《光谱分析法导论》PPT课件

合集下载

仪器分析第2章光谱分析法导论讲解课件

仪器分析第2章光谱分析法导论讲解课件

太阳光谱
折射和反射
• 当光线从介质 1 射到介质 2 的界面上,一部 分在介质 1 中改变其传播方向(反射),另 一部分在介质 2 中改变其传播方向(折射)。
• 反射光和折射光的能量分配是由介质的性质和 入射角的大小来决定的。
• 对于垂直于界面的光束,反射光部分可由下式 计算:
Ir I0
(n2 n1)2 (n2 n1)2
• 原子或分子的最低能态称为基态,较高能态 称为激发态。
光学分析法
非光谱法 光谱法
非光谱法
• 折射法:基于测量物质折射率的方法。 • 旋光法:利用光学活性物质的旋光性质进行
定量测定或纯度检验。 • 比浊法:测量光线通过胶体溶液或悬浮液后
的散射光强度来进行定量分析。 • 衍射法:基于光的衍射现象而建立的方法
分子发射
吸收辐射而被激发的原子和分子处在 高能态的寿命很短,它们一般要通过不同 的弛豫过程返回到基态
非辐射弛豫 辐射弛豫
非辐射弛豫
以非发光的形式释放能量的过程,此时 激发态分子与其他分子发生碰撞而将部分激 发能转变成动能并释放出少量的热量。结果 使体系的温度有微小的升高。
非辐射弛豫包括振动弛豫、内转移、外 转移和系间窜越等。
• 这些粒子只具有少数几个可能的能态。 • 激发作用是通过一个或几个电子跃迁到较高能
级实现的。
如 Na 蒸汽
589.30 nm 589.60 nm 3s→3p
285 nm
3s→5p
紫外和可见光区的能量足以引起外层电子或
价电子的跃迁。
分子吸收
分子的总能量E分子可以用下式表示: E分子= E电子+ E振动 + E转动
• 核磁共振波谱法(NMR) • 电子自旋共振波谱法(ESR)

光谱分析法概论(共76张PPT)全

光谱分析法概论(共76张PPT)全
(1) 简并:振动形式不同,但振动频率相同,产生简并。
(2) 红外非活性振动:振动过程中分子偶极矩不发生变化。
(或说偶极矩变化为0),正负电荷重心重合 r = 0 因为µ= q·r = 0 ,Δµ= 0;红外线是个交替磁场,若
Δµ= 0,则不产生吸收。
(3) 仪器分辨率太弱。 (4) 峰太弱。
☆产生红外光谱两个必要条件:
苯环和发色团相连,使E2和B带均长移, ε大 E2,K 带合并,有的就称为K带
基本原理和基本概念
苯的乙醇溶液
基本原理和基本概念 (四)影响因素 溶剂效应 ① n→π* 极性 短移 π→π* 极性 长移 ②影响吸收强度
③影响精细结构:苯在乙醇中(极性) 精细结构消失
基本原理和基本概念
基本原理和基本概念
3080-3030 cm-1 re 平衡位置原子间距离 差频峰: ν1-ν2 亚甲基的伸缩振动形式示意图
即:不对称分子,Δµ大
质谱法
确定分子的原子组成、相对分子质量、分子
式和分子结构。经常与UV、IR及NMR等配合 运用。
光学分析仪器的基本组成
紫外光谱 Ultraviolet absorption spectra
3. n→π* :含有杂原子的不饱和基团,近紫外区, ε很小 例如:-C=O: ,-C≡N:
4. n→σ* :远紫外区,含有杂原子的饱和基团, 例如:-OH,-NH2,-X,-S
σ→σ*> n→σ*≥π→π*> n→π*
基本原理和基本概念
(二)紫外光谱中常用术语
生色团 — 结构中有π→π*或 n→π*的基团,
50 ~ 500 µm 远红外(far-infrared)
红外光区的划分与跃迁类型
注意波数和波长的换算关系

光谱分析法概论完美版PPT

光谱分析法概论完美版PPT
X+h→X
➢ 发射(Emission) 物质受到激发而跃迁 到激发态后,由激发态回到基态时以辐射的 方式释放能量。
X →X X→ X+h
➢散射(Scattering) 光子与物质分子之间发生 碰撞,使光子的运动方向发生改变而向不同角度 散射。
瑞利散射 光子与物质分子发生弹性碰撞,不 发生能量交换,仅光子运动方向发生改变。
二、电磁辐射与物质的相互作用
光谱分析法
(Spectroscopic analysis)
光学分析法
➢ 物质与辐射能作用时内部发生 能级跃迁→光谱
非光谱法
➢ 物质与辐射能作用时不发生 能级跃迁
(一) 物质内部发生能级跃迁
➢ 吸收 (Absorption) 辐射能量恰好满 足物质两能级间跃迁所需的能量。
例如:计算1mol (6.022171023个)波长为 200nm的光子的能量E
hc 6.626 1 2 0 3 42.9971 910 2 065 .02 211 2037
E
20 100 7
5.9 8150(J )
3.电磁波谱:电磁辐射按波长顺序排列,称~。 γ射线→ X 射线→紫外光→可见光→红外光→微波→无线电波
一、电磁辐射的性质
光: 是一种电磁波, 具有波动性和粒子性.
波动性 – 传播运动过程中突出, 表现在光的偏振,
干预, 衍射
粒子性 – 与物质相互作用时突出, 表现在光电效
应, 光的吸收和发射
衍射
干射
散射
1. 光的波动性
波动性:可用波长λ、频率ν 和波数 σ 来描述。
吸收 (Absorption) 辐射能量恰好满足物质两能级间跃迁所需的能量。
对于不同的光波, 波长采用不同的单位.

《光谱分析导论》PPT课件

《光谱分析导论》PPT课件

2. 联用技术
电感耦合高频等离子体(ICP)—质谱 激光质谱:灵敏度达10-20 g
3. 新材料
光导纤维传导,损耗少;抗干扰能力强;
2020/11/28
《仪器分析》
20
4. 交叉
电致发光分析;光导纤维电化学传感器
5. 检测器的发展
电荷耦合阵列检测器光谱范围宽、量子效率高、线性范围 宽、多道同时数据采集、三维谱图,将取代光电倍增管;
2020/11/28
《仪器分析》
27
内量子数 :
内量子数J取决于总角量子数L和总自旋量子数S的矢量和:
J = (L + S), (L + S - 1),······, (L - S)
若 L ≥ S ; 其数值共(2 S +1)个;
若 L < S ; 其数值共(2 L +1)个;
例:L=2,S=1,则 J 有三个值,J = 3,2,1;
2020/11/28
《仪器分析》
5
三个基本过程:
(1)能源提供能量; (2)能量与被测物之间的相互作用; (3)产生信号。
基本特点:
(1)所有光分析法均包含三个基本过程; (2)选择性测量,不涉及混合物分离(不同于色谱分析); (3)涉及大量光学元器件。
2020/11/28
《仪器分析》
6
二、电磁辐射的基本性质
波数 cm-1
2020/11/28
《仪器分析》
30
电子能级跃迁的选择定则
根据量子力学原理,电子的跃迁不能在任意两个能级之 间进行;必须遵循一定的“选择定则”: (1)主量子数的变化 Δn为整数,包括零; (2)总角量子数的变化ΔL = ± 1; (3)内量子数的变化ΔJ =0, ± 1;但是当J =0时, ΔJ =0的 跃迁被禁阻; (4)总自旋量子数的变化ΔS =0 ,即不同多重性状态之间的 跃迁被禁阻;(基态与激发态中电子的自旋方向相同)

光谱分析法导论ppt课件

光谱分析法导论ppt课件
光源有连续光源和线光源等。
一般连续光源主要用于分子吸收 光谱法;线光源用于荧光、原子吸收 和Raman光谱法。
1. 连续光源 连续光源是指在很大的波长范围
内能发射强度平稳的具有连续光谱的 光源。
(1)紫外光源
紫外连续光源主要采用氢灯或氘灯。 它 们在低压(1.3103Pa)下以电激发的方式 产生的连续光谱范围为160 -375 nm。
质分子会发生散射现象。如果这种散射是光子 与物质分子发生能量交换的,即不仅光子的运 动方向发生变化,它的能量也发生变化,则称 为Raman散射。
这种散射光的频率(ν m)与入射光的频 率不同,称为Raman位移。Raman位移的大小与 分子的振动和转动的能级有关,利用Raman位 移研究物质结构的方法称为Raman光谱法。
分子光谱法是由 分子中电子能 级、振动和转动能级 的变化产生的, 表现形式为带光谱。
属于这类分析方法的有紫外-可 见分光光度法(UV-Vis),红外光 谱法(IR),分子荧光光谱法(MFS) 和分子磷光光谱法(MPS)等。
非光谱法是基于物质与辐射相互作用 时,测量辐射的某些性质,如折射、散射、 干涉、衍射、偏振等变化的分析方法。
把电压加到固定在封套上的一对电极 上时,就会激发出元素的特征线光谱。汞 灯产生的线光谱的波长范围为254- 734nm, 钠灯主要是589.0nm和589.6nm处的一对谱 线。
(2)空极阴极灯
主要用于原子吸收光谱中,能提供许
多元素的特征光谱。
(3)激光
激光的强度非常高,方向性和单色性 好,它作为一种新型光源在Raman光谱、 荧光光谱、发射光谱、fourier变换红外 光谱等领域极受重视。
第二节 光谱法仪器
用来研究吸收、发射或荧光的电磁辐 射的强度和波长的关系的仪器叫做光谱仪 或分光光度计。这一类仪器一般包括五个 基本单元:光源、单色器、样品容器、检 测器和读出器件。

第二章光谱分析法导论精选文档PPT课件

第二章光谱分析法导论精选文档PPT课件
④ 外转换:激发态分子与溶剂和其它溶质分子间的 相互作用及能量转移等过程。外转换过程是荧光或磷 光的竞争过程,该过程是发光强度减弱或消失,这种 现象称猝灭。
⑤ 系间跨越:不同多重态之间的一种无辐射跃迁。 该过程是电子改变其它自旋态,分子的多重性发生变 化的结果。例如:S1 T1跃迁,即单重态到三重态 跃迁。
电子跃迁
振动 转动
分子基态,单重态S,二个电子同处于基态,二电子 自旋方向相反。
分子激发态,单重态 S,一个电子处于基态,一个电子 处于高能态,二电子自旋方向相反。
分子激发态,三重态 T,一个电子处于基态,一个电 子处于高能态,二电子自旋方向相同。
二原子间距改变,即键长改变。
键长不变,只旋转。
b
互作用,电磁波的能量正好等于物质的基态和激发态之 间的能量差时,就会产生吸收光谱.
M+hv = M* hv = E1 - E0
利用物质的特征吸收光谱进行分析的方法称为吸收 光谱法。
吸收光谱法包括:原子吸收、 分子吸收、磁场的诱
导吸收和弛豫过程。 ⑴ 原子吸收
气态原子对特征辐射光波的吸收,其光波能量正好 等于物质的基态和某一激发态之间的能量差时,即有:
1.高能辐射 包括r射线和x射线,r射线的能量最高,它 来源于核能级跃迁;x射线来源于原子内层电子能级跃 迁。随着波长减小,电磁辐射的粒子性越来越明显。
2.中间部分 包括紫外、可见和红外区,统称光学光谱 区。它们来源于原子和分子的外层电子的能级跃迁、分 子振动能级和转动能级跃迁。它们的分光系统,一般 采用光栅和棱镜。
b
S2
c
b
S1
f
T1
a
a
d
e
g
S0 激发分子的去活化过程

分析化学二 光谱分析导论PPT课件

分析化学二  光谱分析导论PPT课件

第22页/共66页
电磁辐射的基本性质
五 电磁辐射与物质的相互作用——折射和反射
折射率 (n) :光在真空中的传播速度与其在介质中的传播速度的比
n=c/v
相对折射率 (n2,1):光从介质1进入介质2时,其入射角i与折射角r的正弦比
n2,1
sin i sin r
v1 v2
n2 n1
绝对折射率: 任何介质对于真空或空气的折射率
应用: 浊度分析法、比浊法
瑞利散射(Rayleigh):(属于弹性碰撞)
分子散射: 定义:光与粒子碰撞时没有发生能量交换的分子散射
性质:散射= 入射,散射强度I ∝ 1/4,强度弱
粒子直径 小于入射
应用: 共振瑞利散射光谱法
光波长时 拉曼散射(Raman) : (属于非弹性碰撞)
所产生的 散射。
定义:碰撞时存在能量交换的分子散射 性质:散射≠ 入射, 散射强度I ∝ 1/4,强度弱
电磁辐射的基本性质
1、波动性的主要描述参数
参数 符号
单位
备注
波长 nm、Å (10-1nm)等 用于大部分光谱中
波数
cm-1
常用于红外光谱中
频率
Hz; s-1
常用于核磁共振谱中
各参数之间的关系: c 1
C = 3.0×1010 cm/s
第4页/共66页
三 描述电磁辐射的基本参数
电磁辐射的基本性质
电磁辐射的基本性质
激发态(E2) 能量 激发态(E1) 激发
基态(E0)
激发态(E2) 激发态(E1) 基态(E0)
以光的形式 释放能量
发射
停留时间约为108sห้องสมุดไป่ตู้
A

《光谱分析导论》课件

《光谱分析导论》课件
《光谱分析导论》ppt课件
目录
• 光谱分析的基本概念 • 光谱分析技术 • 光谱分析的应用 • 光谱分析仪器 • 光谱分析的未来发展
01 光谱分析的基本概念
光谱分析的定义
总结词
光谱分析是一种基于物质与光相互作用的测量技术,通过测量物质发射或吸收 的光谱来分析其组成和性质。
详细描述
光谱分析是一种通过测量物质与光相互作用的特性来分析物质组成和性质的方 法。它利用物质吸收、发射或散射光的特性,通过测量光谱线及其强度来推断 物质的结构、组成和状态。
光谱分析的分类
总结词
光谱分析可以根据不同的分类标准进行分类,如光谱 的来源、光谱的测量方式、光谱的波长范围等。
详细描述
光谱分析可以根据不同的分类标准进行分类。根据光 谱的来源,可以分为发射光谱和吸收光谱;根据光谱 的测量方式,可以分为原子光谱和分子光谱;根据光 谱的波长范围,可以分为可见光谱、紫外光谱、红外 光谱、X射线光谱等。这些分类方法在特定的应用场 景中具有不同的优缺点,选择合适的分类方法对于获 得准确的分析结果至关重要。
光谱分析的原理
总结词
光谱分析的原理基于物质与光的相互作用,通过测量光谱线的波长、强度物质与光之间的相互作用,当光照射到物质上时,物质会吸收特定波长的光, 从而改变光的能量分布。通过测量光谱线的波长、强度和形状,可以推断出物质的成分、结构和性质 等信息。
05 光谱分析的未来发展
高分辨光谱技术
总结词
高分辨光谱技术是光谱分析的重要发展方向,能够提供更精确、更全面的物质成分信息。
详细描述
高分辨光谱技术利用高精度的光谱仪和先进的光源,能够获得更精细的光谱细节,从而更准确地解析 物质成分和结构。这种技术对于研究复杂分子结构和化学反应机制具有重要意义,有助于推动科学研 究和工业生产的发展。

光谱分析法概论 (标准版)ppt资料

光谱分析法概论 (标准版)ppt资料

(二)原子光谱法与分子光谱法
分子光谱法:
涉及分子中电子能级、振动和转动能级变化
特点:带状光谱;给出分子结构信息。
方法举例: UV-Vis、IR MFS、MPS
(三)吸收光谱法与发射光谱法
吸收光谱法:
粒子吸收能量,由低能态或基态跃迁至较 高的能态(激发态),得到光谱
M + h M*
方法举例:
△E
光谱分析法概论
电磁辐射
电磁辐射是一种以电磁波的形式
在空间高速传播的粒子流。
电磁辐射具有波粒二象性
电磁辐射的波粒二象性
波动性:电磁辐射是单频率的正弦波
光的折射、干涉、衍射偏振等现象
c
1 c
用波长(λ)、频率(v)、波数(σ)描述
电磁辐射的波粒二象性
粒子性:电磁辐射是不连续的能量微粒—光子
电磁辐射照射物质时,发生能量转移,使物质内部有相应的能级跃迁
或大于入射光波长,如胶体。 (三)吸收光谱法与发射光谱法
光的折射、干涉、衍射偏振等现象 X射线荧光分析法、原子发射光谱分析法
X射线荧光分析法、原子发射光谱分析法
M+h
M*
X射线荧光分析法、原子发射光谱分析法
(二)原子光谱法与分子光谱法
无 将复合光分解成单色光或有一定宽度的谱带。
一、电磁辐射与物质的相互作用
Ø1、 入射电磁辐射能量与介质基态/激发 态 间的能量差不相等——物理性质发生改变
折射、反射、透射
干涉
衍射
一、电磁辐射与物质的相互作用
散射:光子与介质发生弹性碰撞改变方向
电磁辐射照射物质时,发生能量转移,使物质内部有相应的能级跃迁
丁达尔散射(Tyndall):被照射试样粒子直径等于 波动性:电磁辐射是单频率的正弦波

光谱分析法-研究生[PPT课件]

光谱分析法-研究生[PPT课件]
3. 分子本身绕其重心的转动--转动能级.
13
分子的能级图与跃迁
分子的总能量 = E电子+ E振动+ E转动
Sn: 电子能级 Vn: 振动能级 Jn: 转动能级
14
分子光谱分析法的分类
分子吸收
分 子 光 谱
分子发光
UV-Vis (紫外-可见) IR(红外)
光致发光 如:荧光和磷光 其它发光形式 如:化学发光等
15
第二节
紫外/可见光吸收光谱法
16
第二节 紫外/可见光吸收光谱法
紫外/可见光吸收光谱分析法:
利用溶液中分子吸收紫外和可见光产生跃迁所记录的 吸收光谱图,可进行化合物结构分析,根据最大吸收波长 强度变化可进行定量分析。属于分子吸收光谱法,分析波 长范围一般为200~800nm。
历史悠久、应用广泛:
T=10-Kbc=10-A
20
一、基本原理
吸光度A、透射比T 与浓度c 的关系
1.0
100
0.8 T =10-kbc
80
0.6
A=kbc 60
0.4
40
0.2
20
A
T (%)
c
21
一、基本原理
k 吸光系数 (Absorptivity)
(1)当c的单位用g·L-1表示时,用a 表示,
A=a b c
射的荧光(或磷光)强度与照射光波长的关系曲线。
2.荧光光谱(或磷光光谱) (fluorescence spectrum) 固定激发光波长(选最大激发/吸收波长), 化合物
发射的荧光(或磷光)强度与发射光波长关系曲线。
3. 最大激发波长(λex)和最大荧光波长(λem)
51
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非光谱法不涉及物质内部能级的跃迁, 电磁辐射只改变了传播方向、速度或某些 物理性质。
属于这类分析方法的有折射法、偏振 法、光散射法、干涉法、衍射法、旋光法 和圆二向色性法等。
本章主要介绍光谱法。如 果按照电磁辐射和物质相互作 用的结果,可以产生发射、吸 收和散射三种类型的光谱。
一、发射光谱法
物质通过电致激发、热致激发或光 致激发等激发过程获得能量,变为激发 态原子或分子M* ,当从激发态过渡到低 能态或基态时产生发射光谱。
能态,约经10-8 s,又跃迁至基态或低能态, 同时发射出与原激发波长相同(共振荧光) 或不同的辐射(非共振荧光),称为原子荧 光。
发射的波长在紫外和可见光区。在与激发光
源成一定角度(通常为90)的方向测量荧光 的强度,可以进行定量分析。
❖ 5. 分子荧光分析法
某些物质被紫外光照射后,物质 分子吸收了辐射而成为激发态分子,
固体加热至炽热会发射连续光谱,这类热 辐射称为黑体辐射。通过热能激发凝聚体中 无数原子和分之振荡产生黑体辐射。
被加热的固体发射连续光谱,它们是红外、 可见及长波侧紫外光区分析仪器的重要光源。
根据发射光谱所在的光谱区和激发方
法不同,发射光谱法分为: ❖ 1. 射线光谱法
天然或人工放射性物质的原子核在衰变
❖2. 紫外-可见分光光度法
利用溶液中的分子或基团在紫外和
可见光区产生分子外层电子能级跃迁所
形成的吸收光谱,可用于定性和定量测 定。
❖ 3.原子吸收光谱法 利用待测元素气态原子对共振线的吸
收进行定量测定的方法。其吸收机理是原 子的外层电子能级跃迁,波长在紫外、可 见和近红外区。
❖ 4. 红外光谱法 利用分子在红外区的振动- 转动吸收
的过程中发射和粒子后,往往使自身的 核激发,然后该核通过发射射线回到基 态。测量这种特征射线的能量(或波 长),可以进行定性分析,测量射线的 强度,可以进行定量分析。
பைடு நூலகம்
❖ 2. X射线荧光分析法
原子受高能辐射激发,其内层电子能 级跃迁,即发射出特征X射线,称为X射线
荧光。用X射线管发生的一次X射线来激发 X射线荧光是最常用的方法。测量X射线的 能量(或波长)可以进行定性分析,测量 其强度可以进行定量分析。
光谱学分析方法 第二章 光谱分析法导论
第一节 光谱分析法及其分类
光谱分析法是基于检测能量(电磁 辐射)作用于待测物质后产生的辐射信 号或所引起的变化的分析方法。
这些电磁辐射包括从射线到无线电 波的所有电磁波谱范围。电磁辐射与物 质相互作用的方式有发射、吸收、反射、 折射、散射、干涉、衍射、偏振等。
光谱来测定物质的成分和结构。
❖5. 顺磁共振波谱法
在强磁场作用下电子的自旋磁矩 与外磁场相互作用分裂为磁量子数Ms值 不同的磁能级,磁能级之间的跃迁吸
收或发射微波区的电磁辐射。在这种 吸收光谱中不同化合物的耦合常数不 同,可用来进行定性分析。根据耦合 常数,可用来帮助结构的确定。
❖3. 原子发射光谱分析法
用火焰、电弧、等离子炬等作为激
发源,使气态原子或离子的外层电子 受
激发发射特征光学光谱,利用这种光谱 进行分析的方法叫做原子发射光谱分析 法。波长范围在190 - 900nm,可用于定 性和定量分析。
❖ 4. 原子荧光分析法
气态自由原子吸收特征波长的辐射后,
原子的外层电子从基态或低能态跃迁到较高
在合适的条件下,峰值与被分析物浓度
成线性关系,可用于定量分析。
由于化学发光反应类型不同,发射光谱 范围为400 - 1400nm。
二、吸收光谱法
当物质所吸收的电磁辐射能与该物 质的原子核、原子或分子的两个能级间
跃迁所需的能量满足△E = hv的关系时,
将产生吸收光谱。
M + hv M*
吸收光谱法可分为:
M* M + hv
通过测量物质的发射光谱的波长和强 度来进行定性和定量分析的方法叫做发射 光谱分析法。
发射光谱的类型:
1.线光谱 当辐射物质是单个的气态原子时,产
生紫外、可见光区的线光谱。 通过内层电子的跃迁可以产生X射线线
光谱。
2.带光谱 带光谱是由许多量子化的振动能级叠加
在分子的基态电子能级上而形成的。 3.连续光谱
然后回到基态的过程中发射出比入射 波长更长的荧光。测量荧光的强度进 行分析的方法称为荧光分析法。波长 在光学光谱区。
❖6. 分子磷光分析法
物质吸收光能后,基态分子中的一个电 子被激发跃迁至第一激发单重态轨道,由第 一激发单重态的最低能级,经系统间交叉跃 迁至第一激发三重态(系间窜跃),并经过 振动弛豫至最低振动能级,因此,由此激发 态跃迁回至基态时,便发射磷光。
根据磷光强度进行分析的方法成为磷
光分析法。它主要用于环境分析、药物研究 等方面的有机化合物的测定。
❖7. 化学发光分析法
由化学反应 提供足够的能量,使其中一
种反应的分子的电子被激发,形成激发态分 子。激发态分子跃回基态时,就发出一定波 长的光。其发光强度随时间变化,并可得到 较强的发光(峰值)。
分子光谱法是由 分子中电子能 级、振动和转动能级 的变化产生的, 表现形式为带光谱。
属于这类分析方法的有紫外-可 见分光光度法(UV-Vis),红外光 谱法(IR),分子荧光光谱法(MFS) 和分子磷光光谱法(MPS)等。
非光谱法是基于物质与辐射相互作用 时,测量辐射的某些性质,如折射、散射、 干涉、衍射、偏振等变化的分析方法。
光谱分析法可分为光谱法和非 光谱法两大类。
光谱法是基于物质与辐射能作 用时,测量由物质内部发生量子化 的能级之间的跃迁而产生的发射、 吸收或散射辐射的波长和强度进行 分析的方法。
光谱法可分为原子光谱法和分子 光谱法。
原子光谱法是由原子外层或内层 电子能级的变化产生的,它的表现形 式为线光谱。
属于这类分析方法的有原子发射 光谱法(AES)、原子吸收光谱法 (AAS),原子荧光光谱法(AFS)以 及X射线荧光光谱法(XFS)等。
❖ 1. Mōssbauer(莫斯鲍尔)谱法
由与被测元素相同的同位素作为 射线的发射源,使吸收体(样品)原子
核产生 无反冲的射线共振吸收 所形
成的光谱。光谱波长在射线区。 从Mōssbauer谱可获得原子的氧化
态和化学键、原子核周围电子云分布或 邻近环境电荷分布的不对称性以及原子 核处的有效磁场等信息。
相关文档
最新文档