第一章线性规划及单纯形法习题

合集下载

运筹学课后习题答案

运筹学课后习题答案

第一章 线性规划1、由图可得:最优解为2、用图解法求解线性规划: Min z=2x 1+x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+-01058244212121x x x x x x解:由图可得:最优解x=1.6,y=6.4Max z=5x 1+6x 2⎪⎩⎪⎨⎧≥≤+-≥-0,23222212121x x x x x x解:由图可得:最优解Max z=5x 1+6x 2, Max z= +∞Maxz = 2x 1 +x 2⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤0,5242261552121211x x x x x x x由图可得:最大值⎪⎩⎪⎨⎧==+35121x x x , 所以⎪⎩⎪⎨⎧==2321x xmax Z = 8.1212125.max 23284164120,1,2maxZ .jZ x x x x x x x j =+⎧+≤⎪≤⎪⎨≤⎪⎪≥=⎩如图所示,在(4,2)这一点达到最大值为26将线性规划模型化成标准形式:Min z=x 1-2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≥-=++-≥+-≤++无约束321321321321,0,052327x x x x x x x x x x x x解:令Z ’=-Z,引进松弛变量x 4≥0,引入剩余变量x 5≥0,并令x 3=x 3’-x 3’’,其中x 3’≥0,x 3’’≥0Max z ’=-x 1+2x 2-3x 3’+3x 3’’⎪⎪⎩⎪⎪⎨⎧≥≥≥≥≥≥-=++-=--+-=+-++0,0,0'',0',0,05232'''7'''5433213215332143321x x x x x x x x x x x x x x x x x x x7将线性规划模型化为标准形式Min Z =x 1+2x 2+3x 3⎪⎪⎩⎪⎪⎨⎧≥≤-=--≥++-≤++无约束,321321321321,00632442392-x x x x x x x x x x x x解:令Z ’ = -z ,引进松弛变量x 4≥0,引进剩余变量x 5≥0,得到一下等价的标准形式。

运筹学习题

运筹学习题

运筹学复习题第一章 线性规划及单纯形法一、单选题1. 线性规划具有无界解是指A. 可行解集合无界B. 有相同的最小比值C. 存在某个检验数0k λ>,且0(1,2,,)ik a i m ≤=D. 最优表中所有非基变量的检验数非零 2. 线性规划具有唯一最优解是指A. 最优表中非基变量检验数全部非零B. 不加入人工变量就可进行单纯形法计算C. 最优表中存在非基变量的检验数为零D. 可行解集合有界 3. 线性规划具有多重最优解是指A. 目标函数系数与某约束系数对应成比例B. 最优表中存在非基变量的检验数为零C. 可行解集合无界D. 基变量全部大于零 4. 使函数Z=-x 1+x 2+2x 3 减小最快的方向是A. (-1,1,2)B. (1,-1,-2)C. (1,1,2)D. (-1,-1,-2) 5. 当线性规划的可行解集合非空时一定 A. 包含点X =(0,0,···,0) B. 有界 C. 无界 D. 是凸集 6. 线性规划的退化基可行解是指A. 基可行解中存在为零的非基变量B. 基可行解中存在为零的基变量C. 非基变量的检验数为零D. 所有基变量不等于零 7. 线性规划无可行解是指A. 第一阶段最优目标函数值等于零B. 进基列系数非正C. 用大M 法求解时,最优解中还有非零的人工变量D. 有两个相同的最小比值 8. 若线性规划不加入人工变量就可以进行单纯形法计算A. 一定有最优解B. 一定有可行解C. 可能无可行解D. 全部约束是小于等于的形式 9. 设线性规划的约束条件为123124222401234 (,,,)jx x x x x x x j ⎧++=⎪++=⎨⎪≥=⎩ 则非退化基本可行解是A. (2, 0,0, 0)B. (0,2,0,0)C. (1,1,0,0)D. (0,0,2,4) 10. 设线性规划的约束条件为123124222401234 (,,,)jx x x x x x x j ⎧++=⎪++=⎨⎪≥=⎩ 则非可行解是A. (2,0,0, 0)B. (0,1,1,2)C. (1,0,1,0)D. (1,1,0,0) 11. 线性规划可行域的顶点一定是A. 可行解B. 非基本解C. 非可行解D. 是最优解 12. 1234min z x x =+1212124220,x x x x x ⎧+≥⎪+≤⎨⎪≥⎩ A. 无可行解 B.有唯一最优解 C.有无界解 D.有多重最优解13. 12122124432450,max z x x x x x x =-⎧+≤⎪≤⎨⎪≥⎩A. 无可行解B. 有唯一最优解C. 有多重最优解D. 有无界解 14. X 是线性规划的基本可行解则有A. X 中的基变量非负,非基变量为零B. X 中的基变量非零,非基变量为零C. X 不是基本解D. X 不一定满足约束条件 15. X 是线性规划的可行解,则错误的结论是A. X 可能是基本解B. X 可能是基本可行解C. X 满足所有约束条件D. X 是基本可行解 16. 下例错误的说法是A. 标准型的目标函数是求最大值 B 标准型的目标函数是求最小值 C. 标准型的常数项非正 D. 标准型的变量一定要非负 17. 为什么单纯形法迭代的每一个解都是可行解?答:因为遵循了下列规则 A. 按最小比值规则选择换出变量B. 先进基后出基规则C. 标准型要求变量非负规则D. 按检验数最大的变量选择换入变量 18. 线性规划标准型的系数矩阵A m×n ,要求A. 秩(A )=m 并且m <nB. 秩(A )=m 并且m <=nC. 秩(A )=m 并且m =nD. 秩(A )=n 并且n <m 19. 下例错误的结论是A. 检验数是用来检验可行解是否是最优解的数B. 检验数是目标函数用非基变量表达的系数C. 不同检验数的定义其检验标准也不同D. 检验数就是目标函数的系数 20. 对取值为无约束的变量j x ,通常令'''j j j x x x =-,其中''',0j j x x ≥;在用单纯形法求得的解中不可能出现A. '0j x =,''0j x ≥ B. '0j x =,''0j x = C. '0j x >,''0>j x D. '0j x >,''0j x =21.运筹学是一门A. 定量分析的学科B. 定性分析的学科C. 定量与定性相结合的学科D. 定量与定性相结合的学科,其中分析与应用属于定性分析,建立模型与求解属于定量分析二、设某种动物每天至少需要700克蛋白质、30克矿物质、100毫克维生素。

1 3 第一章线性规划与单纯形法运筹学习题集第一章线性规划与单纯形

1 3 第一章线性规划与单纯形法运筹学习题集第一章线性规划与单纯形

1 3 第一章线性规划与单纯形法运筹学习题集第一章线性规划与单纯形13第一章线性规划与单纯形法运筹学习题集第一章线性规划与单纯形法复习思考题1. 试述线性规划数学模型的结构及各要素的特征。

2. 求解线性规划问题时可能出现哪几种结果?哪些结果反映建模时有错误?3. 什么是线性规划问题的标准形式?如何将一个非标准型的线性规划问题转化为标准形式?4. 试述线性规划问题的可行解、基解、基可行解、最优解的概念以及上述解之间的相互关系。

5. 试述单纯形法的计算步骤,如何在单纯形表上判别问题是具有唯一最优解、无穷多最优解、无界解或无可行解?6. 如果线性规划的标准型变换为求目标函数的极小化min z,则用单纯形法计算时如何判别问题已得到最优解?7. 在确定初始可行基时,什么情况下要在约束条件中增添人工变量?在目标函数中人工变量前的系数为(-M)的经济意义是什么?8. 什么是单纯形法计算的两阶段法?为什么要将计算分成两个阶段进行,如何根据第一阶段的计算结果来判定第二阶段的计算是否需要继续进行?9. 简述退化的含义及处理退化的勃兰特规则。

10. 举例说明生产和生活中应用线性规划的可能案例,并对如何应用进行必要描述。

11. 判断下列说法是否正确:(a) 图解法同单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的;(b) 线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大;(c) 线性规划问题的每一个基解对应可行域的一个顶点;(d) 如线性规划问题存在可行域,则可行域一定包含坐标的原点;(e) 对取值无约束的变量xj,通常令xj=x′j-x″j,其中x′j?0,x″j?0,在用单纯形法求得的最优解中有可能同时出现x′j,0,x″j,0;(f) 用单纯形法求解标准型的线性规划问题时,与σj,0对应的变量都可以被选作换入变量; (g) 单纯形法计算中,如不按最小比值原则选取换出变量,则在下一个解中至少有一个基变量的值为负;(h) 单纯形法计算中,选取最大正检验数σk对应的变量xk作为换入变量,将使目标函数值得到最快的增长;(i) 一旦一个人工变量在迭代中变为非基变量后,则该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果;(j) 线性规划问题的任一可行解都可以用全部基可行解的线性组合表示; (k)若X1,X2分别是某一线性规划问题的最优解,则X=λ1X1+λ2X2也是该线性规划问题的最优解,其中λ1、λ2可以为任意正的实数;(l) 线性规划用两阶段法求解时,第一阶段的目标函数通常写为minz=?ixai(xai为人工变量),但也可写为min z=?ikixai,只要所有ki均为大于零的常数;(m)对一个有n个变量、m个约束的标准型的线性规划问题,其可行域的顶点恰好为Cmn个; (n) 单纯形法的迭代计算过程是从一个可行解转换到目标函数值更大的另一个可行解; (o) 线性规划问题的可行解如为最优解,则该可行解一定是基可行解; (p) 若线性规划问题具有可行解,且其可行域有界,则该线性规划问题最多具有有限个数的最优解;(q) 线性规划可行域的某一顶点若其目标函数值优于相邻的所有顶点的目标函数值,则该顶点处的目标函数值达到最优;(r) 将线性规划约束条件的“?”号及“?”号变换成“=”号,将使问题的最优目标函数值得到改善;(s) 线性规划目标函数中系数最大的变量在最优解中总是取正的值;(t) 一个企业利用3种资源生产4种产品,建立线性规划模型求解得到的最优解中,最多只含有3种产品的组合;(u) 若线性规划问题的可行域可以伸展到无限,则该问题一定具有无界解; (v) 一个线性规划问题求解时的迭代工作量主要取决于变量数的多少,与约束条件的数量关系相对较小。

第一章 线性规划及单纯形法

第一章 线性规划及单纯形法
37
线性规划问题的标准形式: 线性规划问题的标准形式:
max f = ∑ c j x
j =1 j n
n ∑ aij x j = bi , i = 1,2,L , m j =1 x j ≥ 0, j = 1,2,L , n
日产量( 日产量(吨) 9 5 7 21
11
)(模型 例2(运输问题)(模型) (运输问题)(模型)
minf = 2 x11 + 9 x12 + 10 x13 + 7 x14 + x21 + 3 x22 + 4 x23 + 2 x24 + 8 x31 + 4 x32 + 2 x33 + 5 x34 x11 + x12 + x13 + x14 = 9 x +x +x +x =5 23 24 21 22 x31 + x32 + x33 + x34 = 7 x11 + x21 + x31 = 3 s.t. x12 + x22 + x32 = 8 x13 + x23 + x33 = 4 x14 + x24 + x34 = 6 xij ≥ 0(i = 1,2,3; j = 1,2,3,4)
18
3、(线性规划)数学模型的三要素 、(线性规划) 、(线性规划 变量/决策变量 决策变量; ①变量 决策变量; 目标函数( ②目标函数(max/min); ); 约束条件。 ③约束条件。
19
决策变量: ①变量/决策变量:指决策者为实现规划目标采 变量 决策变量 取的方案、措施,是问题中要确定的未知量; 取的方案、措施,是问题中要确定的未知量;

运筹学复习题

运筹学复习题
5、制造某机床需要A、B、C三种轴,其规格、需要量如下表所示。各种轴都用长7.4米的圆钢来截毛坯。如果制造100台机车,问最少要用多少根圆钢?试建立该问题的线性规划模型,并写出其对偶规划。
轴件
规格:长度(米)
每台机床所需轴件数量
A
B
C
2.9
2.1
1.5
1
1
1
6、试用单纯形法求解下列线性规划问题
2、某工厂生产A、B、C三种产品,现根据订货合同以及生产状况制定生产计划。
已知甲合同为:A产品1000件,单价600元,违约金为120元/件;
B产品700件,单价500元,违约金为100元/件。
乙合同为:B产品900件,单价550元,违约金为110元/件;
C产品800件,单价450元,违约金为90元/件。
有关各产品生产过程所需工时以及原材料的情况见下表。试以利润最大为目标,建立该工厂的生产计划线性规划模型(不求解)。
(1)应如何指派,使总的翻译效率最高?
(2)若甲不懂德文,乙不懂日文,其他数字不变,则应如何指派?
第五章图与网络分析
一复习思考题
1.通常用G(V,E)来表示一个图,试述符号V,E及这个表达式的涵义。
2.解释下列各组名词,并说明相互间的联系和区别:(a)端点,相邻,关联边;(b)环,多重边,简单图;(c)链,初等链;(d)圈,初等圈,简单圈;(e)回路,初等路;(f)节点的次,悬挂点,孤立点;(g)连通图,支撑子图;(h)有向图,赋权图。
2、用分技定界法求解一个极大化的整数规划问题时,任何一个可行解的目标函数是该问题目标函数值的下界;
3、用分枝定界法求解一个极大化的整数规划问题,当得到多于一个可行解时,通常可任取其中一个作为下界值,再进行比较剪枝;

运筹学习题答案(1)

运筹学习题答案(1)

第一章 线性规划及单纯形法(作业)1.4 分别用图解法和单纯型法求解下列线性规划问题,并对照指出单纯形表中的各基可行解对应图解法中可行域的哪一顶点。

(1)Max z=2x 1+x 2St.⎪⎩⎪⎨⎧≥≤+≤+0,24261553212121x x x x x x 解:①图解法:由作图知,目标函数等值线越往右上移动,目标函数越大,故c 点为对应的最优解,最优解为直线⎩⎨⎧=+=+242615532121x x x x 的交点,解之得X=(15/4,3/4)T 。

Max z =33/4. ② 单纯形法:将上述问题化成标准形式有: Max z=2x 1+x 2+0x 3+0x 4St. ⎪⎩⎪⎨⎧≥≤++≤++0,,,242615535421421321x x x x x x x x x x其约束条件系数矩阵增广矩阵为:P 1 P 2 P 3 P 4⎥⎦⎤⎢⎣⎡241026150153 P 3,P 4为单位矩阵,构成一个基,对应变量向,x 3,x 4为基变量,令非基变量x 1,x 2为零,找到T 优解,代入目标函数得Max z=33/4.1.7 分别用单纯形法中的大M 法和两阶段法求解下列线性规划问题,并指出属哪一类。

(3)Min z=4x 1+x 2⎪⎪⎩⎪⎪⎨⎧=≥=++=-+=+)4,3,2,1(0426343342132121j xj x x x x x x x x 解:这种情况化为标准形式: Max z '=-4x 1-x 2⎪⎪⎩⎪⎪⎨⎧=≥=++=-+=+)4,3,2,1(0426343342132121j xj x x x x x x x x 添加人工变量y1,y2Max z '=-4x 1-x 2+0x 3+0x 4-My 1-My 2⎪⎪⎩⎪⎪⎨⎧≥=≥=++=+-+=++0,).4,3,2,1(04263433214112321121y y j xj x x x y x x x y x x(2) 两阶段法: Min ω=y 1+y 2St.⎪⎪⎩⎪⎪⎨⎧≥=≥=++=+-+=++0,).4,3,2,1(04263433214112321121y y j xj x x x y x x x y x x第二阶段,将表中y 1,y 2去掉,目标函数回归到Max z '=-4x 1-x 2+0x 3+0x 4第二章 线性规划的对偶理论与灵敏度分析(作业)2.7给出线性规划问题:Max z=2x 1+4x 2+x 3+x 4⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥≤++≤++≤+≤++)4,3,2,1(096628332143221421j x x x x x x x x x x x x j要求:(1)写出其对偶问题;(2)已知原问题最优解为X *=(2,2,4,0),试根据对偶理论,直接求出对偶问题的最优解。

运筹学 第一章 线性规划 清华

运筹学 第一章 线性规划 清华
x2 2 1 = x1 + z 3 3
① ② ③
x2

Q3 Q2
Q4

3

o
4 Q1
x1
*
6
首先取z = 0,然后,使z逐 渐增大,直至找到最优解所对 应的点。
x2

Q3
Q4

Q2(4,2)
3

*
4 Q1
x1
可见,在Q2点z取到最大值。 因此, Q2点所对应的解为最优解。 Q2点坐标为(4,2)。 即: x1 = 4,x2 = 2
5
1.2 图解法 eg. eg. [eg.3]用图解法求eg.1。 max z = 2x1 + 3x2 1x1 + 2x2 ≤ 8 4x1 ≤ 16 4x2 ≤ 12 x1 ,x2 ≥ 0 解: (1)建立x1 - x2坐标; x (2)约束条件的几何表示; (3)目标函数的几何表示; z = 2x1 + 3x2
15
1.4 线性规划解的概念 设线性规划为 max z = CX ① AX = b ② X≥0 ③ 矩阵, (A为行满秩矩阵) A为m × n矩阵, n > m, Rank A = m (A为行满秩矩阵) 为行满秩矩阵 1、可行解:满足条件②、③的X; 可行解:满足条件② 2、最优解:满足条件①的可行解; 最优解:满足条件①的可行解; 条件 子矩阵, 则称B 3、基:取B为A中的m × m子矩阵,Rank B = m,则称B为线性 中的m 规划问题的一个基。 规划问题的一个基。 取B = (P1,P2,,Pm) ,P Pj = (a1j,a2j,,amj)T ,a 则称x1,x2,,xm为基变量,其它为非基变量。 则称x ,x 为基变量,其它为非基变量。

运筹学习题精选

运筹学习题精选

运筹学习题精选第一章线性规划及单纯形法选择1.在线性规划模型中,没有非负约束的变量称为……………………………………………………( C )A.多余变量 B.松弛变量 C.自由变量 D.人工变量2.约束条件为0AX的线性规划问题的可行解集b,≥=X 是………………………………………( B )A.补集 B.凸集 C.交集 D.凹集3.线性规划问题若有最优解,则一定可以在可行域的( C)上达到。

A.内点 B.外点 C.顶点 D.几何点4.线性规划标准型中bi(i=1,2,……m)必须是…………………………………………………( B)A.正数 B.非负数 C.无约束 D.非零的5.线性规划问题的基本可行解X对应于可行域D 的………………………………………………( D)A.外点 B.所有点 C.内点 D.极点6.基本可行解中的非零变量的个数小于约束条件数时,该问题可求得……………………………( B ) A.基本解 B.退化解 C.多重解 D.无解7.满足线性规划问题全部约束条件的解称为…………………………………………………( C )A.最优解 B.基本解 C.可行解 D.多重解8.线性规划一般模型中,自由变量可以用两个非负变量的(B )代换。

A.和 B.差 C.积 D.商9.当满足最优检验,且检验数为零的变量的个数大于基变量的个数时,可求得………………………( A )A .多重解B .无解C .正则解D .退化解 10.若线性规划问题有最优解,则必定存在一个( D )是最优解。

A .无穷多解 B. 基解 C. 可行解 D. 基可行解 填空计算 1. 某厂生产甲、乙、丙三种产品,已知有关数据如下表所示,求使该厂获利最大的生产计划。

2. 目标函数为max Z =28x4+x5+2x6,约束形式为“≤”,且x1,x2,x3为松弛变量,表中的解代入目标函数中得Z=14,求出a~g 的值,并判断是否→j c 0 0 0 28 1 2B C 基 b 1x 2x 3x 4x5x 6x 2 6x A 3 0 -14/3 0 1 1 0 2x 5 6 D 2 0 5/2 0 28 4x 0 0 E F 1 0 0 j j z c - B C 0 0 -1 G3. 某工厂生产A 、B 两种产品,已知生产A 每公斤要用煤6吨、电4度、劳动力3个;生产B 每公斤要用煤4吨、电5度、劳动力10个。

线性规划和其单纯形法习题

线性规划和其单纯形法习题
旳最优解。若目旳函数中用 C 替代 C后,问题旳最
优解变为 X
求证: (C C)( X X 0 ) 0
0
2
5
6
2
F
0
4
5
2
0
5 已知某线性规划问题旳约束条件为
2x1 x2 x3
25
st. 4xx11
3x2 7 x2
x3
x4 2x4
x5
30 85
x1 x2 x3 x4 x5 0
判断下列各点是否为该线性规划问题可行域上旳顶点:
X (5,15, 0, 20, 0)
X (9, 7, 0, 0,8) X (15, 5,10, 0, 0)
项目 X1 X2 X3 X4
X5
X4 6 (b) (c) (d) 1 0
X5 1 -1
3 (e) 0 1
Cj-ZJ
(a) -1 2
00
X1 (f) (g) 2 -1 1/2 0
X5 4 (h) (i) 1 1/2 1
Cj-ZJ
0
-7 (j) (k) (l)
6、设 X 0 是线性规划问题 max z CX , AX b, X 0
x1 0, x2 0, x3无约束
3 对下述线性规划问题找出全部基解,指出那些是基可行 解,并拟定最优值。
min
Z
5x1
2x 2
3x 3
2x 4
x 2x 3x 4x 7
s.t. 21x1
2
2x 2
3
x 3
4
2x 4
3
x 0( j 1,...., 4) j
4、已知线性规划问题 :
性规划旳目旳函数为 max Z 5x1 3x2约束形式为

线性规划与单纯形法

线性规划与单纯形法

第1章 线性规划与单纯形法1、用图解法求解下列线性规划问题,并指出问题具有唯一最优解、无穷最优解、无界解还是无可行解。

⎪⎩⎪⎨⎧≥≥+≥++=0x x 42x 4x 66x 4x 3x 2x minz )a (21212121, ⎪⎩⎪⎨⎧≥≥+≤++=0x ,x 124x 3x 2x 2x 2x 3x maxz )b (21212121⎪⎩⎪⎨⎧≤≤≤≤≤++=8x 310x 512010x 6x x x maxz )c (212121⎪⎩⎪⎨⎧≥≤+-≥-+=0x ,x 23x 2x 2x 2x 6x 5x maxz )d (21212121 2、用单纯形法求解下列线性规划问题。

⎪⎩⎪⎨⎧≥≤+≤++=0x ,x 82x 5x 94x 3x 5x 10x maxz )a (21212121⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+=0x ,x 5x x 242x 6x 155x x 2x maxz )b (2121212213、用大M 法和两阶段法求解下列线性规划问题,并指出属于哪一类解。

⎪⎪⎩⎪⎪⎨⎧≥≥-≥+-≥+++-=0x x x 0x 2x 2x 2x 6x x x 2x x 2x maxz )a (3,2,132******** ⎪⎩⎪⎨⎧≥≥+≥++++=0x ,x ,x 62x 3x 82x 4x x x 3x 2x minz )b (321213213214、已知线性规划问题的初始单纯形表(如表1所示)和用单纯形法迭代后得到的表(如表2所示)如下,试求括弧中未知数a ~l 的值。

表25、某厂生产Ⅰ、Ⅱ、Ⅲ三种产品,都分别经A 、B 两道工序加工。

设A 工序可分别在设备A 1或A 2上完成,有B 1、B 2、B 3三种设备可用于完成B 工序。

已知产品Ⅰ可在A 、B 任何一种设备上加工;产品Ⅱ可在任何规格的A 设备上加工,但完成B 工序时,只能在B 1设备上加工;产品Ⅲ只能在A 2与B 2设备上加工。

运筹学(第二版)课后答案

运筹学(第二版)课后答案
式中 x4,x5 为松弛变量,x5 可作为一个基变量,第一、三约束分别加 入人工变量 x6 x7,目标函数中加入-Mx6-Mx7 一项,得到大 M 单纯形法数 学模型
max z 4 x1 5 x 2 x3 3 x1 2 x 2 x3 x 4 x6 18 2 x x x 4 1 2 5 st x1 x 2 x3 x7 5 x j 0, ( j 1, ,7)
406
附录四习题参考答案
1 0 1 σj 1 0 1 σj
X6 X1 X7 X6 X2 X7
0 1 0 0 -1 2 -1 2
1/2 1/2 1/2 -1 0 1 0 0
1 0 -1 0 1 0 -1 0
-1 0 0 1 -1 0 0 1
-3/2 1/2 -1/2 2 -2 2 -1 3
1 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0
12 2 3 10 4 1
表 1.4-1.2 在第一阶段的最优解中人工变量不为零,则原问题无可行解。 注:在第二阶段计算时,初始表中的检验数不能引用第一阶段最优表的检 验数,必须换成原问题的检验数。 (2) 无穷多最优解,如 X1=(4,0,0) ;X2=(0,0,8) (3) 无界解 (4) 唯一最优解 X*=(5/2,5/2,5/2,0) (5) 唯一最优解 X*=(24,33) (6) 唯一最优解 X*=(14,0,-4) 1.5 (1) X*仍为最优解,max z=λCX; (2) 除 C 为常数向量外,一般 X*不再是该问题的最优解; (3) 最优解变为λX*,目标函数值不变。 1.6 (1) d≥0,c1<0, c2<0 (2) d≥0,c1≤0, c2≤0,但 c1,c2 中至少一个为零 (3) d=0 或 d>0,而 c1>0 且 d/4=3/a2 (4) c1>0,d/4>3/a2 (5) c2>0,a1≤0 (6) x5 为人工变量,且 c1≤0, c2≤0 1.7 解: 设 xj 表示第 j 年生产出来分配用于作战的战斗机数; yj 为第 j 年已 培训出来的驾驶员; (aj-xj)为第 j 年用于培训驾驶员的战斗机数;zj 为第 j 年用于培训驾驶员的战斗机总数。则模型为 max z = nx1+(n-1)x2+…+2xn-1+xn s.t. zj=zj-1+(aj-xj) yj=yj-1+k(aj-xj) x1+x2+…+xj≤yj xj,yj,zj≥0 (j=1,2, …,n) 1.8

运筹学基础及应用第五版胡运权第一章

运筹学基础及应用第五版胡运权第一章
问题的提出 某企业计划生产Ⅰ、Ⅱ两种产品。这两种产品都要分别在A、B、C、D四种不同设备上加工。生产每件产品Ⅰ需占用各设备分别为2、1、4、0h,生产每件产品Ⅱ,需占用各设备分别为2、2、0、4h。已知各设备计划期内用于生产这两种产品的能力分别为12、8、16、12h,又知每生产一件产品Ⅰ企业能获得2元利润,每生产一件产品Ⅱ企业能获得3元利润,问企业应安排生产两种产品各多少件,使总的利润收入为最大。
xi 0
aij
aLj
xL 0
i
∴ P1 , P2,······,PL-1, PL+1,······ Pm, Pj 线性无关。
∴ X1 也为基本可行解。
四、最优性检验和解的判别

,其中 随基的改变而改变
X1 = (x1 0- a1j ,x2 0- a2j ,···,xm 0- amj ,0,···,,···,0)T
必要性:X非基本可行解 X非凸集顶点 不失一般性,设X=(x1,x2,······,xm,0,0,······,0)T,为非基本可行解, ∵ X为可行解,
证:等价于 X非基本可行解X非凸集顶点
又 X是非基本可行解, ∴ P1,P2,······,Pm线性相关,即有 1P1+2P2+······+mPm=0, 其中1,2,······,m不全为0,两端同乘≠0,得 1P1+2P2+······+mPm=0,······(2)
∵ >0, 1->0 ,当xj=0, 必有yj=zj=0

pjyj =
j=1
n
pjyj=b ······(1)
j=1
r
pjzj =
j=1
n
pjzj=b ······(2)

运筹学第1章线性规划及单纯形法复习题

运筹学第1章线性规划及单纯形法复习题

max (min)
Z = CX
AX ≤ ( = , ≥ ) b X ≥ 0
3、线性规划的标准形式 、
ma0
4、线性规划问题的解 、 (一)求解方法
一 般 有 两种方法 图 解 法 单纯形法 两个变量、 两个变量、直角坐标 三个变量、 三个变量、立体坐标
适用于任意多个变量、 适用于任意多个变量、但需将 一般形式变成标准形式
(二)线性规划问题的解
1、解的概念 可行解:满足约束条件② 的解为可行解。 ⑴ 可行解:满足约束条件②、③的解为可行解。 所有解的集合为可行解的集或可行域。 所有解的集合为可行解的集或可行域。 最优解: 达到最大值的可行解。 ⑵ 最优解:使目标函数①达到最大值的可行解。 ⑶ 基:B是矩阵A中m×m阶非奇异子矩阵 是矩阵A ≠0), ),则 是一个基。 (∣B∣≠0),则B是一个基。
§2 图 解 法
例一、 例一、 max
Z = 2 x 2 x 2 x 4 x
2 2 1
+ 3 x
2
2 x1 + x + 1 4 x1 x1 ≥
≤ 12 ≤ 8 ≤ 16 ≤ 12
2
⑴ ⑵ ⑶ ⑷
2
0, x
≥ 0
max
Z = 2 x1 + 3 x 2 x 2 x
2 2
当xj=0时, 必有 j=zj=0, 因此 时 必有y
∑P x = ∑P y = ∑P z
j =1
r
r
r
r
j
j
j =1
j
j
j =1
j
j
=b
∑(y
j =1
j
− z j ) Pj = 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 线性规划及单纯形法习题
1.用图解法求解下列线性规划问题,并指出问题具有唯一最优解、无穷最优解还是无可行解。

(1)⎪⎩⎪
⎨⎧≥≥+≥++=0,42266432min 2
121212
1x x x x x x x x z (2) ⎪⎩⎪
⎨⎧≥≥+≥++=0,12432
223max 2
121212
1x x x x x x x x
(3) ⎪⎩⎪
⎨⎧≤≤≤≤≤++=83105120106max 21212
1x x x x x x z (4) ⎪⎩⎪⎨⎧≥≤+-≥-+=0
,2322
265max 1
221212
1x x x x x x x x z
2.将下列线性规划问题化成标准形式。

(1)⎪⎪⎩⎪⎪

⎧≥≥-++-≤+-+-=-+-+-+-=无约束
43214321432143214321,0,,2321422
245243min x x x x x x x x x x x x x x x x x x x x z (2) ⎪⎪⎩⎪⎪

⎧≥≤≥-++-≤-+-=++-+-=无约束
32143213213213
21,0,0232624
322min x x x x x x x x x x x x x x x x z
3.对下列线性规划问题找出所有基本解,指出哪些是基可行解,并确定最优
解。

(1)
⎪⎪⎩
⎪⎪⎨
⎧=≥=-=+-+=+++++=)6,,1(0231024893631223min 61432143213
21 j x x x x x x x x x x x x x x z j (2)
⎪⎩⎪
⎨⎧=≥=+++=+++++-=)4,,1(01022274322325min 432143214321 j x x x x x x x x x x x x x z j
4.分别用图解发法和单纯形法求解下述问题,并对照单纯形表中的各基本可行解对应图解法中可行域的哪一顶点。

(1) ⎪⎩⎪
⎨⎧≥≤+≤++=0,825943510max 1
221212
1x x x x x x x x z (2) ⎪⎩⎪⎨⎧≥≤+≤++=0,242615
532max 1
221212
1x x x x x x x x z
5.上题(1)中,若目标函数变为21m ax dx cx z +=,讨论c,d 的值如何变化,使该问题可行域的每一顶点依次使目标函数达到最优。

6.考虑下述线性规划问题:

⎩⎪⎨⎧≥≤+≤++=0
,max 122221212121112
1x x b x a x a b
x a x a dx cx z
式中311≤≤c ,642≤≤c , 3111≤≤-a ,5212≤≤a ,1281≤≤b ,
5221≤≤a ,6422≤≤a ,14102≤≤b ,试确定目标函数最优值的下界和上
界。

7.分别用单纯形法中的大M 法和两阶段法求解下列线性规划问题,并指出属哪一类解。

(1) ⎪⎪⎩
⎪⎪

⎧=≥≥-≥+-≥+++-=)3,2,1(0022
2622max 32313213
21j x x x x x x x x x x x z j (2) ⎪⎩⎪
⎨⎧≥≥+≥++++=0,,62382432min 3
21213213
21x x x x x x x x x x x z
(3) ⎪⎪⎩⎪⎪
⎨⎧=≥=++=-+=++=)4,,1(0426343
34min 4213212121 j x x x x x x x x x x x z j (4) ⎪⎪⎩
⎪⎪⎨⎧=≥≥++≤++-≤++++=)3,,1(05215
1565935121510max 3213213213
21 j x x x x x x x x x x x x x z j
8.已知某线性规划问题的初始单纯形表和单纯形法迭代后得到的表
1-1,试求括号中未知数a ~l 的值。

9.若)2()
1(,X X
均为某线性规划问题的最优解,证明在两点连线上的所
有点也是该问题的最优解。

10. 线性规划问题max z=CX ,AX=b ,X ≥0,设0
X 为问题的最优解。

若目标函数中用C *代替C 后,问题的最优解变为*
X ,求证:
(C *-C)( X *- X 0
)≥0
11. 考虑线性规划问题
⎪⎩⎪
⎨⎧=≥+=-+-+=-+-++=)4,,1(0)
(7522)(242max 43214214321 j x ii x x x x i x x x x x x x z j
ββα
模型中βα,,为参数,要求:
(1)组成两个新的约束),()()('
ii i i +=根据,)(,)('
'
ii i 以x 1,x 2为基变量,列出初始单纯形表;
(2)在表中,假定0=β,则α为何值时,x 1,x 2为问题的最优基;
(3)在表中,假定3=α,则β为何值时,x 1,x 2为问题的最优基。

12. 线性规划问题max z=CX ,AX=b ,X ≥0,如X ·是该问题的最优解,又且>0为某一常数,分别讨论下列情况时最优解的变化。

(1)目标函数变为maxz =λCX ; (2)目标函数变为max2=(C+λ)X ;
(3)目标函数变为maxz λ
C
=
x ,约束条件变为AX=b λ
13. 某饲养场饲养动物出售,设每头动物每天至少需700克蛋白质、30克矿物质、100毫克维生素。

现有五种饲料可供选用,各种饲料每公斤营养成分含量及单价如表1—2所示:
立这个问题的线性规划模型,不求解)
14. 某医院护士值班班次、每班工作时间及各班所需护士数如表1-3所示。

每班护士值班开始时向病房报到,试决定:
(1)若护士上班后连续工作8小时。

该医院最少需多少名护士,以满足轮班需要
(2)若除22点上班的护士连续工作8小时外,其他护士由医院排定上1~4班中的两个,则该医院又需多少名护士,以满足轮班需要 表1-3
15. 一艘货轮分前、中、后三个舱位,它们的容积与最大允许载重量如表1-4所示。

现有三种货物待运,已知有关数据列于表1-5。

表1-4
表1-5
又为了航运安全,前、中、后舱的实际载重量上大体保持各舱最大允许载重量的比例关系。

具体要求:前、后舱分别与中舱之间载重量比例上偏差不超过15%,前、后舱之间不超过10%。

问该货轮应装载A、B、C各多少件运费收入才最大试建立这个问题的线性规划模型。

16.时代服装公司生产一款新的时装,据测今后6个月的需求量如表1-6所示。

每件时装用工2小时和10元的原材料非,售价40元。

该公司1月初又4个工人,每人每月可工作200小时,月薪2000元。

该公司可于任何一个月初新雇工人,但每雇一人需要一次额外支出1500元,也可辞退工人,但每辞退1人需要补偿1000元。

如当月生产数超过需求,可留到后面月份销售,但需付库存每件每月5元。

当供不应求时,短缺数不需要补上。

试帮助该公司决策,如何使6个月的总利润最大。

表1-6
17.童心玩具厂下一年度的现金流(万元)如表1-7所示,表中负号所示该月现金流出大于流入,为此该厂需借款。

借款有两种方式:一是于上一年末借一年期贷款,一次得全部贷款额,从1月份起每月还息1%,于12月归还本金及最后一次利息;二是得到短期贷款。

每月初获得,于月底还,月息%,当该厂有多余现金时,可短期存款,月初存入,月末取出,月息%。

问该厂应如何进行贷款操作,即能弥补可能出现得负现金流,又可使年末现金总量最大
18. 宏银公司承诺为某建设项目从2003年起得4年中每年初分别提供以下数额贷款:2003年——100万元,2004年——150万元,2005年——120万元,2006年
——110万元。

以上贷款均于2002年底筹集齐。

但为了充分发挥这笔资金得作用,在满足每年贷款额得前提下,可将多于资金分别用于下列投资项目:
(1)于2003年初购买A种债券,期限3年,到期后本息合计为投资额得140%,但限购60万元;
(2)于2003年初购买B种债券,期限2,到期后本息合计为投资额得125%限购90万元;
(3)于2004初购买C种债券,期限2,到期后本息合计为投资额得130%,但限购50万元;
(4)于每年年初将任意数额的资金存放于银行,年息4%,于每年底取出。

求宏银公司应如何用这笔筹集到的资金存放于银行,使得2002年底需要筹集到的资金数额为最少。

相关文档
最新文档