新版人教版第十五章分式导学案
新人教版初中数学八年级上册《第十五章分式:15.1.1从分数到分式》优课导学案_1
《从分数到分式》教学设计一、教材分析:本节课是人教版八年级数学上第十五章第一课时的内容,分式是不同于整式的另一类式子,教材在学生对分数已有认识的基础上,以实际问题为背景,通过分数与分式的类比,从具体到抽象,从特殊到一般地认识分式。
分数与分式联系紧密,二者是具体与抽象、特殊与一般的关系。
分数的有关结论与分式的相关结论具有一致性,即数式通性。
可以通过类比分数的概念、性质和运算法则,得出分式的概念、性质和运算法则。
由分数引入分式,既体现了数学学科内在的逻辑关系,也是对类比这一数学思想方法和科学研究方法的渗透。
从整数到分数是数的扩充,从整式到分式是式的扩充。
数学知识源于生活、用于生活。
分式与整式都是描述数量关系的代数式,研究分式有助于进一步培养数学建模的意识和数学应用的能力。
二、教学目标:1、知识与技能理解分式的概念,能准确区分整式和分式,能求出分式有意义、无意义和值为零的条件。
通过对分式与分数的类比,学生亲身经历探究整式扩充到有理式的过程,初步学会运用类比转化的思想方法研究数学问,。
3、情感、态度与价值观通过探究分式的概念,让学生体会到数学的应用价值。
三、教学重点与难点重点:分式的概念及分式有意义的条件。
难点:理解和掌握分式值为0时的条件。
四、教学方法与学法1、教学方法:引导—发现教学法2、学法引导:自主探索、交流发现。
五、课时安排:1课时六、教学过程1、创设情景,导入新课(1)对单项式“5x ”,我们可以这样解释:香蕉每千克5元,某人买了x 千克,共付款 元。
现在某人用5x 元买了y 千克的苹果,那么苹果每千克 元。
(2)长方形的面积为10 cm 2,长为7 cm ,宽应为 cm ;长方形的面积为S ,长为a ,宽应为 。
(3)为了调查珍稀动物资源,动物专家在p 平方米的保护区内找到7只灰熊,那么该保护区每平方米平均有 只灰熊。
(4)把体积为200x cm 3的水倒入底面积为 33 cm2的圆柱形容器中,水面高度为 cm ;把体积为V 的水倒入底面积为S 的圆柱形容器中,水面高度为 .(5)一艘轮船在静水中的最大航速为20千米/时,若江水的流速为v 千米/时,则它沿江以最大航速顺流航行100千米所用时间为 小时,以最大航速逆流航行60千米的时间 小时.学生得出答案: 让学生根据代数式的特征进行归类学生探讨发现:列出的代数式,有些不是我们学过的整式,产生认知冲突,激发学习新知识的兴趣,以满足解决实际问题的需求。
人教版八年级数学第十五章《分式》全章教案
第十五章分式15.1.1 从分数到分式教学目标1.了解分式的概念,能用分式表示实际问题中的数量关系.2.能确定分式有意义的条件.教学重、难点分式的概念教学过程设计一、创设问题,激发兴趣章引言:一艘轮船在静水中的最大航速为30 km/h,它沿江以最大航速顺流航行90 km所用时间,与以最大航速逆流航行60 km所用时间相等,江水的流速为多少?问题1 顺流航行的速度、逆流航行的速度与轮船在静水中的速度、水流速度之间有什么关系?顺流航行的速度=轮船在静水中的速度+水流速度;逆流航行的速度=轮船在静水中的速度-水流速度.问题2 这个问题的等量关系是什么?顺流航行90 km所用时间=逆流航行60 km所用时间.问题3 应怎样设未知数?如何根据等量关系列出方程?解:设江水的流速为v km/h.依题意得:追问式子与分数有什么相同点和不同点?它们与你学过的整式有什么不同?问题4 填空:(1)长方形的面积为10 cm2,长为7 cm,宽应为cm;长方形的面积为S,长为a,宽应为cm.问题4 填空:(2)把体积为200 cm3的水倒入底面积为33 cm2的圆柱形容器中,水面高度为cm;把体积为V 的水倒入底面积为S 的圆柱形容器中,水面高度为 .追问1 上面问题中得到的式子,,,哪些不是我们学过的整式?追问2 式子,,与以前学过的整式不同,这些代数式有什么共同的特征?二、知识应用,巩固提高分式的定义:一般地,如果A,B 表示两个整式,并且B 中含有字母,那么式子叫做分式(fraction).分式中,A 叫做分子,B 叫做分母.问题5 我们知道,要使分数有意义,分数中的分母不能为0.要使分式有意义,分式中的分母应满足什么条件?为什么?例1 下列分式中的字母满足什么条件时分式有意义?三、应用提高、拓展创新课本128页练习1、2、3四、归纳小结(1)本节课学习了哪些主要内容?(2)你能举例说明什么是分式吗?(3)如何确定分式有意义的条件?五、布置作业:教科书习题15.1第1、2、3题.教后反思:15.1.2 分式的基本性质(1)教学目标1.了解分式的基本性质,体会类比的思想方法.2.掌握分式的约分,了解最简分式的概念.教学重、难点分式的基本性质和分式的约分教学过程设计一、创设问题,激发兴趣问题1 下列分数是否相等?追问这些分数相等的依据是什么?问题2 你能叙述分数的基本性质吗?分数的基本性质:一个分数的分子、分母乘(或除以)同一个不为0的数,分数的值不变.问题3 你能用字母的形式表示分数的基本性质吗?问题4 类比分数的基本性质,你能想出分式有什么性质吗?分式的基本性质:分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变.追问1 如何用式子表示分式的基本性质?二、知识应用,巩固提高追问2 应用分式的基本性质时需要注意什么?(1)分子、分母应同时做乘、除法中的同一种运算;(2)所乘(或除以)的必须是同一个整式;(3)所乘(或除以)的整式应该不等于零.例2 填空:问题5 观察上例中(1)中的两个分式在变形前后的分子、分母有什么变化?类比分数的相应变形,你联想到什么?像这样,根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分.经过约分后的分式,其分子与分母没有公因式.像这样分子与分母没有公因式的式子,叫做最简分式.例3 约分:追问1 由上例你能归纳出在分式中,找分子和分母的公因式的方法是什么吗?追问2 如果分式的分子或分母是多项式,那么该如何思考呢?三、应用提高、拓展创新教科书132页练习1四、归纳小结(1)本节课学习了哪些主要内容?(2)运用分式的基本性质时应注意什么?(3)分式约分的关键是什么?如何找公因式?(4)探究分式的基本性质和分式的约分的过程,你认为体现了哪些数学思想方法?五、布置作业:教科书习题15.1第4、6题.教后反思:15.1.2 分式的基本性质(2)教学目标1.了解最简公分母的概念,会确定最简公分母.2.通过类比分数的通分来探索分式的通分,能进行分式的通分,体会数式通性和类比的思想.教学重、难点准确确定分式的最简公分母教学过程设计一、创设问题,激发兴趣问题1 通分:追问1 分数通分的依据是什么?追问2 如何确定异分母分数的最小公分母?问题2 填空:像这样,根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.追问1 你认为分式通分的关键是什么?分式通分的关键是找出分式各分母的公分母.追问2 上面问题中的两个分式的公分母是什么?为通分要先确定各分式的公分母,一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母.追问3 两个分式的最简公分母是如何确定的?最简公分母的确定方法:取各分母系数的最小公倍数与各字母因式的最高次幂的乘积.分母是多项式时,最简公分母的确定方法是:先因式分解,再将每一个因式看成一个整体,最后确定最简公分母.二、知识应用,巩固提高例通分:三、应用提高、拓展创新教科书132页练习1四、归纳小结(1)本节课学习了哪些主要内容?(2)分式通分的关键是什么?(3)分式通分时,确定最简公分母的方法是什么?五、布置作业:教科书习题15.1第7题教后反思:15.2.1 分式的乘除(1)教学目标1.理解分式的乘除法法则,体会类比的思想.2.会根据分式的乘除法法则进行简单的运算,并理解其算理教学重、难点分式的乘除法法则的运用教学过程设计一、创设问题,激发兴趣问题1 一个水平放置的长方体容器,其容积为V ,底面的长为a ,宽为b ,当容器内的水占容积的nm 时,水面的高度为多少? (1)这个长方体容器的高怎么表示?(2)容器内水面的高与容器内的水所占容积间有何关系?容器内水面的高与容器高的比和容器内的水所占容积的比相等.问题2 大拖拉机m 天耕地a hm 2,小拖拉机n 天耕地b hm 2,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?(1)本题中出现的“工作效率”的含义是什么?(2)大拖拉机和小拖拉机的工作效率怎样表示?观察上述两个问题中所列出的式子中,其中涉及到分式的有哪些运算?你能用学过的运算法则求出结果吗?问题3 计算:在计算的过程中,你运用了分数的什么法则?你能叙述这个法则吗?如果将分数换成分式,那么你能类比分数的乘除法法则,说出分式的乘除法法则吗? 怎样用字母来表示分式的乘除法法则呢?二、知识应用,巩固提高分式的乘除法法则如何用文字语言来描述?乘法法则:分式乘分式,用分子的积作为积的分子,分母的积为积的分母.除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.例1 计算:三、应用提高、拓展创新教科书138页 练习2四、归纳小结(1)本节课学习了哪些主要内容?(2)分式的乘除法运算与分数的乘除法运算有什么区别和联系?五、布置作业:教材第144页第1题;第145页第10、11题.教后反思:15.2.1分式的乘除(2)教学目标1.能运用分式的乘除法法则进行复杂计算.2.能运用分式的乘除法解决一些简单的实际问题.教学重、难点用分式的乘除法法则进行计算,并解决一些实际问题.教学过程设计一、创设问题,激发兴趣问题1 约分:分子与分母分别是多项式的分式如何约分?问题2 计算:分子与分母都是单项式的两个分式如何乘除?二、知识应用,巩固提高例1 计算:分子或分母是多项式的两个分式如何乘除呢?解题策略:对于分子与分母都是单项式的两个分式乘除,可直接利用分式的乘除法法则,再根据分式的基本性质进行约分,将最后的结果化成最简分式.而对于分子或分母中含有多项式的两个分式相乘,为了使算式简洁,也便于找出分子与分母中的公因式,需要先将多项式因式分解,把多项式化成整式的积的形式,然后利用分式的乘除法法则进行运算,利用分式的基本性质进行约分,并把最后的结果化成最简分式.例2 “丰收1号”小麦的试验田是边长为a m(a>1)的正方形去掉一个边长为1 m 的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a-1)m的正方形,两块试验田的小麦都收获了500 kg.(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?思考以下问题:① 你能说出小麦的“单位产量”的含义吗?② 如何表示这两块试验田的单位产量?③ 怎样确定哪种小麦的单位产量高?④ 你能列式表示(2)的问题吗?归纳解题步骤:(1)先根据题意分别列出表示两个量的代数式;(2)再根据题意列出相应的算式;(3)最后通过计算解决问题.三、应用提高、拓展创新教科书138页 练习3四、归纳小结运用分式的乘除法法则计算分子或分母含有多项式 的分式主要步骤是什么?五、布置作业:教材第144页第2题.教后反思:15.2.1 分式的乘方教学目标1.理解分式乘方的运算法则,能根据法则进行乘方运算,体会数式通性.2.能根据混合运算法则进行分式乘除、乘方混合运算.教学重、难点分式的乘方及分式乘除、乘方混合运算教学过程设计一、创设问题,激发兴趣例1 计算: 2235353259.-+-x x x x x ÷⋅练习1 计算:2222222222222551334216423282816--+----++++m n p q mnp q pq mnm n n m m n m m n m na a a a a a a ⋅÷⋅÷÷⋅();()();()(). 思考 你能结合有理数乘方的概念和分式乘法的法则写出结果吗?2310===a a a b b b ()? ()? ()?猜想:n 为正整数时=⎪⎭⎫ ⎝⎛nb a ? 你能写出推导过程吗?试试看.你能用文字语言叙述得到的结论吗?分式的乘方法则:一般地,当n 是正整数时,这就是说,分式乘方要把分子、分母分别乘方.二、知识应用,巩固提高例2 计算:例3 计算:分式的乘除、乘方混合运算与分数的乘除、乘方混合运算有什么联系和区别吗? 练习2 计算:三、应用提高、拓展创新教科书139页练习2四、归纳小结(1)本节课学习了哪些主要内容?(2)运用分式乘方法则计算的步骤是什么?它与整式的乘方运算有什么区别和联系?(3)分式的乘方与乘除混合运算的运算顺序是什么?五、布置作业:教科书习题15.2第3(3)(4)题.教后反思:15.2.2分式的加减教学目标1.理解分式的加减法法则,体会类比思想.2.会运用法则进行分式的加减运算,体会化归思想.教学重、难点分式的加减法法则教学过程设计一、创设问题,激发兴趣问题1 甲工程队完成一项工程需n 天,乙工程队要比甲队多用3天才能完成这项工程,两队共同工作一天完成这项工程的几分之几?(1)甲工程队一天完成这项工程的几分之几?(2)乙工程队一天完成这项工程的几分之几?(3)甲乙两队共同工作一天完成这项工程的几分之几?问题2 2009年、2010年、2011年某地的森林面积(单位:km2)分别是S1,S2,S3,2011年与2010年相比,森林面积增长率提高了多少?(1)什么是增长率?(2)2010年、2011年的森林面积增长率分别是多少?(3)2011年与2010年相比,森林面积增长率提高了多少?分式的加减法与分数的加减法类似,它们实质相同.观察下列分数加减运算的式子,你能将它们推广,得出分式的加减法法则吗?分式的加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减.二、知识应用,巩固提高例计算:1122323++-p q p q ().三、应用提高、拓展创新课本141页练习1、练习2练习:你能应用本节课所学知识解决“问题1”和“问题2”吗?四、归纳小结(1)本节课学习了哪些主要内容?(2)我们是怎么引出分式加减法法则的?(3)在进行分式的加减运算时要注意哪些问题?五、布置作业:教科书习题15.2第4、5题.教后反思:15.2.2分式的混合运算教学目标1.理解分式混合运算的顺序.2.会正确进行分式的混合运算.3.体会类比方法在研究分式混合运算过程中的重要价值.教学重、难点分式的混合运算.教学过程设计一、创设问题,激发兴趣问题 数的混合运算的顺序是什么?你能将它们推广,得出分式的混合运算顺序吗? 分式的混合运算顺序:“从高到低、从左到右、括号从小到大”.例1 计算:这道题的运算顺序是怎样的?通过对例1的解答,同学们有何收获?对于不带括号的分式混合运算:(1)运算顺序:先乘方,再乘除,然后加减;(2)计算结果要化为最简分式.二、知识应用,巩固提高例2 计算:2252412232142244-++--+-----+m m m m x x x x x x x x ⎛⎫⋅ ⎪⎝⎭⎛⎫÷ ⎪⎝⎭() ;() . 通过对例2的解答,同学们有何收获?对于带括号的分式混合运算:(1)将各分式的分子、分母分解因式后,再进行计算;(2)注意处理好每一步运算中遇到的符号;(3)计算结果要化为最简分式.三、应用提高、拓展创新练习1 计算:四、归纳小结(1)本节课学习了哪些主要内容?(2)分式混合运算的顺序是什么?我们是怎么得到它的?(3)在进行分式混合运算时要注意哪些问题?五、布置作业:教科书习题15.2第6题.教后反思:15.2.3 整数指数幂教学目标1.了解负整数指数幂的意义.2.了解整数指数幂的性质并能运用它进行计算.3.会利用10的负整数次幂,用科学记数法表示一些小于1 的正数.教学重、难点幂的性质(指数为全体整数),并会用于计算,以及用科学记数法表示一些小于1的正数.教学过程设计一、创设问题,激发兴趣问题1 你们还记得正整数指数幂的意义吗?正整数指数幂有哪些运算性质呢?将正整数指数幂的运算性质中指数的取值范围由“正整数”扩大到“整数”,这些性质还适用吗?问题2 a m 中指数m 可以是负整数吗?如果可以,那么负整数指数幂a m 表示什么?(1)根据分式的约分,当 a ≠0 时,如何计算53a a÷? (2)如果把正整数指数幂的运算性质(a ≠0,m ,n 是正整数,m >n )中的条件m >n 去掉,即假设这个性质对于像53a a÷情形也能使用, 如何计算? 数学中规定:当n 是正整数时,()01≠=-a a an 这就是说,()0≠-a a n 是a n 的倒数.问题3 引入负整数指数和0指数后,m n m n a a a +⋅=(m ,n 是正整数)这条性质能否推广到m ,n 是任意整数的情形?问题4 类似地,你可以用负整数指数幂或0 指数幂对于其他正整数指数幂的运算性质进行试验,看看这些性质在整数范围内是否还适用?(1)m n m n a a a +⋅= (m ,n 是整数);(2)m n mn a a =() (m ,n 是整数);(3)n n nab a b =() (n 是整数);(4)m n m n a a a -÷=(m ,n 是整数); (5)n n n ba b a =⎪⎪⎭⎫ ⎝⎛(n 是整数). 二、知识应用,巩固提高例1 计算:三、应用提高、拓展创新问题5 能否将整数指数幂的5条性质进行适当合并?这样,整数指数幂的运算性质可以归结为:(1)m n m n a a a +⋅= (m ,n 是整数);(2)m n mn a a =() (m ,n 是整数);(3)n n nab a b =() (n 是整数);探索: 4321101000010001.01010001001.010100101.0101010.1----========归纳:如何用科学记数法表示0.003 5和0.000 098 2呢?规律:对于一个小于1的正小数,从小数点前的第一个0算起至小数点后第一个非0数字前有几个0,用科学记数法表示这个数时,10的指数就是负几.例2 用科学记数法表示下列各数:(1)0.3;(2)-0.000 78;(3)0.000 020 09.例3 纳米(nm )是非常小的长度单位,1 nm =10-9 m .把1 nm 3 的物体放到乒乓球上,就如同把乒乓球放到地球上.1 mm 3 的空间可以放多少个1 nm 3 的物体(物体之间的间隙忽略不计)?四、归纳小结(1)本节课学习了哪些主要内容?(2)整数指数幂的运算性质与正整数指数幂的运算性质有什么区别和联系?五、布置作业:教科书习题15.2第7、8、9题教后反思:15.3 分式方程(1)教学目标1.了解分式方程的概念.2.会用去分母的方法解可化为一元一次方程的简单的分式方程,体会化归思想和程序化思想.3.了解解分式方程根需要进行检验的原因.教学重、难点利用去分母的方法解分式方程教学过程设计一、创设问题,激发兴趣问题1 为了解决引言中的问题,我们得到了方程v v -=+30603090.仔细观察这个方程,未知数的位置有什么特点?追问1 方程13321;251051;32212++=+-=-+=x x x x x x x x 与上面的方程有什么共同特征?分母中含有未知数.分式方程的概念:分母中含有未知数的方程叫做分式方程.追问2 你能再写出几个分式方程吗?注意:我们以前学习的方程都是整式方程,它们的未知数不在分母中.问题2 你能试着解分式方程vv -=+30603090吗? 问题3 这些解法有什么共同特点?总结:这些解法的共同特点是先去分母,将分式方程转化为整式方程,再解整式方程. 思考:(1)如何把分式方程转化为整式方程呢?(2)怎样去分母?(3)在方程两边乘以什么样的式子才能把每一个分母都约去呢?(4)这样做的依据是什么?总结:(1)分母中含有未知数的方程,通过去分母就化为整式方程了.(2)利用等式的性质2可以在方程两边都乘同一个式子——各分母的最简公分母. 追问 你得到的解6=v 是分式方程vv -=+30603090的解吗? 二、知识应用,巩固提高问题4 解分式方程: 2110525=.--x x追问1 你得到的解5=x 是分式方程2510512-=-x x 的解吗?该如何验证呢?5=x 是原分式方程变形后的整式方程的解,但不是原分式方程的解.追问2 上面两个分式方程的求解过程中,同样是去分母将分式方程化为整式方程,为什么整式方程90306030-=+v v ()()的解6=v 是分式方程v v -=+30603090的解,而整式方程510+=x 的解5=x 却不是分式方程2510512-=-x x 的解? 原因:在去分母的过程中,对原分式方程进行了变形,而这种变形是否引起分式方程解的变化,主要取决于所乘的最简公分母是否为0.检验的方法主要有两种:(1)将整式方程的解代入原分式方程,看左右两边是否相等;(2)将整式方程的解代入最简公分母,看是否为0.显然,第2种方法比较简便!问题5你能概括出解分式方程的基本思 路和一般步骤吗?解分式方程应该注意什么?基本思路 将分式方程化为整式方程一般步骤:(1)去分母;(2)解整式方程;(3)检验.注意:由于去分母后解得的整式方程的解不一定是原分式方程的解,所以需要检验.三、应用提高、拓展创新例 解下列方程:四、归纳小结(1)本节课学习了哪些主要内容?(2)解分式方程的基本思路和一般步骤是什么?解分式方程应该注意什么?五、布置作业:教科书习题15.3第1(1)~(4)题.教后反思:15.3 分式方程(2)教学目标1.会解较复杂的分式方程和较简单的含有字母系数的分式方程.2.能够列分式方程解决简单的实际问题.3.通过学习分式方程的解法,体会转化的数学思想.教学重、难点分式方程的解法教学过程设计一、创设问题,激发兴趣例1 解方程31112-=.--+x x x x ()()解分式方程的步骤:(1)去分母,将分式方程转化为整式方程;(2)解这个整式方程;(3)检验.用框图的方式总结为:二、知识应用,巩固提高例2 解关于x 的方程11+=.-a b b x a ()例3 两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,哪个队的施工速度快?三、应用提高、拓展创新某车间有甲、乙两个小组,甲组的工作效率比乙组工作效率高25%,因此甲组加工2 000个零件所用的时间比乙组加工1 800个零件所用的时间少半小时,问甲、乙两组每小时各加工多少个零件?四、归纳小结(1)本节课学习了哪些主要内容?(2)解分式方程的一般步骤有哪些?关键是什么?解方程的过程中要注意的问题有哪些?(3)列分式方程解应用题的步骤是什么?与列整式方程解应用题的过程有什么区别和联系?五、布置作业:教科书习题15.3第1(2)(4)(6)(8)、4、5题.教后反思:15.3 分式方程(3)教学目标列分式方程解决实际问题.教学重、难点列分式方程解实际问题.教学过程设计一、创设问题,激发兴趣例1 某进货员发现一种应季衬衫,预计能畅销,他用8 000元购进一批衬衫,很快销售一空.再进货时,他发现这种衬衫的单价比上一次贵了4 元/件,他用17 600元购进2 倍于第一次进货量的这种衬衫.问第一次购进多少件衬衫?分析:二、知识应用,巩固提高例2 某次列车平均提速v km/h.用相同的时间,列车提速前行驶s km,提速后比提速前多行驶50 km,提速前列车的平均速度为多少?思考:(1)这个问题中的已知量有哪些?未知量是什么?(2)你想怎样解决这个问题?关键是什么?表达问题时,用字母不仅可以表示未知数(量),也可以表示已知数(量).上面例题中,出现了用一些字母表示已知数据的形式,这在分析问题寻找规律时经常出现.例2中列出的方程是以x 为未知数的分式方程,其中v,s是已知常数,根据它们所表示的实际意义可知,它们是正数.三、应用提高、拓展创新练习1 商场用50 000元从外地采购回一批T恤衫,由于销路好,商场又紧急调拨18.6万元采购回比上一次多两倍的T恤衫,但第二次比第一次进价每件贵12元.求第一次购进多少件T恤衫.练习2 八年级学生去距学校s km的博物馆参观,一部分学生骑自行车先走,过了t min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是学生骑车速度的2倍,求学生骑车的速度.四、归纳小结(1)借助分式方程解决实际问题时,应把握哪些主要问题?(2)本节课的分式方程的应用方面应注意些什么?举例说明.五、布置作业:教科书习题15.3第6、7、8题.教后反思:。
人教版八年级数学第十五章《分式》全章教案
人教版八年级数学第十五章《分式》全章教案第十五章分式15.1.1从分数到分式教学目标1.了解分式的概念,能用分式表示实际问题中的数量关系.2.能确定分式有意义的条件.教学重、难点分式的概念教学过程设计一、创设问题,激发兴趣XXX:一艘轮船在静水中的最大航速为30km/h,它沿江以最大航速顺流航行90km所用时间,与以最大航速逆流航行60 km 所用时间相等,江水的流速为多少?问题1顺流航行的速度、逆流航行的速度与轮船在静水中的速度、水流速度之间有什么关系?顺流航行的速度=轮船在静水中的速度+水流速度;逆流航行的速度=轮船在静水中的速度-水流速度.问题2这个问题的等量关系是什么?顺流航行90 km所用时间=逆流航行60 km所用时间.问题3应怎样设未知数?如何根据等量干系列出方程?解:设江水的流速为XXX.依题意得:追问式子与分数有甚么相同点和分歧点?它们与你学过的整式有甚么分歧?问题4填空:(1)长方形的面积为10 cm2,长为7 cm,宽应为cm;长方形的面积为S,长为a,宽应为cm.问题4填空:(2)把体积为200cm3的水倒入底面积为33cm2的圆柱描述器中,水面高度为cm;把体积为V的水倒入底面积为S 的圆柱描述器中,水面高度为.追问1上面问题中得到的式子,,,哪些不是我们学过的整式?追问2式子的特性?二、常识使用,巩固提高分式的定义:,,与以前学过的整式分歧,这些代数式有甚么配合一般地,如果A,B表示两个整式,并且B中含有字母,那末式子叫做分式(fraction).分式中,A叫做分子,B叫做分母.问题5我们知道,要使分数有意义,分数中的分母不能为.要使分式有意义,分式中的分母应满足什么条件?为什么?例1下列分式中的字母满足甚么条件时分式成心义?三、使用提高、拓展创新讲义128页操演1、2、3四、归纳小结(1)本节课研究了哪些主要内容?(2)你能举例说明什么是分式吗?(3)如何确定分式有意义的条件?五、布置作业:教科书题15.1第1、2、3题.教后反思:15.1.2分式的基本性质(1)教学目标1.了解分式的基本性质,体会类比的思想方法.2.掌握分式的约分,了解最简分式的概念.教学重、难点分式的基本性质和分式的约分教学过程设计一、创设问题,激起兴趣问题1下列分数是否相等?追问这些分数相等的依据是什么?问题2你能叙述分数的基本性质吗?分数的根本性质:一个分数的分子、分母乘(或除以)同一个不为的数,分数的值不变.问题3你能用字母的形式表示分数的基本性质吗?问题4类比分数的根本性质,你能想出分式有甚么性质吗?分式的根本性质:分式的分子与分母乘(或除以)同一个不等于的整式,分式的值不变.追问1如何用式子表示分式的基本性质?二、常识使用,巩固提高追问2应用分式的基本性质时需要注意什么?(1)分子、分母应同时做乘、除法中的同一种运算;(2)所乘(或除以)的必须是同一个整式;(3)所乘(或除以)的整式应该不等于零.例2填空:问题5观察上例中(1)中的两个分式在变形前后的分子、分母有甚么变化?类比分数的相应变形,你联想到甚么?像这样,根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分.经过约分后的分式,其分子与分母没有公因式.像这样分子与分母没有公因式的式子,叫做最简分式.例3约分:追问1由上例你能归纳出在分式中,找分子和分母的公因式的方法是什么吗?追问2如果分式的分子或分母是多项式,那么该如何思考呢?三、应用提高、拓展创新教科书132页操演1四、归结小结(1)本节课研究了哪些主要内容?(2)运用分式的根本性质时应注意甚么?(3)分式约分的关键是甚么?如何找公因式?(4)探究分式的基本性质和分式的约分的过程,你认为体现了哪些数学思想方法?五、布置作业:教科书题15.1第4、6题.教后反思:15.1.2分式的基本性质(2)教学目标1.了解最简公分母的概念,会确定最简公分母.2.经由进程类比分数的通分来探究分式的通分,能进行分式的通分,体会数式通性和类比的思想.教学重、难点正确确定分式的最简公分母教学过程设计一、创设问题,激起兴趣问题1通分:追问1分数通分的依据是什么?追问2如何确定异分母分数的最小公分母?问题2填空:像这样,根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.追问1你认为分式通分的关键是什么?分式通分的关键是找出分式各分母的公分母.追问2上面问题中的两个分式的公分母是甚么?为通分要先确定各分式的公分母,一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母.追问3两个分式的最简公分母是如何确定的?最简公分母的确定方法:取各分母系数的最小公倍数与各字母因式的最高次幂的乘积.分母是多项式时,最简公分母的确定方法是:先因式分解,再将每一个因式算作一个团体,最后确定最简公分母.二、知识应用,巩固提高例通分:三、应用提高、拓展创新教科书132页练1四、归结小结(1)本节课研究了哪些首要内容?(2)分式通分的关键是什么?(3)分式通分时,确定最简公分母的办法是甚么?五、布置作业:教科书题15.1第7题教后反思:15.2.1分式的乘除(1)教学目标1.理解分式的乘除法法则,体会类比的思想.2.会根据分式的乘除法法则进行简单的运算,并理解其算理教学重、难点分式的乘除法法则的运用教学过程设计一、创设问题,激发兴趣问题1一个水平放置的长方体,其容积为V,底面的长为a,宽为b,当内的水占容积的m时,水面的高度为多少?n(1)这个长方体的高怎么表示?(2)内水面的高与内的水所占容积间有何关系?内水面的高与高的比和内的水所占容积的比相等.问题2大拖拉机m天耕地ahm2,小拖拉机n天耕地bhm2,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?(1)本题中出现的“工作效率”的含义是什么?(2)大拖沓机和小拖沓机的事情效率怎样表示?观察上述两个问题中所列出的式子中,其中涉及到分式的有哪些运算?你能用学过的运算法则求出结果吗?问题3计较:在计算的过程中,你运用了分数的什么法则?你能叙述这个法则吗?如果将分数换成分式,那末你能类比分数的乘除法法则,说出分式的乘除法法则吗?怎样用字母来表示分式的乘除法法则呢?二、知识应用,巩固提高分式的乘除法法则如何用笔墨语言来描述?乘法法则:分式乘分式,用分子的积作为积的分子,分母的积为积的分母.除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.例1计算:三、应用提高、拓展创新教科书138页练2四、归纳小结(1)本节课研究了哪些首要内容?(2)分式的乘除法运算与分数的乘除法运算有甚么区别和联系?五、布置作业:讲义第144页第1题;第145页第10、11题.教后反思:15.2.1分式的乘除(2)教学目标1.能运用分式的乘除法法则进行复杂计算.2.能运用分式的乘除法解决一些简单的实际问题.教学重、难点用分式的乘除法法则进行计较,并解决一些实践问题.教学过程设计一、创设问题,激起兴趣问题1约分:分子与分母分别是多项式的分式如何约分?问题2计较:分子与分母都是单项式的两个分式如何乘除?二、知识应用,巩固提高例1计较:分子或分母是多项式的两个分式如何乘除呢?解题战略:对于分子与分母都是单项式的两个分式乘除,可直接利用分式的乘除法法则,再根据分式的基本性质进行约分,将最后的结果化成最简分式.而对于分子或分母中含有多项式的两个分式相乘,为了使算式简洁,也便于找出分子与分母中的公因式,需要先将多项式因式分解,把多项式化成整式的积的形式,然后利用分式的乘除法法则进行运算,利用分式的基本性质进行约分,并把最后的结果化成最简分式.例2“丰收1号”小麦的试验田是边长为am(a>1)的正方形去掉一个边长为1 m的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a-1)m的正方形,两块试验田的小麦都收获了500 XXX.(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?考虑以下问题:①你能说出小麦的“单位产量”的含义吗?②如何表示这两块试验田的单位产量?③怎样确定哪类小麦的单位产量高?④你能列式表示(2)的问题吗?归结解题步调:(1)先根据题意分别列出表示两个量的代数式;(2)再根据题意列出相应的算式;(3)最后经由进程计较解决问题.三、使用提高、拓展创新教科书138页练3四、归纳小结运用分式的乘除法法则计算分子或分母含有多项式的分式主要步骤是什么?五、布置作业:教材第144页第2题.教后反思:15.2.1分式的乘方教学目标1.理解分式乘方的运算法则,能根据法则进行乘方运算,体会数式通性.2.能根据混合运算法则进行分式乘除、乘方混合运算.教学重、难点分式的乘方及分式乘除、乘方夹杂运算教学过程设计一、创设问题,激起兴趣例1计算:2x3x.5x-325x2-95x+3练1计算:2m2n5p2q5mnp()1;223q3pq4mn2m2-n2(n-m)m+n(2);222m(m-n)mn16-a2a-4a-2(3)2.2a+8a+2a+8a+16考虑你能结合有理数乘方的概念和分式乘法的法则写出结果吗?(a2a3a10)=?()=?()=?bbba猜测:n为正整数时?b你能写出推导过程吗?试试看.你能用笔墨语言叙述得到的结论吗?分式的乘方法则:一般地,当n是正整数时,n这就是说,分式乘方要把分子、分母分别乘方.二、常识使用,巩固提高例2计较:例3计算:分式的乘除、乘方混合运算与分数的乘除、乘方混合运算有什么联系和区别吗?练2计算:三、应用提高、拓展创新教科书139页练2四、归纳小结(1)本节课研究了哪些主要内容?(2)运用分式乘办法则计较的步调是甚么?它与整式的乘方运算有甚么区别和联系?(3)分式的乘方与乘除夹杂运算的运算顺序是甚么?五、布置作业:教科书题15.2第3(3)(4)题.教后反思:15.2.2分式的加减教学目标1.理解分式的加减法法则,体会类比思想.2.会运用法则进行分式的加减运算,体会化归思想.教学重、难点分式的加减法法则教学过程设计一、创设问题,激发兴趣问题1甲工程队完成一项工程需n天,乙工程队要比甲队多用3天才干完成这项工程,两队配合事情一天完成这项工程的几分之几?(1)甲工程队一天完成这项工程的几分之几?(2)乙工程队一天完成这项工程的几分之几?(3)甲乙两队共同工作一天完成这项工程的几分之几?问题年、2010年、2011年某地的森林面积(单位:km2)分别是S1,S2,S3,2011年与2010年比拟,丛林面积增长率提高了多少?(1)甚么是增长率?(2)2010年、2011年的丛林面积增长率分别是多少?(3)2011年与2010年相比,森林面积增长率提高了多少?分式的加减法与分数的加减法类似,它们实质相同.观察下列分数加减运算的式子,你能将它们推广,得出分式的加减法法则吗?分式的加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减.二、常识使用,巩固提高例计算:11(2)+.2p+3q2p-3q三、应用提高、拓展创新讲义141页操演1、操演2练:你能应用本节课所学知识解决“问题1”和“问题2”吗?四、归结小结(1)本节课研究了哪些主要内容?(2)我们是怎么引出分式加减法法则的?(3)在进行分式的加减运算时要注意哪些问题?五、布置作业:教科书题15.2第4、5题.教后反思:15.2.2分式的夹杂运算教学目标1.理解分式混合运算的顺序.2.会正确进行分式的混合运算.3.体会类比方法在研究分式混合运算过程中的重要价值.教学重、难点分式的混合运算.教学过程设计一、创设问题,激起兴趣问题数的混合运算的顺序是什么?你能将它们推广,得出分式的混合运算顺序吗?分式的混合运算顺序:“从高到低、从左到右、括号从小到大”.例1计算:这道题的运算顺序是怎样的?经由进程对例1的解答,同学们有何播种?对于不带括号的分式混合运算:(1)运算顺序:先乘方,再乘除,然后加减;(2)计算结果要化为最简分式.二、常识使用,巩固提高例2计算:52m-4() 1m+2+3-m;2-mx+2x-1x-4(2)-.x2-2xx2-4x+4x通过对例2的解答,同学们有何收获?对于带括号的分式夹杂运算:(1)将各分式的分子、分母分解因式后,再进行计较;(2)注意处理好每一步运算中遇到的符号;(3)计算结果要化为最简分式.三、应用提高、拓展创新练1计算:四、归结小结(1)本节课研究了哪些主要内容?(2)分式混合运算的顺序是什么?我们是怎么得到它的?(3)在进行分式混合运算时要注意哪些问题?五、布置作业:教科书题15.2第6题.教后反思:15.2.3整数指数幂教学目标1.了解负整数指数幂的意义.2.了解整数指数幂的性质并能运用它进行计算.3.会利用10的负整数次幂,用科学记数法表示一些小于1的正数.教学重、难点幂的性质(指数为全体整数),并会用于计算,以及用科学记数法表示一些小于1的正数.教学过程设计一、创设问题,激发兴趣问题1你们还记得正整数指数幂的意义吗?正整数指数幂有哪些运算性质呢?将正整数指数幂的运算性质中指数的取值范围由“正整数”扩大到“整数”,这些性质还适用吗?问题2am中指数m可以是负整数吗?如果可以,那末负整数指数幂am表示甚么?(1)根据分式的约分,当a≠时,如何计较a(2)如果把正整数指数幂的运算性质中的条件m >n去掉,即假设这本性质对于像a数学中规定:当n是正整数时,a这就是说,XXXXXX33a5?(a≠,m,n是正整数,m >n)a5景遇也能使用,如何计较?1aaa是an的倒数.问题3引入负整数指数和指数后,am an am n(m,n是正整数)这条性质能否推广到m,n是任意整数的情形?问题4类似地,你可以用负整数指数幂或指数幂对于其他正整数指数幂的运算性质进行试验,看看这些性质在整数范围内是不是还适用?(1)am an am n(m,n是整数);n(am)amn(m,n是整数)(2);(ab)ab(n是整数)(3);mnm n(4)a a a(m,n是整数);XXXa(5)bnann(n是整数).b二、知识应用,巩固提高例1计算:三、应用提高、拓展创新问题5能否将整数指数幂的5条性质进行适当合并?这样,整数指数幂的运算性质可以归结为:(1)am an am n(m,n是整数);n(am)amn(m,n是整数)(2);(ab)ab(n是整数)(3);探索:XXX110 1101.0110 21001.00110 310001.000110 40.1归纳:如何用科学记数法表示0.003 5和0.000 098 2呢?规律:对于一个小于1的正小数,从小数点前的第一个算起至小数点后第一个非数字前有几个,用科学记数法表示这个数时,10的指数就是负几.例2用科学记数法表示下列各数:(1)0.3;(2)-0.000 78;(3)0.000 020 09.例3纳米(nm)是非常小的长度单位,1 nm =10-9m.把1 nm3的物体放到乒乓球上,就如同把乒乓球放到地球上.1mm3的空间可以放多少个1 nm3的物体(物体之间的间隙忽略不计)?四、归结小结(1)本节课研究了哪些首要内容?(2)整数指数幂的运算性质与正整数指数幂的运算性质有什么区别和联系?五、布置作业:教科书题15.2第7、8、9题教后反思:15.3分式方程(1)教学目标1.了解分式方程的概念.2.会用去分母的方法解可化为一元一次方程的简单的分式方程,体会化归思想和程序化思想.3.了解解分式方程根需要进行检验的原因.教学重、难点利用去分母的方法解分式方程教学过程设计一、创设问题,激发兴趣问题1为了解决弁言中的问题,我们得到了方程程,未知数的位置有甚么特点?追问1方程9060.仔细观察这个XXX30v30vx2x;2;1与上面的方程有甚么共2xx3x5x25x13x 3同特征?分母中含有未知数.分式方程的概念:分母中含有未知数的方程叫做分式方程.追问2你能再写出几个分式方程吗?注意:我们以前研究的方程都是整式方程,它们的未知数不在分母中.9060吗?30v30v问题3这些解法有什么共同特点?总结:这些解法的共同特点是先去分母,将分式方程转化为整式方程,再解整式方程.思考:(1)如何把分式方程转化为整式方程呢?问题2你能试着解分式方程(2)怎样去分母?(3)在方程两边乘以什么样的式子才能把每一个分母都约去呢?(4)这样做的依据是什么?总结:(1)分母中含有未知数的方程,通过去分母就化为整式方程了.(2)利用等式的性质2可以在方程双方都乘同一个式子——各分母的最简公分母.追问你得到的解v=6是分式方程二、常识使用,巩固提高问题4解分式方程:9060的解吗?30v30v110=2.x-5x-25110的解吗?该如何验证呢?x=5是原2x5x25分式方程变形后的整式方程的解,但不是原分式方程的解.追问2上面两个分式方程的求解进程当中,同样是去分母将分式方程化为整式方程,为追问1你得到的解x=5是分式方程(30-v)=60(30+v)甚么整式方程90的解v=6是分式方程整式方程x+5=10的解x=5却不是分式方程9060的解,而30v30v110的解?2x5x25原因:在去分母的过程中,对原分式方程进行了变形,而这种变形是否引起分式方程解的变化,主要取决于所乘的最简公分母是否为.检验的方法主要有两种:(1)将整式方程的解代入原分式方程,看左右双方是不是相等;(2)将整式方程的解代入最简公分母,看是否为.显然,第2种方法比较简便!问题5你能概括出解分式方程的基本思路和一般步骤吗?解分式方程应该注意什么?根本思绪将分式方程化为整式方程一般步调:(1)去分母;(2)解整式方程;(3)检验.注意:因为去分母后解得的整式方程的解不一定是原分式方程的解,以是需要检修.三、使用提高、拓展创新例解下列方程:四、归纳小结(1)本节课研究了哪些主要内容?(2)解分式方程的基本思路和一般步骤是什么?解分式方程应该注意什么?五、布置作业:教科书题15.3第1(1)~(4)题.教后反思:15.3分式方程(2)教学目标1.会解较复杂的分式方程和较简朴的含有字母系数的分式方程.2.能够列分式方程解决简朴的实践问题.3.经由进程研究分式方程的解法,体会转化的数学思想.教学重、难点分式方程的解法教学过程设计一、创设问题,激发兴趣例1解方程x3-1=.x-1(x-1)(x+2)解分式方程的步骤:(1)去分母,将分式方程转化为整式方程;(2)解这个整式方程;(3)检验.用框图的方式总结为:二、知识应用,巩固提高例2解关于x的方程a+b=1(b1).x-a例3两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,哪个队的施工速度快?三、应用提高、拓展创新某车间有甲、乙两个小组,甲组的工作效率比乙组工作效率高25%,因此甲组加工2000个零件所用的时间比乙组加工1 800个零件所用的时间少半小时,问甲、乙两组每小时各加工多少个零件?四、归结小结(1)本节课研究了哪些主要内容?(2)解分式方程的一般步调有哪些?关键是甚么?解方程的进程当中要注意的问题有哪些?(3)列分式方程解使用题的步调是甚么?与列整式方程解使用题的进程有甚么区别和联系?五、布置作业:教科书题15.3第1(2)(4)(6)(8)、4、5题.教后反思:。
人教版八年级上数学第十五章分式分式方程导学案
人教版八年级上数学第十五章分式分式方程导学案一. 学习目标1、掌握分式方程的定义2、会解可化为一元一次方程的分式方程3、会解已知方程有增根时方程中有待定字母的值4、列分式方程解有关应用题二、重难点重点:掌握解分式方程的方法难点:分式方程的增根及其应用三、知识链接前面讲过的一元一次方程的解法,以及怎样在应用题中找等量关系四、学法指导注意分式方程向整式方程的转化五、学习过程(A级)(一)、基础知识梳理(1)分母中含有______的方程叫做分式方程。
(2)在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的____(3)解分式方程的思想:把分式方程转化为_______.(4)解分式方程的一般步骤①把方程两边都乘以_________,化成整式方程。
②解这个______方程。
③检验:把整式方程的根代入________,若使最简公分母的值为_____,则这个根是原方程的______,必须舍去,若_________不等于零,则它是________. (5)整式方程和__________叫做有理方程。
(二)注意事项2、由增根求参数值的解答思路:(1)将原方程化为整式方程(两边同时乘以最简公分母)(2)确定增根(题目已知或使分母为零的未知数的值)(3)将增根代入变形后的整式方程,求出参数的值。
(理由:增根是由分式方程化成的整式方程的根)3、列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂些,解题时应抓住“找等量关系,恰当设未知数,确定主要等量关系,用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解。
另外,还要注意从多角度思考,分析,解决问题,注意检验。
(三)典例解答(B 级)1、解方程:22321011x x x x x --+=--(B 级)2、解分式方程x x +27—23x x -=1+1722--x x点拨:找好最简公分母,注意对几个分母进行分解后,来找.(C 级)3、若关于x 的分式方程0111=----x x x m 有增根,则m 的取值是? 点拨:把分式方程进行转化,然后找到有可能的增根,代入。
2024年人教版八年级上册教学设计第十五章15.1 分式
15.1.1从分数到分式课时目标1.以描述实际问题中的数量关系为背景,抽象出分式的概念,在了解分式概念的基础上发展学生的抽象能力.2.借助从特殊到一般的的研究思路,类比分数,讨论要使分式有意义时分母应满足的条件,发展学生的推理能力.3.通过经历类比分数学习分式的过程,培养学生与人合作的意识,进一步体会类比转化、合情推理、抽象概括等学习方式,发展学生的抽象能力和推理意识.学习重点理解分式的概念,分式有意义的条件.学习难点能熟练地求出分式有意义的条件及分式的值为零的条件.课时活动设计回顾引入根据问题,填空:(1)长方形的面积为10 cm2,长为7 cm,宽为107cm;长方形的面积为S,长为a,宽为Sa.(2)把体积为200 cm3的水倒入底面积为33 cm2的圆柱形容器中,水面高度为20033cm;把体积为V的水倒入底面积为S的圆柱形容器中,水面高度为VS. 设计意图:以学生学过的分数引入分式,有利于体现知识的必然联系和循序渐进的原则;通过类比让学生解决实际问题,为新知的构建奠定基础.探究新知探究1 分式的概念问题1:请同学们看一下这四个式子,它们有什么相同点和不同点?107,S a ,20033,V S.学生先思考,再小组交流,教师请两个学生分别说出相同点和不同点. 解:相同点:这些式子有同样的形式,都是AB (即A ÷B )的形式. 不同点:107,20033分子和分母为整数,S a ,VS 分子和分母为代数式. 追问:S a ,V S 和9030+v ,6030−v 有什么相同点和不同点? 学生小组交流、讨论得出结论.解:相同点为这些式子有同样的形式,都是AB (即A ÷B )的形式,且分母都含有字母.不同点为9030+v ,6030−v 分子不含字母,S a ,VS 分子含有字母.教师说明这四个式子均为分式,并引导学生类比分数得到分式的概念:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子A B 叫做分式.分式AB 中,A 叫做分子,B 叫做分母.问题2:下列各式中,哪些是整式?哪些是分式? 5x -7,3x 2-1,b -32a+1,m(n+p)7,-5,x 2-xy+y 22x -1,27,45b+c ,a π,y x ,a 2+b 2a -b.解:整式:5x -7,3x 2-1,-5; 分式:b -32a+1,m(n+p)7,x 2-xy+y 22x -1,27,45b+c ,a π,y x ,a 2+b 2a -b.设计意图:通过分析问题加深学生对分式的概念的理解,从而揭示分式的概念的本质.让学生在众多的代数式中区分出整式与分式,意在加深学生对分式的概念的本质的理解,进一步巩固分式的概念.探究新知探究2 分式有意义和值为0的条件问题1:我们知道,要使分数有意义,分数中的分母不能为0,那么要使分式有意义,分式中的分母应满足什么条件?学生先思考,再小组交流,类比分数有意义的条件得到分式有意义的条件. 结论:分式中的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B ≠0时,分式AB 才有意义.问题2:计算:03,05,07. 解:0 0 0追问:通过上述计算,你发现了什么? 解:当分子为0,分母不为0时,分数的值为0. 问题3:计算:0x 2+1,0x+1(x ≠-1),0a (a ≠0). 解:0 0 0追问:通过上述计算,你发现了什么? 解:当分子为0,分母不为0时,分式的值为0. 结论:分子为0,分母不为0,分式值为0.设计意图:掌握使分式有意义和值为0的条件,有利于学生更好地了解分式的概念.典例精讲例 下列分式中的字母满足什么条件时,分式有意义? (1)23x ; (2)1x -1; (3)15−3b ; (4)x+yx -y . 解:(1)x ≠0. (2)x ≠1. (3)b ≠53. (4)x ≠y.设计意图:让学生通过类比分数有意义的条件是分母不能为0,得到分式有意义的条件,自己发现问题、解决问题并找到关键所在,既能激发学生的求知欲望,又能让学生有效地认识新知,消化新知.巩固训练1.当x 为何值时,下列分式的值为0? (1)2x2x -6;(2)x 2-16x -4.解:(1)x =0. (2)x =-4.2.当x 为何值时下列分式无意义? (1)x -5x+5;(2)x -3(x+3)(2x -2). 解:(1)x =-5. (2)x =-3或1.设计意图:通过巩固训练,加深学生对分式有意义的条件的理解,并能正确地求出分式有意义的条件;同时让学生明白分式的值为0、有意义、无意义时必须同时满足的条件,区别“或”与“且”的用法.另外,设计“分式有意义”的变式题,意在让学生在题目具有挑战性的情况下,通过小组研究、讨论得出答案,培养学生小组合作、探究的意识以及应用所学知识解决问题的能力,在获得正确结果的情况下,增强学生学习数学知识的信心.课堂小结1.分式的概念:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子AB 叫做分式.分式AB 中,A 叫做分子,B 叫做分母.2.分母不为0,分式有意义;分母为0,分式无意义.3.分子为0,分母不为0,分式值为0.4.谈谈今天的收获?设计意图:通过课堂小结,回顾本节课所学知识,为接下来的学习打好基础.课堂8分钟.1.教材第128,129页练习第1,2,3题.2.七彩作业.15.1.1从分数到分式一、分式的定义.二、分式有意义的条件:三、例题讲解.四、课堂评价.教学反思15.1.2分式的基本性质第1课时分式的基本性质与约分课时目标1.通过类比分数的基本性质归纳得出分式的基本性质,体验类比转化的思想方法,发展学生的推理能力.2.通过类比分数的约分得出分式的约分,从中体会“数式通性”和类比的思想方法,发展学生的抽象能力.3.经历运用分式的基本性质进行约分的过程,体会运算的原理以及最简分式的内涵,培养学生的运算意识,发展学生的运算能力.学习重点理解并掌握分式的基本性质.学习难点能运用分式的基本性质进行分式的约分. 课时活动设计情境引入有位老爷爷把一块地分给三个儿子,老大分到了这块地的13,老二分到了这块地的26,老三分到了这块地的412.老大、老二觉得自己很吃亏,于是他们就争吵起来.刚好阿凡提路过,问清争吵的原因后,哈哈大笑了起来,给他们讲了几句话,三兄弟就停止了争吵.你知道阿凡提给他们讲的是什么吗?13,26,412这三个数相等吗?设计意图:创设故事情境导入新课,激发了学生学习本课的好奇心,同时运用分数的基本性质进行分数变形,复习分数的基本性质,为类比学习分式的基本性质作铺垫.探究新知探究1 分式的基本性质师生活动:以提问的方式回顾分数的基本性质,教师黑板上板书. 由分数的基本性质可知,如果数c ≠0,那么23=2c 3c ,4c 5c =45.一般地,对于任意一个分数ab ,有a b =a·c b·c ,a b =a÷cb÷c (c ≠0),其中a ,b ,c 是数. 问题1:类比分数的基本性质,你能猜想分式有什么性质吗? 学生独立思考,小组讨论,教师引导学生进行归纳总结:分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变. 用式子表示为A B =A·C B·C ,A B =A÷C B÷C(C ≠0),其中A ,B ,C 是整式.探究2 分式的约分与最简分式问题2:联想分数的约分,你能想出如何对分式进行约分吗? 师生活动:教师在黑板上板书:4c 5c =45,让学生观察等式两边的特点.教师引导学生归纳出约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.教师在黑板上板书:4c 5bc =45b ,让学生观察这次约分有什么不同?教师引导学生得出结论:这次约分后是分式的形式,且分子与分母没有公因式.教师归纳出最简分式的概念:分子与分母没有公因式的分式,叫做最简分式. 设计意图:给学生独立思考、自主探究的机会,并在研究思路上加以引导,同时渗透类比的思想方法.这样做一方面可以提高学生对分式基本性质的认识,另一方面可通过师生归纳,进一步加深学生对分式基本性质的理解.典例精讲 例 约分:(1)-25a 2bc 315ab 2c ; (2)x 2-9x 2+6x+9; (3)6x 2-12xy+6y 23x -3y.解:(1)原式=-25a 2bc 3÷(5abc)15ab 2c÷(5abc)=-5ac 23b.(2)原式=(x+3)(x -3)(x+3)2=x -3x+3.(3)原式=6(x -y)23(x -y)=2x -2y.设计意图:通过例题,进一步巩固分式的基本性质的应用条件、基本方法和需要注意的问题,使学生明确:1.找出分子和分母的公因式是约分的第一步,同时公因式应找全,约分要彻底;2.分子与分母没有公因式的分式是最简分式,使学生加深对最简分式的理解.巩固训练1.下列各式中哪一个是最简分式( D ) A.x 2-y 2x 2+y 2 B.a -bb -a C.x 2-1x+1 D.a 2+b 2a+b2.填空: (1)x -yx+y =(x 2-2xy+y 2)x 2-y 2;(2)c -b a =(c 2-bc)ac (c ≠0); (3)x 3xy =( x 2 )y,3x 2+3xy6x 2=x+y( 2x );(4)1ab =( a )a 2b,2a -b a 2=( 2ab -b 2 )a 2b(b ≠0).3.约分:(1)a 2bab 2; (2)x 2-16x 2+8x+16; (3)5x 2-10xy+5y 2x -y.解:(1)原式=a 2b÷(ab)ab 2÷(ab)=ab . (2)原式=(x+4)(x -4)(x+4)2=x -4x+4.(3)原式=5(x -y)2x -y=5x -5y.设计意图:通过巩固训练,及时巩固本节课所学知识,进一步加深学生对分式基本性质的理解.课堂小结1.本节课探究了分式的哪些问题?2.分式的基本性质:分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变. 3.把一个分式的分子与分母的公因式约去,叫做分式的约分. 4.分子与分母没有公因式的分式,叫做最简分式.设计意图:通过课堂小结,回顾本节课所学知识,及时查漏补缺.课堂8分钟.1.教材第132页练习第1题,第133页习题15.1第3,5,6题.2.七彩作业.第1课时分式的基本性质与约分一、分式的基本性质.二、分式的变号法则.三、分式的约分→最简分式.四、例题讲解.五、课堂评价.教学反思第2课时分式的通分课时目标1.通过类比分数的通分得出分式的通分,从中体会“数式通性”和类比的思想方法,发展学生的抽象能力.2.经历用观察、类比、联想的方法探索分式通分方法的过程,体会分式通分运算的原理,培养学生的运算意识.3.理解最简公分母的内涵,能准确确定分式的最简公分母,熟练进行分式的通分.学习重点能运用分式的基本性质进行分式的通分.学习难点分式通分时最简公分母的确定.课时活动设计回顾引入问题:1.把分数78和512通分:78=2124,512=1024.2.利用分式的基本性质,把12ab 和2−b3a2化成分母都是6a2b的分式.解:12ab =1·(3a)2ab·(3a)=(3a)6a2b,2−b3a2=(2-b)·(2b)3a2·(2b)=(4b-2b2)6a2b.设计意图:让学生回忆分数的通分和分式的基本性质,并利用它解决问题,唤醒学生的知识储备,为分式通分的概念的自然引入作好铺垫.同时教学中要贯彻以学生为本的指导思想,通过具体问题,引导学生采用类比推理、合作探究等方法来探究分式通分的概念.探究新知问题:联想分数的通分,由此你能想出如何对分式进行通分吗?师生活动:通过教学活动1中具体的例子,教师引导学生回忆前面学过的分数的通分,再利用类比的方法得出分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.为通分,要先确定各分式的公分母,一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母.在教学过程中,教师要引导学生通过观察、思考、类比等方法来总结归纳确定最简公分母的一般步骤:(1)找系数:如果各分母的系数都是整数,那么取它们的最小公倍数;(2)找字母:凡各分母因式中出现的所有字母或含字母的多项式都要选取;(3)找指数:取分母因式中出现的所有字母或含字母的多项式中指数最大的,这样取出的因式的积,就是最简公分母.设计意图:以此活动激活学生原有的知识体系,充分体现学生的学习是在原有知识的基础上自我生成的一个过程,有利于让学生更好地掌握类比的学习方法.典例精讲例 找出下列各组分式的最简公分母并通分:(1)32a 2b 与a -b ab 2c ; (2)2x x -5与3x x+5.解:(1)最简公分母是2a 2b 2c ,32a 2b =3·bc 2a 2b·bc =3bc 2a 2b 2c, a -bab 2c =(a -b)·2a ab 2c·2a =2a 2-2ab 2a 2b 2c .(2)最简公分母是(x -5)(x +5), 2x x -5=2x(x+5)(x -5)(x+5)=2x 2+10xx 2-25, 3x x+5=3x(x -5)(x+5)(x -5)=3x 2-15xx 2-25. 设计意图:通过例题,使学生能够准确确定分式的最简公分母,熟练进行分式的通分,提高学生的教学应用能力.巩固训练指出下列分式的最简公分母并通分:(1)26a 3bc 与a -215a 2b 2d ; (2)x -2x 2+2x 与x -1(x+2)2; (3)a -1a 2+2a+1与6a 2-1.解:(1)最简公分母:15a 3b 2cd ,26a 3bc = 13a 3bc= 1·5bd 3a 3bc·5bd = 5bd 15a 3b 2-cd , a -215a 2b 2d= (a -2)·ac 15a 2b 2d·ac = a c -2ac 15a 3b 2cd . (2)最简公分母:x (x +2)2,x -2x 2+2x= x -2x(x+2) = (x -2)·(x+2)x(x+2)·(x+2) = x 2-4x(x+2)2, x -1(x+2)2= (x -1)·x (x+2)2·x = x 2-x x(x+2)2. (3)最简公分母:(a +1)2(a -1),a -1a 2+2a+1 = a -1(a+1)2 = (a -1)·(a -1)(a+1)2·(a -1) = (a -1)2(a+1)2(a -1), 6a 2-1= 6·(a+1)(a+1)(a -1)·(a+1) = 6(a+1)(a+1)2(a -1).设计意图:通过巩固训练,一是使学生注意当分母是多项式时,把分母分解因式后,再确定最简公分母;二是通过解决题目的过程,让学生反思解决问题的方法和结论,形成批判性思维和发散性思维,提高学生的总结概括能力和运算能力.课堂小结1.本节课探究了分式的哪些问题?2.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.3.最简公分母的确定:①找系数;②找字母;③找指数.设计意图:通过课堂小结,回顾本节课所学知识,为接下来的学习打好基础.课堂8分钟.1.教材第132页练习第2题,第133页习题15.1第7题.2.七彩作业.第2课时分式的通分一、分式的通分.二、最简公分母的确定:最简公分母{1.找系数2.找字母3.找指数三、例题讲解.四、课堂评价.教学反思。
初中数学八年级上册第十五章分式教案、导学案 人教版
第十五章 分 式 15.1 分 式 15.1.1 从分数到分式1.了解分式的概念,理解分式有意义的条件,分式的值为零的条件. 2.能熟练地求出分式有意义的条件,分式的值为零的条件.重点:理解分式有意义的条件,分式的值为零的条件.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.一、自学指导自学1:自学课本P127-128页,掌握分式的概念,完成填空.(5分钟)总结归纳:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子AB 叫做分式,分式AB中,A 叫做分子,B 叫做分母.点拨精讲:分式是不同于整式的另一类式子,它的分母中含有字母可以表示不同的数,所以分式比分数更具有一般性.自学2:自学课本P128页“思考与例1”,理解分式有意义的条件,分式的值为零的条件.(5分钟)总结归纳:分式的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B ≠0时,分式A B 才有意义;当B ≠0,A =0时,分式AB=0.点拨精讲:分式的分数线相当于除号,也起到括号的作用.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟) 课本P128-129页练习题1,2,3.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1 当x 取何值时:(1)分式12x 2x -3有意义?(2)分式12x 2x 2+3有意义?(3)分式3x2x -1无意义?(4)分式12x |x|-3无意义?(5)分式|x|-22x +4的值为0?(6)分式x 2-9x -3的值为0?解:(1)要使分式12x 2x -3有意义,则分母2x -3≠0,即x≠32;(2)要使分式12x2x 2+3有意义,则分母2x 2+3≠0,即x 取任意实数;(3)要使分式3x 2x -1无意义,则分母2x -1=0,即x =12;(4)要使分式12x |x|-3无意义,则分母|x|-3=0,即x =±3;(5)要使分式|x|-22x +4的值为0,则有⎩⎪⎨⎪⎧|x|-2=02x +4≠0,即x =2;(6)要使分式x 2-9x -3的值为0,则有⎩⎪⎨⎪⎧x 2-9=0x -3≠0,即x =-3.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.当a =-1时,分式a 2+aa 2-a=0.2.当x 为任何实数时,下列分式一定有意义的是(C )A .x 2+1x 2 B .x -1x 2-1 C .x +1x 2+1 D .x -1x +13.若分式x -2x 2-1的值为0,则x 的值为(D )A .1B .-1C .±1D .24.下列各式中,哪些是整式?哪些是分式?1a ,x -1,3m ,b 3,c a -b ,a +62b ,34(x +y),x 2+2x +15,m +n m -n. 解:整式有x -1,b 3,34(x +y),x 2+2x +15;分式有1a ,3m ,c a -b ,a +62b ,m +n m -n.(3分钟)1.分式的值为0的前提条件是此分式有意义.2.分式的分数线相当于除号,也具有括号的作用.(学生总结本堂课的收获与困惑)(2分钟) (10分钟)第十五章 分式 15.1 分 式 15.1.1 从分数到分式1.以描述实际问题中的数量关系为背景抽象出分式的概念,建立数学模型,并理解分式的概念.2.能够通过分式的定义理解和掌握分式有意义的条件.重点理解分式有意义的条件及分式的值为零的条件. 难点能熟练地求出分式有意义的条件及分式的值为零的条件.一、复习引入1.什么是整式?什么是单项式?什么是多项式? 2.判断下列各式中,哪些是整式?哪些不是整式?①8m +n 3;②1+x +y 2;③a 2b +ab 23;④a +b 2;⑤2x 2+2x +1;⑥3a 2+b 2;⑦3x 2-42x .二、探究新知 1.分式的定义(1)学生看教材的问题:一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行90千米所用时间,与以最大航速逆流航行60千米所用的时间相等,江水的流速为多少?分析:设江水的流速为v 千米/时.轮船顺流航行90千米所用的时间为9030+v 小时,逆流航行60千米所用时间为6030-v 小时,所以9030+v =6030-v.(2)学生完成教材第127页“思考”中的题.观察:以上的式子9030+v ,6030-v ,S a ,Vs ,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是AB (即A÷B)的形式.分数的分子A 与分母B 都是整数,而这些式子中的A ,B 都是整式,并且B 中都含有字母.归纳:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子AB 叫做分式.巩固练习:教材第129页练习第2题.2.自学教材第128页思考:要使分式有意义,分式中的分母应满足什么条件?分式的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式AB才有意义. 学生自学例1.例1 下列分式中的字母满足什么条件时分式有意义? (1)23x ;(2)x x -1;(3)15-3b ;(4)x +y x -y. 解:(1)要使分式23x 有意义,则分母3x≠0,即x≠0;(2)要使分式xx -1有意义,则分母x -1≠0,即x≠1;(3)要使分式15-3b 有意义,则分母5-3b≠0,即b≠53;(4)要使分式x +yx -y有意义,则分母x -y≠0,即x≠y.思考:如果题目为:当x 为何值时,分式无意义.你知道怎么解题吗? 巩固练习:教材第129页练习第3题.3.补充例题:当m 为何值时,分式的值为0? (1)m m -1;(2)m -2m +3;(3)m 2-1m +1.思考:当分式为0时,分式的分子、分母各满足什么条件?分析:分式的值为0时,必须同时满足两个条件:(1)分母不能为零;(2)分子为零. 答案:(1)m =0;(2)m =2;(3)m =1. 三、归纳总结 1.分式的概念.2.分式的分母不为0时,分式有意义;分式的分母为0时,分式无意义. 3.分式的值为零的条件:(1)分母不能为零;(2)分子为零. 四、布置作业教材第133页习题15.1第2,3题.在引入分式这个概念之前先复习分数的概念,通过类比来自主探究分式的概念,分式有意义的条件,分式值为零的条件,从而更好更快地掌握这些知识点,同时也培养学生利用类比转化的数学思想方法解决问题的能力.15.1.2 分式的基本性质1.掌握分式的基本性质,掌握分式约分方法,熟练进行约分,并了解最简分式的意义; 2.使学生理解分式通分的意义,掌握分式通分的方法及步骤.重点:知道约分、通分的依据和作用,掌握分式约分、通分的方法; 难点:掌握分式约分、通分的方法,理解分式的变号法则.一、自学指导自学1:自学课本P129-130页“思考与例2”,掌握分式的基本性质,完成填空.(3分钟)总结归纳:分式的分子与分母乘(或除以)同一个不等于0)的整式,分式的值不变.用式子表示为:A B =A·C B·C ,A B =A÷CB÷C(C≠0).自学2:自学课本P130-131页“思考与例3”,掌握分式约分的方法,能准确找出分子、分母的公因式,理解最简分式的概念.(3分钟)总结归纳:根据分式的基本性质,把一个分式的分子、分母的公因式约去,叫做约分.分子与分母没有公因式的分式,叫做最简分式.分式的约分,一般要约去分子与分母所有的公因式,使所得结果成为最简分式或者整式.自学3:自学课本P131-132页“思考与例4”,掌握分式通分的方法,学会找最简公分母.(3分钟)总结归纳:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母.找最简公分母的方法:①若分母是多项式的先分解因式;②取各分式的分母中系数的最小公倍数;③各分式的分母中所有字母或因式都要取到;④相同字母(或因式)的幂取指数最大的.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(8分钟)1.下列等式的右边是怎样从左边得到的?(1)x2+xyx2=x+yx;(2)y+1y-1=y2+2xy+1y2-1(y≠-1).点拨精讲:对于(1),由已知分式可以知道x≠0,因此可以用x去除分式的分子、分母,因而并不特别需要强调x≠0这个条件,而(2)是在已知分式的分子、分母都乘以y +1得到的,是在条件y+1≠0下才能进行,这个条件必须强调.解:(1)根据分式的基本性质,分子、分母同时除以x;(2)∵y≠-1,∴y+1≠0,∴根据分式的基本性质,分子、分母同时乘以y+1.2.课本P132页练习题1,2.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)探究1 不改变分式的值,把下列各式的分子与分母各项系数都化为整数.(1)12x+23y12x-23y;(2)0.3a+0.5b0.2a-b.解:(1)12x+23y12x-23y=(12x+23y)×6(12x-23y)×6=3x+4y3x-4y;(2)0.3a+0.5b0.2a-b=(0.3a+0.5b)×10(0.2a-b)×10=3a+5b2a-10b.探究2 不改变分式的值,使下面分式的分子、分母都不含“-”号.(1)-5y-x2;(2)-a2b;(3)4m-3n;(4)--x2y.解:(1)-5y-x2=5yx2;(2)-a2b=-a2b;(3)4m-3n=-4m3n;(4)--x2y=x2y.点拨精讲:分式的分子、分母以及分式本身三个符号,改变其中任何两个符号,分式的值不变.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟) 1.课本P133页习题4,6,7.2.课本P134页习题12.(3分钟)1.分式的约分:分子、分母都是多项式的先分解因式,便于找公因式,分式化简的结果一定要是最简分式.且一般分子、分母中不含“-”.2.分式的通分关键是找准最简公分母,若分母是多项式的先分解因式,便于找最简公分母.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)15.1.2 分式的基本性质 第1课时 分式的基本性质1.了解分式的基本性质,灵活运用分式的基本性质进行分式的变形. 2.会用分式的基本性质求分式变形中的符号法则.重点理解并掌握分式的基本性质. 难点灵活运用分式的基本性质进行分式变形.一、类比引新 1.计算:(1)56×215;(2)45÷815. 思考:在运算过程中运用了什么性质?教师出示问题.学生独立计算后回答:运用了分数的基本性质. 2.你能说出分数的基本性质吗?分数的分子与分母都乘(或除以)同一个不为零的数,分数的值不变. 3.尝试用字母表示分数的基本性质:小组讨论交流如何用字母表示分数的基本性质,然后写出分数的基本性质的字母表达式.a b =a·c b·c ,a b =a÷c b÷c.(其中a ,b ,c 是实数,且c≠0) 二、探究新知1.分式与分数也有类似的性质,你能说出分式的基本性质吗?分式的基本性质:分式的分子与分母乘(或除以)同一个不为零的整式,分式的值不变. 你能用式子表示这个性质吗?A B =A·C B·C ,A B =A÷C B÷C.(其中A ,B ,C 是整式,且C≠0) 如x 2x =12,b a =aba2,你还能举几个例子吗? 回顾分数的基本性质,让学生类比写出分式的基本性质,这是从具体到抽象的过程. 学生尝试着用式子表示分式的性质,加强对学生的抽象表达能力的培养. 2.想一想下列等式成立吗?为什么? -a -b =a b ;-a b =a -b =-a b.教师出示问题.学生小组讨论、交流、总结.例1 不改变分式的值,使下列分式的分子与分母都不含“-”号: (1)-2a -3a ;(2)-3x 2y ;(3)--x 2y. 例2 不改变分式的值,使下列分式的分子与分母的最高次项的系数都化为正数: (1)x +1-2x -1;(2)2-x -x 2+3;(3)-x -1x +1. 引导学生在完成习题的基础上进行归纳,使学生掌握分式的变号法则. 例3 填空:(1)x 3xy =( )y ,3x 2+3xy 6x 2=x +y ( ); (2)1ab =( )a 2b ,2a -b a 2=( )a 2b.(b≠0) 解:(1)因为x3xy 的分母xy 除以x 才能化为y ,为保证分式的值不变,根据分式的基本性质,分子也需除以x ,即x 3xy =x 3÷x xy ÷x =x 2y. 同样地,因为3x 2+3xy 6x 2的分子3x 2+3xy 除以3x 才能化为x +y ,所以分母也需除以3x ,即3x 2+3xy 6x 2=(3x 2+3xy )÷(3x )6x 2÷(3x )=x +y2x . 所以,括号中应分别填入x 2和2x.(2)因为1ab 的分母ab 乘a 才能化为a 2b ,为保证分式的值不变,根据分式的基本性质,分子也需乘a ,即1ab =1·a ab·a =a a 2b. 同样地,因为2a -b a 2的分母a 2乘b 才能化为a 2b ,所以分子也需乘b ,即2a -b a 2=(2a -b )·b a 2·b =2ab -b2a 2b. 所以,括号中应分别填a 和2ab -b 2.在解决例题1,2的第(2)小题时,教师可以引导学生观察等式两边的分母发生的变化,再思考分式的分子如何变化;在解决例2的第(1)小题时,教师引导学生观察等式两边的分子发生的变化,再思考分式的分母随之应该如何变化.三、课堂小结1.分式的基本性质是什么? 2.分式的变号法则是什么?3.如何利用分式的基本性质进行分式的变形? 学生在教师的引导下整理知识、理顺思维. 四、布置作业教材第133页习题15.1第4,5题.通过算数中分数的基本性质,用类比的方法给出分式的基本性质,学生接受起来并不感到困难,但要重点强调分子分母同乘(或除)的整式不能为零,让学生养成严谨的态度和习惯.第2课时 分式的约分、通分1.类比分数的约分、通分,理解分式约分、通分的意义,理解最简公分母的概念. 2.类比分数的约分、通分,掌握分式约分、通分的方法与步骤.重点运用分式的基本性质正确地进行分式的约分与通分. 难点通分时最简分分母的确定;运用通分法则将分式进行变形.一、类比引新1.在计算56×215时,我们采用了“约分”的方法,分数的约分约去的是什么?分式a 2+ab a 2b ,a +bab相等吗?为什么? 利用分式的基本性质,分式a 2+aba 2b 约去分子与分母的公因式a ,并不改变分式的值,可以得到a +b ab.教师点拨:分式a 2+ab a 2b 可以化为a +bab ,我们把这样的分式变形叫做__分式的约分__.2.怎样计算45+67?怎样把45,67通分?类似的,你能把分式a b ,cd变成同分母的分式吗?利用分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,我们把这样的分式变形叫做__分式的通分__.二、探究新知1.约分:(1)-25a 2bc 315ab 2c ;(2)x 2-9x 2+6x +9; (3)6x 2-12xy +6y23x -3y.分析:为约分,要先找出分子和分母的公因式. 解:(1)-25a 2bc 315ab 2c =-5abc ·5ac 25abc ·3b =-5ac23b; (2)x 2-9x 2+6x +9=(x +3)(x -3)(x +3)2=x -3x +3;(3)6x 2-12xy +6y 23x -3y =6(x -y )23(x -y )=2(x -y ).若分子和分母都是多项式,则往往需要把分子、分母分解因式(即化成乘积的形式),然后才能进行约分.约分后,分子与分母没有公因式,我们把这样的分式称为__最简分式__.(不能再化简的分式)2.练习:约分:2ax 2y 3axy 2;-2a (a +b )3b (a +b );(a -x )2(x -a )3;x 2-4xy +2y ;m 2-3m 9-m 2;992-198. 学生先独立完成,再小组交流,集体订正.3.讨论:分式12x 3y 2z ,14x 2y 3,16xy4的最简公分母是什么?提出最简公分母概念.一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母. 学生讨论、小组交流、总结得出求最简公分母的步骤: (1)系数取各分式的分母中系数最小公倍数; (2)各分式的分母中所有字母或因式都要取到; (3)相同字母(或因式)的幂取指数最大的;(4)所得的系数的最小公倍数与各字母(或因式)的最高次幂的积(其中系数都取正数)即为最简公分母.4.通分:(1)32a 2b 与a -b ab 2c ;(2)2x x -5与3xx +5 .分析:为通分,要先确定各分式的公分母.解:(1)最简公分母是2a 2b 2c . 32a 2b=3·bc 2a 2b ·bc =3bc2a 2b 2c, a -b ab 2c =(a -b )·2a ab 2c ·2a =2a 2-2ab2a 2b 2c. (2)最简公分母是(x -5)(x +5). 2x x -5=2x (x +5)(x -5)(x +5)=2x 2+10xx 2-25, 3x x +5=3x (x -5)(x +5)(x -5)=3x 2-15x x 2-25. 5.练习:通分:(1)13x 2与512xy ;(2)1x 2+x 与1x 2-x ;(3)1(2-x )2与xx 2-4. 教师引导:通分的关键是先确定最简公分母;如果分式的分母是多项式则应先将分母分解因式,再按上述的方法确定分式的最简公分母.学生板演并互批及时纠错.6.思考:分数和分式在约分和通分的做法上有什么共同点?这些做法的根据是什么? 教师让学生讨论、交流,师生共同作以小结. 三、课堂小结1.什么是分式的约分? 怎样进行分式的约分?什么是最简分式?2.什么是分式的通分? 怎样进行分式的通分? 什么是最简公分母?3.本节课你还有哪些疑惑? 四、布置作业教材第133页习题15.1第6,7题.本节课是在学习了分式的基本性质后学的,重点是运用分式的基本性质正确的约分和通分,约分时要注意一定要约成最简分式,熟练运用因式分解;通分时要将分式变形后再确定最简公分母.15.2 分式的运算 15.2.1 分式的乘除(1)1.通过实践总结分式的乘除法,并能较熟练地进行分式的乘除法运算. 2.引导学生通过分析、归纳,培养学生用类比的方法探索新知识的能力.重点:分式的乘除法运算.难点:分式的乘除法、混合运算中符号的确定.一、自学指导自学1:自学课本P135-137页“问题1,思考,例1,例2及例3”,掌握分式乘除法法则.(7分钟)类比分数的乘除法法则,计算下面各题:(1)4ac 3b ·9b 22ac 3;(2)4ac 3b ÷9b 22ac 3. 解:(1)原式=4ac·9b 23b ·2ac 3=36ab 2c 6abc 3=6b c 2;(2)原式=4ac 3b ·2ac 39b 2=8a 2c427b3.点拨精讲:计算的结果能约分的要约分,结果应为最简分式.总结归纳:分式的乘法法则——分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母.即:a b ·c d =a·cb·d.分式的除法法则——分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.即:a b ÷c d =a b ·d c =ad bc. 二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(8分钟) 课本P137-138练习题1,2,3.点拨精讲:分子、分母是多项式时,通常先分解因式,再约分.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟) 探究1 计算:(1)x +12x ·4x2x 2-1;(2)8x 2x 2+2x +1÷6x x +1. 解:(1)x +12x ·4x 2x 2-1=x +12x ·4x 2(x +1)(x -1)=2xx -1;(2)8x 2x 2+2x +1÷6x x +1=8x 2(x +1)2·x +16x =4x3x +3. 点拨精讲:如果分子、分母含有多项式,应先分解因式,再按法则进行计算. 探究2 当x =5时,求x 2-9x 2+6x +9÷1x +3的值.解:∵x 2-9x 2+6x +9÷1x +3=(x +3)(x -3)(x +3)2·x +31=x -3,∴当x =5时,原式=x -3=5-3=2.点拨精讲:先对分式的结果化简,可以使计算变得简便.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)1.计算:(1)3xy 24z 2·(-8z 2y );(2)-3xy÷2y 23x ;(3)m -2m -3÷m 2-6m +9m 2-4;(4)a 2-6a +91+4a +4a 2÷12-4a2a +1. 2.有这样一道题“计算:x 2-2x +1x 2-1÷x -1x 2+x -x 的值,其中x =998”,甲同学错把x =998抄成了x =999,但他的计算结果却是正确的,请问这是怎么回事?解:∵x 2-2x +1x 2-1÷x -1x 2+x -x =(x -1)2(x +1)(x -1)·x (x +1)x -1-x =x -x =0,∴无论x取何值,此式的值恒等于0.(3分钟)1.分式乘除法的法则可类比分数的乘除法则进行.2.当分式的分子、分母为多项式时,先要进行因式分解,才能够依据分式的基本性质进行约分.3.分式乘除法运算的最后结果能约分的要约分,一定要是一个最简分式.(学生总结本堂课的收获与困惑)(2分钟) (10分钟)15.2.1 分式的乘除(2)1.使学生在理解和掌握分式的乘除法法则的基础上,运用法则进行分式的乘除法混合运算.2.使学生理解并掌握分式乘方的运算性质,能运用分式的这一性质进行运算.重点:分式的乘除混合运算和分式的乘方. 难点:对乘方运算性质的理解和运用.一、自学指导自学1:自学课本P138-139页“例4、思考与例5”,掌握分式乘方法则及乘除、乘方混和运算的方法,完成填空.(7分钟)1.a n表示的意思是n 个a 相乘的积;a 表示底数,n 表示指数.2.计算:(23)3=23×23×23=2×2×23×3×3=2333=827.3.由乘方的定义,类比分数乘方的方法可得到: (a b )2=a b ·a b =a·a b·b =a2b 2; ……(a b )n =a b ·a b ·…·a b =a·a·…·a b·b·…·b ,\s\up6(n 个))_,\s\do4(n 个))_=a nb n . 点拨精讲:其中a 表示分式的分子,b 表示分式的分母,且b≠0.总结归纳:分式的乘方法则——分式乘方是把分子、分母各自乘方.即:(a b )n =anb n (n 为正整数);乘除混合运算可以统一为乘法运算;式与数有相同的混合运算顺序:先乘方,再乘除.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(8分钟) 1.课本P139练习题1,2. 2.判断下列各式正确与否:(1)(3-a 2)2=9a 4;(2)(-b 2a )3=b 6a 3;(3)(3b 2a )3=3b 32a 3;(4)(2x x +y )2=4x 2x 2+y2.3.计算:(1)(-x 2y )2·(-y 2x )3÷(-y x )4;(2)(x +1)2(1-x )2(x 2-1)2÷(x -1)2x 2-1. 解:(1)原式=x 4y 2·(-y 6x 3)·x 4y4=-x 5;(2)原式=(x +1)2(x -1)2(x +1)2(x -1)2·(x +1)(x -1)(x -1)2=x +1x -1. 点拨精讲:注意符号及约分.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)探究1 先化简代数式(a +1a -1+1-a a 2-2a +1)÷1a -1,然后选取一个使原式有意义的a 值代入求值.解:∵(a +1a -1+1-a a 2-2a +1)÷1a -1=[(a +1a -1+1-a (a -1)2)]·a -11=a +1a -1·a -11+1-a (a -1)2·a -11=a +1-1=a ,当a =3时,原式=3. 点拨精讲:这里a 的取值要让分式有意义,保证各分母及除式不能为0.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.x =1,y =1,求4x 2-4xy +y 22x +y ÷(4x 2-y 2)的值.2.使代数式x +3x -3÷x +2x -4有意义的x 的值是(D )A .x ≠3且x≠-2B .x ≠3且x≠4C .x ≠3且x≠-4D .x ≠3且x≠-2且x≠43.计算:(1)5a -109a 3b ·6aba 2-4; (2)(-12x 4y)2÷(-3x 2y)3;(3)x -y x 2+xy ·x 2y 2-x 4xy -x2; (4)2x -6x 2-4x +4·(x +3)(x -2)12-4x ÷x +32. (3分钟)1.分式的分子或分母带“-”的n 次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式的分子分母可直接乘方.2.注意熟练、准确运用乘方运算法则及分式乘除法 法则.3.注意混合运算中应先算括号,再算乘方,然后乘除.(学生总结本堂课的收获与困惑)(2分钟) (10分钟)15.2 分式的运算 15.2.1 分式的乘除 第1课时 分式的乘除法1.理解并掌握分式的乘除法则.2.运用法则进行运算,能解决一些与分式有关的实际问题.重点掌握分式的乘除运算. 难点分子、分母为多项式的分式乘除法运算.一、复习导入1.分数的乘除法的法则是什么? 2.计算:35×1512;35÷152.由分数的运算法则知35×1512=3×155×12;35÷152=35×215=3×25×15.3.什么是倒数?我们在小学学习了分数的乘除法,对于分式如何进行计算呢?这就是我们这节要学习的内容.二、探究新知问题1:一个水平放置的长方体容器,其容积为V ,底面的长为a ,宽为b 时,当容器的水占容积的mn时,水面的高度是多少?问题2:大拖拉机m 天耕地a hm 2,小拖拉机n 天耕地b hm 2,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?问题1求容积的高V ab ·m n ,问题2求大拖拉机的工作效率是小拖拉机的工作效率的a m ÷bn 倍.根据上面的计算,请同学们总结一下对分式的乘除法的法则是什么?分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母. 分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.a b ·c d =a·c b·d ;a b ÷c d =a b ·d c =a·d b·c . 三、举例分析 例1 计算:(1)4x 3y ·y 2x 3;(2)ab 32c 2÷-5a 2b 24cd. 分析:这道例题就是直接应用分式的乘除法法则进行运算.应该注意的是运算结果应约分到最简,还应注意在计算时跟整式运算一样,先判断运算符号,再计算结果.解:(1)4x 3y ·y 2x 3=4xy 6x 3y =23x2;(2)ab 32c 2÷-5a 2b 24cd =ab 32c 2·4cd -5a 2b 2=-4ab 3cd 10a 2b 2c 2=-2bd 5ac . 例2 计算:(1)a 2-4a +4a 2-2a +1·a -1a 2-4;(2)149-m 2÷1m 2-7m. 分析:这两题是分子与分母是多项式的情况,首先要因式分解,然后运用法则. 解:(1)原式(a -2)2(a -1)2·a -1(a +2)(a -2)=a -2(a -1)(a +2); (2)原式1(7-m )(7+m )÷1m (m -7)=1(7-m )(7+m )·m (m -7)1=-mm +7.例3 “丰收1号”小麦试验田边长为a 米(a >1)的正方形去掉一个边长为1米的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a -1)米的正方形,两块试验田的小麦都收获了500千克.(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍? 分析:本题的实质是分式的乘除法的运用. 解:(1)略.(2)500(a -1)2÷500a 2-1=500(a -1)2·a 2-1500=a +1a -1. “丰收2号”小麦的单位面积产量是“丰收1号”小麦的单位面积产量的a +1a -1倍.四、随堂练习1.计算:(1)c 2ab ·a 2b 2c ;(2)-n 22m ·4m 25n 3;(3)y 7x ÷(-2x );(4)-8xy÷2y 5x ;(5)-a 2-4a 2-2a +1·a 2-1a 2+4a +4;(6)y 2-6y +9y +2÷(3-y).答案:(1)abc ;(2)-2m 5n ;(3)-y 14;(4)-20x 2;(5)-(a +1)(a -2)(a -1)(a +2);(6)3-y y +2.2.教材第137页练习1,2,3题.五、课堂小结(1)分式的乘除法法则;(2)运用法则时注意符号的变化; (3)因式分解在分式乘除法中的应用;(4)步骤要完整,结果要最简.最后结果中的分子、分母既可保持乘积的形式,也可以写成一个多项式,如(a -1)2a 或a 2-2a +1a.六、布置作业教材第146页习题15.2第1,2题.本节课从两个具有实际背景的问题出发,使学生在解决问题的过程中认识到分式的乘除法是由实际需要产生的,进而激发他们学习的兴趣,接着,从分数的乘除法则的角度引导学生通过观察、探究、归纳总结出分式的乘法法则.有利于学生接受新知识,而且能体现由数到式的发展过程.第2课时 分式的乘方及乘方与乘除的混合运算1.进一步熟练分式的乘除法法则,会进行分式的乘、除法的混合运算.2.理解分式乘方的原理,掌握乘方的规律,并能运用乘方规律进行分式的乘方运算.重点分式的乘方运算,分式的乘除法、乘方混合运算. 难点分式的乘除法、乘方混合运算,以及分式乘法、除法、乘方运算中符号的确定.一、复习引入1.分式的乘除法法则.分式的乘法法则:分式乘分式,用分子的积作为积的分子,用分母的积作为积的分母. 分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘. 2.乘方的意义: a n=a·a·a·…·a(n 为正整数). 二、探究新知例1(教材例4) 计算2x 5x -3÷325x 2-9·x5x +3. 解:2x 5x -3÷325x 2-9·x 5x +3=2x 5x -3·25x 2-93·x 5x +3 (先把除法统一成乘法运算) =2x23.(约分到最简公式) 分式乘除运算的一般步骤: (1)先把除法统一成乘法运算;(2)分子、分母中能分解因式的多项式分解因式; (3)确定分式的符号,然后约分; (4)结果应是最简分式.1.由整式的乘方引出分式的乘方,并由特殊到一般地引导学生进行归纳. (1)(a b )2=a b ·a b =a 2b2;↑ ↑由乘方的意义 由分式的乘法法则 (2)同理:(a b )3=a b ·a b ·a b =a 3b3; (a b )n =a b ·a b ·…·a b n 个=a ·a ·…·an 个b ·b ·…·bn 个 =a nb n . 2.分式乘方法则:分式:(a b )n =anbn .(n 为正整数)文字叙述:分式乘方是把分子、分母分别乘方.3.目前为止,正整数指数幂的运算法则都有什么?(1)a n ·a n =a m +n ;(2)a m ÷a n =a m -n;(3)(a m )n =a mn ;(4)(ab)n =a n b n; (5)(a b )n =a nb n .三、举例分析 例2 计算: (1)(-2a 2b 3c)2;(2)(a 2b -cd 3)3÷2a d 3·(c 2a )2. (3)(-x 2y )2·(-y 2x )3÷(-y x )4;(4)a 2-b 2a 2+b 2÷(a -b a +b)2. 解:(1)原式=(-2a 2b )2(3c )2=4a 4b 29c 2; (2)原式=a 6b 3-c 3d 9·d 32a ·c 24a 2=-a 3b38cd 6;(3)原式=x 4y 2·(-y 6x 3)·x 4y4=-x 5;(4)原式=(a +b )(a -b )a 2+b 2·(a +b )2(a -b )2=(a +b )3(a -b )(a 2+b 2). 学生板演、纠错并及时总结做题方法及应注意的地方:①对于乘、除和乘方的混合运算,应注意运算顺序,但在做乘方运算的同时,可将除变乘;②做乘方运算要先确定符号.例3 计算:(1)b 3n -1c 2a 2n +1·a2n -1b3n -2;(2)(xy -x 2)÷x 2-2xy +y 2xy ·x -y x2;(3)(a 2-b 2ab )2÷(a -b a )2.解:(1)原式=b 3n -2·b ·c 2a 2n -1·a 2·a 2n -1b 3n -2=bc 2a2; (2)原式=-x (x -y )1·xy (x -y )2·x -yx 2=-y ;(3)原式=(a +b )2(a -b )2a 2b 2·a 2(a -b )2=a 2+2ab +b2b2. 本例题是本节课运算题目的拓展,对于(1)指数为字母,不过方法不变;(2)(3)是较复杂的乘除乘方混合运算,要进一步让学生熟悉运算顺序,注意做题步骤.四、巩固练习教材第139页练习第1,2题. 五、课堂小结1.分式的乘方法则. 2.运算中的注意事项. 六、布置作业教材第146页习题15.2第3题.分式的乘方运算这一课的教学先让学生回忆以前学过的分数的乘方的运算方法,然后采用类比的方法让学生得出分式的乘方法则.在讲解例题和练习时充分调动学生的积极性,使大家都参与进来,提高学习效率.15.2.2 分式的加减(1)1.使学生掌握同分母、异分母分式的加减,能熟练地进行同分母,异分母分式的加减运算.2.通过同分母、异分母分式的加减运算,复习整式的加减运算、多项式去括号法则以及分式的通分,培养学生分式运算的能力.重点:让学生熟练地掌握同分母、异分母分式的加减法.难点:分式的分子是多项式的做减法时注意符号,去括号法则的应用.一、自学指导自学1:自学课本P139-140页“问题3、问题4、思考、例6”,掌握同分母、异分母分式加减的方法,完成填空.(7分钟)①计算:15+25,15-25,12+13,12-13.总结归纳:同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,变为同分母分式,再加减.a c +bc =a +b c ;a b +cd =ad bd +bc bd =ad +bc bd. 二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(8分钟) 1.课本P141页练习题1,2. 2.计算:(1)2x -5x 2;(2)x 2+xy xy -x 2-xy xy ;(3)a -2a +1-2a -3a +1; (4)a +1a -1-a -1a +1; (5)x 2x -2-4x x -2+4x -2;。
新人教八年级上册第15章15.1.2 分式的基本性质导学案
新人教八年级上册第15章15.1.2 分式的基本性质一、新课导入1.导入课题:你知道分数的基本性质吗?由此你是否能联想出分式的基本性质呢?2.学习目标:(1)能说出分式的基本性质.(2)能利用分式的基本性质将分式变形.(3)会用分式的基本性质进行分式的约分和通分.3.学习重、难点:重点:分式的基本性质及运用,分式的符号法则.难点:分式基本性质的运用——约分和通分.二、分层学习1.自学指导:(1)自学内容:教材第129页到第130页第15行.(2)自学时间:8分钟.(3)自学方法:回顾分数的基本性质,联想并归纳分式的基本性质.(4)自学参考提纲:①回忆分数的基本性质:一个分数的分子、分母同时乘以(或除以)同一个不为零的数,分数的值不变.2 3=2(6)36⨯⨯4545(9)54549÷=÷=56②判断(正确的打“√”,错误的打“×”)4433c c = (×) 515=55155÷÷ (√) 363644040+4+=(×) 22x -x 11x x x x -=++ (√) ③类比分数的基本性质,得出分式的基本性质.一个分式的分子,分母乘(或除以)同一个不等于0的整式,分式的值不变.用式子表示为:A B=A CBC ∙∙,A B =A CB C÷÷ (C≠0). ④在运用分式的基本性质时应特别注意什么? 要注意分子和分母同时乘(或除以)的这个整式是否为0. 2.自学:同学们根据自学指导进行自学. 3.助学: (1)师助生:①明了学情:让学生说一说,辨一辨,了解学生对分式基本性质的运用情况,特别是乘(或除以)的数(或整式)一定要满足的条件.②差异指导:对部分认识存在困难的学生进行点拨、启发和引导. (2)生助生:相互启发,互助解决疑难问题. 4.强化:(1)分式的基本性质:文字叙述、字母表达. (2)判断正误:1.自学指导:(1)自学内容:教材第130页倒数第7行到例3前的内容.(2)自学时间:5分钟.(3)自学方法:阅读课本内容,结合自学提纲进行自学.不懂的问题做上记号.(4)自学参考提纲:①什么是约分?把一个分式的分子与分母的公因式约去,叫做分式的约分.②约分的依据是什么?约分的依据是分式的基本性质:分式的分子与分母乘(或除以)同一个不等于0的数(或式子),分式的值不变.③约分后的分式,其分子与分母没有公因式,这样的分式叫做最简分式.2.自学:请同学们结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否弄清楚自学提纲中的问题.②差异指导:对学有困难的学生予以分类指导.(2)生助生:学生之间相互展示交流和帮助.4.强化:(1)分式约分的定义以及最简分式的概念.(2)约分的依据:分式的基本性质.(3)下列各分式,不是最简分式的有D.1.自学指导:(1)自学内容:教材第131页例3.(2)自学时间:5分钟.(3)自学方法:认真阅读课本例3的解答过程,仔细观察每步分子分母变化的目的及依据.(4)自学参考提纲:①约分约去的是公因式,因此,约分要先找出公因式;②如果分子或分母是多项式,就要先对多项式进行因式分解,以便找出分母、分子的公因式,最后约分.③约分结果都要成为最简分式或整式.2.自学:请同学们结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否弄清例题中化简分式的思路、方法和过程.②差异指导:对部分学生在学习例题时存在的疑点进行点拨引导.(2)生助生:学生之间相互交流帮助.4.强化:(1)约分要领:约分都是先找分子和分母的公因式(是多项式的还要分解因式),再约去公因式.(2)约分的理论依据是分式的基本性质.(3)约分要求约到最简分式为止.(4)练习:约分1.自学指导:(1)自学内容:教材第131页“思考”到第132页例4 的内容. (2)自学时间:5分钟.(3)自学方法:认真阅读课本,比照分数通分的方法,类比归纳分式通分的方法.(4)自学参考提纲: ①什么叫通分?把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.②通分的依据是什么?分式的基本性质:分式的分子与分母乘(或除以)同一个不等于O 的整式,分式的值不变.③通分的关键是什么? 确定各分式的最简公分母. ④如何确定n 个分式的公分母?一般取各分母的所有因式的最高次幂的积作公分母. ⑤分式2214a b 与36x a b c的最简公分母是12a 2b 3c ,通分后的结果分别是23312bc a b c 23212acx a b c. ⑥分数的约分与通分和分式的约分通分有什么异同点?大家相互交流一下.2.自学:同学们结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否知道找最简公分母的方法及明白通分的依据.②差异指导:帮助部分学困生,如何找最简公分母,如何进行通分,比照分数的通分进行指导.(2)生助生:生生互助交流.4.强化:(1)通分的依据和定义,最简公分母的定义及确定通分的方法.(2)练习:①分式x+y2xy ,2y3x,2x-y6x y的最简公分母为6x2y2,通分后x+y 2xy =22223x y+3xy6x y,2y3x=3222y6x y,2x-y6x y=222x-xy6x y.②分式x2()x y+,2y3()x y-的最简公分母是6(x+y)(x-y).三、评价1.学生的自我评价(围绕三维目标):学生代表交流自己的学习收获和学后体验.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成果、不足之处进行简要点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):分式的基本性质在分式教学中占有重要的地位,它是约分、通分的依据.这部分知识比较容易理解,教师在设计这节课时,可利用“猜想和验证”的方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生学习的成就感.教师应注重提高在验证、交流环节中学生的参与率,尤其是一些后进生可能普遍会感觉无从下手,在交流时不主动,从而停留在一知半解的状态.在巩固练习环节上,教师要注意学生的练习密度,最好给每位学生准备一份练习纸,这样能确保达到一定的练习量.一、基础巩固(第1、2、3、4题每题10分、第5题20分,共60分)1.填空:2.下列等式正确的是(B )3.分式21x x +,221x -,21x x-的最简公分母是x(x+1)(x-1). 4.化简下列分式.5.把下列各式通分.二、综合应用(每题10分,共20分)7.不改变分式的值,把下列分式中分子、分母的各项系数化为整数.三、拓展延伸(每题10分,共20分)。
部编版人教初中数学八年级上册《第十五章(分式)全章导学案》最新精品完美优秀打印版导学单
最新精品部编版人教初中八年级数学上册第十五章分式优秀导学案(全章完整版)前言:该导学案(导学单)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。
实用性强。
高质量的导学案(导学单)是高效课堂的前提和保障。
(最新精品导学案)15.1 分式15.1.1 从分数到分式【学习目标】1.了解分式的概念,会判断一个代数式是否是分式;2.了解分式产生的背景和分式的概念,掌握分式与整式概念的区别与联系;3.理解并能熟练地求出分式有意义的条件,分式的值为零的条件; 【学习重点】理解分式的概念,分式有意义的条件.【学习难点】能熟练地求出分式有意义的条件,分式的值为零的条件.【知识准备】1.在①3x 2,②11x +,③15x+y ,④a b a b +-, ⑤0,⑥a π•这几个式子中, 单项式有: ____________多项式有: ______ 整式的有: _____________________ (只填序号) 2.由上题我们发现,由数与字母的 ___ 组成的式子叫单项式;几个单项式的和叫 ;单项式和多项式统称 。
【自习自疑】一.阅读教材,完成下列问题: 1.通过思考发现,a s 、s V 、v +20100、v -2060与分数一样,都是 的形式,分数的分子A 与分母B 都是 ,并且B 中都含有 _ ,那么式子 __ 叫做分式。
2.我们小学里学过的分数有意义的条件是 ;那么当__________时,分式BA 才有意义。
二.预习评估1.在代数式-3x ,31y +,5y x -,y x ,πx ,x 81-, 22732xy y x -, 中, 是整式的有_________________ .是分式的有_________________ .2.当x ___________时,分式21x x -有意义 3.使分式2xx +有意义的条件是 ( ) A .x ≠2 B .x ≠-2 C .x ≠2且x ≠-2 D .x ≠04.已知分式4523-+x x ,要使分式的值等于零,则x 等于( ) A .54 B .45- C .32 D .23- 我想问:请你将预习中未能解决的问题和有疑问的问题写下来,等待课堂上与老师和同学探究解决.等级______________ 组长签字_______________【自主探究】【探究一】分式的产生1. 用代数式填空:(1)已知某长方形的面积是102cm ,长为5cm ,则这个长方形的宽为 cm ;(2)已知某长方形的长为a 2cm ,宽为b cm ,则这个长方形的面积为 cm ;(3)已知某长方形的面积是s 2cm ,长为5cm ,则这个长方形的宽为cm ; (4)已知某长方形的面积是102cm ,长为a cm ,则这个长方形的宽为 cm ;(5)一辆汽车行驶s 千米用了t 小时,那么它的平均车速为 千米/小时;一列火车行驶s 千米比这辆汽车少用了1小时,那么它的平均车速为 km/h ;2.思考:(1)以上式子中,是整式的有哪些?(2)不是整式的有哪些?它们的共同特征是:①从形式上看,像 ,即都由 、分数线、 三部分组成;②从内容上看,它们的分母都含有 。
人教版初中数学八年级上册上册第十五章《分式》第一节《分式》教案
-约分与通分的技巧:学生在约分和通分时,往往不能找到最简公分母,需要教授寻找公分母的技巧和方法。
-分式的混合运算:学生在面对分式的混合运算时,难以掌握运算顺序和法则,需要通过典型例题和练习逐步突破。
-分式在实际问题中的应用:学生可能不知道如何将实际问题转化为分式问题,需要通过案例分析,引导学生建立数学模型。
举例:难点在于分式的混合运算,教师应通过以下步骤帮助学生克服难点:
a.通过对比整式的运算顺序,引导学生理解分式混合运算的顺序。
b.通过具体例题,展示分式混合运算的步骤和技巧。
c.设计不同难度的练习题,让学生逐步适应并掌握分式混合运算。
d.在解题过程中,强调分式约分与通分的应用,使运算过程简化。
四、教学流程
五、教学反思
在本次教学活动中,我教授了人教版初中数学八年级上册第十五章《分式》的第一节《分式》。回顾整个教学过程,我认为有几个地方值得反思和改进。
首先,关于导入新课环节,我通过提出与分式相关的生活中的问题来激发学生的兴趣,这是一个较好的切入点。但在实际操作中,我发现部分学生可能并没有完全理解问题的实质,导致后续学习过程中对分式的理解不够深入。因此,在以后的教学中,我需要更加关注学生的反应,适时调整问题的难度,确保学生们能够更好地进入学习状态。
本节课的核心素养目标主要包括:
1.培养学生的数学抽象能力,通过引入分式的概念,让学生理解数学表达形式的简洁性与严谨性;
2.提高学生的逻辑推理能力,在学习分式的性质与运算法则中,使学生掌握逻辑推理方法,形成严密的数学思维;
3.培养学生的数学建模素养,让学生在实际问题中运用分式知识建立数学模型,提高解决实际问题的能力;
人教版数学八年级上册导学案:第15章 分式2 课题:分式的基本性质
课题:分式的基本性质1.类比分数的基本性质,理解分式的基本性质.2.运用分式的基本性质进行分式的恒等变形.重点:理解分式的基本性质. 难点:灵活运用分式的基本性质将分式变形.一、情景导入,感受新知分数的基本性质:一个分数的分子、分母同乘以(或除以)一个不为0的数,分数的值不变.思考下列从左到右的变形成立吗?为什么?(1)1x =1×4x ·4; (2)1x =1·m x ·m ; (3)1x =x -1x (x -1). 二、自学互研,生成新知 【自主探究】阅读教材P 129~P 130例2,完成下面的填空:类比分数的性质可得以下归纳:归纳:分式的基本性质:分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变.用式子表示为A B =A ·C B ·C ,A B =A ÷C B ÷C(C ≠0),其中A ,B ,C 是整式. 填空:(1)x x 2-2x =( 1)x -2;(2)a +b ab =(a 2+ab )a 2b . 【合作探究】不改变分式的值,使下列分式的分子和分母都不含“-”号.(1)-6b -5a ; (2)-x 3y .解:原式=6b 5a ; 解:原式=-x 3y =-x 3y . 归纳:分式的分子、分母和分式本身的符号,同时改变其中两个,分式的值不变. 用式子表示为:A B =-A -B =--A B =-A -B 或-A B =--A -B =-A B =A-B .师生活动①明了学情:学生自主学习,教师巡视全班.②差异指导:对于自学中遇到的问题适时点拨.③生生互助:先自学,对于困惑,同桌、小组交流.三、典例剖析,运用新知【合作探究】例1:不改变分式的值,使分子第一项系数为正,分式本身不带“-”号.(1)-2a -b-a +b ; (2)--x +2y3x -y .解:原式=2a +b a -b ; 解:原式=x -2y3x -y .例2:如果将分式x 2y 22x -y 中的x 与y 同时扩大到原来的2倍,那么分式的值(D ) A .不变 B .扩大到原来的2倍C .扩大到原来的4倍D .扩大到原来的8倍例3:把分式2aa -b 中的a 和b 都变为原来的n 倍,那么该分式的值( C )A .变为原来的n 倍B .变为原来的2n 倍C .不变D .变为原来的4n 倍师生活动①明了学情:学生自主学习,教师巡视全班.②差异指导:对于自学中遇到的问题适时点拨.③生生互助:先自学,对于困惑,同桌、小组交流.四、课堂小结,回顾新知1.分式的基本性质.2.分式基本性质的简单运用.五、检测反馈、落实新知1.下列式子,从左到右变形一定正确的是( C ) A .a b =a +m b +m B .a b =acbcC .bkak =ba D .ab =a 2b 22.把分式xx +y (x ≠0,y ≠0)中分子、分母的x 、y 同时扩大2倍,分式的值(D ) A .都扩大2倍 B .都缩小2倍C .变为原来的14 D .不改变3.不改变分式的值,把下列分式的分子与分母的最高次项的系数化为正数.(1)x +1-2x -1;(2)2-x -x 2+3;(3)-x -1x -1.解:(1)原式=x +1-(2x +1)=-x +12x +1;(2)原式=-(x -2)-(x 2-3)=x -2x 2-3;(3)原式=-(x +1)x -1=-x +1x -1.六、课后作业:巩固新知(见学生用书)。
新人教版八年级数学上册《15.3分式方程应用(4) 》导学案
新人教版八年级数学上册《15.3分式方程应用(4) 》导学案学教目标:1.理解分式方程意义.掌握可化为一元一次方程的分式方程的解法.了解分式方程解的检验方法.2.熟练掌握解分式方程的技巧.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,3.渗透数学的转化思想.学教重点:(1)可化为一元一次方程的分式方程的解法.(2)分式方程转化为整式方程的方法及其中的转化思想.学教难点:检验分式方程解的原因学教过程:一、温故知新:P29-301、前面我们学习了什么方程?如何求解?写出求解的一般步骤。
2、判断下列各式哪个是分式方程.(1)21-=x (2)22=-xx(3)1214112-=+--xxx (4)5432=---xx3、解分式方程:22121--=--xxx163242=--+xx4、解方程小亮同学的解法如下:解:方程两边同乘以x-2,得1-x=-1-2(x-2)解这个方程,得x=2小亮同学的解法对吗?为什么?二、学教互动例、一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v千米/时,则轮船顺流航行的速度为()千米/时,逆流航行的速度为()千米/时,顺流航行100千米所用的时间为()小时,逆流航行60千米所用的时间为()小时。
三、随堂练习:1、某梨园 m 平方米产梨n千克,则平均每平方米产梨_____千克.2、为体验中秋时节浓浓的气息,我校小记者骑自行车前往距学校6千米的新世纪商场采访,10分钟后,小记者李琪坐公交车前往,公交车的速度是自行车的2倍,结果两人同时到达。
求两车的速度各是多少?自学提示:1)、速度之间有什么关系?时间之间有什么关系? 2)、怎样设未知数,根据哪个关系?3)、填表4)、怎样列方程,根据哪个关系?3、某单位将沿街的一部分房屋出租,每间房屋的租金第二年比第一年多500元,所有房屋出租金第一年为9.6万元,第二年为10.2万元。
15章分式复习与小结 导学案
第十四课时 第15章分式复习与小结【学习目标】1.复习整理本章的知识结构,形成知识体系.解决生活中的实际问题. 2.掌握列分式方程解决实际问题的基本方法,深化数学思想的认识. 【学习重点】建立本章知识结构,准确、熟练、灵活地进行分式的四则运算. 一、知识结构:二、熟记知识点1、若A 、B 均为_____式, 且B 中含有_________. 则式子 分式 有意义的条件是 ,值为零的条件是 ,2、分式的基本性质: 分式的分子与分母都乘以(或除以)___________ .分式的值________. 用式子表示:3、通分关键是找____________________,约分与通分的依据都是:______________________4、分式乘分式, , 用式子表示: 分式除以分式, , 用式子表示:5、同分母的分式相加减, 用式子表示:异分母的分式相加减:先 ,化为 分式,再加减。
用式子表示:6、当n 是正整数时,=-na,7、科学计数也可表示一些绝对值较小的数,将他们表示成 的形式,其中n 是 , ≤a< 。
8、解分式方程的步骤:(1)___________________;(2)___________________(3)____________________.(4)三、知识应用1、当x = 时,分式31-x 有意义. 2、一种病菌的直径为0.0000036m ,用科学记数法表示为 .3、某班a 名同学参加植树活动,其中男生b 名(b<a ).若只由男生完成,每人需植树15棵;若只由女生完成,每人需植树 棵.4、已知a 2-6a +9与|b -1|互为相反数,则(a b b a -)÷(a +b )=______。
5、若非零实数a ,b 满足4a 2+b 2=4ab ,则ab =_____。
6、下列各式:()xx x x y x x x 2225 ,1,2 ,34 ,151+---π其中分式共有( )个。
八年级数学上册《第15章 分式》导学案(新版)新人教版
第15章 分式【学习目标】知识与技能:了解分式的概念以及分式与整式概念的区别与联系。
过程与方法:掌握分式有意义的条件,进一步理解用字母表示数的意义,发展符号感。
情感态度与价值观:以描述实际问题中的数量关系为背景,体会分式是刻画现实生活中数量关系的一类代数式。
【学习重点】 分式的概念和分式有意义的条件。
【学习难点】 分式的特点和分式有意义的条件.【自学展示】1、 什么是整式? ,整式中如有分母, 分母中 (含、不含)字母2、 下列各式中,哪些是整式?哪些不是整式?两者有什么区别?a 21;2x+y ;2y x ;a 1 ;xyx 2- ;3a ;5 .3、 阅读“引言”, “引言”中出现的式子是整式吗?4、 自主探究:完成p127的“思考”,通过探究发现,a s 、s V 、v +20100、v-2060与分数一样,都是 的形式,分数的分子A 与分母B 都是 ,并且B 中都含有 。
5、 归纳:分式的意义: 。
代数式a 1 、x y x 2-、a s 、s V 、v +20100、v-2060都是 。
分数有意义的条件是 。
那么分式有意义的条件是 。
【合作学习】例1、在下列各式中,哪些是整式?哪些是分式? (1)5x-7 (2)3x 2-1 (3)123+-a b (4)7)(p n m + (5)—5 (6)1222-+-x y xy x (7)72 (8)c b +54例2、p 128的“例1”填空:(1)当x 时,分式x32有意义 (2)当x 时,分式1-x x有意义(3)当b 时,分式b351-有意义(4)当x 、y 满足关系 时,分式yx yx -+有意义 例3、x 为何值时,下列分式有意义?(1)1-x x (2)15622++-x x x (3)242+-a a【质疑导学】例4、x 为何值时,下列分式的值为0?(1)11 x x (2)392+-x x (3)11--x x【学习检测】1、下列各式中,(1)y x y x -+(2)132+x (3)x x 13-(4)π22y xy x ++(5)5b a -(6)0.(7)43(x+y )整式是 ,分式是 。
人教版八年级数学上册《十五章 分式 列分式方程解决行程实际问题》优课导学案_7
15.3分式方程(3)—列分式方程解实际问题.一、教学目标:1.使学生能分析题目中的等量关系,掌握列分式方程解应用题的方法和步骤,提高学生分析问题和解决问题的能力。
2.列分式方程解决实际问题.3.通过列分式方程解应用题,渗透方程的思想方法。
二、学习重难点:重点:列分式方程解应用题。
难点:根据题意,找出等量关系,正确列出方程。
三、教学准备课件三角板四、教学过程1.复习回顾什么是分式方程?如何解分式方程?2.探究列分式方程解实际问题的步骤例1:某进货员发现一种应季衬衫,预计能畅销,他用8 000元购进一批衬衫,很快销售一空.再进货时,他发现这种衬衫的单价比上一次贵了4 元/件,他用17 600元购进2 倍于第一次进货量的这种衬衫.问第一次购进多少件衬衫?分析:解:设第一次购进x 件衬衫,由题意得,x 217600-x8000=4 方程两边都乘以2x ,约去分母得,17 600-16 000 =8x ,解得 x =200.检验:当x =200时,2x =400≠0,所以,x =200是原分式方程的解,且符合题意.答:第一次购进200件衬衫.例2 某次列车平均提速v km/h .用相同的时间,列车提速前行驶s km ,提速后比提速前多行驶50 km ,提速前列车的平均速度为多少? 思考:(1)这个问题中的已知量有哪些?未知量是什么?(2)你想怎样解决这个问题?关键是什么?表达问题时,用字母不仅可以表示未知数(量),也可以表示已知数(量).解:设提速前列车的平均速度为x km/h ,由题意得x s =vx s ++50 方程两边同乘 x(x+v) ,得S(x+v)=x(s+50)去括号,得 sx+sv=sx+50x移项、合并,得 50x =sv .解得 x=50sv 检验:由于v ,s 都是正数,当x =50sv 时x (x +v )≠0, 所以,x = 50sv 是原分式方程的解,且符合题意. 答:提速前列车的平均速度为 50sv km/h . 3.培养创新意识(学生小组合作交流)上面例题中,出现了用一些字母表示已知数据的形式,这在分析问题寻找规律时经常出现.例2中列出的方程是以x 为未知数的分式方程,其中v ,s 是已知常数,根据它们所表示的实际意义可知,它们是正数.(归纳列分式方程解实际问题的一般步骤及应注意的问题)4.巩固新知(学生四人小组合作)练习1 商场用50 000元从外地采购回一批T 恤衫,由于销路好,商场又紧急调拨18.6万元采购回比上一次多两倍的T 恤衫,但第二次比第一次进价每件贵12元.求第一次购进多少件T 恤衫.练习2 八年级学生去距学校s km 的博物馆参观,一部分学生骑自行车先走,过了t min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是学生骑车速度的2倍,求学生骑车的速度.5.课堂小结(1)借助分式方程解决实际问题时,应把握哪些主要问题?(2)本节课的分式方程的应用方面应注意些什么?举例说明.(3)列分式方程解应用题的一般步骤是什么?6.布置作业教科书习题15.3第6、7、8题7.板书设计15.3 分式方程(3)——列分式方程解实际问题.列分式方程解应用题的一般步骤:(1)审题(2)设未知数(3)根据相等关系列方程(4)解方程(5)检验(6)作答(7)。
人教版八年级上数学第十五章分式方程导学案
人教版八年级上数学第十五章分式分式方程 导学案班级__________姓名_________1.【课标考纲解读】应用分式方程解决生活中的实际问题。
2.【状元培养方案】思维的敏捷、多角度、立体化。
3.【学习目标】1.理解分式方程的概念,会解可化为一元一次方程的分式方程.2. 了解分式方程产生增根的原因,掌握解分式方程验根的方法. 4.【重难点】教学重点:(1)可化为一元一次方程的分式方程的解法.(2)分式方程转化为整式方程的方法及其中的转化思想.教学难点:检验分式方程解的原因 5.【教学方法】自主合作,交流展示 6.】 一、 26~28页二、 独立完成下列预习作业:1.前面我们已经学习了哪些方程?是怎样的方程?如何求解?(1)前面我们已经学过了 方程。
(2)一元一次方程是 方程。
(3)一元一次方程解法 步骤是:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1。
如解方程:2.概念:分式方程:分母中含有 的方程叫分式方程。
3.练习:判断下列各式哪个是分式方程. (1)x +y =5 (2)x+25=2y −z 3π(3)1x 4 y x+5=0 5 x −1+y =5 (6)1x+1≥x+434. 一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?分析:设江水的流速为v 千米/时,填空163242=--+x x轮船顺流航行的速度为千米/时,逆流航行的速度为千米/时,顺流航行100千米所用的时间为小时,逆流航行60千米所用的时间为小时。
由两次航行所用时间相等,可列方程10060=20v20v-+解:两边同乘以最简公分母()()20v v+20-,得()()100v=6020v20-+2000v=1200+60v-100160v=800v=5检验:将v=5代入原方程中,左边= 4,右边=4,左边=右边,因此v=5是原方程的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.1.1 从分数到分式学习目标:1、能正确说出分式的概念,会判断一个代数式是否为分式,会求分式的值。
2、能正确说出分式有意义、分式值为零的条件,并能应用上述两条件解题.学习过程:一、自主学习:问题:1、长方形的面积为10cm ,长为7cm,宽应为cm。
长方形的面积为S,长为a,宽应为2、把体积为200cm 的水倒入底面积为33cm 的圆柱形容器中,水面高度为cm,把体积为V 的水倒入底面积为S 的圆柱形容器中,水面高度为. 102004?等是,分母中字母观察:1. 、、5733SV100602.式子、、等分母中字母、v20?a?Sv20归纳:1.分式的定义:2.分式有意义的条件:,分式无意义的条件3.分式值为零的条件:二、合作探究1.在下列各式中,哪些是整式?哪些是分式?b?3m(n?p)2(4)(3)(1)5x-7 (2)3x-1 2a?1722yxyx??42(5)—5 (6)(7)(8)5b?c2x?17例1:填空:2x有意义(2)当x时,分式有意义)当(1x时,分式3xx?11x?y有意义(4)当x、y满足关系时,分式有意义(3)当b时,分式b35?yx?巩固练习:题3,P课本练习练习册,2128-129三、达标测评1.下列各式中,1 / 2822b?x31ayxyx??yx?3?(4)(5)(6)0(7((1)(2)3))(x+y)2?5x3y?x1x?4整式是,分式是。
x没有意义。
时,分式2.当x=x?22?x13.当x=时,分式的值为0 . om x?1四、课堂小结:谈谈本节课的收获?五、课后作业:小卷15.1.2 分式的基本性质(一)学习目标:能说出分式的基本性质,并能灵活运用此性质将分式变形.学习过程:2 / 28一、自主学习:1、分数的基本性质是。
2、阅读教材P129-130 页内容,完成下列问题:分式的基本性质:分式的与都乘(或除以)的整式,分式的值不变,这个性质叫做。
AA?CAA?C用式子表示是:其中A, B, C 是整式0) C≠=,=(BB?BCB?C二、合作探究1.自学课本P129 例2,尝试完成以下题目:在下面的括号内填上适当的整式,使等式成立:?????2ab63a1?xyx?yx?? (b ≠0) 3))(2)((1?????22baba????a?6??x????????????????2x?23x?(5)(x(4)≠-?)2232x?3x?2yx?4y?a?aa??: :填空= ______, = ______ .2 = _______,.分式的符号法则b?b?b.3.不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数22xx?2?4?3x3?)(2(1)2?1x?2x?5三、学以致用:1、在括号内填上适当的整式.??????3c3c?5a (1)???????????)??2ab2ab(??????4xy?4xy2 )(2????22?????xy(???)6xy6?????????????a?b?b?a??(3)??2??)a?b??(??a?bba?????????????????2x?41(4)x21??????(??11x2?x2??)四、能力提升3 / 281.在括号内注明下列各式成立时,x 的取值应满足的条件.a2axb6b(x?2)?(1()2)?)(()bxb22?a3a(x181x?3(3)?)(3)xx?3?(x?3)(x中的字母x、y 的值都扩大10 2.把分式倍,则分式的值()y1.是原来的C.不变D 10 倍B.扩大20 倍.扩大A10x中的字母x 的值扩大 2 倍,而y 把分式3.缩小到原来的一半,则分式的值()y 2 倍BA.不变.扩大是原来的一半倍C.扩大 4 D.五、课堂小结:谈谈本节课的收获?六、课后作业:小卷分式的基本性质(二)15.1.21、理解并掌握分式的基本性质;:学习目标. 、能运用分式基本性质进行分式的约分2 :学习过程:一、自主学习. 1.分式的基本性质为:___________________________________________ .______________________用字母表示为:P130-131 2、预习看书页,并做好思考,观察和练习:4 / 28125826 =_____;=______;=______.(1)把下列分数化为最简分数:451312(2)根据分数的约分,把下列分式化为最简分式:??ba?13a121. 分式的约2??b?a262a8=__________ 。
=_____。
分定义:最大公因式:所有相同因式的最次幂的积最简分式:二、合作探究1.利用分式的基本性质,将下列各式化为更简单的形式。
2?xxy bc2yx?y)(()3)(1)(222acxy)y(x? 23222bca?259x?y?6?126xxy⑶例3:约分:⑴⑵22y33x?cab159??6xx三、学以致用:(先独立思考,再合作讨论)2222x34y??2aab1?x y?xyx?中是最简分式的有(1)、分式、、、24a4b2ab?1x?y?x .4 个D.2 个C.3 个BA.1 个、下列约分正确的是()2yx?2yx??axm?3?a??30?1??、D、B C 、A、bbmx?yx?2yx???33222y?yx yxyx?x?cba3⑷⑶⑴3、约分⑵222????2ac12xy y?xxy?5 / 28四、能力提升:22?3mm?x2?6x?91、约分:(1)(2)229x??mm2?2a?a322、化简求值:若a= ,求的值23a?7a?12五、课堂小结:谈谈本节课的收获?六、课后作业:小卷15.1.2 分式的基本性质(三)学习目标:1、经历用类比、观察、联想的方法探索分式通分的方法的过程,理解通分与最简公分母的意义.2、能正确熟练地运用分式的基本性质将分式通分.学习过程:一、自主学习:513 1、回顾:异分母分数是如何化成同分母分数的?、、8422、分式的通分定义:最简公分母:6 / 28二、合作探究3a?b2x3x例与4.通分:⑴⑵与22x?5x?5c2abab巩固练习:课本练习P132 第2题三、达标测评:9.通分:x2xy2c3ac与⑵⑴与2222yx?y)(x?bd4bxya?16,,⑷⑶2222?a?2a?a11bc96aba7 / 28五、课堂小结:谈谈本节课的收获?六、课后作业:小卷15.2.1分式的乘除1学习目标:使学生理解并掌握分式的乘除法则,运用法则进行运算,能解决一些与分式有关的实际问题.学习过程:一、自主学习1.你能完成下列运算吗?24522452????== = = 357935792、请写出分数的乘除法法则乘法法则:____________________________________除法法则:____________________________________bdbd??与同伴交流。
、类比上面的分数乘除法运算,猜一猜3 = = acac类比分数的乘除法法则,你能说出分式的乘除法法则吗?乘法法则:分式乘分式,用____________作为积的分子,____________作为积的分母8 / 28除法法则:分式除以分式,把________________________后,再与____________相乘。
用式子表示为:______________________________________________二、合作探究例1、计算:322baba?54xy??⑴;⑵233y4cd2cx2例2、计算:2?4a?4aa?111??⑴;⑵.2222?7mm49?ma?2a?1a?42x3x 例3、计算:(1)??25x?3x?35925?x三、达标测评:1、计算2y2xy163ab12??2?y8x??xy?3))(3)2 (1(2aa54b9x32、计算:2322b25a3a?3b x?4yxy??(1)(2)?22222bab10a??2x?2x?xyy2xy9 / 283、计算:22224a?a?a?16q55p2mmnpn??(1)(2)??.222a?8a?162a?8a?23pq4mn3q五、课堂小结:谈谈本节课的收获?六、课后作业:小卷15.2.1 分式的乘除2学习目标:掌握分式的乘方运算,熟练地进行分式乘除法的混合运算. 学习过程:一、自主学习:1.如何进行分式乘除法运算?22?1?4aay2???2.计算:(1)(2)????22a?2a?1a?4a?47xx??2b??、根据乘方的意义和分式乘法的法则,计算:3=??a??103bb????= =????aa????10 / 28n b??=猜想:??a??归纳:分式乘方的运算法则:二、合作探究32222????c2?2aabab??????????⑴⑵5:计算例????332ac3d?cd??????三、达标测评2334423????c2ab3?6?2xay????、计算:(1)(2)1??????223z3d?bbc??????四、能力提升2??22??211ba?ba?????? a =, b =先化简再求值:其中,????????3232b?2aba2ab??????11 / 28五、课堂小结:谈谈本节课的收获?六、课后作业:小卷课题:15.2.2分式的加减学习目标:1、通过类比分数的加减法运算,猜想、归纳分式的加减法的运算方法,能利用分式的加减法法则熟练的进行运算。
2、进一步了解通分的意义,培养加强计算能力。
学习重点:分式的加减法的运算。
学习难点:异分母分式的加减法的计算。
学习过程:一、自主学习:23152511????=。
=;1、计算:;;==776656342、根据1题的计算过程回忆分数的加减法法则:同分母分数相加减。
异分母分数相加减。
3、模仿分数的加减计算:14111512????=。
=;=;;=bbaamnxy4、计算:bcbcbdbd????=;=;;==;aaaaacac5、归纳分式的加减法法则:同分母分式相加减。
异分母分式相加减。
12 / 28二、合作探究:1、计算:mn5a?3b2xmn???(1)、(2)、(3)、22abab a?ba?ba?1a?12、计算:11x1b?a?ba?((1)、2)、(3)、??22a?ba?bp?qp?qx?yx?yn32m?小结:异分母的分式加减法的一般步骤:)、(4 ???2n2m2?mn?(1)通分,将异分母的分式化成同分母的分式;(2)写成“分母不变,分子相加减”的形式;(3)分子去括号,合并同类项;(4)分子、分母约分,将结果化成最简分式或整式三、学以致用:1、计算:4mm?12a3b??)、(2)、(1 223?3mm?abb105a 2x13y2xy??(3)、(4)222x?8?x64yy2x?2yx?xy注意:分式通分时,要注意几点:(1)如果各分母的系数都是整数时通分,常取它们的系数的最小公倍数,作为最简公分母的系数;(2)若分母的系数不是整数时,先用分式的基本性质将其化为整数,再求最小公倍数;13 / 28(3)分母的系数若是负数时,应利用符号法则,把负号提取到分式前面;(4)若分母是多项式时,先按某一字母顺序排列,然后再进行因式分解,再确定最简公分母。