第一章 材料的力学性能试验
第一章 材料力学实验
![第一章 材料力学实验](https://img.taocdn.com/s3/m/ad3635d2c1c708a1284a4450.png)
第一章材料力学实验基本要求:对一些材料的基本常用力学性能指标进行测定,对根据假设导出的理论公式加以验证。
实验应力的初步分析,掌握所用仪器设备的操作规程及熟练使用仪器设备,进行数据采集及分析,观察实验过程中各种物理现象。
重点与难点:实验方案的制定,惠斯顿电桥的理论知识与实验应用实验误差的分析,仪器设备的操作使用。
前言材料力学实验是材料力学课程的重要组成部分。
材料力学中的一些理论和公式是建立在实验、观察、推理、假设的基础上,它们的正确性还必须由实验来验证。
学生通过做实验,用理论来解释、分析实验结果,又以实验结果来证明理论,互相印证,以达到巩固理论知识和学会实验方法的双重目的。
本章是根据温州大学建筑与土木工程学院开设的材料力学实验内容和实验仪器设备情况而编写的,由材料的拉伸、压缩实验,弹性模量、泊松比和剪切模量的测定实验,弯曲正应力试验,以及相关仪器和设备的介绍组成。
编写时主要参考了刘鸿文、吕荣坤的《材料力学实验》、曹以柏、徐温玉的《材料力学测试原理及实验》,王绍铭等的《材料力学实验指导》,以及其他院校的有关实验教学资料。
由于水平和时间有限,本书难免有不足和错误,望广大读者给以批评指正。
主编:王军杨芳二00七年七月第一节实验简介§ 1-1-1 实验的意义和基本内容材料力学实验是教学中的一个重要的环节。
材料力学的结论及定律、材料的力学的性质(机械性质)都要通过实验来验证或测定;各种复杂构件的强度和刚度的研究,也需要通过实验才能解决。
故实验课能巩固、加强和应用基本理论知识,掌握测定材料机械性能及测定应力和变形的基本方法,学会使用有关的机器及仪表(如材料试验机、电阻应变仪等),初步培养独立确定实验方案、分析处理实验结果的能力。
通过实验还能培养严肃认真的工作态度,实事求是的科学作风和爱护财物的优良品质。
因此,实验是工程专业学生必须掌握的基本技能。
材料力学实验一般可以分为以下三类:一、测定材料的的力学性质构件设计时,需要了解所用材料的力学性质。
第一章工程材料的力学性能
![第一章工程材料的力学性能](https://img.taocdn.com/s3/m/0284c7646529647d26285278.png)
第二节 材料的硬度 一、布氏硬度HBW 补充说明: (1)硬度超过HB650的材料,不能做布氏硬度试验,这是因为
所采用的压头,会产生过大的弹性变形,甚至永久变形,影 响实验结果的准确性,这时应改用洛氏和维氏硬度试验。 (2)每个试样至少试验3次。试验时应保证两相邻压痕中心的 距离不小于压痕平均直径的4倍,对于较软的金属则不得小于 6倍。压痕中心距试样边缘的距离不得小于压痕直径的2.5倍, 对于软金属则不得小于3倍
可用硬度试验机测定,常用的硬度指标有布氏硬度 HBW、 洛氏硬度(HRA、HRB、HRC等)和维氏硬度HV
第二节 材料的硬度 一、布氏硬度HBW (一)试验原理
布氏硬度试验规范
3 8
第二节 材料的硬度 一、布氏硬度HBW (二)应用范围
布氏硬度主要用于组织不均匀的锻钢和铸铁的硬度 测试,锻钢和灰铸铁的布氏硬度与拉伸试验有着较好的对 应关系。布氏硬度试验还可用于有色金属和软钢,采用小 直径球压头可以测量小尺寸和较薄材料。布氏硬度计多用 于原材料和半成品的检测,由于压痕较大,一般不用于成 品检测。
最大力伸长率(Agt):最大 力时原始标距的伸长与原 始标距之比的百分率。
最大力非比例伸长率(Ag)
二、拉伸曲线所确定的力学性能指标及意义
断后收缩率(Z):断裂后试样横截面积的最大缩减量与原始横截面 各之比的百分率。
第二节 材料的硬度
材料抵抗其他硬物压入其表面的能力称为硬度,它 是衡 量材料软硬程序的力学性能指标。
洛氏硬度计
第二节 材料的硬度 二、洛氏硬度HR (一)实验原理
第二节 材料的硬度 二、洛氏硬度HR (二)应用范围(共15个标尺) 示例:60HRBW
混凝土结构设计 第一章材料的力学性能-习题 答案要点
![混凝土结构设计 第一章材料的力学性能-习题 答案要点](https://img.taocdn.com/s3/m/3bcc9d0458fb770bf78a55a7.png)
第一章材料的力学性能一、填空题1、钢筋混凝土及预应力混凝土中所用的钢筋可分为两类:有明显屈服点的钢筋和无明显屈服点的钢筋,通常分别称它们为软钢,和硬钢。
2、对无明显屈服点的钢筋,通常取相当于残余应变为0.2%时的应力作为假定的屈服点,即条件屈服强度。
3、碳素钢可分为低碳钢、中碳钢和高碳钢。
随着含碳量的增加,钢筋的强度提高、塑性降低。
在低碳钢中加入少量锰、硅、钛、铬等合金元素,变成为普通低合金钢。
4、钢筋混凝土结构对钢筋性能的要求主要是强度、塑性、焊接性能、粘结力。
5、钢筋和混凝土是不同的材料,两者能够共同工作是因为两者之间的良好粘结力、两者相近的膨胀系数、混凝土包裹钢筋避免钢筋生锈6、光面钢筋的粘结力由胶结力、摩擦力、挤压力三个部分组成。
7、钢筋在混凝土中应有足够的锚固长度,钢筋的强度越高、直径越粗、混凝土强度越低,则钢筋的锚固长度就越长。
8、混凝土的极限压应变包括弹性应变和塑性应变两部分。
塑性应变部分越大,表明变形能力越大,延性越好。
9、混凝土的延性随强度等级的提高而降低。
同一强度等级的混凝土,随着加荷速度的减小,延性有所增加,最大压应力值随加荷速度的减小而减小。
10、钢筋混凝土轴心受压构件,混凝土收缩,则混凝土的应力增加,钢筋的应力减小。
11、混凝土轴心受拉构件,混凝土徐变,则混凝土的应力减小,钢筋的应力增大。
12、混凝土轴心受拉构件,混凝土收缩,则混凝土的应力增大,钢筋的应力减小。
13、混凝土轴心抗压强度的标准试件尺寸为150*150*300或150*150*150 。
14、衡量钢筋塑性性能的指标有延伸率和冷弯性能。
15、当钢筋混凝土构件采用HRB335级钢筋时,要求混凝土强度等级不宜低于C20;当采用热处理钢筋作预应力钢筋时,要求混凝土强度不宜低C40 。
二、判断题1、混凝土强度等级是由一组立方体试块抗压后的平均强度确定的。
(N)2、采用边长为100mm的非标准立方体试块做抗压试验时,其换算系数是0.95。
材料的力学性能试验.
![材料的力学性能试验.](https://img.taocdn.com/s3/m/81fd0bc8b8f67c1cfad6b833.png)
第一章 材料的力学性能试验材料的力学性能试验是工程中广泛应用的一种试验,它为机械制造、土木工程、冶金及其它各种工业部门提供可靠的材料的力学性能参数,便于合理地使用材料,保证机器(结构)及其零件(构件)的安全工作。
材料的力学性能试验必须按照国家标准进行。
第一节 拉伸试验一、实验目的1.验证胡克定律,测定低碳钢的弹性常数:弹性模量E 。
2.测定低碳钢拉伸时的强度性能指标:屈服应力s σ和抗拉强度b σ。
3.测定低碳钢拉伸时的塑性性能指标:伸长率δ和断面收缩率ψ。
4.测定灰铸铁拉伸时的强度性能指标:抗拉强度b σ。
5.绘制低碳钢和灰铸铁的拉伸图,比较低碳钢与灰铸铁在拉伸时的力学性能和破坏形式。
二、实验设备和仪器1.万能试验机。
2.引伸仪。
3.游标卡尺。
三、实验试样按照国家标准GB6397—86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。
其中最常用的是圆形截面试样和矩形截面试样。
如图1-1所示,圆形截面试样和矩形截面试样均由平行、过渡和夹持三部分组成。
平行部分的试验段长度l 称为试样的标距,按试样的标距l 与横截面面积A 之间的关系,分为比例试样和定标距试样。
圆形截面比例试样通常取d l 10=或d l 5=,矩形截面比例试样通常取A l 3.11=或A l 65.5=,其中,前者称为长比例试样(简称长试样),后者称为短比例试样(简称短试样)。
定标距试样的l 与A 之间无上述比例关系。
过渡部分以圆弧与平行部分光滑地连接,以保证试样断裂时的断口在平行部分。
夹持部分稍大,其形状和尺寸根据试样大小、材料特性、试验目的以及万能试验机的夹具结构进行设计。
对试样的形状、尺寸和加工的技术要求参见国家标准GB6397—86。
(a )(b ) 图1-1 拉伸试样(a )圆形截面试样;(b )矩形截面试样四、实验原理与方法 1.测定低碳钢的弹性常数实验时,先把试样安装在万能试验机上,再在试样的中部装上引伸仪,并将指针调整到0,用于测量试样中部0l 长度(引伸仪两刀刃间的距离)内的微小变形。
第一章 金属材料的力学性能
![第一章 金属材料的力学性能](https://img.taocdn.com/s3/m/7ec6481a650e52ea5518988e.png)
Fb σb= S0
四、塑性的衡量(塑性指标):伸长率 δ和断面收缩率 Ψ 塑性的衡量(塑性指标):伸长率 和断面收缩率 ):
1)伸长率( δ ) )伸长率( 伸长率是指试样拉断 后标距增长量与原始 标距的百分比,即: 标距的百分比,
lk-l0 δ=
×100%
l0
lk——试样拉断后的标距 试样拉断后的标距,mm; 试样拉断后的标距 l0——试样的原始标距 。 试样的原始标距,mm。 试样的原始标距
第一章 金属材料及热处理基础知识
应用于各种工程领域中的材料,如在机械工业中,建筑及桥 应用于各种工程领域中的材料,如在机械工业中,建筑及桥 于各种工程领域中的材料 等等, 统称为工程材料。 梁中,等等,——统称为工程材料。 统称为工程材料 其中用来制造各种机电产品的材料 用来制造各种机电产品的材料, 称为机械工程材料 其中用来制造各种机电产品的材料,——称为机械工程材料 称为机械工程材料. 主要包括: 主要包括: 1)金属材料:钢,铸铁,铜及铜合金,等等。 铸铁,铜及铜合金,等等。 )金属材料: 2)非金属材料:塑料,橡胶,工业陶瓷,等等。 )非金属材料:塑料,橡胶,工业陶瓷,等等。 3)复合材料:由两种或两种以上性质不同的材料复合而成的 )复合材料: 多相材料。 多相材料。 金属材料是制造机器的最主要材料。 金属材料是制造机器的最主要材料。 是制造机器的最主要材料 1、金属材料按含金属元素数量的多少分为: 、金属材料按含金属元素数量的多少分为: 1)纯金属 一种金属 一种金属). )纯金属(一种金属 2)合金(以一种金属为基 其他金属或非金属) 其他金属或非金属) )合金(以一种金属为基+其他金属或非金属
刚度、强度、 第一节 刚度、强度、塑性
刚度、强度、弹性和塑性是根据拉伸试验测定出 塑性是根据拉伸试验 刚度、强度、弹性和塑性是根据拉伸试验测定出 来的。 来的。 一、拉伸试验与拉伸曲线 1、拉伸试样 试验前在试棒上打出标距 试验前在试棒上打出标距 按国标规定标准拉伸试样可分为: 按国标规定标准拉伸试样可分为: 板形试样: 1) 板形试样:原材料为板材或带材 圆形试样:长试样L 短试样L 2) 圆形试样:长试样L0=10d0,短试样L0=5d0 其中: 为试样标距, 其中:L0为试样标距,d0为试样直径
工程材料学-材料的力学性能培训课件
![工程材料学-材料的力学性能培训课件](https://img.taocdn.com/s3/m/d519653d1ed9ad51f01df28e.png)
1. 布氏硬度( Brinell-hardness )
布氏硬度计
用于测定硬度不高的 金属材料。主要有铸 铁、有色金属、低合 金结构钢、结构调质 钢等。
1. 布氏硬度( Brinell-hardness )
测定原理:
用一定大小的载荷P,把直 径为D的淬火钢球压入被测金 属的表面,保持一定的时间后 卸除载荷,用金属压痕的表面 积,除载荷所得的商值即为布 氏硬度值。
比强度 30~37 23~36 90~111
3. 塑性指标:
塑性变形: 不可恢复的永久变形。塑性是表征材料断
裂前具有塑性变形的能力。
断后伸长率δ(δ5、δ10):
断后试样标距伸长量与原始标距之比的百分率,
即: LK L0 100%
L0
δ < 2 ~ 5% 属脆性材科
δ≈ 5 ~ 10% 属韧性材料
1.2.1 拉伸试验
3.均匀塑形变形阶段(曲线de段)
在此阶段中,试样的一部分产生塑性变形,虽 然这一部分截面减小,使此处承受负荷能力下 降。但由于变形强化的作用而阻止塑性变形在 此处继续发展,使变形推移到试样的其它部位。 这样、变形和强化交替进行,就使试样各部位 产生了宏观上均匀的塑性变形。曲线上的d点是 屈服阶段结束点也是加工硬化开始点。
1.2.1 拉伸试验
1.弹性变形阶段(曲线ob段)
在弹性变形阶段内的oa段,试样的伸长与外力 成正比例直线关系,即每增加一定外力,就对 应一定的伸长量,因此,oa段也称为线弹性变 形阶段。一旦外力超过曲线上的a点时,正比例 关系就破坏了。而该点对应的外力Fp称为比例 变形的极限外力。ab段为弹性变形的非线性阶 段,此阶段很短,一般不容易观察到。
1. 弹性指标:
工程材料的力学性能
![工程材料的力学性能](https://img.taocdn.com/s3/m/4b9797b14431b90d6d85c72b.png)
练习题二
某工厂买回一批材料(要求: бs≥230MPa;бb≥410MPa;δ5≥23%; ψ≥50%).做短试样(l0=5d0;d 0=10mm)拉伸试验,结果如下: Fs=19KN,Fb=34.5KN;l1=63.1mm; d1=6.3mm;问买回的材料合格吗?
时间。如:120HBS10/1000/30表示直径为10mm的钢球 在1000kgf(9.807kN)载荷作用下保持30s测得的布氏 硬度值为120。
布氏硬度的优点:测量误差小,数据稳定。 缺点:压痕大,不能用于太薄件、成品件及比压头 还硬的材料。
适于测量退火、正火、调质钢,铸铁及有色金属的硬度。
2.洛氏硬度:
延伸率 延伸率与试样尺寸有关;δ5、δ10 (L0=5d,10d)
思考:同一材料δ5 > δ10?
断面收缩率
> 时,无颈缩,为脆性材料表征;
拉
< 时,有颈缩,为塑性材料表征。
伸 试
样
的
颈
缩
现
象
断裂后
练习题一
拉力试样的原标距长度为50mm,直径为10mm,经拉力试 验后,将已断裂的试样对接起来测量,若最后的标距长度为 71mm,颈缩区的最小直径为4.9mm,试求该材料的伸长率 和断面收缩率的值?
介质)下,承受各种外加载荷(拉伸、压缩、 弯曲、扭转、冲击、交变应力等)时所表现出 的力学特征。
指标 : 弹性 、刚度、强度、塑性 、 硬度、冲击韧
性 、断裂韧度和疲劳强度等。
《材料的力学性能》西北工业大学出版社--复习资料
![《材料的力学性能》西北工业大学出版社--复习资料](https://img.taocdn.com/s3/m/89d2a541f7ec4afe04a1df26.png)
《材料的力学性能》第一章 材料的拉伸性能名词解释:比例极限P σ,弹性极限e σ,屈服极限s σ,屈服强度0.2σ,抗拉强度b σ,延伸率k δ,断面收缩率k ψ(P7-8),断裂强度f σ(k σ),韧度(P10)1、拉伸试验可以测定那些力学性能?对拉伸试件有什么基本要求? 答:拉伸试验可以测定的力学性能为:弹性模量E ,屈服强度σs ,抗拉强度σb ,延伸率δ,断面收缩率ψ。
2、拉伸图和工程应力-应变曲线有什么区别?试验机上记录的是拉伸图还是工程应力-应变曲线?答:拉伸图和工程应力—应变曲线具有相似的形状,但坐标物理含义不同,单位也不同。
拉伸图横坐标为伸长量(单位mm ),纵坐标为载荷(单位N );工程应力-应变曲线横坐标为工程应力(单位MPa ),纵坐标为工程应变(单位无)。
试验机记录的是拉伸图。
3、脆性材料与塑性材料的应力-应变曲线有什么区别?脆性材料的力学性能可以用哪两个指标表征?答:如下图所示,左图近似为一直线,只有弹性变形阶段,没有塑性变形阶段,在弹性变形阶段断裂,说明是脆性材料。
右图为弯钩形曲线,既有弹性变形阶段,又有塑性变形阶段,在塑性变形阶段断裂,说明是塑性材料。
脆性材料力学性能用“弹性模量“和”脆性断裂强度”来描述。
4、塑性材料的应力-应变曲线有哪两种基本形式?如何根据应力-应变曲线确定拉伸性能?答:分为低塑性和高塑性两种,如下图所示。
左图曲线有弹性变形阶段与均匀塑性变形阶段,没有颈缩现象,曲线在最高点处中断,即在均匀塑性变形阶段断裂,且塑性变形量小,说明是低塑性材料。
右图曲线有弹性变形阶段,均匀塑性变形阶段,颈缩后的局集塑性变形阶段,曲线在经过最高点后向下延伸一段再中断,即在颈缩后的局集塑性变形阶段断裂,且塑性变形量大,说明是高塑性材料。
5、何谓工程应力和工程应变?何谓真应力和真应变?两者之间有什么定量关系?答:6、如何测定板材的断面收缩率?答:断面收缩率是材料本身的性质,与试件的几何形状无关,其测试方法见P8。
第一章 材料的力学性能
![第一章 材料的力学性能](https://img.taocdn.com/s3/m/b2c2a04fcf84b9d528ea7adb.png)
第一章材料的力学性能一、名词解释1、力学性能:材料抵抗各种外加载荷的能力,称为材料的力学性能。
2、弹性极限:试样产生弹性变形所承受的最大外力,与试样原始横截面积的比值,称为弹性极限,用符号σe表示。
3、弹性变形:材料受到外加载荷作用产生变形,当载荷去除,变形消失,试样恢复原状,这种变形称为弹性变形。
4、刚度:材料在弹性变形范围内,应力与应变的比值,称为刚度,用符号E表示。
5、塑性:材料在外加载荷作用下,产生永久变形而不破坏的性能,称为塑性。
6、塑性变形:材料受到外力作用产生变形,当外力去除,一部分变形消失,一部分变形没有消失,这部分没有消失的变形称为塑性变形。
7、强度:材料在外力作用下抵抗变形和断裂的能力,称为强度。
8、抗拉强度:材料在断裂前所承受的最大外加拉力与试样原始横截面积的比值,称为抗拉强度,用符号σb表示。
9、屈服:材料受到外加载荷作用产生变形,当外力不增加而试样继续发生变形的现象,称为屈服。
10、屈服强度:表示材料在外力作用下开始产生塑性变形的最低应力,即材料抵抗微量塑性变形的能力,用符号σs表示。
11、σ0.2:表示条件屈服强度,规定试样残留变形量为0.2%时所承受的应力值。
用于测定没有明显屈服现象的材料的屈服强度。
12、硬度:金属表面抵抗其它更硬物体压入的能力,即材料抵抗局部塑性变形的能力,称为硬度。
13、冲击韧度:材料抵抗冲击载荷而不破坏的能力,称为冲击韧度,用符号αk表示。
14、疲劳:在交变载荷作用下,材料所受的应力值虽然远远低于其屈服强度,但在较长时间的作用下,材料会产生裂纹或突然的断裂,这种现象称为疲劳。
15、疲劳强度:材料经无数次应力循环而不发生断裂,这一应力值称为疲劳强度或疲劳极限,用符号σ-1表示。
16、蠕变:材料在高温长时间应力作用下,即使所加应力值小于该温度下的屈服极限,也会逐渐产生明显的塑性变形直至断裂,这种现象称为蠕变。
17、磨损:由两种材料因摩擦而引起的表面材料的损伤现象称为磨损。
金属材料的力学性能
![金属材料的力学性能](https://img.taocdn.com/s3/m/cb40171c4431b90d6c85c76d.png)
3、FL 段:水平线(略有波动)明显的 塑性变形屈服现象,作用的力基本不变, 试样连续伸长。
4、FL-FM曲线:弹性变形+均匀塑性变形
5、M点:出现缩颈现象,即试样局部截面明显缩小试样承载能力降低, 拉伸力达到最大值,试样即将断裂。 6、K点:试件在缩颈处拉断
19
§1-4 冲击韧度
一般来说,强度、塑性均好的材料,韧度值也高。在实 际工作中常见的是承受多次小能量冲击。对多次冲击 问题: •
•
1) 如果冲击能量低,冲击周次较多时,α KV主 要取决于材料的强度,强度高则冲击韧度较好;
2) 如果冲击能量高,则主要取决于材料的塑性, 材料塑性越高则冲击韧度较好。
1、洛氏硬度试验(洛氏硬度计)
原理: 用金刚石圆锥或淬火钢球,在试验力的作用下压入试样表面, 经规定时间后卸除试验力,用测量的残余压痕深度增量来计算硬度的一 种压痕硬度试验。
12
§1-3 硬度
2、洛氏硬度表示方法
洛氏硬度直接在符号前面写出硬度值。可从表盘上直接读出。
如:50HRC 3、优缺点
(1)试验简单、方便、迅速(2)压痕小,可测成品、薄件(3)数据 不够准确,应测三点取平均值(4)不能测组织不均匀材料,如铸铁。
20
§1-5 疲劳强度
1.5 一、概念
疲劳强度
什么是金属的疲劳? 疲劳强度:在指定寿命下使试样失效的应力水平。
交变应力:大小和方向随时间作周期性变化的应力。 通常规定钢铁材料的循环基数取107,有色金属取108。
21
§1-5 疲劳强度
金属的疲劳强度曲线
22
S0:试件原横截面积。 S1:断裂后颈缩处的横截面积,用卡尺直接量出。
力学性能实验
![力学性能实验](https://img.taocdn.com/s3/m/b4ab82a3f524ccbff12184bc.png)
第一章材料的力学性能试验材料的力学性能试验是工程中广泛应用的一种试验,它为机械制造、土木工程、冶金及其它各种工业部门提供可靠的材料的力学性能参数,便于合理地使用材料,保证机器(结构)及其零件(构件)的安全工作。
材料的力学性能试验必须按照国家标准进行。
第一节拉伸试验一、实验目的1.验证胡克定律,测定低碳钢的弹性常数:弹性模量E。
2.测定低碳钢拉伸时的强度性能指标:屈服应力σ和抗拉强度bσ。
s3.测定低碳钢拉伸时的塑性性能指标:伸长率δ和断面收缩率ψ。
4.测定灰铸铁拉伸时的强度性能指标:抗拉强度σ。
b5.绘制低碳钢和灰铸铁的拉伸图,比较低碳钢与灰铸铁在拉伸时的力学性能和破坏形式。
二、实验设备和仪器1.万能试验机。
2.引伸仪。
3.游标卡尺。
三、实验试样按照国家标准GB6397—86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。
其中最常用的是圆形截面试样和矩形截面试样。
如图1-1所示,圆形截面试样和矩形截面试样均由平行、过渡和夹持三部分组成。
平行部分的试验段长度l 称为试样的标距,按试样的标距l 与横截面面积A 之间的关系,分为比例试样和定标距试样。
圆形截面比例试样通常取dl10=或dl 5=,矩形截面比例试样通常取Al3.11=或Al65.5=,其中,前者称为长比例试样(简称长试样),后者称为短比例试样(简称短试样)。
定标距试样的l 与A 之间无上述比例关系。
过渡部分以圆弧与平行部分光滑地连接,以保证试样断裂时的断口在平行部分。
夹持部分稍大,其形状和尺寸根据试样大小、材料特性、试验目的以及万能试验机的夹具结构进行设计。
对试样的形状、尺寸和加工的技术要求参见国家标准GB6397—86。
(a )(b ) 图1-1拉伸试样(a )圆形截面试样;(b )矩形截面试样四、实验原理与方法1.测定低碳钢的弹性常数实验时,先把试样安装在万能试验机上,再在试样的中部装上引伸仪,并将指针调整到0,用于测量试样中部0l 长度(引伸仪两刀刃间的距离)内的微小变形。
材料力学性能(第一章)
![材料力学性能(第一章)](https://img.taocdn.com/s3/m/b5fbce0703d8ce2f00662372.png)
第一章 金属在单向静拉伸载荷下的力学性能 弹性变形及其物理本质
外力引起原子间距的变化,即位移,在宏观上即弹性变形。 外力引起原子间距的变化,即位移,在宏观上即弹性变形。 弹性性能与特征是原子间结合力的宏观表现, 弹性性能与特征是原子间结合力的宏观表现,本质上决定于晶体的电子结 构,而不依赖于其显微组织。 而不依赖于其显微组织。 引 力
单向受力时, 单向受力时,
εx =
1 σx E
εy = 由此可见 , 即使在单轴加 载条件下, 载条件下 , 材料不仅有受拉方 向上的伸长变形, 还有垂直于 向上的伸长变形 , 还有 垂直于 受拉方向的横向收缩变形。 受拉方向的横向收缩变形。
第一章 金属在单向静拉伸载荷下的力学性能 弹性模量
第一章 金属在单向静拉伸载荷下的力学性能
对于不连续屈服的材料,如低碳钢, 对于不连续屈服的材料,如低碳钢,则存在上屈服点和 下屈服点,一般以下屈服点作为材料的屈服强度。 下屈服点,一般以下屈服点作为材料的屈服强度。
σ ys =
py A0
--材料的极限承受能力 抗拉强度 --材料的极限承受能力
σ b = Pb / A0
材料的概念
材料的定义: 材料的定义
肖纪美先生的观点:材料是人类社会能接受的, 肖纪美先生的观点:材料是人类社会能接受的, 经济地制造有用器件的物质。 经济地制造有用器件的物质。
材料的性能
1、 使用性能:物理性能(光、电、磁……) 、 使用性能:物理性能( ) 力学性能 (强度、塑性、硬度……) 强度、塑性、硬度 ) 2、 加工性能 (可制造性) 、 可制造性) 热加工:铸、锻、焊、热处理…… 热加工: 热处理 冷加工: 冷加工:车、铣、磨…… 特种加工:电火花、激光、离子 特种加工:电火花、激光、离子……
工程材料第一章--金属材料的力学性能
![工程材料第一章--金属材料的力学性能](https://img.taocdn.com/s3/m/3cbea17cc8d376eeafaa3109.png)
数值越大,表明材料的断裂韧性越好!
压痕法
试样表面抛光成镜面,在显微硬度仪上,以10Kg负 载在抛光表面用硬度计的锥形金刚石压头产生一压 痕,这样在压痕的四个顶点就产生了预制裂纹。根 据压痕载荷P和压痕裂纹扩展长度C计算出断裂韧性 数值(KIC)。
第一章 金属材料的力学性能
机械零部件在使用过程中一般不允许发生塑性变形,所以 屈服强度是零件设计时的主要依据,也是评定材料强度的 重要指标之一
(三)抗拉强度
表明试样被拉断前所能承载的最大应力
σb= Fb / A0
Fb :试样在破断前所承受的最大载荷
➢ 表示塑性材料抵抗大量均匀塑性变形的能力,也 表示材料抵抗断裂的强度,即断裂强度。
若F 确定,硬度值只与压痕投影的两对角线的平均长 度d有关,d越大,HV越小。
维氏硬度值一般只写数值。 硬度值+硬度符号+试验力大小(kgf)及试验力保持时 间(10-15s不标注)
提问
640HV30的具体意义?
表示在30kgf的试验载荷作用下,保持10-15s时 测得的维氏硬度值为640。
640HV30/20的具体意义?
布氏硬度值单位为N/mm2,但一般只写数值。 硬度值+硬度符号+球体直径+试验力大小及试验力保持 时间(10-15s不标注)
提问
170HBW10/1000/30的具体意义?
表示用直径10mm的硬质合金球,在9807 N(1000 kgf) 的试验载荷作用下,保持30s时测得的布氏硬度值为170。
530HBW5/750的具体意义?
➢ 抗拉强度是零件设计时的重要依据,也是评定金 属材料的强度重要指标之一。
【材料物理性能与力学性能】第1-2章
![【材料物理性能与力学性能】第1-2章](https://img.taocdn.com/s3/m/f00538d90242a8956bece44d.png)
内耗:材料在变形过程中被吸收的功。
弹性滞后环:应力-应变曲线中,加载线和卸载线不重合而形成一 个封闭回路,称为弹性滞后环。 弹性滞后环说明加载时材料吸收的变形功大于卸载时材料释放的 变形功,有一部分加载变形功被材料吸收,即为内耗,其大小等 于弹性滞后环的面积。(内耗大小主要取决于应变和应力之间的位 相差)
2)晶体结构
单晶体:各向异性
多晶体:伪各向同性
最大值与最小值差值可达4倍
非晶:各向同性
3)化学成分----引起原子间距和键合方式的变化
4)微观组织----影响较小
晶粒大小对E值无影响;
第二相的影响取决于体积比例和分布状态;
冷加工的影响在5%以内
5)温度----温度升高,E降低
特例:橡胶。其弹性模量随温度升高而增加。
三、影响金属材料屈服强度的因素
1、晶体结构
(派纳力)
位错宽度w大,位错易于移动, bcc金属相反
p n小,屈服强度小,如fcc金属.
2、晶界和亚结构 晶界越多,晶粒越小,位错中应力集中程度不够,需要更大
的外加切应力才能够使位错运动,因此屈服强度越大。——
细晶强化
3、溶质元素——固溶强化 此外,
上屈服点:试样发生屈服而力首次下降前的最大应力值。 su
屈服平台(屈服齿):屈服伸长对应的水平线段或曲折线段。
材料产生屈服的原因:与材料内部的位错运动有关。
位错运动速率与切应力的关系: v ( )m 0
'
其中,m 为位错运动速率应力敏感指数。
'
b v
:塑性应变速率
6)加载条件和负荷持续时间 加载方式、速率和负荷持续时间对金属材料、陶瓷材料 影响很小。
中职金工实训第一章金属材料的力学性能
![中职金工实训第一章金属材料的力学性能](https://img.taocdn.com/s3/m/490c166f26284b73f242336c1eb91a37f1113266.png)
中职⾦⼯实训第⼀章⾦属材料的⼒学性能教案⼆【教学组织】1.提问5分钟2.讲解75分钟3.⼩结5分钟4.布置作业5分钟【教学内容】第⼀章⾦属材料的⼒学性能⾦属材料的性能包括使⽤性能和⼯艺性能。
●使⽤性能是指⾦属材料为保证机械零件或⼯具正常⼯作应具备的性能,即在使⽤过程中所表现出的特性。
使⽤性能包括⼒学性能(或机械性能)、物理性能和化学性能等。
●⼯艺性能是指⾦属材料在制造机械零件或⼯具的过程中,适应各种冷、热加⼯的性能,也就是⾦属材料采⽤某种成形加⼯⽅法制成成品的难易程度。
⼯艺性能包括铸造性能、锻压性能、焊接性能、热处理性能及切削加⼯性能等。
第⼀节⾦属材料的强度与塑性⼀、⼒学性能的概念●⾦属材料的⼒学性能是指⾦属材料在⼒作⽤下所显⽰的与弹性和⾮弹性反应相关或涉及应⼒—应变关系的性能,⼜称机械性能,主要包括强度、硬度、塑性、韧性、疲劳强度等。
●物体受外⼒作⽤后导致物体内部之间相互作⽤的⼒称为内⼒。
●单位⾯积上的内⼒称为应⼒σ(N/mm2或Mpa)。
●应变?是指由外⼒所引起的物体原始尺⼨或形状的相对变化(%)。
⼆、拉伸试验过程分析●拉伸试验是指⽤静(缓慢)拉伸⼒对试样进⾏轴向拉伸,通过测量拉伸⼒和伸长量,测定试样强度、塑性等⼒学性能的试验。
圆柱形拉伸试样分为短圆柱形试样和长圆柱形试样两种。
长圆柱形拉伸试样L0=10d0;短圆柱形拉伸试样L0=5d0。
●在进⾏拉伸试验时,拉伸⼒F和试样伸长量△L之间的关系曲线,称为⼒-伸长曲线。
a)拉伸前 b)拉断后图1-1 圆柱形拉伸试样图1-2 退⽕低碳钢的⼒—伸长曲线完整的拉伸试验和⼒⼀伸长曲线包括弹性变形阶段、屈服阶段、变形强化阶段、颈缩与断裂四个阶段。
三、强度●强度是⾦属材料抵抗永久变形和断裂的能⼒。
⾦属材料的强度指标主要有屈服强度(或规定残余伸长强度)、抗拉强度等。
1.屈服强度和规定残余伸长应⼒●屈服强度是指拉伸试样在拉伸试验过程中拉⼒(或载荷)不增加(保持恒定)仍然能继续伸长(变形)时的应⼒。
材料性能与测试课件-第一章材料单向静拉伸
![材料性能与测试课件-第一章材料单向静拉伸](https://img.taocdn.com/s3/m/af1fd101e418964bcf84b9d528ea81c759f52e1b.png)
详细描述
根据实验结果,评估材料的耐温性能,为实际 工程应用提供参考,如高温环境下使用的材料 选择。
实验三
总结词
研究加载速率对材料单向静拉伸性能的影响
详细描述
在不同的加载速率下进行单向静拉伸实验,观察并记录材 料在不同加载速率下的拉伸性能变化,如屈服强度、抗拉 强度、延伸率等。
总结词
分析加载速率对材料力学性能的影响机制
弹性变形阶段
应力-应变曲线上升阶段,材料发生弹性变形,卸载后变形恢复。
屈服点
应力-应变曲线上的转折点,表示材料开始进入塑性变形阶段。
极限强度
应力-应变曲线上最高点所对应的应力值,表示材料所能承受的最大 应力。
强度与延伸率
强度
材料在受到外力作用时所能承受的最大应力值,是衡量材料 承载能力的指标。根据测试条件不同,强度可分为抗拉强度 、抗压强度、抗弯强度等。
总结词
研究温度对材料单向静拉伸性能的影响
01
02
详细描述
在不同温度下进行单向静拉伸实验,观察并 记录材料在不同温度下的拉伸性能变化,如 屈服强度、抗拉强度、延伸率等。
总结词
分析温度对材料力学性能的影响机制
03
总结词
评估材料的耐温性能
05
06
04
详细描述
根据实验结果,分析温度对材料力学 性能的影响机制,探讨微观结构的变 化、热激活过程等因素对拉伸性能的 影响。
详细描述
根据实验结果,分析加载速率对材料力学性能的影响机制 ,探讨动态应变时效、应力集中等因素对拉伸性能的影响 。
总结词
评估材料的动态力学性能
详细描述
根据实验结果,评估材料的动态力学性能,为实际工程应 用提供参考,如高速加载或冲击载荷下的材料选择。
材料单向拉伸的力学性能
![材料单向拉伸的力学性能](https://img.taocdn.com/s3/m/774bfd729a6648d7c1c708a1284ac850ad0204e3.png)
比例极限和弹性极限没有质的区别,只是非比例伸长 率大小不同而已。实际上比例极限和弹性极限与下面将 要介绍的屈服强度的概念基本相同,都表示材料对微量 塑性变形的抗力,
5.弹性比功
弹性比功又称为弹性比能或应变比能,用ae表示,是材料在
弹性变形过程中吸收变形
功的能力。可用材料弹性
几种材料在常温下的弹性模数(Mpa)
材料名称 弹性模数E
低碳钢
2.0×105
低合金钢 (2.2~2.0) ×105
奥氏体不锈钢 (2.0~1.9) ×105
铜合金
(1.3~1.0) ×105
铝合金
(0.75~0.60) ×105
钛合金
(1.16~0.96) ×105
金刚石
10.39×105
碳化硅
4.14×105
变形达到弹性极限时单位
体积吸收的弹性变形功表
示。材料拉伸时的弹性比
功可用应力⎯应变曲线下
的影线面积表示,故
ae
=
1 2
σ
eε
e
=
σ e2
2E
材料 中碳钢 弹簧钢 硬铝 铜 铍青铜 橡胶
几种材料的E、σe、ae值
E (MPa) 2.1×105 2.1×105 7.24×104 1.1×105 1.2×105 0.2~0.78
σp、σe只是一个理论上的物理定义,用普通的测试
方法很难测出准确而唯一的比例极限和弹性极限数值。
为了便于实际测量和应用,σp的新定义在国家标准中称
为“规定非比例伸长应力”,即试验时非比例伸长达到原 始标距长度规定的百分比时的应力,表示此应力的符号
附以角注说明,例如σp0.01、σp0.05分别表示规定非
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 材料的力学性能试验
材料的力学性能试验是工程中广泛应用的一种试验,它为机械制造、土木工程、冶金及其它各种工业部门提供可靠的材料的力学性能参数,便于合理地使用材料,保证机器(结构)及其零件(构件)的安全工作。
材料的力学性能试验必须按照国家标准进行。
第一节 拉伸试验
一、实验目的
1.验证胡克定律,测定低碳钢的弹性常数:弹性模量E 。
2.测定低碳钢拉伸时的强度性能指标:屈服应力s σ和抗拉强度b σ。
3.测定低碳钢拉伸时的塑性性能指标:伸长率δ和断面收缩率ψ。
4.测定灰铸铁拉伸时的强度性能指标:抗拉强度b σ。
5.绘制低碳钢和灰铸铁的拉伸图,比较低碳钢与灰铸铁在拉伸时的力学性能和破坏形
式。
二、实验设备和仪器
1.万能试验机。
2.引伸仪。
3.游标卡尺。
三、实验试样
按照国家标准GB6397—86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。
其中最常用的是圆形截面试样和矩形截面试样。
如图1-1所示,圆形截面试样和矩形截面试样均由平行、过渡和夹持三部分组成。
平行部分的试验段长度l 称为试样的标距,按试样的标距l 与横截面面积A 之间的关系,分为比例试样和定标距试样。
圆形截面比例试样通常取d l 10=或d l 5=,矩形截面比例试样通常取A l 3.11=或A l 65.5=,其中,前者称为长比例试样(简称长试样),后者称为短比例试样(简称短试样)。
定标距试样的l 与A 之间无上述比例关系。
过渡部分以圆弧与平行部分光滑地连接,以保证试样断裂时的断口在平行部分。
夹持部分稍大,其形状和尺寸根据试样大小、材料特性、试验目的以及万能试验机的夹具结构进行设计。
对试样的形状、尺寸和加工的技术要求参见国家标准GB6397—86。
(a )
(b ) 图1-1 拉伸试样
(a )圆形截面试样;(b )矩形截面试样
四、实验原理与方法 1.测定低碳钢的弹性常数
实验时,先把试样安装在万能试验机上,再在试样的中部装上引伸仪,并将指针调整到
0,用于测量试样中部0l 长度(引伸仪两刀刃间的距离)内的微小变形。
开动万能试验机,预加一定的初载荷(可取kN 4),同时读取引伸仪的初读数。
为了验证载荷与变形之间成正比的关系,在弹性范围内(根据A ⨯P σ求出的最大弹性载荷不超过kN 14)采用等量逐级加载方法,每次递加同样大小的载荷增量F ∆(可选kN 2=∆F ),在引伸仪上读取相应的变形量。
若每次的变形增量大致相等,则说明载荷与变形成正比关系,即验证了胡克定律。
弹性模量E 可按下式算出
00
l A l F E ∆⋅⋅∆=
式中:F ∆为载荷增量;A 为试样的横截面面积;0l 为引伸仪的标距(即引伸仪两刀刃间的距离);0l ∆为在载荷坛量F ∆下由引伸仪测出的试样变形增量平均值。
2.测定低碳钢拉伸时的强度和塑性性能指标
弹性模量测定完后,将载荷卸去,取下引伸仪,调整好万能试验机的自动绘图装置,再次缓慢加载直至试样拉断,以测出低碳钢在拉伸时的力学性能。
(1)强度性能指标
屈服应力(屈服点)s σ——试样在拉伸过程中载荷不增加而试样仍能继续产生变形时的载荷(即屈服载荷)s F 除以原始横截面面积A 所得的应力值,即
A F s s =
σ
抗拉强度b σ——试样在拉断前所承受的最大载荷b F 除以原始横截面面积A 所得的应
力值,即
A F b b =
σ
低碳钢是具有明显屈服现象的塑性材料,在均匀缓慢的加载过程中,当万能试验机测力
盘上的主动指针发生回转时所指示的最小载荷(下屈服载荷)即为屈服载荷。
试样超过屈服载荷后,再继续缓慢加载直至试样被拉断,万能试验机的从动指针所指示的最大载荷即为极限载荷。
当载荷达到最大载荷后,主动指针将缓慢退回,此时可以看到,在试样的某一部位局部变形加快,出现颈缩现象,随后试样很快被拉断。
(2)塑性性能指标
伸长率δ——拉断后的试样标距部分所增加的长度与原始标距长度的百分比,即
%
1001⨯-=l l l δ
式中:l 为试样的原始标距;1l 为将拉断的试样对接起来后两标点之间的距离。
试样的塑性变形集中产生在颈缩处,并向两边逐渐减小。
因此,断口的位置不同,标距l 部分的塑性伸长也不同。
若断口在试样的中部,发生严重塑性变形的颈缩段全部在标距长
度内,标距长度就有较大的塑性伸长量;若断口距标距端很近,则发生严重塑性变形的颈缩段只有一部分在标距长度内,另一部分在标距长度外,在这种情况下,标距长度的塑性伸长量就小。
因此,断口的位置对所测得的伸长率有影响。
为了避免这种影响,国家标准GB228
—87对1l 的测定作了如下规定。
试验前,将试样的标距分成十等分。
若断口到邻近标距端的距离大于3/l ,则可直接测量标距两端点之间的距离作为1l 。
若断口到邻近标距端的距离小于或等于3/l ,则应采用移位法(亦称为补偿法或断口移中法)测定:在长段上从断口O 点起,取长度基本上等于短段格数的一段,得到B 点,再由B 点起,取等于长段剩余格数(偶数)的一半得到C 点(见图1-2(a ));或取剩余格数(奇数)减1与加1的一半分别得到C 点与1C 点(见图1-2(b ))。
移位后的1l 分别为:BC OB AO l 21++=或11BC BC OB AO l +++=。
测量时,两段在断口处应紧密对接,尽量使两段的轴线在一条直线上。
若在断口处形成缝隙,则此缝隙应计入1l 内。
如果断口在标距以外,或者虽在标距之内,但距标距端点的距离小于d 2,则试验无效。
(a )
(b )
图1-2 测1l 的移位法
断面收缩率ψ——拉断后的试样在断裂处的最小横截面面积的缩减量与原始横截面面积的百分比,即
%1001
⨯-=
A A A ψ 式中:A 为试样的原始横截面面积;1A 为拉断后的试样在断口处的最小横截面面积。
3.测定灰铸铁拉伸时强度性能指标
灰铸铁在拉伸过程中,当变形很小时就会断裂,万能试验机的指针所指示的最大载荷b
F 除以原始横截面面积A 所得的应力值即为抗拉强度b σ,即
A F b
b =σ
五、实验步骤
1.测定低碳钢的弹性常数 (1)测量试样的尺寸。
(2)先将低碳钢的拉伸试样安装在万能试验机上,再把引伸仪安装在试样的中部,并将指针调零。
(3)按等量逐级加载法均匀缓慢加载,读取引伸仪的读数。
2.测定低碳钢拉伸时的强度和塑性性能指标
(1)将试样打上标距点,并刻画上间隔为mm 10或mm 5的分格线。
(2)在试样标距范围内的中间以及两标距点的内侧附近,分别用游标卡尺在相互垂直方向上测取试样直径的平均值为试样在该处的直径,取三者中的最小值作为计算直径。
(3)把试样安装在万能试验机的上、下夹头之间,估算试样的最大载荷,选择相应的测力盘,配置好相应的摆锤,调整测力指针,使之对准“0”点,将从动指针与之靠拢,同时调整好自动绘图装置。
(4)开动万能试验机,匀速缓慢加载,观察试样的屈服现象和颈缩现象,直至试样被拉断为止,并分别记录下主动指针回转时的最小载荷s F和从动指针所停留位置的最大载荷F。
b
(5)取下拉断后的试样,将断口吻合压紧,用游标卡尺量取断口处的最小直径和两标点之间的距离。
3.测定灰铸铁拉伸时的强度性能指标
(1)测量试样的尺寸。
(2)把试样安装在万能试验机的上、下夹头之间,估算试样的最大载荷,选择相应的测力盘,配置好相应的摆锤。
调整测力指针,使之对准“0”点,将从动指针与之靠拢,同时调整好自动绘图装置。
(3)开动万能试验机,匀速缓慢加载直至试样被拉断为止,记录下从动指针所停留位置的最大载荷b F。
六、实验数据的记录与计算
1.测定低碳钢的弹性常数
2.测定低碳钢拉伸时的强度和塑性性能指标
表1-2 测定低碳钢拉伸时的强度和塑性性能指标试验的数据记录与计算
3.测定灰铸铁拉伸时的强度性能指标
4.拉伸试验结果的计算精确度
(1)强度性能指标(屈服应力s σ和抗拉强度b σ)的计算精度要求为MPa 5.0,即:凡<MPa 25.0的数值舍去,≥MPa 25.0而<MPa 75.0的数值化为MPa 5.0,≥MPa 75.0的数值者则进为MPa 1。
(2)塑性性能指标(伸长率δ和断面收缩率ψ)的计算精度要求为%5.0,即:凡<%25.0的数值舍去,≥%25.0而<%75.0的数值化为%5.0,≥%75.0的数值则进为%1。
七、注意事项
1.实验时必须严格遵守实验设备和仪器的各项操作规程,严禁开“快速”档加载。
开动万能试验机后,操作者不得离开工作岗位,实验中如发生故障应立即停机。
2.引伸仪系精密仪器,使用时须谨慎小心,不要用手触动指针和杠杆。
安装时不能卡得太松,以防实验中脱落摔坏;也不能卡得太紧,以防刀刃损伤造成测量误差。
3.加载时速度要均匀缓慢,防止冲击。
八、思考题
1.低碳钢和灰铸铁在常温静载拉伸时的力学性能和破坏形式有何异同?
2.测定材料的力学性能有何实用价值?
3.你认为产生试验结果误差的因素有哪些?应如何避免或减小其影响?。