拉曼光谱及其应用.

合集下载

拉曼光谱的原理和应用

拉曼光谱的原理和应用

拉曼光谱的原理和应用拉曼光谱是一种非常重要的光谱技术,它具有广泛的应用领域,包括材料科学、化学分析、生物医学等。

本文将介绍拉曼光谱的原理和应用,并探讨其在这些领域中的作用。

拉曼光谱是一种基于分子振动的光谱技术。

当光线照射到样品上时,一部分光被散射出去,而其中部分光子的能量被分子吸收并用于激发分子的振动。

被散射光的波长发生了移位,这种波长移位即为拉曼散射。

拉曼光谱通过测量这种波长移位,可以得到样品中的分子振动信息,从而揭示样品的结构和组成。

拉曼光谱有许多应用。

首先,它在材料科学领域中起着重要的作用。

通过测量拉曼光谱,我们可以分析材料的化学组成和结构特征。

例如,可以利用拉曼光谱来鉴定材料的纯度和晶体结构,监测材料中的杂质含量等。

此外,拉曼光谱还可以帮助研究材料中的微观缺陷和晶格畸变,对材料的物理性质进行探究。

其次,化学分析也是拉曼光谱的重要应用之一。

拉曼光谱可以用于快速、非破坏性的分析化学样品。

与传统的化学分析方法相比,拉曼光谱无需预处理样品,也不需要使用昂贵的试剂。

利用拉曼光谱,可以对各种化合物进行定性和定量分析,包括有机物、无机物和生物分子等。

例如,在药学领域,拉曼光谱被广泛应用于药品质量控制、药物成分分析和药效评估等方面。

此外,拉曼光谱在生物医学领域也有着广泛的应用。

通过测量生物分子的拉曼光谱,可以研究其结构和相互作用。

例如,可以利用拉曼光谱来探索蛋白质、核酸和糖类等生物分子的结构和功能。

此外,拉曼光谱还可以应用于生物医学诊断。

许多疾病的早期诊断和治疗需要准确的检测技术,而拉曼光谱由于其高分辨率和高灵敏度的特点,被认为是一种很有潜力的诊断工具。

除了上述领域,拉曼光谱还有许多其他的应用。

例如,在环境监测中,可以利用拉曼光谱来分析水和土壤中的污染物,监测环境污染的程度;在食品科学中,拉曼光谱可以用于检测食品中的添加剂和污染物,确保食品的质量和安全。

总之,拉曼光谱作为一种非常有价值的光谱技术,具有广泛的应用前景。

拉曼光谱的原理和应用实例

拉曼光谱的原理和应用实例

拉曼光谱的原理和应用实例1. 拉曼光谱的原理拉曼光谱是一种光谱学技术,基于分子的振动和转动引发的光的散射现象。

该技术由印度物理学家拉曼于1928年发现,因而得名为拉曼光谱。

拉曼光谱相对于传统的红外光谱而言,具有一些独特的优点,如无需特殊的样品处理、高分辨率和光谱质量、不需要长时间的扫描等。

在拉曼光谱中,当光与物质相互作用时,部分光的频率会发生改变,这被称为拉曼散射。

拉曼散射中发射的光具有比入射光频率低或高的特征。

拉曼光谱分为拉曼散射和震动旋转拉曼光谱两种类型。

拉曼散射是通过检测原子或分子与入射光相互作用时发生的能级跃迁所获得的。

而震动旋转拉曼光谱则基于物质的分子振动和转动引发的光的散射。

2. 拉曼光谱的应用实例2.1 材料科学拉曼光谱在材料科学中有许多应用实例。

它可以用来研究材料的结构和成分,鉴定材料的物理和化学性质,以及观察材料的相变过程等。

例如,拉曼光谱被广泛应用于石墨烯的研究中,可以通过观察拉曼峰的位置和强度来确定石墨烯的层数和结构。

2.2 生命科学在生命科学领域,拉曼光谱也有很多应用实例。

它可以用来研究生物分子的结构和功能,如蛋白质、核酸和糖类等。

通过测量不同生物分子的拉曼光谱,可以了解其在细胞内的分布和相互作用。

因此,拉曼光谱被广泛用于细胞生物学、生物医学和药物研发等领域。

2.3 环境科学拉曼光谱在环境科学中也有广泛的应用。

它可以用来分析和鉴定环境样品中的有机和无机物质,如土壤、水和大气中的污染物等。

通过测量不同物质的拉曼光谱,可以确定其组成、结构和浓度。

拉曼光谱还可以用来研究环境样品中的化学反应和转化过程。

2.4 化学分析在化学分析中,拉曼光谱被广泛应用于鉴定和定量分析化学样品中的物质。

由于每种物质具有独特的拉曼光谱特征,因此可以通过比对样品的拉曼光谱与数据库中的标准光谱进行匹配来确定物质的成分和含量。

拉曼光谱还可以结合其他分析技术,如光谱成像和化学图像,来获得更详细的化学信息。

3. 总结拉曼光谱是一种非常重要的光谱学技术,具有广泛的应用领域。

拉曼光谱的原理及应用

拉曼光谱的原理及应用

拉曼光谱的原理及应用拉曼光谱是将激发的样品通过分析散射光的频率而得到的一种光谱技术。

它是基于拉曼散射效应,即光与物质相互作用后,光的频率发生变化而产生散射光谱。

拉曼光谱的原理及应用如下。

原理:拉曼散射是指当物质被激发后,光通过与物质分子或晶体相互作用而发生频率改变的现象。

当光与物质相互作用后,其中一部分光的频率会发生变化,其频率的差值与物质分子或晶体的振动和转动能级有关。

这种频率发生变化的光被称为拉曼光,而拉曼光谱则是分析和记录这种光的技术和结果。

应用:1.化学分析:拉曼光谱可以用于分析化学物质的成分、结构和浓度。

不同化学物质的分子结构和振动能级不同,因此它们与光相互作用后会产生不同的拉曼光谱。

通过对比样品的拉曼光谱与数据库中已知物质的拉曼光谱,可以确定样品的成分和结构。

2.材料科学:拉曼光谱在材料科学中有广泛的应用。

例如,可以通过拉曼光谱来分析材料中的应变、晶格缺陷、晶体结构及化学组成等。

由于拉曼光谱对物质的表面敏感性较强,因此它在研究纳米材料和杂质掺杂材料的结构和性质方面特别有用。

3.生物医学:拉曼光谱在生物医学领域有多种应用。

例如,可以使用拉曼光谱来识别肿瘤组织与正常组织的差异,从而在肿瘤诊断和治疗中发挥重要作用。

此外,拉曼光谱还可以用于分析生物分子的结构变化和相互作用,以及研究细胞功能和代谢过程。

4.环境分析:拉曼光谱可以用于环境样品的分析和监测,例如水质、大气污染物、土壤和废物中的化学物质。

通过拉曼光谱技术,可以对这些环境样品中的有机和无机成分进行定性和定量分析,从而提供可靠的环境数据。

5.药品质量检测:拉曼光谱可用于对药物的质量进行快速和准确的检测。

通过对药物样品的拉曼光谱进行分析,可以确定药物的成分、结构和纯度,以保证药物的质量和疗效。

总结:拉曼光谱技术以其非破坏性、快速、准确的特点在各个领域得到广泛应用。

基于拉曼散射现象,拉曼光谱能够提供关于样品成分、结构和相互作用的信息。

它已成为化学、材料科学、生物医学、环境分析和药品质量检测等领域中不可或缺的分析工具,为科研和工业应用提供了重要支持。

拉曼光谱仪原理及应用

拉曼光谱仪原理及应用

拉曼光谱仪原理及应用
拉曼光谱仪是一种用于分析物质的工具,它基于拉曼散射效应。

拉曼散射是指当光通过物质时,光子与物质分子发生相互作用,产生散射光时的现象。

拉曼光谱仪可以通过测量散射光的强度和频率来确定物质的结构和组成。

拉曼光谱仪的基本原理是使用一束单色激光照射到待测样品上,部分光子与样品内的分子相互作用后发生频率变化,即拉曼散射。

散射光中的频移与分子的振动能级差有关,因此可以得到物质的特征振动光谱。

为了提高测量的灵敏度和精度,拉曼光谱仪通常采用光栅或干涉仪作为色散元件,将散射光按频率分离成不同的波长。

通过光检测器和光谱仪等装置,可以得到关于频率和强度的光谱图像。

拉曼光谱仪有广泛的应用领域。

例如:
1. 物质组成分析:拉曼光谱可以提供物质的分子结构和组成信息,用于化学、生物医药等领域的物质鉴定和分析。

2. 药物研发:通过拉曼光谱仪可以对药物分子的结构进行表征,用于药物研发、质量控制和药物相互作用的研究。

3. 环境监测:拉曼光谱仪可以用于检测空气中的有害气体、污染物和化学物质,对环境污染进行监测和分析。

4. 生命科学研究:拉曼光谱技术可以用于生物分子的结构和功能研究,如蛋白质结构、DNA/RNA序列和细胞代谢等。

5. 材料分析:拉曼光谱可以用于分析材料的成分、相变和结构变化,对材料科学和工程中的材料研究和品质控制具有重要意义。

总的来说,拉曼光谱仪通过测量散射光的频率和强度,可以提供关于物质结构和组成的有用信息,广泛应用于许多科学领域和工业应用中。

拉曼光谱仪的原理及应用

拉曼光谱仪的原理及应用

拉曼光谱仪的原理及应用拉曼光谱是一种非常有用的分析物质的技术,在许多不同的领域都有广泛的应用。

本文将介绍拉曼光谱仪的原理及其应用。

一、拉曼光谱仪的原理拉曼光谱仪是一种光谱学仪器,通过测量物质散射光谱的强度和频率,可以得到物质分子的结构信息。

具体来说,拉曼光谱仪使用激光束照射样品,然后收集样品散射的光线。

激光光线通过样品时,光子与分子发生相互作用,由于分子的振动和旋转,样品发生拉曼散射,即分子振动产生的光子的频率发生变化,这种频率变化可以用来确定分子的结构。

拉曼散射强度与样品成分和激光功率直接相关,所以需要准确控制激光功率和光路。

同时,为了获得高质量的拉曼信号,需要在光路中加入滤光器和光谱仪等装置,确保能够测量样品发出的散射光线的频率和强度。

二、拉曼光谱仪的应用1. 化学分析拉曼光谱仪在化学分析中被广泛应用,因为它可以进行非接触测量,无需样品准备和可能使样品受到损害的化学处理。

此外,拉曼光谱仪还能够检测低浓度的物质。

利用拉曼光谱仪进行化学分析,可以得到关于分子结构、组成及相互作用等信息。

其中,一次红外光谱不足以解决分析问题时,拉曼光谱仪就可以发挥它的优势。

2. 材料分析使用拉曼光谱仪可以分析固体、液体和气体材料的结构和组成。

例如,可以据此确定药品中的成分,鉴别不同的聚合物和塑料材料,以及分析碳纳米管和其他纳米材料的结构。

其他一些应用包括燃料和材料研究,温度和压力传感器等。

3. 生物技术和医学拉曼光谱仪在生物技术和医学领域中也有许多应用。

例如,使用拉曼光谱可以确定蛋白质和DNA组成的结构,检测细胞状态和生物分子交互作用。

在医学领域,可以利用拉曼光谱进行肿瘤诊断和治疗,以及神经系统疾病的诊断。

总之,拉曼光谱仪是一种独特的分析工具,在各种不同领域中都有广泛应用。

它可以为科学家、工程师和医生提供宝贵的信息,同时也为各个领域的进一步研究和发展提供了支持。

拉曼光谱的基本原理和应用

拉曼光谱的基本原理和应用

拉曼光谱的基本原理和应用拉曼光谱是物理学中的一种光谱分析技术,由印度物理学家拉曼于1928年首次发明并应用于物质分析领域,被誉为光谱分析技术中的“黄金标准”。

它是一种非破坏性的、非接触的分析方法,通过记录分子或晶格振动产生的光散射谱,来确定样品的化学成分和分子结构等信息。

本文将对拉曼光谱的基本原理和应用进行介绍。

1. 基本原理拉曼散射现象,是指当激发光通过物质后,和物质分子(原子)作用,从而使部分光子散射并改变波长和能量的现象。

其中有经典理论和量子理论两种解释方式。

经典理论认为,当入射光作用于分子时,分子会处于一种较稳定的振动状态(低频振动状态),此时来自光的能量被吸收到分子内部,并在其振动中被存储。

当入射光继续辐照分子时,它将对分子中的电荷作用,使分子从初始振动状态转移到不同的振动状态,从而引起辐射吸收和耗散。

这个过程中,散射出来的光子波长与入射光子波长略有不同,这种现象被称为拉曼散射。

量子理论则通过分子内部电子能级的变化来解释拉曼散射。

当光子入射到分子中时,分子内部的电子受到激发,从一个能量级跃迁到另一个高能级状态。

接着,这些高能态电子再从高能级态回到低能级态时,向周围外沿部分辐射自身的能量,并使辐射光的波长发生变化,形成了拉曼散射光谱。

无论是通过经典理论还是通过量子理论来解释拉曼散射,其实质都是把激发光子的能量转换成分子振动的能量,从而实现对分子结构和物质成分的分析。

2. 应用(1)化学分析拉曼光谱在化学分析领域中得到了广泛应用。

它可以快速、准确地确定化合物的成分和结构,对于分析固态、液态、气态样品均可适用。

例如,在制药领域中,分析拉曼光谱可以帮助研究人员了解样品的物质成分和结构,从而更好地控制生产过程和最终成品的质量。

(2)生化学分析拉曼光谱技术在生命科学、医学、环境保护、食品安全等领域也有广泛应用。

通过对生物分子的拉曼光谱进行分析,可以帮助我们研究生物分子的组成、形态、稳定性、相互作用等信息。

拉曼光谱仪应用

拉曼光谱仪应用

拉曼光谱仪应用
拉曼光谱仪是一种通过测量样品中感兴趣分子振动和转动能级的光谱来获取样品信息的仪器。

其应用广泛,涵盖了多个领域:
1. 化学领域:拉曼光谱仪可以用于分析和鉴定化学物质,识别有机和无机化合物的结构,检测和分析液体、固体和气体样品中的成分和污染物。

2. 材料科学:拉曼光谱仪可以用于材料的表征和分析,例如研究晶体的晶体结构和缺陷,监测材料的相变和变形行为,分析材料表面的化学性质和结构。

3. 生命科学:拉曼光谱仪可以用于生物分子的研究和分析,例如蛋白质、核酸和多糖的结构和相互作用,酶活性的研究,细胞生物化学和生物分子的显微成像。

4. 环境监测:拉曼光谱仪可以用于环境样品的监测和分析,例如水体中的溶解物和污染物、土壤中的有机物和无机物、大气中的气体和颗粒物质。

5. 药学和医学:拉曼光谱仪可以用于药物分析和质量控制,例如分析药物的成分和纯度,研究药物与体内分子的相互作用。

在医学方面,拉曼光谱仪可用于实时监测患者的体液成分,例如血液中的代谢产物和药物浓度。

总之,拉曼光谱仪广泛应用于化学、材料科学、生命科学、环
境监测、药学和医学等领域,提供了一种非常有用的光谱学技术来研究和分析不同样品的组成和结构。

拉曼光谱技术的应用及其实验方法

拉曼光谱技术的应用及其实验方法

拉曼光谱技术的应用及其实验方法拉曼光谱技术是一种非常重要的分析方法,被广泛应用于材料科学、生物化学、环境科学、药物研究等领域。

本文将介绍拉曼光谱技术的基本原理、应用及其实验方法。

一、拉曼光谱技术的基本原理拉曼光谱技术是一种非常重要的分析方法,其原理是通过激发样品中的原子、分子等物质产生震动,这些震动会散射出一个比入射光子的能量低的光子,即拉曼散射光。

拉曼散射光中的能量差,就是样品的震动特性,也就是样品的拉曼光谱特性。

测量得到的拉曼光谱特性可以通过比对参照样品或文献中的数据进行分析,从而得到样品的组成、结构等信息。

因此,拉曼光谱技术可以用于分析物质的结构、组成、变化等方面,是一种非常强大的分析方法。

二、拉曼光谱技术的应用1、材料科学在材料科学研究中,拉曼光谱技术被广泛应用于固体材料的分析和表征。

例如,拉曼光谱技术可以用于分析和表征纳米材料、碳材料、化合物材料、半导体材料等。

通过测量样品的拉曼光谱特性,可以得到其化学组成、晶体结构、晶格振动等信息,从而进一步了解材料的特性和性能。

2、生物化学在生物化学研究中,拉曼光谱技术可以用于分析和表征生物大分子、细胞、微生物等。

例如,拉曼光谱技术可以用于研究蛋白质、核酸、多糖等大分子的结构和构象变化,从而了解生物分子的功能和作用机制。

此外,拉曼光谱技术还可以用于检测和鉴定微生物等生物体,从而得到更精确的病原菌、药物抗性等信息。

3、环境科学在环境科学研究中,拉曼光谱技术可以用于分析和监测大气、水体、土壤等环境中的污染物。

例如,拉曼光谱技术可以用于检测大气中的有机污染物、水体中的微塑料、土壤中的重金属等物质,从而发现环境污染问题并采取相应的措施。

4、药物研究在药物研究中,拉曼光谱技术被广泛应用于药物分析和表征。

例如,拉曼光谱技术可以用于检测药物中的成分、控制药物的质量等。

此外,拉曼光谱技术还可以用于研究药物和药物分子与生物体的相互作用,从而优化药物设计和治疗方案。

三、拉曼光谱技术的实验方法拉曼光谱技术实验一般包括样品制备、样品测量和数据分析三个部分。

拉曼光谱的原理和应用

拉曼光谱的原理和应用

拉曼光谱的原理和应用1. 拉曼光谱的原理拉曼光谱是一种用来分析物质结构和成分的无损分析技术,基于物质与激发光发生散射,从而产生频率偏移的原理。

其原理主要包括以下几个方面:1.1 原子和分子的散射光谱拉曼光谱的原理基于分子和原子能级之间的相互作用。

在激光照射下,物质中的分子或原子将散射光以不同频率的方式返回。

这种散射光的频率与分子或原子的能级差有关。

1.2 可视化分子/晶格的振动模式拉曼光谱可以提供关于分子或晶格振动模式的信息。

当分子或晶格发生振动时,它们会在散射光中引起频率的变化。

通过测量这些频率的变化,可以推断出分子或晶格的结构和性质。

1.3 拉曼散射的选择规则拉曼散射具有一些特殊的选择规则。

根据这些规则,只有那些在对称群的表示中具有非零矩阵元的振动模式才能产生明显的拉曼散射。

1.4 拉曼光谱的特点拉曼光谱具有以下几个特点:•非破坏性:拉曼光谱是一种非破坏性的分析技术,可以对样品进行实时、在线的观测和分析,不会对样品造成永久性损坏。

•高分辨率:拉曼光谱具有很高的分辨率,可以区分出非常接近的波数峰,从而提供详细的结构信息。

•快速性:拉曼光谱分析速度快,只需几秒钟就可以得到样品的光谱信息。

2. 拉曼光谱的应用拉曼光谱是一种非常重要的光谱分析技术,被广泛应用于物质科学、生物医学、环境监测等领域。

以下列举了一些拉曼光谱的常见应用:2.1 化学物质分析拉曼光谱可以用于化学物质的定性和定量分析。

通过比对样品的光谱图与已知物质的光谱数据库,可以确定样品的成分和结构。

这对于药物研究、环境污染物分析等具有重要意义。

2.2 药物研究拉曼光谱在药物研究中被广泛应用。

通过测量药物的拉曼光谱,可以了解药物的成分、结构和稳定性,进一步优化药物的合成和制备过程。

2.3 生物医学应用拉曼光谱在生物医学领域具有重要的应用价值。

通过测量生物组织或体液的拉曼光谱,可以诊断疾病、检测肿瘤、鉴定细菌等。

由于拉曼光谱是非破坏性的,因此可以实时监测药物的疗效。

拉曼光谱原理+模型+常见应用

拉曼光谱原理+模型+常见应用

拉曼光谱原理+模型+常见应用拉曼光谱是一种非常重要的光谱分析方法,它利用分子振动能级的变化而发射或吸收光子,研究样品的分子结构和化学成分。

拉曼光谱具有独特的优势,可以应用于各种领域,包括化学、生物、材料科学等。

本文将重点介绍拉曼光谱的原理、模型和常见应用。

拉曼光谱的原理:拉曼光谱是一种分子振动光谱,其基本原理是分子在受到激发后,分子的振动状态会发生变化,从而导致入射光子的频率发生改变。

这个现象被称为拉曼散射,是由分子的振动引起的。

当分子受到光子激发,分子的振动能级发生变化,使得散射光子的频率发生变化,这种频率差被称为拉曼频移。

通过测量样品散射光的频率和强度,可以得到样品的拉曼光谱图谱,从而分析样品的分子结构和化学成分。

拉曼光谱的模型:拉曼光谱的模型主要是通过量子力学和分子振动理论来描述分子的振动状态和引起的拉曼频移。

在拉曼光谱分析中,通常采用谐振子模型和量子力学模型来模拟分子的振动模式和能级,从而推导出分子的振动能级和拉曼频移的数学表达式。

利用这些模型,可以计算出不同分子的拉曼频移和强度,从而分析样品的分子结构和化学成分。

拉曼光谱的常见应用:1.化学分析:拉曼光谱可以用于分析化学物质的结构和成分,包括有机分子、高分子材料、药物等。

通过拉曼光谱分析,可以辨识和鉴定不同化合物的结构和功能团,从而实现化学成分的快速检测和分析。

2.生物医学:拉曼光谱可以用于生物医学领域,包括生物分子的结构和功能分析、生物样本的快速检测和诊断等。

通过分析生物样本的拉曼光谱,可以实现对细胞、组织和生物分子的快速、无损检测和分析。

3.材料科学:拉曼光谱可以用于材料科学领域,包括材料表面、界面和纳米结构的表征、材料的结构、形貌和成分分析等。

通过拉曼光谱分析,可以实现对材料的微观结构和性质的表征和分析。

4.环境监测:拉曼光谱可以用于环境监测领域,包括大气、水体和土壤样品的化学成分和污染物的分析、环境污染的监测和评估等。

通过拉曼光谱分析,可以实现对环境样品的快速、准确的分析和监测。

拉曼光谱及其应用

拉曼光谱及其应用

拉曼光谱及其应用拉曼光谱是一种分析物质结构和化学组成的非侵入性技术,并广泛应用于许多领域,包括材料科学、生命科学和环境科学。

本文将介绍拉曼光谱的原理、仪器和一些常见的应用。

一、拉曼光谱的原理拉曼光谱是一种基于拉曼散射现象的光谱技术。

当激光等能量较高的光与物质相互作用时,光子会与物质中的分子相互作用,产生散射现象。

拉曼散射分为斯托克斯散射和反斯托克斯散射两种类型,它们分别与物质的低频和高频振动模式相对应。

根据拉曼散射现象,我们可以获得物质的拉曼光谱。

拉曼光谱是由于分子振动引起的光散射频移所产生的谱线,可以提供关于物质结构、键合性质和化学组成的信息。

每个物质都有独特的拉曼光谱,因此拉曼光谱可以用于研究和识别不同的物质。

二、拉曼光谱的仪器为了获取物质的拉曼光谱,我们需要使用拉曼光谱仪。

一般的拉曼光谱仪包括激光光源、样品台、光学系统和光谱仪。

首先,激光光源是产生高能量光束的关键组件。

常见的激光光源包括氩离子激光器、二极管激光器和红外激光器。

不同的激光光源可以提供不同的波长范围和功率输出,以适应不同样品的测量需求。

其次,样品台是用于支撑和定位样品的平台。

样品台需要具备良好的稳定性和精确度,以确保样品在测量期间的位置和姿态不变。

然后,光学系统包括镜头、滤光片和光纤等组件,用于操控和导引激光光束。

光学系统的设计和优化可以提高信号强度和降低背景噪音,从而提高拉曼信号的检测灵敏度。

最后,光谱仪用于测量和分析样品散射的光谱。

它通常包括光栅、光电二极管和数据采集系统等部分。

光谱仪的性能决定了拉曼光谱的分辨率和信噪比,因此选择合适的光谱仪非常重要。

三、拉曼光谱的应用1. 材料科学领域拉曼光谱在材料科学中具有广泛的应用。

通过测量材料的拉曼光谱,我们可以了解材料的晶格结构、键合状态和纳米尺度的相变等信息。

拉曼光谱还可以用于研究材料缺陷、应力分布和化学反应等过程。

因此,在材料设计、合成和评估中,拉曼光谱起到了重要的作用。

2. 生命科学领域在生命科学中,拉曼光谱被广泛应用于细胞学、生物医药等领域。

拉曼光谱技术的原理及应用

拉曼光谱技术的原理及应用

拉曼光谱技术的原理及应用拉曼光谱技术是一种分析样品中分子的非常有效的方法。

在该技术中,利用拉曼效应同样也可以识别特定的纳米颗粒和其他不透明的物质。

本文将详细阐述拉曼光谱技术的原理及应用。

1. 拉曼光谱技术的原理拉曼光谱技术是一种激光光谱技术,它利用样品的分子振动模式(横振动、伸缩和扭曲等模式),使分子发生光散射,并将散射的光收集起来进行分析。

在拉曼光谱技术中,将激光照射到样品上,样品分子中的大部分仍然是以核的振动模式存在。

但当激光的频率与分子的振动频率相同时,由于拉曼效应的作用,部分光子将分离并产生红移或蓝移。

这个现象就是拉曼散射现象。

拉曼效应的原理是,当光子入射到分子上时,分子表现出类似摆动的运动,这种运动随着时间的推移而释放出特定频率的光子,这样就形成了拉曼散射光谱特征峰。

拉曼光谱学中的光谱特征包括波数(公式1)和相对强度(公式2),如下所示:公式1:wavenumber(cm^-1)=1/wavelength(cm)公式2:Relative intensity(I/I0)在拉曼光谱图中,相对强度是指各个峰的高度比较,波数则表示各个峰所对应到的分子振动能量。

实验室中常用的拉曼光谱仪的波数精度一般在1 cm^-1左右。

2. 拉曼光谱技术的应用2.1 分子结构和化学成分的分析拉曼光谱技术可以为分子结构和化学成分的分析提供非常重要的信息。

如在红外光谱技术中,只有具有矢量性的分子振动模式才能产生吸收峰,因此该技术对于分析非常规的分子结构并不适用。

而拉曼光谱技术可以用于任何分子结构的振动分析,可以检测出如异构体、杂质或药物的不同形式等信息。

由于拉曼光谱可以通过常压、接触以及非接触的方法进行采集,因此这使得样品的限制条件相对较少。

2.2 生物检测和药品品质检测拉曼光谱技术在生物医学分析领域中也得到广泛应用。

在这个领域中,拉曼光谱技术可以用于检测血液中的各种生物分子,如细胞、蛋白质、DNA、荷尔蒙、抗生素和维生素等。

拉曼光谱的原理与应用

拉曼光谱的原理与应用

拉曼光谱的原理与应用拉曼光谱是一种非常重要的光谱技术,可用于研究物质的结构、功能和相互作用等方面。

它以拉曼散射现象为基础,利用光与物质相互作用而产生的散射光谱来分析物质的化学结构。

本文将详细介绍拉曼光谱的原理、测量方法和应用。

一、拉曼光谱的原理拉曼光谱的原理源于拉曼散射现象,即当入射光线照射到物质上时,部分光线会被物质吸收,部分会经过物质后发生散射。

如果散射光比入射光具有不同的波长,称之为拉曼散射。

在拉曼散射中,散射光的波长可以比原光谱长或短,这种现象称为拉曼效应。

拉曼效应是由于散射光与物质所产生的迈耳振动相互作用而导致的。

当入射光线与物质相互作用时,物质分子的化学键会发生伸缩和扭曲等变形,导致分子内部的原子发生迈耳振动。

这种振动会导致散射光发生波长偏移,即产生拉曼散射。

而这种波长偏移的大小与物质的分子结构和化学键种类等因素有关。

二、拉曼光谱的测量方法拉曼光谱的测量方法通常采用激光散射光谱仪测量。

这种仪器主要由激光器、样品池、光谱仪和探测器等组成。

下面是具体的测量步骤:1. 准备样品。

样品准备是拉曼光谱测量的非常重要的一步。

样品的制备应该避免填充杂质和提高位移的材料。

制备时应进行必要的纯化、淘汰和处理等。

2. 调整仪器。

首先需要调整激光器的出射功率,使其适当。

此外,需要调整样品池和准直器,以保证激光光束斜射物体面上时角度恰当,即使散射光进入探测器。

3. 开始测量。

当准备好样品并调整好仪器后,即可进行拉曼光谱的测量。

在测量前,需要对样品进行预热处理,以确保在测量过程中保持稳定状态。

4. 分析光谱数据。

测量完成后,需要对数据进行分析和处理。

此时应使用适当的软件来处理光谱数据,以确定样品的化学组成、分子结构和功能等信息。

三、拉曼光谱的应用拉曼光谱在材料科学、化学、生命科学、环境科学、地球科学等领域都有广泛的应用。

它可以用于研究各种不同的物质样品,包括有机物、无机物、高分子材料、药物、金属材料、纳米材料等等。

拉曼光谱仪应用领域

拉曼光谱仪应用领域

拉曼光谱仪应用领域
拉曼光谱仪是一种能够通过测量样品散射光的波长和强度来确定其分子结构和化学成分的仪器。

它在许多领域都有广泛的应用,包括:
1. 化学分析:拉曼光谱仪可以用于快速、非破坏性地分析化学物质的成分和结构。

它可以用于检测和鉴定有机化合物、无机化合物、药物、食品、化妆品等。

2. 材料科学:拉曼光谱仪可以用于材料的结构和组分分析。

它可以帮助研究人员了解材料的晶体结构、相变、应力分布等关键信息,对材料的性能和制备过程进行表征和优化。

3. 生物医学:拉曼光谱仪可以用于生物标本的分析和诊断。

它可以帮助鉴定和定量生物体内的分子,诊断和监测疾病,例如肿瘤、癌症、心血管疾病等。

4. 环境监测:拉曼光谱仪可以用于环境样品的分析和监测。

通过分析样品中的有机物、无机物和污染物,可以了解环境中的污染源、水质、空气质量等。

5. 法医学:拉曼光谱仪可以用于犯罪现场的化学物质分析和证据鉴定。

它可以帮助刑事调查人员鉴定毒品、爆炸物、火灾痕迹等。

总之,拉曼光谱仪在化学、材料、生物医学、环境监测和法医学等领域都有广泛的应用。

它可用于纯度分析、组分鉴定、结
构表征、质量控制等方面,具有非破坏性、快速、高灵敏度和高分辨率等优点。

拉曼光谱仪的原理和应用

拉曼光谱仪的原理和应用

拉曼光谱仪的原理和应用1. 什么是拉曼光谱仪拉曼光谱仪是一种用于测量物质的拉曼散射光谱的仪器。

拉曼散射是指当光线通过物质时,其中部分光子与物质分子相互作用后的能量差被散射出来,产生了波长偏移的现象。

通过测量这种波长偏移,可以得到物质的结构、成分及其分子间的相互作用等信息。

2. 拉曼光谱仪的原理拉曼光谱仪基于拉曼散射的原理工作。

当一束单色激光照射到样品上时,由于样品分子的振动和旋转引起的能级变化,会使得激光光子与样品分子发生相互作用,散射出去的光子中会有波长发生偏移的情况。

这种发生波长偏移的光称为拉曼散射光。

拉曼光谱仪通常包括以下主要组成部分: - 激光光源:用于提供单色激光,通常使用激光二极管或激光器。

- 光路系统:包括收光系统和散光系统,用于将光收集、分散和聚焦。

- 光谱仪:用于分散不同波长的光,并将其转化为电信号。

- 检测器:将收集到的光信号转化为电信号进行处理和分析。

- 数据处理系统:用于分析和处理从检测器得到的信号,并生成拉曼光谱图。

3. 拉曼光谱仪的应用拉曼光谱仪在许多领域得到了广泛的应用,主要包括以下几个方面:3.1 材料科学和表面分析拉曼光谱仪可以用于材料表面的分析和表征。

通过测量材料表面的拉曼散射光谱,可以了解材料的化学成分、结构特征以及表面性质等信息。

这对于表面涂覆、材料加工和功能材料设计等具有重要意义。

3.2 生物医学和药物研发拉曼技术在生物医学和药物研发领域中有着广泛的应用。

通过测量生物体内部或药物分子的拉曼散射光谱,可以获得关于蛋白质、核酸、药物等的结构信息,有助于了解其功能、相互作用和代谢过程等。

3.3 环境和食品安全拉曼光谱仪可以用于环境和食品安全领域的分析和检测。

通过测量水、土壤、空气、食品等样品的拉曼光谱,可以快速、无损地获得样品的成分、污染物含量以及质量和安全性等信息。

3.4 能源和材料研究在能源和材料研究领域,拉曼光谱仪也得到了广泛的应用。

通过测量材料的拉曼光谱,可以了解材料的结构、晶格振动、电子结构等信息,对于新能源材料和光电材料的开发和研究具有重要意义。

拉曼光谱原理及应用--ppt课件

拉曼光谱原理及应用--ppt课件
Scattering)
➢ 试样吸附在金属表面上,增103~106 ➢ 表面与共振联用检测限10-9~1012 mol/L
表面增强拉曼(SERS)简介
• 什么是表面增强?
SERS 效应是在激发区域内,由于样品表面或近表 面的电磁场的增强导致的拉曼散射信号极大的增强。
• 怎么得到表面增强?
远小于激发波长的金属颗粒(Au, Ag)会使电磁场增
二. 拉曼(Raman)光谱基本原理
拉曼光谱是研究分 子和光相互作用的 散射光的频率
散射光
0
入射光
0
透射光
散射是光子与分子发生碰撞的结果
Rayleigh散射: 弹性碰撞;无
能量交换,仅改 变方向; Raman散射:
非弹性碰撞; 方向改变且有能 量交换;
激发虚态
h(0 - )
E1 + h0
E0 + h0 h0
i = o- (cm-1)
225050 00
30030 000
3500 3500
拉曼光谱与分子极化率的关系
分子在静电场E中,极化感应偶极距p
p= αE α为极化率
• 诱导偶极矩与外电场的强度之比为分子极 化率
• 分子中两原子距离最大时,α也最大 • 拉曼散射强度与极化率成正比例关系
拉曼光谱的特征
由拉曼光谱可以获得有机化合物的各种结构信息:
1 同种分子的非极性键S-S,C=C,N=N,CC产生强拉曼 谱带, 随单键双键三键谱带强度增加。
2 红外光谱中,由C N,C=S,S-H伸缩振动产生的谱带一 般较弱或强度可变,而在拉曼光谱中则是强谱带。
3 环状化合物的对称呼吸振动常常是最强的拉曼谱带。
4 在拉曼光谱中,X=Y=Z,C=N=C,O=C=O-这类键的对 称伸缩振动是强谱带,反这类键的对称伸缩振动是弱谱带。 红外光谱与此相反。

拉曼光谱的基本原理与应用

拉曼光谱的基本原理与应用

拉曼光谱的基本原理与应用拉曼光谱是一种非破坏性分析技术,由印度物理学家拉曼开创并发展而来。

它通过分析样品所散发的光谱来确定分子结构、化学成分和材料特性等信息。

拉曼光谱具有许多优点,例如不需要样品前处理、非接触式测量、快速、灵敏、精确、可适用于多种材料和环境等,因此广泛应用于化学、生物、材料、环境等领域。

一、拉曼光谱的基本原理拉曼光谱的基本原理是当光通过样品时,与分子间的化学键产生相互作用,部分光子的频率发生差异,即发生频移。

这个频移实际上代表着分子所包含信息的变化,可以通过光谱仪进行解析。

这个过程被称为拉曼散射,是通过散射光的波长来分析物质性质和结构的一种手段。

拉曼光谱的频移称为拉曼位移,它的大小取决于样品分子的种类和化学结构。

对于化学键为单键的分子而言,拉曼位移通常在200~2000 cm-1的范围内。

而对于无规共聚物、芳香化合物和配合物等复杂体系,则有更多不同的频移区域。

这些频移区域被称为谱带或谱线,不同的谱带或谱线对应着不同的化学键和分子振动模式。

二、拉曼光谱的应用1. 化学分析拉曼光谱先进的分析能力使其成为化学分析的理想选择。

它可以快速、非破坏地测量复杂的样品,例如药品、化妆品、有机材料等,并能够提供详细的化学信息,包括分子组成、配位情况、晶格结构等。

拉曼光谱还可用于表征污染物、生物分子、纳米材料等,这些样品对其他技术来说可能难以处理或测量。

2. 生物医学拉曼光谱在生物医学中的应用颇具前景。

生物分子的拉曼光谱曲线能够反映其精细的结构和组成。

例如,蛋白质、脂类、核酸等生物大分子的不同区域都有独特的拉曼光谱表征,可以用来诊断肿瘤、糖尿病、心血管疾病等疾病,同时还可以鉴别不同种类的微生物,提高了生物样品检测和诊疗的准确度。

3. 材料科学由于拉曼光谱可以直接探测化学成分和结构,因此在材料研究领域中应用广泛。

例如,拉曼光谱可以用来表征多种材料的提纯度、结构、形貌等特征,推进制备技术的发展,例如复合材料、微纳米材料、薄膜等。

拉曼光谱仪原理及应用

拉曼光谱仪原理及应用

拉曼光谱仪原理及应用拉曼光谱是一种非常重要的光谱分析技术,它可以用于物质的结构分析、成分鉴定、化学反应动力学研究等领域。

拉曼光谱仪是实现拉曼光谱分析的关键设备,下面我们将介绍拉曼光谱仪的原理及应用。

1. 拉曼光谱仪原理。

拉曼光谱是指物质受到激发光的照射后,散射光中出现了频率改变的现象。

这种频率改变是由于物质的分子振动和转动引起的,称为拉曼散射。

拉曼光谱仪利用拉曼散射现象进行光谱分析,其原理主要包括激发光源、样品、光谱仪和数据处理系统四个部分。

激发光源通常采用激光器,通过单色器产生单色激发光,照射到样品上。

样品受到激发光的激发后,会发生拉曼散射,产生频率改变的散射光。

光谱仪通过单色器和光电倍增管等光学元件收集和分析样品散射光的频率变化,得到拉曼光谱图谱。

数据处理系统对光谱图谱进行处理和分析,得到样品的拉曼光谱信息。

2. 拉曼光谱仪应用。

拉曼光谱仪在化学、生物、材料、环境等领域具有广泛的应用价值。

在化学领域,拉曼光谱仪可以用于物质的结构表征、化学反应动力学研究、药物分析等方面。

在生物领域,拉曼光谱仪可以用于生物分子的结构分析、生物标志物的检测、细胞成分的定量分析等方面。

在材料领域,拉曼光谱仪可以用于材料的成分鉴定、晶体结构分析、表面和界面分析等方面。

在环境领域,拉曼光谱仪可以用于环境污染物的检测、土壤和水质分析、大气颗粒物的监测等方面。

除此之外,拉曼光谱仪还可以应用于食品安全检测、药品质量控制、文物保护等领域。

随着科学技术的不断发展,拉曼光谱仪的应用领域将会越来越广泛,为人类社会的发展进步提供更多的支持和帮助。

总结而言,拉曼光谱仪作为一种重要的光谱分析设备,其原理和应用具有重要的科学研究和实际应用价值。

通过对拉曼光谱仪的深入了解和应用,我们可以更好地开展物质的分析和研究工作,为人类社会的发展进步做出更大的贡献。

拉曼光谱的原理及应用

拉曼光谱的原理及应用

拉曼光谱的原理及应用拉曼光谱由于近几年来以下几项技术的集中开展而有了更广泛的应用。

这些技术是:CCD检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。

这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。

〔一〕含义光照射到物质上发生弹性散射和非弹性散射. 弹性散射的散射光是与激发光波长一样的成分.非弹性散射的散射光有比激发光波长长的和短的成分, 统称为拉曼效应当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大局部的光会按原来的方向透射,而一小局部则按不同的角度散射开来,产生散射光。

在垂直方向观察时,除了与原入射光有一样频率的瑞利散射外,还有一系列对称分布着假设干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。

由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。

因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。

目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子构造的研究谱线特征〔二〕拉曼散射光谱具有以下明显的特征:a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关;b. 在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。

c. 一般情况下,斯托克斯线比反斯托克斯线的强度大。

这是由于Boltzmann 分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。

〔三〕拉曼光谱技术的优越性提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。

此外1 由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。

拉曼光谱技术及其应用

拉曼光谱技术及其应用

拉曼光谱技术及其应用在物质科学领域,光谱学是一种重要的研究方法,而拉曼光谱技术是其中的一个重要分支。

在纳米材料研究、生命科学、医药等领域,拉曼光谱技术都有着广泛的应用。

本文将介绍拉曼光谱技术及其应用。

一、拉曼光谱技术原理拉曼光谱技术是通过激光照射样品,测量由样品散射的光谱,分析物质分子的振动和转动受到光激发后的响应。

样品散射光的光谱与样品分子内部结构密切相关,因此拉曼光谱可以提供物质的化学成分、分子结构、功能等信息。

拉曼光谱技术的优点是非常明显的。

首先,它是非接触式的光谱技术,可以在不破坏样品的情况下进行。

其次,由于拉曼散射光谱是由样品散射而成,无需喷涂、染色等处理,因此可以避免样品污染、破坏等问题。

此外,由于拉曼光谱受到样品分子的振动或转动响应,可以对样品分子的构象进行分析,对于生物分子研究有着特别重要的意义。

二、拉曼光谱技术应用1. 纳米材料研究一些新型的纳米材料具有许多特殊的物理和化学性质,因其在生物医学领域、电子学、能源应用等方面具有广泛的应用前景。

而利用拉曼光谱技术可以对这些材料的基本性质进行研究。

例如,在碳纳米管的研究中,利用拉曼光谱技术可以精确地测量其直径、带宽等参数,进而研究其物理性质和表面化学反应;在纳米金属颗粒的研究中,拉曼光谱可以用于研究金属颗粒的表面修饰和形状改变对其催化活性的影响等。

2. 生命科学在生命科学领域,拉曼光谱技术可以用于蛋白质、DNA等生物大分子研究。

例如,通过拉曼光谱技术可以研究DNA分子的结构、碱基配对(包括单链和双链DNA)、DNA螺旋结构、其含有关键功能的催化、膜蛋白、反应中间体以及各种生物大分子等。

此外,拉曼光谱也可以用于生物医学研究。

通过拉曼光谱技术可以快速地检测和诊断在疾病发展中的生物标志物,也可以帮助开发新型药物,具有很高的成本效益和高度可靠的数据。

3. 化学反应过程利用拉曼光谱技术可以对各种化学反应过程进行研究。

例如,微观的组分变化可以通过应力引起的分子轻微震动被测定,能够通过研究拉曼光谱发现微观的化学平衡、反应机理、反应动力学等相关问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

- 极化率(二阶张量)
- 超极化率(三阶张量) - 二级超极化率(四阶张量)
(1)
分子极化率是各向异性的,写成矩阵形式:
(2)
由于分子中各原子核 在其平衡位置附近的振动,分子的极 化率亦将随之改变,所以极化率的各个分量可以按简正坐标
展开成Taylor级数形式:
(3)
式中(ij)0 是分子在平衡位置的ij 值,通常是不变的,Qk是 分子振动的简正坐标。
略去二次项及高次项:
(4)
考虑第k个简正振动: 或: 假定分子的振动 是简谐振动: 若位相为零: 由单色光电场: 式中:
(5)
(6) (7)
(8)
P=0E0cos(20t) + k’E0Qk0cos2(0-k)t]+cos2(0+k)t/2
上式表明分子的感生偶极矩P以三种频率发射辐射
拉曼光谱及其应用
李福民 物理与电子学院
lfm@

光散射的物理现象以及拉曼散射的发现 拉曼散射的经典理论. 拉曼散射的量子理论描述 振动自由度和光谱选律 拉曼光谱的测量 拉曼效应的特点 拉曼散射技术的优点 拉曼散射技术的缺陷 拉曼与红外分析方法比较 谱图分析
1923~1927:Heisenburg、SchrÖdinger、Dirac 理论预言 非弹性散射;
印度物理学家拉曼(C.V. Raman)于 1928年第一次经实验在液态苯中发 现了这种效应,因而称作拉曼效应 (拉曼散射、 拉曼光谱),并因 此于1930年获诺贝尔物理学奖。
(C.V. Raman and K.S. Krishnan, Nature, 121, 501, 1928.)
60年代初期问世的激光技术给拉曼光谱带来了新的生机。
由于高分辨率,低杂色光的双联或三联光栅单色仪,以及
高灵敏度的光电接收系统(光电倍增管和光子计数器)的
应用,使拉曼光谱测量达到与红外光谱一样方便的水平。
和红外光谱相比,拉曼光谱有制样简单,水的干扰小,可
做活体实验等优点。
2. 拉曼散射的经典理论
经典理论出发点-光波的电场与分子的相互作用, 将散 射体作为独立的振转子
2
,
P=0E0cos(20t) + k’E0Qk0cos2(0-k)t]+cos2(0+k)t/2
从此式得出:反斯托克斯线强度和斯托克斯线强度相同, 这与实验结果不符。
Spectrum of CCl4, using an Ar+ laser at 488 nm.
3. 拉曼散射的量子理论描述
1. 光散射的物理现象以及拉曼散射的发现
1871年Rayleigh 证实,空气分子引 起光散射是导致天空呈兰色的原因
瑞利散射:Rayleigh Scattering
由英国物理学家瑞利的名字命名。它 是半径比光的波长小很多的微粒对入 射光的散射。瑞利散射光的强度和入 射光波长的四次方成反比:
波长较短的蓝光比波长较长的红光更容易散射!
按照经典电磁理论,单色入射光 (即 我们平时讲的激发光源)照射到样品,
使该体系(晶格,分子,各种原激发…)
产生振荡感生电偶极矩,这个振荡的 感生偶极矩又可视为一个辐射源,它 会发射出相应波长电磁辐射,即光波。 这就是后面我们要阐明的散射光: 瑞 利散射光和拉曼散射光。
体系----以“分子”为代表:当入射光不是很强时, 感生/诱导偶极矩P与分子极化率α以及电场强度E之 间的近似关系为: P= · E+(1/2):EE+(1/6):EE+ ··· P- 感生电偶极矩 E- 激发光的电场
从图中可见,拉曼 光谱的横坐标为拉 曼位移,以波数表 示。纵坐标为拉曼 光强。由于拉曼位 移与激发光无关, 一般仅用Stokes位 移部分。对发荧光 的分子,有时用反 Stokes位移。
我国科技工作者对拉曼光谱学的发展做出了重要贡献。
吴大猷先生
1935年在北大完成了第一篇关于拉曼散
射的论文,也是该领域国内的第一篇论
量子理论:量子力学方法处理散射体
在拉曼效应被发现后的十余年间,共发表了约2000篇研究 论文,报道了约4000个化合物的拉曼光谱图。
尽管当时拉曼光谱在实验技术上有很多困难,例如拉曼散
射光的强度只有瑞利散射强度的10-3~10-6,但与刚发展起
来的红外光谱在实验技术上的困难相比,拉曼光谱仍不失 为一种方便易行的测试方法。
1946年前后,商品化的红外分光光度计问世,使红外光谱 测试技术的方便程度大大超过了拉曼光谱,这种状态一直 持续到50年代末期。
文。 1939年他在西南联大完成了专著《多
原子分子的振动谱和结构》,是自拉曼
获诺贝尔奖以来,第一部全面总结分子 拉曼光谱研究成果的经典著作。
黄昆先生 1954年在英国出版与波恩合 著的名著《晶格动力学理 论》,成为声子物理和拉
曼散射的经典理论著作
1988建立起超晶格拉曼散射 理论 2002年获国家科技奖
ቤተ መጻሕፍቲ ባይዱ
第一项表示感生偶极矩以频率0发射电磁辐射,对应于瑞 利散射,第二项和第三项分别表示感生偶极矩以与分子简 正振动频率k有关的频率0-k和0+k发射辐射,分别对应 于拉曼散射的斯托克斯线和反斯托克斯线。
经典理论很好地解释了拉曼位移,但仍有不足,根据经典
电磁理论, 应有散射强度:
I P
..
天空蓝色:白天,太阳在我们的头顶,当 日光经过大气层时,发生瑞利散射,因为 蓝光比红光波长短,瑞利散射发生的比较 激烈,被散射的蓝光布满了整个天空,从 而使天空呈现蓝色。
朝霞红色:当日落或日出时,太阳几乎在 我们视线的正前方,此时太阳光在大气中 要走相对很长的路程,所看到的直射光中 的蓝光大量都被散射了,只剩下红橙色的 光,这就是为什么日落时太阳附近呈现红 色,而云也因为反射太阳光而呈现红色 。
前苏联及法国的学者也相继在实验中观察到这种效应。
G. Landsberg and L. Mandelatam, Naturwiss, 16,557, 1928. J. Cabannes, Compt. Rend., 186,1201,1928. Y. Rocard, Compt. Rend., 186,1107,1928.
相关文档
最新文档