估算不规则图形的面积
不规则图形面积的估算
不规则图形面积的估算教学目标:1、借助数方格的方法计算不规则图形的面积。
2.让学生经历动手实践、自主探索和合作交流的过程,体验计算不规则图形可以转化为规则的基本图形再计算出面积。
3.培养学生良好的自主学习习惯。
教学重点:借助数方格的方法计算不规则图形的面积。
教学难点:体验计算不规则图形可以转化为规则的基本图形再计算出面积。
教学过程:一、复习1、复习基本图形的面积计算公式。
2、复习平行四边面积计算公式的推导。
数方格和转化法。
二、引入新课老师出示随身带来的树叶,你们看这是什么?你会求它们的面积吗?能不能用我们前面学过的图形面积计公式来计算呢?今天我们就一起来探究不规则图形的面积。
三、新授课1、出示课本100页例题4的主题图(1)从图中,你能获得哪些数学信息?让我们解决的是什么问题?(2)为了方便算出树叶的面积,我们可以用方格纸的协助。
2、合作探究。
请同学们先动手给树叶描出轮廓图,在讨论怎样才能计算出树叶的面积大约是多少平方厘米?讨论后再把计算过程写在练习本上。
3、学生汇报预设一:拼凑法(把不满格的按半格计算)先算满格的有18格,再算不满格的有18格,把不满格的按半格计算,就一共有27格,也就是27平方厘米。
18+18÷2=17平方厘米教师从中讲解计算树叶面积的取值范围18—36平方厘米。
预设二:四舍五入法(超过半格看成一格,小于半格的忽略不计)有18格算满格的,11格超过半格看成11格,其余的小于半格的忽略不计。
也就是18+11=29平方厘米4、请同学们看这片树叶像我们学过的什么图形?5、请同学们将树叶看成我们学过近似的图形,在计算出它的面积?6、展示学生转化图形的过程,并让学生说说自己是怎么想的?利用什么面积公式进行计算?(教师尽可能展示合理与不合理的方法,提示学生将不规则图形的转化时要结合实际不能偏差太大。
)7、回顾整理让同学们说一说,你是怎样估算树叶的面积?四、巩固练习1、完成课本第102页练习二十二的第7题。
估算不规则图形的面积
城关教委
绿色圃中小学教育网
裴小娟
学习目标
1.会用数格子的方法估算不规则图 形的面积。 2.会将不规则图形转化成近似规则 图形估算面积。
活动探究(一)
阅读课本P100的内容,完成 导学案设问导读中活动探究 (一)第1题。
(提示:数格子时,按照一定的顺序 数,并做上标记)
12 6 5 4
16
17 18
1 2 3
活动探究(二)
小组讨论,完成活动探
究(二)
(提示:先小组讨论将树叶转化 成什么近似的规则图形,再动手 画一画,并计算出它的面积。)
预设二:
绿色圃中小学教育网
绿色圃中小学教育网
绿色圃中小学教育网
画一画,估一估你的手有多大?
课堂小结
这节课你学会了什么?对 自己的表现满意吗?
第六单元《不规则图形面积的估算》教案
同学们,今天我们将要学习的是《不规则图形面积的估算》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要估算不规则图形面积的情况?”(如估算花园、操场等不规则区域的面积)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索不规则图形面积估算的奥秘。
三、教学难点与重点
1.教学重点
(1)理解不规则图形面积的含义及其估算方法,通过教材P65例1,让学生掌握利用网格纸估算不规则图形面积的基本方法。
例:在估算不规则叶子图形面积时,如何利用网格纸进行有效划分和计算。
(2)掌握图形分割、近似图形等估算方法,通过教材P66例2,学会将不规则图形分割成规则的图形,进而估算其面积。
例:对于一些边缘曲折的不规则图形,如何选择合适的估算方法,使得计算结果更加准确。
(难以把握图形近似的原则,导致估算结果偏差较大。
例:在估算湖泊面积时,如何确定近似图形的形状和大小,使得计算结果更加接近真实值。
(3)图形分割和面积计算的准确性。学生在进行图形分割和面积计算时,可能会出现计算错误,影响最终结果。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“不规则图形面积估算在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
例:如何将房屋地面图形分割成矩形、三角形等规则图形,并进行面积计算。
(3)学会利用数方格、图形转换等方法解决实际问题,通过教材P67例3,将湖泊图形近似为矩形、圆形等规则图形,进行面积估算。
(新)苏教版五年级数学上册《不规则图形面积的估算》教案精品
估算不规则图形的面积教材第22页的内容及第24页的练习四第9题。
1.掌握参照规则图形估计不规则图形的面积和用方格纸估计不规则图形面积的方法,能用这些方法估计不规则图形的面积。
2.学习用1个方格表示一个较大的面积单位,进一步感受所学知识与现实生活的联系,培养学生的知识应用意识。
3.能用所学知识解决日常生活中的简单问题,培养学生的应用意识。
1.估计不规则图形的面积和用方格纸估计不规则图形面积的方法。
2.运用所学知识解决日常生活中的简单问题。
多媒体课件,直尺、各种树叶、两个不规则图形、方格纸。
教师:请同学们举起收集的树叶,说说它们的名称。
学生:桑树叶、梧桐树叶、银杏树叶……教师:看到这些树叶大家有什么话想说吗?学生:树叶真是千姿百态,是五颜六色的。
我想知道怎样计算树叶的面积。
教师:今天这节课我们就来研究怎样计算像树叶这样的不规则图形的面积,好吗?【设计意图:让学生了解课前所收集的树叶的名称,激发学生学习的兴趣,体现数学与其他学科的紧密联系。
为学生创设一种轻松、和谐、民主的学习氛围,在有趣的情境中引导学生自主提出问题】计算不规则图形面积。
教师:(投影片出示树叶、钥匙等实物图,再抽象出平面图形)这些图形与我们学过的三角形、长方形相比,你有什么发现?学生:它们都是由弯弯曲曲的线围成的。
它们都是不规则图形。
教师:你们认为像这样的不规则图形应该怎样计算它们的面积呢?小组讨论。
出示教材第22页例题11。
下面是某自然保护区一个湖泊的平面图(每个小方格表示1公顷)。
你能估计这个湖泊的面积大约是多少公顷吗?教师:怎样计算这个湖泊的面积呢?学生:用数方格的方法计算它的面积。
教师:怎样用数方格的办法来算出它的面积呢?学生甲:半格多的算一格,不够半格的算半格。
学生乙:我不同意,应该把不满一格的都按半格计算。
教师:这时,我们用数方格的方法求出的面积是准确的吗?到底哪种方法更接近呢?为什么?学生:如果半格多的算一格,不够半格算半格,这样计算出的面积就会比实际面积大得多,还是不满一格的都按半格计算比较好。
2.8不规则图形面积的估算
答:手掌的面积大约是在 43~69平方厘米之间。
法二:四舍五入法
43+26÷2=56(平方厘米)
整格:43个。 大于半格:15个。
答:手掌的面积大约56平方厘米。 43+15=58(平方厘米)
答:手掌的面积大约58平方厘米。
做一做 4、图中每格的面积是1平方厘米,估计阴影部分面积是多少平方厘米?
S= 9+15 =24(平方厘米)
答:面积是24平方厘米。
要点总结 怎样估计不规则图形的面积?
1、只数整格的,实际面积比数出的结果要大一些。 2、把不满一格的也当作整格数,实际面积比数出的要小一些。 3、用数方格的方法计算不规则图形的面积时,先数整格的,再数不满整格的, 不满整格的按半格算,计算出的结果是近似值。——填补法。 4、用数方格的方法计算不规则图形的面积时,先数整格的,再数大于半格的, 大于半格的按整格计算,计算出的结果是近似值。——四舍五入法。
数不规则图形的面积的 方法要记牢哦!
法一:填补法
法二:四舍五入法
15+17÷2=?(平方厘米) 15+8=23(平方厘米)
法三:精确计算 S梯= ( 4+ 5 ) 2 ÷ 2=9 (平方厘米)
16+16÷2=24(平方厘米)答:面积大约24平方厘米。 S三= 5×6÷2= 15 (平方厘米)
答:面积大约24平方厘米。
你准备怎样估计?
湖泊的平面被分成了满格、半格、大于半格或小于半格的情况。
新课教学 粗略估算——满格和不满格
方法一:只数满格的,估算的面积比实际面积要小一些。
只数整格的,共计55格,也就是说湖泊的面积 大于 55公顷。
《不规则图形面积的估算》说课稿
《不规则图形面积的估算》说课稿一、说内容:教材第100页,例5,不规则图形面积的估算。
二、说教材:本节教学内容是不规则图形面积的估算。
这部分是在部分学生掌握各种简单的平面图形面积和‘分割法’,‘添补法’的基础上进行学习的。
例5创设情境,让学生估算树叶的面积,激发学生的想象力和学习兴趣,学生利用“数方格”的方法和把不规则图形看成一个近似规则的图形的方法估算树叶的面积。
教材以对话的形式分析估算的过程,简单明了,是学生更容易理解。
三、说目标:1、能正确估算不规则图形面积的大小,能用数方格的方法或把他看成一个近似的规则图形的方法,估算出一些不规则图形的面积。
2、能借助方格估算不规则图形的面积,在估算面积的过程中,体验解决问题策略的多样性,培养初步的估算意识和估算习惯,体验估算的重要性和必要性。
3、体会数学与现实生活的密切联系,感受数学应用价值。
四、说重点:利用方格图估计不规则图形的面积。
说难点:把不规则的图形看成规则的图形进行面积估算。
三、说教学情况分析:在实际生活中,经常会接触到各种各样的不规则图形,有很多图形很难看出难以基本的图形,这就给学生解决问题设置了障碍,需要学生灵运用各种方法去尝试解决问题。
1、创设情境,变“不愿估算”为“喜欢估算”。
在教学中要我努力创设现实、有趣、富有挑战性的情境,让学生在具体的情境中改变对估算的态度。
例如:创设树叶的面积计算,激发学生估算图形面积的热情,引发学生探索“多种方法、尝试估算”的欲望。
创设“土地面积”的生活情境,焕发学生解决生活问题的意识。
这一切情境的呈现,学生对估算产生了极大的兴趣,从而更自觉地投入到探究活动中。
2、感悟方法,变“不会估算”为“创造性地估算”。
估算是一种开放性的创造活动,往往带有许多不确定性。
如何根据条件来估算,如何提取主要信息,哪些信息可以忽略不计,这些技能的形成贯穿于学习全过程。
在教学中,我根据学生知识水平教给一些基本的估算方法,让他们在实际运用的过程中感悟内化形成较熟练的估算方法。
不规则图形面积的估算
教学目标:1、基础知识:能正确估计不规则地图形面积地大小.2、基本技能:能用数方格地方法计算一些不规则图形地面积,掌握数方格地顺序和方法.、基本思想:能借助方格图估算不规则图形地面积,在估算面积地过程中,体验解决问题策略地多样性,培养初步地估算意识和估算习惯,体验估算地必要性和重要作用.文档收集自网络,仅用于个人学习3、基本活动经验:提高学生运用数学知识解决实际问题地能力,让学生通过实践活动体会数学源于生活,用于生活.让学生欣赏大自然地美,使学生体会环保地重要性.文档收集自网络,仅用于个人学习教学重点:利用方格图估计不规则图形面积.教学难点:估算地习惯和方法地选择.教具准备:树叶若干片,方格纸若干,作业纸张,课件一套.课前活动:、多媒体播放“嫦娥三号”探测器成功登月地视频,介绍中国地探月工程分三步走:一绕;二落;三回.鼓励学生勇于探索,努力学习.文档收集自网络,仅用于个人学习、师:(指课件封面)这就是“嫦娥三号”着落区地全景照片.这说明我们国家在探月工程地漫漫征途中,又添上了辉煌地一笔.我想:只要同学们努力学习科学文化知识,成功地道路上必将留下你们一串串成长地脚印.文档收集自网络,仅用于个人学习、师:也许若干年后地一天,在月球上留下第一个中国人地脚印地人就是在座地某一位.同学们要不要更努力地学习了?(要)文档收集自网络,仅用于个人学习那么这个崭新地开始就从老师地这节成长地脚印开始好不好?(好)有没有信心在这节课上跟老师配合好?(有)教学流程:一、情境引题,学习新知:、人物情境入题,学习新知:()师:同学们看看我请来了谁?(出示人物),这是机器人总动员里地主人公:.大家欢迎他跟我们一起学习吗?文档收集自网络,仅用于个人学习(出示沙滩脚印图)学生猜是谁地脚印.“啊?我地?这好像确实是我地脚印.”师:既然是我地,同学们,老师给你们看下我刚出生时地脚印(出示出生脚印图)怎样才能知道这个脚印地面积有多少呢?文档收集自网络,仅用于个人学习()学生自己先独立进行估计,然后小组内进行交流.()全班交流:生:我们是用数格子地方法来进行计算地,我先数了数满格地大约是个,其他不够一个格子地我进行了拼补,这样大约是.文档收集自网络,仅用于个人学习生:我们地方法也是这样地,我们把不满一格地按照一格进行计算,这样大约是.师:同学们思考问题都非常地有条理,我注意到了大家在数方格地时候都不是随意数地,都是按照一定顺序数地,先数满格地,再数不满格地,把不满一格地看成半格来数.大家请看(出示数刚出生脚印图),一定要掌握这种数法,先数什么,再数什么,这样才能做到不遗漏不重复,思考问题有条理.文档收集自网络,仅用于个人学习师:大家都是用数方格地方法估计地,那现在如果没有方格了怎么办呢?生:可以把这个脚印看成了近似地长方形,长厘米,宽厘米,所以面积是×.(课件演示此方法)文档收集自网络,仅用于个人学习生:我有个不同地方法,我是看成了近似地梯形,上底约厘米,下底约厘米,高约厘米,根据梯形地面积公式,算出()×÷.文档收集自网络,仅用于个人学习师:同学们,要画出这个长方形需要思考两步?首先:你要发挥你地空间想象能力,把这个脚印想象成我们学过地一些规则图形.然后:该从哪开始画?这个非常重要,我相信很多同学都能把不规则图形看成我们所学过地一些规则图形,但是就是不知道从哪起笔开始画,是吗?(是)文档收集自网络,仅用于个人学习有两种起笔方法:一是以最左端开始画到最右右端停止,二是以最上端开始画到最下端停止.师:(出示脚印比较图)讲解估算地准确度.()课件出示老师两岁时地脚印,学生估面积.师:同学们可以用你们喜欢地方式去进行估算.、小结方法,实践新知:()师:我发现这次大家都把脚印转化成长方形来估算地,很少人用数方格地方法来估算了,我想知道大家为什么这样选择?(这个更简便)文档收集自网络,仅用于个人学习“这位同学很有思想,非常好!在解决数学问题地时候选择适当地方法很重要.”() 师:刚才大家对像脚印这样地不规则图形地面积进行了估算,想想刚才大家用了几种方法进行估算地?师板书:、通过数方格进行估算.、通过把它看成一个近似地规则图形,测量后进行计算.二、新知实践,解决问题:估算作业纸上不规则图形地面积:(课件依次出示)()学生独立进行估计:()交流汇报时让学生说说自己是怎样估计地.三、新知拓展,体会环保:、估算一片树叶地面积:()师:每个小组拿出准备好地树叶,想想如何估算它地面积?()学生分小组讨论交流,指名回答:()生汇报:()放在格子上数数.()可以把外轮廓在网格纸上画出来,再数.()(出示估算树叶地方法)、体会绿树对环保地重要性:()如果一棵树有片树叶,估算这棵树所有树叶地总面积.()在有阳光时,大约每地树叶能在一天里释放足够一个人呼吸所需地氧气.这棵树在有阳光时,一天里释放地氧气能满足多少人呼吸地需要?文档收集自网络,仅用于个人学习四、课堂回顾,总结提高:同学们,今天你们有什么收获?有什么体会?说来听听.。
不规则图形的面积估算31页PPT
31、园日涉以成趣,门虽设而常关。 32、鼓腹无所思。朝起暮归眠。 33、倾壶绝余沥,窥灶不见烟。
34、春秋满四泽,夏云多奇峰,秋月 扬明辉 ,冬岭 秀孤松 。 35、丈夫志四海,我愿不知老。
谢谢你的阅读
❖ 知识就是财富 ቤተ መጻሕፍቲ ባይዱ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
估测不规则图形的面积
估测不规则图形的面积教学内容:青岛版小学数学三年级下册第54页 6。
7.8题.教学目标1。
进一步感知面积单位平方厘米、平方分米、平方米的大小,能自选单位正确估计不规则的2.经历观察、估计、测量图形的面积的过程,进一步发展学生的空间观念。
3.能借助方格图估算不规则图形的面积,在估算面积的过程中,体验解决问题策略的多样性,培养图形面积的大小,能用数方格的方法计算一些不规则图形的面积。
初步的估算意识和估算习惯,体验估算的必要性和重要作用.4。
在估测图形的面积的过程中,体会数学与现实生活的密切联系,感受数学的应用价值。
教学重难点过程中,体会数学与现实生活的密切联系,感受数学的应用价值。
教学重点:自选位估测图形的面积.教学难点:估测图形面积的方法.教具、学具多媒体课件、方格纸、1平方厘米和1平方分米纸片。
教学过程一、创设情境,提出问题1。
复习铺垫:同学们,上节课我们学习了面积和面积单位,谁来说一说常用的面积单位有哪些?(平方米、平方分米、平方厘米)谁举例说明1平方米、1平方分米、1平方厘米有多大?学生举例(通过举例,学生会进一步加深对面积单位平方厘米、平方分米、平方米的大小的感知,为估测图形的面积做好了准备)2.根据对1平方厘米,1平方分米,1平方米的感知,你能估计出黑板的面积吗? 用哪个单位估计比较合适?学生感知到用1平方米来估计,黑板有四块,一块是1平方米,一共是4平方米.提问:估计黑板的面积就是估计什么形的面积?(长方形)3.创设情境:星期天,老师去爬山的时候,看到地上有一片树叶非常漂亮,就带了回来。
出示树叶图片。
看到这片树叶,你们想知道什么?预设:学生可能会说:这是什么树的树叶?它有多大?它的面积大约是多少?……3。
导入新课:这片树叶的面积大约是多少呢?先让学生指一指树叶的面积是哪一部分?指名几名学生上台指一指。
树叶的形状是我们学过的长方形或其它图形吗?(不是)像这种图形叫不规则图形,今天我们就来学习怎样估测不规则图形的面积。
如何求不规则物体表面积 -回复
如何求不规则物体表面积
要计算不规则物体的表面积,可以使用以下方法:
1. 近似法:将不规则物体近似为一系列几何形状,如三角形、矩形或圆形等,然后计算每个形状的表面积,最后将所有形状的表面积相加得到总表面积。
这种方法适用于物体表面较为复杂的情况。
2. 数字化方法:使用3D扫描技术或摄影测量,将物体转化为数字模型。
然后利用计算机辅助设计(CAD)软件或三维建模软件来计算模型的表面积。
这种方法适用于对不规则物体进行精确测量和计算的需求。
3. 称重法:在称重前后,用细密的线或薄纸包裹住物体,并记录下所使用的纸或线的重量。
然后将纸或线展开并测量其长度。
通过几何计算,可以估算出物体表面积。
4. 测量法:对于小尺寸的物体,可以使用刻度尺或卷尺等工具直接测量物体的尺寸,并根据不同区域的形状来计算表面积。
这种方法适用于物体形状较简单且边缘清晰的情况。
无论使用哪种方法,都需要进行精确的测量和具体的计算公式。
对于复杂的不规则物体,可能需要结合多种方法来获得更准确的表面积估计。
对于精确度要求较高的情况,专业的测量设备和软件可能是必要的。
五年级上册数学教学反思-不规则图形的面积-人教版
不规则图形的面积教学反思《估算不规则图形的面积》一课是人教版小学数学教科书五年级上册的新增内容。
是估算思想在图形与几何中的应用。
本课旨在通过《估算不规则图形的面积》的教学,培养学生的估算意识和估算能力。
让学生体会解决问题方法和策略的多样性,从而提高综合应用的意识和能力。
那么,怎样教学才能让学生感悟到“估算不规则图形的面积”产生于现实生活的实际,又能在掌握了估算的多种方法之后,灵活运用到解决生活中的实际问题呢?为此,我在教学实践中进行了尝试和探索。
反思本课的教学,有以下几点体会。
一、联系现实生活,让估算教学变“可有可无”为“无处不在”上课伊始,我选用学生熟悉的“雨湖公园”实景图作为新课导入的素材,通过多媒体演示,让学生通过观察“百度地图”上的雨湖公园,发现不规则图形的面积用已有的知识求不出来,从而激发学生去探索、去思考的积极性。
这样教学,能让学生从现实生活中发现数学问题,使引入数学问题生活化。
生动有趣的生活情境能有效引发学生的学习动机。
生活中处处有数学,数学蕴藏在生活的每个角落。
数学教师要善于引领学生观察自然、观察生活,用一双智慧的眼睛发现生活中的数学现象,引导学生从多种角度、各个侧面去思考生活中的数学问题。
从学生周围熟悉的事物入手进行课堂教学,找出生活中不规则图形,如:树叶的上面、鼠标的底面、手掌面、脚面等,让学生感受不规则图形就在自己身边,感受到学习了估算的方法,就可以估算出它们的面积。
让学生从中体会估算不规则图形面积的趣味性和实用性,从而促进学生进行有效的数学学习。
二、挖掘生活素材,让估算方法变“单一估算”为“多样估算”对于不规则图形的面积估计,学生第一次接触,借助学生已有经验对一个新问题产生一种有价值的思考比较有意义。
因此,在本课的教学中,我为学生提供了一片常见的树叶,先引导学生目测,然后提出问题“如何估算一片树叶的面积呢”?让学生在互动中明确估算策略最重要的是要根据要估计的事物找到一个适合的测量标准,然后利用这个测量标准去估计。
北师大版小学数学五年级上册《不规则图形面积的估算》知识点讲解突破
不规则图形面积的估算知识精讲1.认识不规则图形像树叶、手掌等形状的图形,既不是长方形、正方形、三角形、平行四边形等基本图形,也不能通过分割、添补成基本图形,就叫作不规则图形。
2.不规则图形面积的估算方法不规则图形的面积无法直接利用面积公式计算,也难以直接运用计算组合图形面积的方法计算,一般通过一些特殊的方法估算。
方法1:利用数方格法估算。
将需要估算面积的图形放在方格纸中,将图形所占所有方格代表的面积相加,大约就是不规则图形的面积。
数方格时,占满1格记1格,占半格记作0.5格;对于大于半格和小于半格的部分,可以有不同的计数方法,如可以将大于半格和小于半格的合在一起,记作1格,也可以简化处理,将大于半格的记作1格,不满半格的记作0。
如估算下面树叶的面积,可以先数出占满格的有18个,超过半格的有11个,不满半格的有7个,所以这片树叶的面积大约是29平方厘米。
方法2:看作基本图形估算。
根据图形的特点,把不规则图形看作一个或几个基本图形,利用面积公式估算其面积。
仍以上面的树叶为例,也可以将其近似看作一个平行四边形,底是5个小方格的边长,高是6个小方格的边长,根据平行四边形的面积公式,可知该树叶的面积大约是5×6=30(cm2)。
名师点睛数方格估算面积时,方格分割越细越精确用数方格法估算不规则图形的面积时,方格分割越细,分的格子就越多,无法准确计算的图形面积就越少,因此估算出的面积就越准确。
典型例题例1:下图中每个小方格的面积都是1dm2,请你估算图中阴影部分的面积。
解析:可以利用数方格法估计。
满格的有10格,超过半格的有4格,不满半格的有1格,所以阴影部分的面积大约为14dm2。
答案:14dm2。
例2:下图中每个小方格的面积是1cm²,阴影部分的面积大约是多少平方厘米?解析:可以把阴影部分近似看成一个长方形(如下图),长是8cm,宽是4cm,因此阴影部分的面积大约是8×4=32(cm²)。
估计不规则图形的面积
图中每个小方格的面积是1cm2 , 请你估计这片叶子的面积。
一、自主探究不规则图形的面积
数格子
这片叶子的面积在 18cm2----36cm2之 间
这片叶子的面积大约是27cm2。
一、自主探究不规则图形的面积 转化成平行四边形
S=ah =5×6 =30(cm2)
二、总结概括,提升认识
通过刚才的学习,今后我们再遇到不规则的 图形,我们可以怎样估计它的面积呢?
可以通过数方格确定图形面积的范围,然 后再估算图形的面积,也可以把不规则的图形 转化为学过的图形进行估算。
三、解决问题,提升认识
图中每个小方格的面积为1m2,请你估计这个池塘 的学 习求不规则图形面积的,还有什么 问题吗?
五、布置作业
作业:第102页练习二十二,第7题、第10题
《不规则图形的面积估算》教学反思
(不规则图形的面积估算)教学反思在数学教学中,只要在课堂教学结构,教学过程,教学体系上以全新的思路进行改革,进行设计,教师的教学能力是在基于实践的教学研究中不断提高,新的教学思想也必定在新的教育教学改革实践中逐渐确立。
但是想成为有经验的教师成,必须是教师如何学会进行研究与反思,设计一堂教学的过程就是一个反思的过程,反思是教师成长的最好经历。
(课程标准)指出:要创设与学生生活环境、知识背景紧密相关的,又是学生感兴趣的学习情境,让学生在观察、操作、猜想、交流、反思等活动中逐渐体会数学知识的产生、形成与开展的过程,获得积极的感情体验,感受数学的力量,同时掌握必要的根底知识与根本技能。
如教学(不规则图形的面积估算),必须先复习了长方形、正方形、平行四边形面积的计算,然后顺势提出“不规则图形的面积估算〞这一全课的核心问题,从而引发学生的猜想、操作、交流等数学活动,使学生经历了“做数学〞的过程。
伴随着问题的圆满解决,学生体验到了成功的喜悦与满足。
还要鼓舞学生独立思考,引导学生自主探究、合作交流。
数学学习过程充满着观察、实验、模拟、推断等探究性与挑战性活动,因此,动手实践、自主探究、合作交流是(课程标准)所倡导的数学学习的主要方法。
教师要改变以例题、示范、讲解为主的教学方法,引导学生投入到探究与交流的学习活动之中。
在本节课中,我让全班学生以小组为单位围坐在一起,为他们提供自主探究的空间,同时尽量延长小组交流的时间,试图把学习的时间、空间还给学生,让其进行自主探究、合作交流。
数学的价值不在技能而在思想,在探究的过程中,我不是安排了一整套指令让学生进行程序操作,获得一点根本技能,而是提供了相关知识背景、实验素材,使用了“对我们有援助吗?〞“你有什么发觉?〞“你是怎样想的?〞等这样一些指向探究的话语鼓舞学生独立思考、动手操作、合作探究,让学生依据已有的知识经验制造性地建构自己的数学,才是有价值的。
鼓舞解决问题策略的多样化,是因为施教,促进每一个学生充分开展的有效途径。
人教五年级数学上册8方格图中不规则图形的面积估算
1. 集体力量是强大的,你们小组合作了吗?你能将这个原理应用于生活吗?你的探究目标制定好了吗? 2. 自学结束,请带着疑问与同伴交流。 3. 学习要善于观察,你从这道题中获取了哪些信息? 4. 请把你的想法与同伴交流一下,好吗? 5. 你说的办法很好,还有其他办法吗?看谁想出的解法多? 二、赏识类
1. 说得太好了,老师佩服你,为你感到骄傲! 2. 你的设计(方案、观点)富有想象力,极具创造性。 3. 我非常欣赏你的想法,请说具体点,好吗? 4. 某某同学的解题方法非常新颖,连老师都没想到,真厉害! 5. 让我们一起为某某喝彩!同学们在学习过程中,也要敢于猜想,善于猜想,这样才能有所发现,有所创造! 三、表扬类
可以在图上标一标、画一画,想好后再和你的同桌进行交流,看 哪组同学的方法最多。
一、自主探究不规则图形的面积
(四)学生探究,教师搜集资源。
(五)暴露资源,组织研讨:
预设一:
先在叶子上画出所有的方格线,
我发现满格的一共有18格,所以它
的面积一定大于18cm2,不是满格的
也有18格,这片叶子的面积一定小
绿色圃中小学教育网 绿色圃中小学教育网 绿色圃中小学教育网
追问:你还有其它的办法吗?
一、自主探究不规则图形的面积
(五)暴露资源,组织研讨:
预设三:
我是用转化的方法,将叶子的图 形近似转化成长方形,然后求出长方 形的面积是30cm2,因此,叶子的面 积大约是30cm2。
1、“读”是我们学习语文最基本的方法之一,古人说,读书时应该做到“眼到,口到,心到”。我看,你们今天达到了这个要求。 2、大家自由读书的这段时间里,教室里只听见琅琅书声,大家专注的神情让我感受到什么叫“求知若渴”,我很感动。 3、经过这么一读,这一段文字的意思就明白了,不需要再说明什么了。 4、请你们读一下,将你的感受从声音中表现出来。 5、读得很好,听得出你是将自己的理解读出来了。特别是这一句,请再读一遍。
蠡县第一小学五年级数学上册 二 多边形的面积《不规则图形面积的估算》说课稿 苏教版
《不规则图形面积的估算》说课稿一、说内容:不规则图形面积的估算。
二、说教材:本节教学内容是不规则图形面积的估算。
这部分是在部分学生掌握各种简单的平面图形面积和‘分割法’,‘添补法’的基础上进行学习的。
例5创设情境,让学生估算树叶的面积,激发学生的想象力和学习兴趣,学生利用“数方格”的方法和把不规则图形看成一个近似规则的图形的方法估算树叶的面积。
教材以对话的形式分析估算的过程,简单明了,是学生更容易理解。
说目标:1、能正确估算不规则图形面积的大小,能用数方格的方法或把他看成一个近似的规则图形的方法,估算出一些不规则图形的面积。
2、能借助方格估算不规则图形的面积,在估算面积的过程中,体验解决问题策略的多样性,培养初步的估算意识和估算习惯,体验估算的重要性和必要性。
3、体会数学与现实生活的密切联系,感受数学应用价值。
说重点:利用方格图估计不规则图形的面积。
说难点:把不规则的图形看成规则的图形进行面积估算。
三、说教学情况分析:在实际生活中,经常会接触到各种各样的不规则图形,有很多图形很难看出难以基本的图形,这就给学生解决问题设置了障碍,需要学生灵运用各种方法去尝试解决问题。
1、创设情境,变“不愿估算”为“喜欢估算”。
在教学中要我努力创设现实、有趣、富有挑战性的情境,让学生在具体的情境中改变对估算的态度。
例如:创设树叶的面积计算,激发学生估算图形面积的热情,引发学生探索“多种方法、尝试估算”的欲望。
创设“土地面积”的生活情境,焕发学生解决生活问题的意识。
这一切情境的呈现,学生对估算产生了极大的兴趣,从而更自觉地投入到探究活动中。
2、感悟方法,变“不会估算”为“创造性地估算”。
估算是一种开放性的创造活动,往往带有许多不确定性。
如何根据条件来估算,如何提取主要信息,哪些信息可以忽略不计,这些技能的形成贯穿于学习全过程。
在教学中,我根据学生知识水平教给一些基本的估算方法,让他们在实际运用的过程中感悟内化形成较熟练的估算方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
格•的2都按半格计算,叶子的面积大约是
__7___ cm²。
•平行四边形
•③可以将树叶•5近×似6=的30转cm化成
__________,面² 积为S=ah=_____________
。
小组合作学习
•小组合作学习内容:数格子法 •小组合作学习指南: •1.选择合适的方格纸并在纸上描出树叶的 轮廓图。 •2.数出满格的一共有几格,不满一格的有 几格,叶子的面积在什么范围之间? •3.小组内讨论不满一格的怎么算,怎样利 用方格纸估算出一片叶子的面积?
我展示,我快乐
•我展示,我快乐
•图中每个小方格的面积是1cm2,请你估计这片叶子的面积 。
•我展示,我快乐
•图中每个小方格的面积是1cm2,请你估计这片叶子的面积 。
•1 •2 •3 •4 •5
•1 •51 4
•1 •71 •61 •01 •51
•1
8
•5
•1
•11
•61
•1
•6
•1 •21 •71
估算不规则图形的面积
学习目标
• (一)会用数格子的方法估 算不规则图形的面积。 • • (二)能将不规则图形近似 转化成规则的图形来估算图形 的面积。
自学指导
•(1)自学内容:课本第100页的内容。 •(2)自学方法:带着下列问题,阅读课本例5内
容,5分钟后完成自学检测。
•①怎样在方格纸上估算出叶子的面积呢? 需 要注意什么? •②数格子时不满一格的怎么办?叶子的面 积大约是多少? •③可以将叶子近似的转化成哪种规则的图 形?怎样计算出面积?
•2
•7
•1 •31 •81
•3
•8
•1
4
•9
•4 •9 •8
•6 •7
3210
• 18+18÷2 •=18+9 •=27(cm2)
小组合作学习
•转 化 近 似 图 形 法
•超过叶子范围,不可 取
•转
•●
化
近
似
图Байду номын сангаас
形
法 •●
•● •●
•1cm
2
•S=ah=6×6=36(cm2)
•(3)自学时间:3—5分钟。 •(4)自学要求:能够完成自学检测学习部分。
通过自学 你知道了什么?
我来说两句……
自学检测
•①方格纸中每个方格的面积是•_1_c_m_²___
。
•18
•②方格纸•上18满格的有______格,不满一
格•的18有____•__3格6 。叶子的面积在
____cm²--____cm²之间,如果把不满一