在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错.21.【答案】解:(1)(2)所作图形如图所示:(3)(2,1);4;【解析】解:(1)(2)所作图形如图所示:(3)点B′的坐标为(2,1),ΔA′B′C′的面积=3×4−12×2×4−12×2×1−12×2×3=4.故答案为:(2,1),4.(1)根据点A、C的坐标作出直角坐标系;(2)分别作出点A、B、C关于y轴对称的点,然后顺次连接;(3)根据直角坐标系的特点写出点B′的坐标,求出面积.该题考查了根据轴对称变换作图,解答本题的关键是根据网格结构作出点A、B、C的对应点的坐标.22.【答案】172D1(-1,2),D2(-2,1),D3(-3,4);【解析】解:(1)如图所示,ΔA1B1C1即为所求.(2)ΔA1B1C1的面积是5×5−12×5×2−12×1×3−12×5×4=172,故答案为:172.(3)如图所示,使ΔDBC是等腰三角形的点D的坐标为D1(−1,2),D2(−2,1),D3(−3,4),故答案为:D1(−1,2),D2(−2,1),D3(−3,4).(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;(2)利用割补法求解可得;(3)利用等腰三角形的概念结合网格求解可得.此题主要考查作图−轴对称变换,解答该题的关键是掌握轴对称变换的定义和性质,并据此得出变换后的对应点.23.【答案】解:(1)如图所示:ΔA1B1C1,即为所求;(2)ΔA2B2C2是由ΔA1B1C1向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位)得到的;(3)如图:四边形A1A2C2C1为平行四边形.则四边形A1A2C2C1的面积为:4×7−2[12×1×2+12(1+7)×2]=10,所以四边形A1A2C2C1的面积为10.; 【解析】该题考查了利用轴对称变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置以及变化情况是解答该题的关键.(1)根据网格结构找出点A、B、C关于MN的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据平移的性质结合图形解答;(3)由作图可知四边形A1A2C2C1为平行四边形,根据平行四边形的面积计算公式即可.24.【答案】(1)证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵点E是AB的中点,∴CE平分∠ACB,AE=BE,∴∠BCE=30°,∵ED=EC,∴∠D=∠BCE=30°.∵∠ABC=∠D+∠BED,∴∠BED=30°,∴∠D=∠BED,∴BD=BE.∴AE=DB.(2)解:AE=DB;理由:过点E作EF∥BC交AC于点F.如图2所示:∴∠AEF=∠ABC,∠AFE=∠ACB.∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,即∠AEF=∠AFE=∠A=60°,∴△AEF是等边三角形.∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°,∵DE=EC,∴∠BED=∠ECF.在△DEB和△ECF中,{∠DEB=∠ECF ∠DBE=∠EFCDE=EC,∴△DEB≌△ECF(AAS),∴DB=EF,∴AE=BD.;【解析】(1)由等边三角形的性质得出AE=BE,∠BCE=30°,再根据ED=EC,得出∠D=∠BCE=30°,再证出∠D=∠DEB,得出DB=BE,从而证出AE=DB;(2)作辅助线得出等边三角形AEF,得出AE=EF,再证明三角形全等,得出DB=EF,证出AE=DB.此题主要考查了等边三角形的性质与判定、三角形的外角以及全等三角形的判定与性质;证明三角形全等是解决问题的关键.25.【答案】证明:(1)∵ΔABC和ΔDCE是等边三角形,∴BC=AC,DC=EC,∠BCA=∠DCE=60°,∴∠BCA−∠ACD=∠DCE−∠ACD,即∠BCD=∠ACE,在ΔBCD与ΔACE中,&#x007BBC=AC∠BCD=∠ACE DC=EC,∴ΔBCD≌ΔACE(SAS),∴∠B=∠CAE,∴∠B=∠CAE=∠ACB=60°,∴AE//BC;(2)成立,证明如下:∵同(1)可证ΔDBC≌ΔEAC,∴∠BDC=∠AEC,∵∠BCE+∠DCB=∠DCE=60°,∠BDC+∠DCB=∠ABC=60°,∴∠BCE=∠BDC,∴AE//BC.;【解析】【试题解析】这道题主要考查等边三角形的性质和全等三角形的判定与性质的知识点,解答本题的关键是能证出∠B=∠CAE=∠ACB,熟练掌握三角形全等的判定与性质定理.(1)根据已知条件先证出∠BCD=∠ACE,再根据SAS证出ΔBCD≌ΔACE,得出∠B=∠CAE=∠ACB=60°,再根据平行线的判定即可证出AE//BC;(2)根据(1)证出的ΔDBC≌ΔEAC,得出∠BDC=∠AEC,由∠BCE+∠DCB=∠DCE=60°,∠BDC+∠DCB=∠ABC=60°,得出∠BCE=∠BDC,从而得到∠AEC=∠BCE,即可得出AE//BC.。

《第十三章 轴对称》单元测试卷含答案(共6套)

《第十三章 轴对称》单元测试卷含答案(共6套)

《第十三章轴对称》单元测试卷(一)时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.下列瑜伽动作中,可以看成轴对称图形的是( )2.已知等腰三角形的一边长为6,一个内角为60°,则它的周长是( ) A.12 B.15 C.18 D.203.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°方向的N处,则N处与灯塔P的距离为( )A.40海里 B.60海里C.70海里 D.80海里4.如图,在△ABC中,∠A=30°,∠C=90°,AB的垂直平分线交AC于D点,交AB于E点,则下列结论错误的是( )A.DE=DC B.AD=DBC.AD=BC D.BC=AE5.如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为( )A.30° B.36°C .54° D.72°6.小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(-1,0)表示,右下角方子的位置用(0,-1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是( ) A .(-2,1) B .(-1,1) C .(1,-2) D .(-1,-2)7.如图,△ABC 是等边三角形,AB =6,BD 是∠ABC 的平分线,延长BC 到E ,使CE =CD ,则BE 的长为( ) A .7 B .8 C .9 D .108.如图,∠A =80°,点O 是AB ,AC 垂直平分线的交点,则∠BCO 的度数是( ) A .40° B.30° C.20° D.10°9.如图,已知AB =A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4……若∠A =70°,则∠A n-1A nB n -1的度数为( )A.70°2nB.70°2n +1C.70°2n -1D.70°2n +210.已知△ABC中,AB=6,AC=8,BC=11,任作一条直线将△ABC分成两个三角形,若其中有一个三角形是等腰三角形,则这样的直线最多有( )A.3条 B.5条 C.7条 D.8条二、填空题(每小题3分,共24分)11.一个正五边形的对称轴共有________条.12.如图,等边△ABC中,AD为高,若AB=6,则CD的长度为________.13.已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则ab的值为________.14.如图,树AB垂直于地面,为测树高,小明在C处测得∠ACB=15°,他沿CB方向走了20米,到达D处,测得∠ADB=30°,则计算出树的高度是________米.15.如图,在△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为________.16.如图,小明上午在理发店理发时,从镜子内看到背后普通时钟的时针与分针的位置如图所示,此时时间是__________.17.如图,在△ABC中,AB=AC,∠A=32°,以点C为圆心、BC的长为半径作弧,交AB于点D,交AC于点E,连接BE,则∠ABE的大小为________.18.如图,在△ABC中,BC的垂直平分线DP与∠BAC的平分线相交于点D,垂足为点P.若∠BAC=84°,则∠BDC的度数为________.三、解答题(共66分)19.(7分)如图,已知AB=AC,AE平分∠BAC的外角,那么AE∥BC吗?为什么?20.(8分)如图,在△ABC中,∠C=∠ABC,BE⊥AC于点E,D为AB上一点,△BDE 是正三角形.求∠C的度数.21.(9分)如图,在平面直角坐标系xOy中,A(-1,5),B(-1,0),C(-4,3).(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴对称的图形△A1B1C1;(3)写出点A1,B1,C1的坐标.22.(10分)如图,从①∠B=∠C;②∠BAD=∠CDA;③AB=DC;④BE=CE四个等式中选出两个作为条件,证明△AED是等腰三角形(写出一种即可).23.(10分)如图,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC 于点E,且BD=DE,连接AE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC的周长为14cm,AC=6cm,求DC长.24.(10分)如图,△ABC是等边三角形,点D是直线BC上一点,以AD为一边向右侧作等边△ADE.(1)如图①,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系;(2)如图②,点D在线段BC的延长线上移动时,猜想∠DCE的大小是否发生变化.若不变,请求出其大小;若变化,请说明理由.25.(12分)如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边向下侧作等边三角形AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边向下侧作等边△CBD,连接DA并延长,交y轴于点E.(1)△OBC与△ABD全等吗?判断并证明你的结论;(2)当点C运动到什么位置时,以A,E,C为顶点的三角形是等腰三角形?参考答案与解析1.A 2.C 3.D 4.C 5.B 6.B 7.C8.D 解析:如图,连接OA,OB.∵∠BAC=80°,∴∠ABC+∠ACB=100°.∵O 是AB,AC垂直平分线的交点,∴OA=OB,OA=OC,∴OB=OC,∠OAB=∠OBA,∠OCA =∠OAC ,∴∠OBA +∠OCA =80°,∴∠OBC +∠OCB =100°-80°=20°.∴∠BCO =∠CBO =10°,故选D.9.C 解析:在△ABA 1中,∠A =70°,AB =A 1B ,∴∠BA 1A =70°.∵A 1A 2=A 1B 1,∠BA 1A 是△A 1A 2B 1的外角,∴∠B 1A 2A 1=∠BA 1A 2=35°.同理可得∠B 2A 3A 2=∠B 1A 2A 12=17.5°=70°22,∠B 3A 4A 3=12×17.5°=70°23,∴∠A n -1A n B n -1=70°2n -1.故选C. 10.C 解析:分别以AB ,AC 为腰的等腰三角形有4个,如图①所示,分别为△ABD ,△ABE ,△ABF ,△ACG ,∴满足条件的直线有4条;分别以AB ,AC ,BC 为底的等腰三角形有3个,如图②所示,分别为△ABH ,△ACM ,△BCN ,∴满足条件的直线有3条.综上可知满足条件的直线共有7条,故选C.11.5 12.3 13.-10 14.10 15.13 16.10:4517.21° 解析:∵AB =AC ,∠A =32°,∴∠ABC =∠ACB =74°.依题意可知BC =EC ,∴∠BEC =∠EBC =53°,∴∠ABE =∠ABC -∠EBC =74°-53°=21°. 18.96° 解析:如图,过点D 作DE ⊥AB 交AB 的延长线于点E ,DF ⊥AC 于点F .∵AD 是∠BAC 的平分线,∴DE =DF .∵DP 是BC 的垂直平分线,∴BD =CD .在Rt△DEB 和Rt△DFC 中,⎩⎨⎧DB =DC ,DE =DF ,∴Rt△DEB ≌Rt△DFC (HL).∴∠BDE =∠CDF ,∴∠BDC =∠EDF .∵∠DEB =∠DFA =90°,∠BAC =84°,∴∠BDC =∠EDF =360°-90°-90°-84°=96°.19.解:AE ∥BC .(1分)理由如下:∵AB =AC ,∴∠B =∠C .由三角形外角的性质得∠DAC =∠B +∠C =2∠B .(4分)∵AE 平分∠DAC ,∴∠DAC =2∠DAE ,∴∠B =∠DAE ,∴AE ∥BC .(7分)20.解:∵△BDE 是正三角形,∴∠DBE =60°.(2分)∵BE ⊥AC ,∴∠BEA =90°,∴∠A =90°-60°=30°.(4分)∵∠ABC +∠C +∠A =180°,∠C =∠ABC ,∴∠C =180°-30°2=75°.(8分)21.解:(1)依题意,S △ABC =12×5×3=152.(3分)(2)△A 1B 1C 1如图所示.(6分)(3)A 1(1,5),B 1(1,0),C 1(4,3).(9分)22.解:选择的条件是:①∠B =∠C ;②∠BAD =∠CDA (或①③,①④,②③).(2分)证明:在△BAD 和△CDA 中,∵⎩⎨⎧∠B =∠C ,∠BAD =∠CDA ,AD =DA ,∴△BAD ≌△CDA (AAS),∴∠ADB =∠DAC ,(8分)∴AE =DE ,∴△AED 为等腰三角形.(10分)23.解:(1)∵AD ⊥BE ,BD =DE ,EF 垂直平分AC ,∴AB =AE =EC ,∴∠AED =∠B ,∠C =∠CAE .∵∠BAE =40°,∴∠AED =180°-∠BAE 2=70°,(3分)∴∠C =12∠AED =35°.(5分)(2)∵△ABC 的周长为14cm ,AC =6cm ,∴AB +BE +EC =8cm ,(8分)即2DE +2EC =8cm ,∴DC =DE +EC =4cm.(10分) 24.解:(1)∠BAD =∠CAE .(2分)(2)∠DCE =60°,不发生变化.(3分)理由如下:∵△ABC 和△ADE 是等边三角形,∴∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,∴∠ACD =120°,∠BAC +∠CAD =∠DAE +∠CAD ,即∠BAD =∠CAE .(6分)在△ABD 和△ACE 中,⎩⎨⎧AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE (SAS),∴∠ACE =∠B =60°,∴∠DCE =∠ACD -∠ACE =120°-60°=60°.(10分)25.解:(1)△OBC ≌△ABD .(1分)证明:∵△AOB ,△CBD 都是等边三角形,∴OB =AB ,CB =DB ,∠ABO =∠DBC =60°,∴∠OBC =∠ABD .(3分)在△OBC 和△ABD中,⎩⎨⎧OB =AB ,∠OBC =∠ABD ,CB =DB ,∴△OBC ≌△ABD (SAS).(5分)(2)由(1)知△OBC ≌△ABD ,∴∠BOC =∠BAD =60°.又∵∠OAB =60°,∴∠OAE =180°-60°-60°=60°,∴∠EAC =120°,∠OEA =30°,∴以A ,E ,C 为顶点的三角形是等腰三角形时,AE 和AC 是腰.(8分)∵在Rt△AOE 中,OA =1,∠OEA =30°,∴AE =2,(9分)∴AC =AE =2,∴OC =1+2=3,∴当点C 的坐标为(3,0)时,以A ,E ,C 为顶点的三角形是等腰三角形.(12分)《第十三章 轴对称》单元测试卷(二)一、选择题(每小题4分,共24分)1.下列图形中不是轴对称图形的是 ……… ( )A B C D2.在下列说法中,正确的是……… ( )A .如果两个三角形全等,则它们必是关于直线成轴对称的图形;B .如果两个三角形关于某直线成轴对称,那么它们是全等三角形;C .等腰三角形是关于底边中线成轴对称的图形;D .一条线段是关于经过该线段中点的直线成轴对称的图形3.在平面直角坐标系中,点P (2,-3)关于Y 轴的对称点在… ( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限4. 等腰三角形的一个外角为110°,则它的底角是………()A、70°B、50°或70°C、40°或70°D、40°5. 点M(-5,3)关于直线x=1的对称点的坐标是………()A.(-5,-3) B.(6,-3) C.(5,3) D.(6,3)6.如图,在△ABC中,DE是AC的垂直平分线,AB=12cm,BC=10cm,则△BCD的周长为()A.22 cm B.16cm C.26cm D.25cm二、填空题(每小题4分,共40分)1. 若三角形是轴对称图形,且有一个角是60°,则这个三角形是三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《第十三章轴对称》单元测试卷(一)时间:120分钟满分:120分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.下列图标中是轴对称图形的是( )2.如图,点C在AD上,CA=CB,∠A=40°,则∠BCD等于( )A.40° B.70° C.80° D.110°第2题图第3题图第4题图3.妈妈问小欣现在几点了,小欣瞧见了镜子里的时钟如图所示(分针正好指向整点位置),她立刻告诉了妈妈正确的时间,请问正确的时间是( )A.6点20分 B.5点20分C.6点40分 D.5点40分4.如图,在△ABC中,AB=AC,∠A=50°,AB的垂直平分线MN交AC于D点,连接BD,则∠DBC的度数是( )A.15° B.20° C.25° D.30°5.若一个等腰三角形的两内角的度数为1∶2,则它的顶角的角度是( ) A.30° B.36° C.90° D.36°或90°6.已知△ABC中,AB=6,AC=8,BC=11,任作一条直线将△ABC分成两个三角形,若其中有一个三角形是等腰三角形,则这样的直线最多有( )A.3条 B.5条 C.7条 D.8条二、填空题(本大题共6小题,每小题3分,共18分)7.一个正五边形的对称轴共有________条.8.如图,等边△ABC中,AD为高,若AB=6,则CD的长度为________.第8题图第10题图9.点(2+a,3)关于y轴对称的点的坐标是(-4,2-b),则b a=________. 10.如图,在△ABC中,BE平分∠ABC,交AC于点E,过点E作DE∥BC交AB于点D.若AE=3cm,△ADE的周长为10cm,则AB=________.11.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2,PN=3,MN=4,则线段QR的长为________.第11题图第12题图12.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为________________.三、(本大题共5小题,每小题6分,共30分)13.如图,AB=AC,∠A=100°,CE平分∠ACD,求∠ECD的度数.14.如图,已知AB=AC,AE平分∠DAC,那么AE∥BC吗?为什么?15.如图,在△ABC中,∠C=∠ABC,BE⊥AC,△BDE是正三角形.求∠C的度数.16.如图,AB比AC长2cm,BC的垂直平分线交AB于点D,交BC于点E,△ACD 的周长是14cm,求AB和AC的长.17.如图是由一个正方形和一个等腰直角三角形组成的图形.试分别在图①和图②中,用无刻度的直尺通过连线的方式按要求作图:(1)在图①中画出一个小正方形ABCD;(2)在图②中画出图形的对称轴l.四、(本大题共3小题,每小题8分,共24分)18.如图,从①∠B=∠C;②∠BAD=∠CDA;③AB=DC;④BE=CE四个等式中选出两个作为条件,证明△AED是等腰三角形(写出一种即可).19.如图,在平面直角坐标系中,A(-3,2),B(-4,-3),C(-1,-1).(1)在图中作出ABC关于y轴对称的△A1B1C1;(2)写出点A1,B1,C1的坐标:A1________,B1________,C1________;(3)在y轴上画出点P,使PB+PC最小.20.如图,OE平分∠AOB,EF∥OB,EC⊥OB.(1)求证:OF=EF;(2)若∠BOE=15°,EC=5,求OF的长.五、(本大题共2小题,每小题9分,共18分)21.如图,在△ABC中,AB=AC,点D、E、F分别在边AB、BC、AC上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.22.如图,已知∠MAN=120°,AC平分∠MAN,∠ABC+∠ADC=180°.求证:(1)DC=BC;(2)AB+AD=AC.六、(本大题共12分)23.如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边三角形AOB,点C为x轴正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,连接DA并延长,交y轴于点E.(1)△OBC与△ABD全等吗?判断并证明你的结论;(2)当点C运动到什么位置时,以A,E,C为顶点的三角形是等腰三角形?参考答案与解析1.D 2.C 3.D 4.A 5.D6.C 解析:分别以A,B,C为等腰三角形的顶点的等腰三角形有4个,如图①,分别为△ABD,△ABE,△ABF,△ACG,∴满足条件的直线有4条;分别以AB,AC,BC为底的等腰三角形有3个,如图②,分别为△ABH,△ACM,△BCN,∴满足条件的直线有3条.综上所述,满足条件的直线共有7条,故选C.7.5 8.3 9.1 10.7cm 11.512.120°或75°或30°解析:∵∠AOB=60°,OC平分∠AOB,∴∠AOC=30°.当△OCE为等腰三角形时,有如下情况.如图.①当E在E1时,OE=CE,∴∠OCE =∠AOC=30°,∴∠OEC=180°-30°-30°=120°;②当E在E2时,OC=OE,则∠OCE=∠OEC=12(180°-30°)=75°;③当E在E3时,OC=CE,则∠OEC=∠AOC=30°.综上所述,∠OEC的度数为120°或75°或30°.13.解:∵AB=AC,∠A=100°,∴∠B=(180°-100°)÷2=40°,(2分)∴∠ACD=100°+40°=140°.(4分)∵CE平分∠ACD,则∠ECD=70°.(6分)14.解:AE∥BC.(2分)理由如下:∵AB=AC,∴∠B=∠C.由三角形的外角性质得∠DAC=∠B+∠C=2∠B.(4分)∵AE平分∠DAC,∴∠DAC=2∠DAE,∴∠B=∠DAE,∴AE∥BC.(6分)15.解:∵△BDE是正三角形,∴∠DBE=60°.(1分)∵BE垂直AC,∠BEA=90°,∴∠A=90°-60°=30°.(3分)∵∠ABC+∠C+∠A=180°,∠C=∠ABC,∴∠C=180°-30°2=75°.(6分)16.解:∵BC的垂直平分线交AB于点D,交BC于点E,∴BD=DC.(2分)∵△ACD 的周长是14cm,∴AD+DC+AC=14cm,∴AD+BD+AC=AB+AC=14cm.(4分)∵AB比AC 长2cm ,∴AB -AC =2cm ,∴AC =6cm ,AB =8cm.(6分) 17.解:(1)如图①所示.(3分) (2)如图②所示.(6分)18.解:选择的条件是:①∠B =∠C ,②∠BAD =∠CDA (或①③,①④,②③).(2分)证明如下:在△BAD 和△CDA 中,∵⎩⎨⎧∠B =∠C ,∠BAD =∠CDA ,AD =DA ,∴△BAD ≌△CDA (AAS),∴∠ADB =∠DAC ,(6分)∴AE =DE ,∴△AED 为等腰三角形.(8分)19.解:(1)如图所示,△A 1B 1C 1即为所求.(2分) (2)(3,2) (4,-3) (1,-1)(5分)(3)如图所示,连接B 1C ,交y 轴于点P ,点P 即为所求.(8分)20.(1)证明:∵OE 平分∠AOB ,∴∠BOE =∠AOE .∵EF ∥OB ,∴∠BOE =∠OEF ,(2分)∴∠OEF =∠FOE ,∴OF =EF .(4分)(2)解:如图,过E 作ED ⊥OA 于D .∵CE ⊥OB ,OE 平分∠AOB ,∴DE =CE =5.(6分)∵∠BOE =15°,∴∠OEF =∠FOE =15°,∴∠EFD =30°,∴EF =2DE =10,∴OF =EF =10.(8分)21.(1)证明:∵AB =AC ,∴∠B =∠C .在△DBE 和△ECF 中,⎩⎨⎧BE =CF ,∠B =∠C ,BD =CE ,∴△DBE ≌△ECF (SAS),(3分)∴DE =EF ,∴△DEF 是等腰三角形.(4分) (2)解:由(1)可知△DBE ≌△ECF ,∴∠1=∠3.(5分)∵∠A +∠B +∠C =180°,∠A =40°,∠B =∠C ,∴∠B =12(180°-40°)=70°,∴∠1+∠2=110°,(7分)∴∠3+∠2=110°,∴∠DEF =180°-110°=70°.(9分)22.证明:(1)如图,在AN 上截取AE =AC ,连接CE .(2分)∵AC 平分∠MAN ,∠MAN =120°,∴∠CAB =∠CAD =60°,∴△ACE 是等边三角形,∴∠AEC =60°,AC =EC =AE .又∵∠ABC +∠ADC =180°,∠ABC +∠EBC =180°,∴∠ADC =∠EBC .(4分)在△ADC 和△EBC 中,⎩⎨⎧∠DAC =∠BEC ,∠ADC =∠EBC ,AC =EC ,∴△ADC ≌△EBC (AAS),∴DC =BC .(6分)(2)由(1)知△ADC ≌△EBC ,AE =AC ,∴AD =BE ,∴AB +AD =AB +BE =AE ,∴AB +AD =AC .(9分)23.解:(1)△OBC ≌△ABD .(1分)证明如下:∵△AOB ,△CBD 都是等边三角形,∴OB =AB ,CB =DB ,∠ABO =∠DBC =60°,∴∠OBC =∠ABD .(3分)在△OBC 和△ABD 中,⎩⎨⎧OB =AB ,∠OBC =∠ABD ,CB =DB ,∴△OBC ≌△ABD (SAS).(5分)(2)由(1)知△OBC ≌△ABD ,∴∠BAD =∠BOC =60°.又∵∠OAB =60°,∴∠OAE =180°-60°-60°=60°,∴∠EAC =120°,∠OEA =30°,∴以A ,E ,C 为顶点的三角形是等腰三角形时,AE 和AC 是腰.(8分)∵在Rt△AOE 中,OA =1,∠OEA =30°,∴AE =2,(9分)∴AC =AE =2,∴OC =1+2=3,∴点C 的坐标为(3,0).(11分)∴当点C 的坐标为(3,0)时,以A ,E ,C 为顶点的三角形是等腰三角形.(12分)《第十三章 轴对称》单元测试卷(二)第Ⅰ卷(选择题 共30 分)一、选择题(本大题共10题,每小题3分,共30分) 1、下列说法正确的是( ).A .轴对称涉及两个图形,轴对称图形涉及一个图形B .如果两条线段互相垂直平分,那么这两条线段互为对称轴C .所有直角三角形都不是轴对称图形D .有两个内角相等的三角形不是轴对称图形2、点M (1,2)关于x 轴对称的点的坐标为( ).A .(-1,-2)B .(-1,2)C .(1,-2)D .(2,-1) 3、下列图形中对称轴最多的是( )A .等腰三角形B .正方形C .圆D .线段4、已知直角三角形中30°角所对的直角边为2cm ,则斜边的长为( ). A .2cm B .4cm C .6cm D .8cm5、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( ). A .11cm B .7.5cm C .11cm 或7.5cm D .以上都不对6、如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论:①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( ).A .1个B .2个C .3个D .4个 7、如图:DE 是△ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC 的周长为( )厘米. A .16 B .18 C .26 D .28 8、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是 ( ).A .75°或15°B .75°C .15°D .75°和30°9、等腰三角形ABC 在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则l ODCBAE DCBABA其顶点的坐标,能确定的是( ).A .横坐标B .纵坐标C .横坐标及纵坐标D .横坐标或纵坐标 10、下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是( ) A : B : C : D : 二、填空题(每小题3分,共15分)11、已知点P 在线段AB 的垂直平分线上,PA=6,则PB= . 12、等腰三角形一个底角是30°,则它的顶角是__________度. 13、等腰三角形的一内角等于50°,则其它两个内角各为 .14、如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为 .15.已知A (-1,-2)和B (1,3),将点A 向______平移________ 个单位长度后得到的点与点B 关于y 轴对称. 三、解答题:16、已知:如图,已知△ABC ,分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1 和△A 2B 2C 2 ;(8分)17.如图,AC 和BD 相交于点O ,且AB//DC ,OC=OD ,求证:OA =OB 。

相关文档
最新文档