奥数提高班第一讲-有理数的巧算(含答案)

合集下载

有理数的巧算含答案

有理数的巧算含答案

2
=
(“祖冲之杯”邀请赛试题)
2
11
=2( - )
(3)
52003 5
4
提示:设 s=5+52+53+…+52002,则 5s=52+53+…+52003.
【例 4】(1)若按奇偶分类,则 22004+32004+72004+92004 是________数; (2)设 a=355,b=444,c=533,则 a、b、c 的大小关系是_______(用“>”号连接); (3)求证:32002+42002 是 5 的倍数. 思路点拨 乘方运算是一种特殊的乘法运算,解与乘方运算有关问题常用到以下知 识:①乘方意义;②乘方法则;③a2n≥0;④an 与 a 的奇偶性相同;⑤在 n4k+r 中(k,r 为非负整 数,n≠0,0≤r<4),当 r=0 时,n4k+r 的个位数字与 n4 的个位数字相同;当 r≠0 时,n4k+r的个 位数字与 nr 的个位数字相同. 解:(1)奇;(2)a>b>c. (3)因为 32002=34×500+2,42002=44×500+2,所以 32002 与 42002 的个位数字分别与 32、42 的个数 数字相同,即 9、6,从而 32002+42002 的个位数字为 5,因此,32002+42002 是 5 的倍数. 【例 5】有人编了一个程序:从 1 开始,交替地做加法或乘法(第一次可以是加法,也可 以是乘法),每次加法,将上次运算结果加 2 或加 3;每次乘法,将上次运算结果乘 2 或乘 3,
例题求题
【例 1】现有四个有理数 3,4,-6,10,将这 4 个数(每个数用且只用一次)进行加、减、

强烈推荐七年级数学第一学期第一章有理数1.12专题一有理数的巧算(图文详解含答案)

强烈推荐七年级数学第一学期第一章有理数1.12专题一有理数的巧算(图文详解含答案)
七年级数学课本知识延伸拓展(第一学期)
第1章有理数
专题一有理数的巧算
专题一:有理数的巧算
有理数的运算,除了运用有关运算的法则,还要 注意运算方法,发现算式里隐含的规律,这样能化 繁为简,提高运算速度和准确率。
七年级数学第一学期第一章有理数 典型例题
七年级数学第一学期第一章有理数 思路点拨
七年级数学第一学期第一章有理数 举一反三
奥赛训练
答案详解
七年
七年级数学第一学期第一章有理数
答案详解
七年级数学第一学期第一章有理数 举一反三
答案详解
七年级数学第一学期第一章有理数 举一反三
答案详解
七年级数学第一学期第一章有理数 举一反三
答案详解
七年级数学第一学期第一章有理数
七年级数学第一学期第一章有理数 思路点拨
七年级数学第一学期第一章有理数
答案详解
七年级数学第一学期第一章有理数

【七年级奥数】第1讲 有理数的巧算(例题练习)

【七年级奥数】第1讲  有理数的巧算(例题练习)

第1讲有理数的巧算——例题一、第1讲有理数的巧算(例题部分)1.计算:【答案】解:原式===0+0+0=0【解析】【分析】在有理数加减运算中,应注意利用交换律与结合律,将其中的数适当改变顺序,重新组合、尽可能“凑整”或“抵消”.“抵消”,即两个相反的数相加,和为0(两个相同的数相减,差为0),如上面的与-,-与,但要注意符号,不要搞错,如上面的-与不能抵消,它们的和与可以抵消.2.计算【答案】解:原式===【解析】【分析】在进行有理数的乘除运算时,要注意确定结果的符号:奇数个负数相乘除,结果为负;偶数个负数相乘除,结果为正.通常将小数化为分数,带分数化为假分数,把除法转化为乘法,能约分的先约分,尽量化简。

3.计算【答案】解:原式==【解析】【分析】在进行有理数的四则运算时,还应注意应用分配律.若有公因数,一般可将公因数提出,然后进行运算.如本例中,分子有公因数1×2×3,分母有公因数1×3×5,就可以将它们提出,然后约分,以简化运算.应注意,当提出的公因数带负号时,提取后各项的符号都要改变.4.计算【答案】解:原式====……==1-=【解析】【分析】经过观察发现算式的特点:后一项是前一项的一半.如果我们把后一项加上它本身,就可以得到前一项的值.因此,我们巧添了一个辅助数,使问题得以顺利解决.当然,根据代数式的值得不变性可知,在添加上后不要忘了还应减。

5.计算(1)1+2+3+4+ +2007+2008(2)1-2+3-4+ +2007-2008【答案】(1)解:令S=1+2+3+4+ +2007+2008则S=2008+2007 +2+1两式相加,得2S===2009 2008所以S=即原式=(2)原式===-1004【解析】【分析】(1)由题意知,本小题的特点是:后一项减去前一项的差都相等.这样的一列数是等差数列.即若一列数,有(常数)(i=12,…,n一1),则这列数称为等差数列,其中称为首项,称为末项,n为项数,d为公差.等差数列的和a,的计算公式为:所以,本题也可用这个计算公式计算.有时,项数不能直接看出,可用下面的公式计算:(2)由题意知,相邻的项两两结合求差为-1,可以简化运算.这是由本题的特点所决定的.所以,在做题时,应先观察一下题目的特点,根据特点下手,往往有事半功倍的效果.6.计算【答案】解:原式==1-= =【解析】【分析】在做加减法运算时,根据数的特点,将其中一些数适当拆开,变成两个数的差并且拆开后有一些数可以相互抵消,达到简化运算的目的,这种方法叫拆项法.本例中,我们把拆成,即可求解。

第一讲 七年级有理数的巧算

第一讲   七年级有理数的巧算

第一讲 有理数(1)一、知识提要1、 整数和分数统称为有理数。

2、 有理数还可以这样定义:形如mp(其中m 、p 均为整数,且m ≠0)的数是有理数。

这种表达形式常被用来证明或判断某个数是不是有理数。

3、 有理数的数系表:正整数 正整数 整数 零 正有理数负整数 正分数 有理数 正有限小数 或 有理数 零正分数 负整数 正无限循环小数 负有理数分数 负分数负有限小数负分数负无限循环小数 4、 有理数可以用数轴上的点表示。

5、 零是正数和负数的分界点;零不是正数也不是负数。

6、 如果两个数的和为0,则称这两个数互为相反数。

如果两个数的积为1,则称这两个数互为倒数。

7、 有理数的运算法则: (1)、加法:两数相加,同号的取原来的符号,并把绝对值相加;异号的取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,绝对值相等时,和为0;一个数与0相加,仍得这个数。

(2)、减法:减去一个数等于加上这个数的相反数。

(3)、乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;一个数与0相乘, 积为0. 乘方:求n 个相同因数a 的积的运算称为乘方,记为na 。

(4)、除法:除以一个数等于乘以这个数的倒数。

8、有理数的运算律:加法交换律:a b b a +=+;加法结合律:)()(c b a c b a ++=++; 乘法交换律:c b b a ⨯=⨯;乘法结合律:)()(c b a c b a ⨯⨯=⨯⨯; 乘法分配律:c b c a c b a ⨯+⨯=⨯+)(;9、有理数具有以下性质①对于任意两个有理数a , b ,在a < b , a = b ,a > b 三种关系中,有且只有一种成立。

②如果a < b , 那么b > a 。

③如果a < b , b < c , 那么 a < c ④如果a = b , b = c , 那么 a = c ⑤如果a = b , 那么 b = a⑥任意一对有理数,对应的和、差、积、商(除数不为零)仍是有理数。

初一奥赛培训《有理数的巧算》重点

初一奥赛培训《有理数的巧算》重点

A普通股每股市价 B普通股每股股利 C每股市场利得 D普通股每股股利与每股市场利得之和108.利润表上半部分反映经营活动,下半部分反映非经营活动,其分界点是( BA净利润 B营业利润 C利润总额 D主营业务利润109.企业管理者将其特有的现金投资于”现金等价物”项目,其目的在于( C )A企业长期规划 B控制其他企业 C利用暂时闲置的资金赚取超过持有现金的收益D谋求高于利息流入的风险报酬110.利润分配表中未分配利润的计算方法是( D )A年初未分配利润-本年净利润 B本年净利润-本年利润分配C年初未分配利润+本年净利润 D年初未分配利润+本年净利润-本年利润分配111下旬各项指标中,能够反映收益质量的指标是A每股经营现金流量B市盈率C营运指数D 每股收益112.财务报表分析是对象是A企业的投资活动B企业的筹资活动C企业的各项基本活动D企业的经营活动113.如果企业速动比率很小,下列结论成立的是( A )A企业短期偿债风险很大B企业资产流动性很强C企业流动资金占用过多D企业短期偿债能力很强114产权比率的分母是( C 。

A负债总额 B资产总额 C所有者权益总额 D资产与负债之和115下列各项中,不属于投资活动结果的是() A应收帐款B存货C长期投资D股本116投资报酬分析最主要的分析主体是( B ) A上级主管部门B投资人C长期债权人D短期债权人117下列各项中,属于经营活动结果的是( D )A补贴收入B营业外收入C投资收益D主营业务利润118ABC公司2009年度的净资产收益率目标为20%,资产负债率调整为45%,则其资产净利率应达到( A )A11% B55% C9%D 20%119如果企业速动比率很小,下列结论成立的是( C )A企业流动资金站用过多B企业短期偿债能力很强 C企业短期偿债风险很大 D企业资产流动性很强120经营者分析资产运用效率的目的是( C )A判断财务的安全性 B评价偿债能力 C发现和处置闲置资产 D评价获利能力121从营业利润率的计算公式可以得知,当主营业务收入一定时,影响该指标高低的关键因素是( B )A主营业务利润 B营业利润 C利润总额 D净利润二.多选题1. 比较分析法按照比较的对象分类,包括(ABD )P15A历史比较 B同业比较 C 总量指标比较 D预算比较 E财务比率比较2. 下列各项中,决定息税前经营利润的因素包括(ABCD)P54A主营业务利润 B其他业务利润 C营业费用 D管理费用 E财务费用3. 下列各项中属于股东权益的有(ABCDE)P48 01A股本 B资本公积 C盈余公积 DE法定公益金4. 依据杜邦分析法,当权益乘数一定时,影响资产净利率的指标有(AC )P157A销售净利率 B资产负债率 C资产周转率产权比率一、解答题(共16小题,满分150分)1、计算:(1)[47﹣(18.75﹣1÷)×2]÷0.46C投资收益2 E管理费用3、计算:S=1﹣2+3,却不能偿还到期债务,n+1?n.4、在数1,2,3,,1998前添符号“+”和“﹣”,并依次运算,所得可能的最小非负数是多少?5、计算3001×2999的值.6、计算103×97×10 009的值.7、计算:8、计算:(2+1)(使销售收入增长高于成本和费用的增加幅度2+1)(24+1)(28+1D16E 提高销售净利率32+1).9、计算:(1﹣)(1),(1﹣)(1﹣)下列各项活动中,_________10、计算:11、某班20名学生的数学期末考试成绩如下,请计算他们的总分与平均分.87,91C94,88,93,91,89,10. ,92,86,90,92,88,90,91,86,89,92,95,88.12、计算1+3+5+7+,+1997+1999的值.13、计算1+5+52+53+,+599+5100属于筹资活动结果的有(14、计算:)++,+.15、计算下列各式的值:()﹣D应收账款E9+11﹣,12.财务报表初步分析的内容有(ABCD)P36 17﹣18+,+99+100;(3)1991×1999﹣1990×2000;(4)47263413.2﹣472 633×472 635﹣472 634×472 636;(5)(6)1+4+7+,+244;(7)1+(8)114.财务报表附注中应披露的会计政策有16、某小组20名同学的数学测验成绩如下,试计算他们的平均分.81,72,77,83所得税的处理方法 D.存货的计价方法 E.固定资产的使用年限84,,76,97,80,90,76,91,86,78,74,85E.现金流动分析答案与评分标准一、解答题(共16小题,满分150分)A(1)[47﹣(18.75﹣1÷)×2]÷0.46(2.)考点)P132专题:计算题。

初一奥赛培训01:有理数的巧算 甄选

初一奥赛培训01:有理数的巧算   甄选

初一奥赛培训01:有理数的巧算(优选.)一、解答题(共16小初一奥赛培训01:有理数的巧算题,满分150分)1、计算:(1)[47﹣(18.75﹣1÷)×2]÷0.46(2)2、计算下式的值:211×555+445×789+555×789+211×445.3、计算:S=1﹣2+3﹣4+…+(﹣1)n+1•n.4、在数1,2,3,…,1998前添符号“+”和“﹣”,并依次运算,所得可能的最小非负数是多少?5、计算3001×2999的值.6、计算103×97×10 009的值.7、计算:8、计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).9、计算:(1﹣)(1﹣)…(1﹣)(1﹣)=_________10、计算:11、某班20名学生的数学期末考试成绩如下,请计算他们的总分与平均分.87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88.12、计算1+3+5+7+…+1997+1999的值.13、计算1+5+52+53+…+599+5100的值.14、计算:+++…+.15、计算下列各式的值:(1)﹣1+3﹣5+7﹣9+11﹣…﹣1997+1999;(2)11+12﹣13﹣14+15+16﹣17﹣18+…+99+100;(3)1991×1999﹣1990×2000;(4)4726342+472 6352﹣472 633×472 635﹣472 634×472 636;(5)(6)1+4+7+ (244)(7)1+(8)116、某小组20名同学的数学测验成绩如下,试计算他们的平均分.81,72,77,83,73,85,92,84,75,63,76,97,80,90,76,91,86,78,74,85.答案与评分标准一、解答题(共16小题,满分150分)1、计算:(1)[47﹣(18.75﹣1÷)×2]÷0.46(2)考点:有理数的混合运算。

第一讲-七年级有理数的巧算

第一讲-七年级有理数的巧算

第一讲 有理数(1)一、知识提要1、 整数和分数统称为有理数。

2、 有理数还可以这样定义: 形如mp (其中m 、p 均为整数,且m ≠0)的数是有理数。

这种表达形式常被用来证明或判断某个数是不是有理数。

3、 有理数的数系表:正整数 正整数 整数 零 正有理数负整数 正分数 有理数 正有限小数 或 有理数 零正分数 负整数 正无限循环小数 负有理数分数 负分数负有限小数负分数负无限循环小数4、 有理数可以用数轴上的点表示。

5、 零是正数和负数的分界点;零不是正数也不是负数。

6、 如果两个数的和为0,则称这两个数互为相反数。

如果两个数的积为1,则称这两个数互为倒数。

7、 有理数的运算法则:(1)、加法:两数相加,同号的取原来的符号,并把绝对值相加;异号的取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,绝对值相等时,和为0;一个数与0相加,仍得这个数。

(2)、减法:减去一个数等于加上这个数的相反数。

(3)、乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;一个数与0相乘, 积为0. 乘方:求n 个相同因数a 的积的运算称为乘方,记为na 。

(4)、除法:除以一个数等于乘以这个数的倒数。

8、有理数的运算律:加法交换律:a b b a +=+;加法结合律:)()(c b a c b a ++=++;乘法交换律:c b b a ⨯=⨯;乘法结合律:)()(c b a c b a ⨯⨯=⨯⨯;乘法分配律:c b c a c b a ⨯+⨯=⨯+)(;9、有理数具有以下性质①对于任意两个有理数a , b ,在a < b , a = b ,a > b 三种关系中,有且只有一种成立。

②如果a < b , 那么b > a 。

③如果a < b , b < c , 那么 a < c④如果a = b , b = c , 那么 a = c⑤如果a = b , 那么 b = a⑥任意一对有理数,对应的和、差、积、商(除数不为零)仍是有理数。

第一讲计算综合提高班教师版(带完整答案)_5年级奥数讲义与课件

第一讲计算综合提高班教师版(带完整答案)_5年级奥数讲义与课件

第一讲计算问题在历届的小升初选拔、迎春杯和希望杯中.考察学生的计算能力是必不可少的。

这部分的题目难度不大,但是方法很巧妙,目的是考察大家的基本运算和巧算的能力。

要做好这些题目,就需要同学们在掌握好最基本的计算知识和方法的基础上多做题,从而锻炼自己的运算能力.在计算的过程中也有许多巧方法可以帮助我们加快计算速度、提高正确率。

知识说明:计算中的提取公因数法是近几年来迎春杯、希望杯和小升初中经常考的题目,但是通过分析我们发现在考试中不仅仅是只考提取公因数这样简单的题,这类题目往往是同积不变的规律、商不变的规律等结合着出的综合题。

和不变的规律:如果一个加数增加另一个加数减少同一个数,它们的和不变.积不变的规律:如果一个因数扩大几倍,另一个因数缩小相同的倍数,积不变.商不变的规律:如果除数和被除数同时扩大或缩小相同的倍数,商不变.【例1】(05 年希望杯2 试)计算(1) 2. 005X390+20. 05X41+200。

5X2(2) 2000X 1999-1999X1998 + 1998X 1997-1997X 1996+1996X1995-1995X 1994分析:(1)根据提取公因数的方法和积不变的规律知道,原式=200. 5X3. 9+200. 5X4.1+2=200. 5X (X 9+4.1+2) =200.5X10=2005(2)题目是六项乘积的和差运算,其中,每两项中都有公因数,于是,我们先分组简算・原式=1999X (2000-1998) +1997X (1998-1996) +1995X (1996-1994)=1999 X 2+1997 X 2+1995 X 2 =2X (1999+1997+1995)=2X(2000+2000+2000-9) =2X (6000-9)=2X6000-2X9 =12000-18 =11982【例2】计算(1) (04年希望杯2试)12.5十3.6-7+9 + 8.3 + 3.6(2) 2003x2001 -r 111+2003x73-r37分析:(1)原式=125036-28+36+83 + 36= (125-28+83) +36=5一125 7 83 125-28 + 83 180或12.5十3.6 — 7十9 + 8.3 + 3.6 = - - — + 一 = ------------- = ----- = 536 9 36 36 36(2)原式=2003x2001 -r 111+2003x73x3- ( 37x3 )= 2003x ( 2001+73x3 ) -r 111 = 2003x2220-r 111 = 40060[前铺](05 年希望杯1 试)计算78. 16X1.45 + 3. 14X21.84 + 169X0. 7816分析:不难看出式子中7816出现过两次:78.16和0.7816,由此可以联想到提取公因数原式=78. 16X1.45+3. 14X21.84 + 1.69X78. 16= 78. 16X (1.45 + 1.69) +3.14X21.84= 78. 16X3. 14 +3. 14X21.84 = 3. 14X100 = 314[巩固](06 年希望杯2 试)8.1X1. 3-84-1. 3+1. 9X1. 3+11. 94-1. 3 分析:原式=(8.1 + 1. 9) XI. 3+ (11.9-8) -4-1.3=13 + 3=16【例3】计算412X0.81 + 11X 91+53.7X 1.94分析:原式=41.2X8.1 + 11X (9+0.25) + (41.2+12.5) X1.9=41.2X8.1+41.2X1.9+12.5X1.9+11X9+11X0.25=41.2X (8.1 + 1.9) + (10+2.5) X 1.9+99+11 X0.25=412+10X1.9+2.5X1.9+99+11X0.25=412+19+994- (11 + 19) X0.25 =410+2+20-1 + 100-1 + 7.5=537.5[前铺]计算31. 4X36+64X43. 9分析:观察发现题中有36和64,试想如果出现64X31.4,就太完美了,所以我们可以构造出64X31.4 这就是提取公因数的构造法。

七年级王牌竞赛 第一讲 有理数的巧算

七年级王牌竞赛  第一讲  有理数的巧算

第一讲有理数的巧算【趣题引路】(第6届“希望杯”竞赛试题改编)计算:2004×20032003+2005×20042004-2003×20042004-2004×20052005解析原式=2004×20032003-2003×20042004+2005×20042004-2004×20052005=(2004×2003×10001-2003×2004×10001)+(2005×2004×10001-2004×2005×10001)=0点评:abcabc型式子通常将它化成abc×1001型式子,有的问题还利用到1001=7×11×13这一特点来进行考查,有理数的运算有许多技巧和方法,是中考和竞赛的热点。

【知识延伸】一、巧用运算律进行有理数运算时注意符号的处理,再看是否可以用运算律简化运算。

例1 计算:(1)719998-×16;(2)11311()()63641248--+-÷-解析(1)原式=1 (2000)8--×16=-(3200-2) =-31998(2)原式=-1131()48 636412--+-⨯=-(-8-43+36-4)=-2 223.点评:(1)像719998、2003等数字在参与运算时,往往将其写成120008-、2000+3的形式;(2)利用乘法对加法的分配律时,应注意符号的处理技巧,尽量以免错误。

二、有理数大小的比较有理数大小比较的一般规律:正数>零>负数;两个负数比较大小,绝对值大的反而小;两个正数比较大小,倒数大的反而小、在进行有理数大小比较时,往往利用到作差、作商、倒数比较、平方比较以及运用一些熟知的规律进行比较.例 2 (1992年“缙云杯”初中数学邀请赛试题)把199191199292,,,199292199393----四个分数按从小到大的顺序排列是.解析:1992192119931931 1,1,1,1, 199119919191199219929292 =+=+=+=+ 1111199319929392,, 199219919291199219919291 199219919291199219919291,. 199319929392199319929392 <<<∴<<<∴>>>∴-<-<-<-而是经常用到的方法.实际上,此类习题具有一般规律;11n n n n -<+(n 是正整数),如12342345<<<<⋅⋅⋅。

初一奥数培训教材(1—8讲)

初一奥数培训教材(1—8讲)

第1讲有理数的加减【例1】有理数加法计算:(1)12()()33-+-;(2)(10.8)(10.7)-++;(3)(6)0-+;(4)4452(52)77+-.【例2】有理数减法计算:(1)6(3)--;(2)0(2)--;(3)(7)(5)---;(4)(2)0--【例3】有理数混合计算:(1)263(59.8)()(12.8)55+--+-+;(2)311(2)(2)38(3)843-+---++.【例4】有理数混合计算:(1)3212()(31)()(31)4545-++-+-;(2)2253(7)(4)(2)(5)7575++-++-.【例5】在数23456789,,,,,,,1010101010101010的前面分别添上加“+”或“-”,使它们的和为1.你能想出多少种方法?(开放性题)【例6】一个水井,下面比井口低3米,一只蜗牛从水面沿着井壁往井口爬,第一次往上爬了0.5米后又往下滑了0.1米;第二次往上爬了0.42米,却又下滑了0.15米;第三次往上爬了0.7米,却又下滑了0.15米;第四次往上爬了0.75米,却又下滑了0.1米;第五次往上爬了0.55米,却又下滑了0.48米.问蜗牛有没有爬出井口?课后练习: 1、计算:(1)3.2( 4.2)+-;(2)23()()55-+-;(3)(382.4)(382.4)-++;(4)0(24.1)+-;(5)11 ()() 36 -+-2、计算:(1)(3)(5)---;(2)(7)5--;(3)0 4.2-;(4)( 4.2)0--;(3)(20)3(30)5-----;(6)03(4)5(6)-----.3、计算:(1)0.2(0.3)(0.4)(0.5)-+---+-;(2)10(8)(6)(4)(2)--+---+-;(3)111()326---;(4)1110()5210--+-.4、潜水艇原来在水下200米处,若它下潜50米,接着又上浮130米,问这里潜水艇在水下多少米处?5、判断题:(1)若两个数的和为负数,则这两个数都是负数. ()(2)若两个数的差为正数,则这两个数都是正数. ()(3)零减去一个有理数,差必为负数. ()(4)如果两个数互为相反数,则它们的差为0. ()6、计算:(1)(1)2(3)4(5)6(7)8-++-++-++-+;(2)3313 04()(1)17575-+---+;(3)3232(1)4(2)(2)7373-+--+-;(4)511(3)(3)24(1)635-+---+-.7、请在数1,2,…,2006,2007前适当添加上“+”或“-”号,使它们的和的绝对值最小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲有理数的巧算
有理数运算是中学数学中一切运算的基础.它要求同学们在理解有理数的有关概念、法则的基础上,能根据法则、公式等正确、迅速地进行运算.不仅如此,还要善于根据题目条件,将推理与计算相结合,灵活巧妙地选择合理的简捷的算法解决问题,从而提高运算能力,发展思维的敏捷性与灵活性.
1.括号的使用
在代数运算中,可以根据运算法则和运算律,去掉或者添上括号,以此来改变运算的次序,使复杂的问题变得较简单.
例1计算下式的值:
211×555+445×789+555×789+211×445.
例2在数1,2,3,…,1998前添符号“+”和“-”,并依次运算,所得可能的最小非负数是多少?
2.用字母表示数
我们先来计算(100+2)×(100-2)的值:
这是一个对具体数的运算,若用字母a代换100,用字母b代换2,上述运算过
程变为(a+b)(a-b)=___________
于是我们得到了一个重要的计算公式____________________________
这个公式叫___________公式,以后应用这个公式计算时,不必重复公式的证明
过程,可直接利用该公式计算.
例3 计算3001×2999的值.
练习1 计算103×97×10 009的值.练习2 计算:
练习3 计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).
练习4 计算:
3.观察算式找规律
例4某班20名学生的数学期末考试成绩如下,请计算他们的总分与平均分.
87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88.
例5 计算1+3+5+7+…+1997+1999的值.
例6计算 1+5+52+53+…+599+5100的值.
例7 计算:
练习一
1.计算下列各式的值:
(1)-1+3-5+7-9+11-…-1997+1999;
(2)11+12-13-14+15+16-17-18+…+99+100;
(3)1991×1999-1990×2000;
(4)4726342+472 6352-472 633×472 635-472 634×472 636;
(6)1+4+7+ (244)
2.某小组20名同学的数学测验成绩如下,试计算他们的平均分.
81,72,77,83,73,85,92,84,75,63,76,97,80,90,76,91,86,78,74,85.
第一讲有理数的巧算答案
例1 计算下式的值:
211×555+445×789+555×789+211×445.
分析直接计算很麻烦,根据运算规则,添加括号改变运算次序,可使计算简单.本题可将第
一、第四项和第二、第三项分别结合起来计算.
解原式=(211×555+211×445)+(445×789+555×789)
=211×(555+445)+(445+555)×789
=211×1000+1000×789
=1000×(211+789)
=1 000 000.
说明加括号的一般思想方法是“分组求和”,它是有理数巧算中的常用技巧.
例2 在数1,2,3,…,1998前添符号“+”和“-”,并依次运算,所得可能的最小非负数是多少?
分析与解因为若干个整数和的奇偶性,只与奇数的个数有关,所以在1,2,3,…,1998之前任意添加符号“+”或“-”,不会改变和的奇偶性.在1,2,3,…,1998中有1998÷2个奇数,即有999个奇数,所以任意添加符号“+”或“-”之后,所得的代数和总为奇数,故最小非负数不小于1.现考虑在自然数n,n+1,n+2,n+3之间添加符号“+”或“-”,显然
n-(n+1)-(n+2)+(n+3)=0.
这启发我们将1,2,3,…,1998每连续四个数分为一组,再按上述规则添加符号,即
(1-2-3+4)+(5-6-7+8)+…+(1993-1994-1995+1996)-1997+1998=1.
所以,所求最小非负数是1.
说明本例中,添括号是为了造出一系列的“零”,这种方法可使计算大大简化.
例3 计算 3001×2999的值.
解 3001×2999=(3000+1)(3000-1)=30002-12=8 999 999.
例4 某班20名学生的数学期末考试成绩如下,请计算他们的总分与平均分.
87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88.
分析与解若直接把20个数加起来,显然运算量较大,粗略地估计一下,这些数均在90上下,所以可取90为基准数,大于90的数取“正”,小于90的数取“负”,考察这20个数与90的差,这样会大大简化运算.所以总分为90×20+(-3)+1+4+(-2)+3+1+(-1)+(-3)+2+(-4)+0+2+(-2)+0+1+(-4)+(-1)+2+5+(-2) =1800-1=1799,平均分为 90+(-1)÷20=89.95.
例5 计算1+3+5+7+…+1997+1999的值.
分析观察发现:首先算式中,从第二项开始,后项减前项的差都等于2;其次算式中首末两项之和与距首末两项等距离的两项之和都等于2000,于是可有如下解法.
解用字母S表示所求算式,即
S=1+3+5+…+1997+1999.①
再将S各项倒过来写为
S=1999+1997+1995+…+3+1.②
将①,②两式左右分别相加,得
2S=(1+1999)+(3+1997)+…+(1997+3)+(1999+1)
=2000+2000+…+2000+2000(500个2000)
=2000×500.
从而有 S=500 000.
例6 计算 1+5+52+53+…+599+5100的值.
分析观察发现,上式从第二项起,每一项都是它前面一项的5倍.如果将和式各项都乘以5,所得新和式中除个别项外,其余与原和式中的项相同,于是两式相减将使差易于计算.
解设S=1+5+52+…+599+5100,①
所以
5S=5+52+53+…+5100+5101.②
②—①得
4S=5101-1,
例7 计算:
分析一般情况下,分数计算是先通分.本题通分计算将很繁,所以我们不但不通分,反而利用如下一个关系式
来把每一项拆成两项之差,然后再计算,这种方法叫做拆项法.
解由于
所以
说明本例使用拆项法的目的是使总和中出现一些可以相消的相反数的项,这种方法在有理数巧算中很常用.。

相关文档
最新文档