风荷载标准值的计算
风荷载计算
风荷载计算(总7页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除4.2风荷载当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑物所受的风荷载。
4.2.1单位面积上的风荷载标准值?建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建结构自振特性、体型、平面尺寸、表面状况等因素有关。
?垂直作用于建筑物表面单位面积上的风荷载标准值按下式计算:式中:1.基本风压值Wo?按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最大值确定的风速V0(m/s)按公式确定。
但不得小于0.3kN/m2。
对于特别重要或对风荷载比较敏感的高层建筑,基本风压采用100年重现期的风压值;对风荷载是否敏感,主要与高层建筑的自振特性有关,目前还没有实用的标准。
一般当房屋高度大于60米时,采用100年一遇风压。
《建筑结构荷载规范》(GB50009-2001)给出全国各个地方的设计基本风压。
2.风压高度变化系数μz《荷载规范》把地面粗糙度分为A、B、C、D四类。
A类:指近海海面、海岸、湖岸、海岛及沙漠地区;B类:指田野、乡村、丛林、丘陵及房屋比较稀疏的城镇及城市郊区;C类:指有密集建筑群的城市市区;D类:指有密集建筑群且房屋较高的城市市区;风荷载高度变化系数μz计算公式A类地区=1.379(z/10)0.24B类地区= (z/10)0.32C类地区=0.616(z/10)0.44D类地区=0.318(z/10)0.6位于山峰和山坡地的高层建筑,其风压高度系数还要进行修正,可查阅《荷载规范》。
3.风载体型系数μs风荷载体型系数是指建筑物表面实际风压与基本风压的比值,它表示不同体型建筑物表面风力的大小。
一般取决于建筑建筑物的平面形状等。
计算主体结构的风荷载效应时风荷载体型系数可按书中P57表4.2-2确定各个表面的风载体型系数或由风试验确定。
风荷载计算办法与步骤
12风荷载当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑物所受的风荷载。
2.1风向垂直作用于建筑物表面单位面积上的风荷载标准值(基本风压50年一遇³,单位为kN/m2。
也可以用公式计算基本风压的数值,也不得小于0.3kN/m2。
2.2.32.2.4风压高度变化系数风压高度变化系数在同一高度,不同地面粗糙程度也是不一样的。
规范以B类地面粗糙程度作为标准地貌,给出计算公式。
2.2.6风荷载体形系数1)单体风压体形系数(1)圆形平面;(2)正多边形及截角三角平面,n为多边形边数;(3)高宽比的矩形、方形、十字形平面;(4)V形、Y形、L形、弧形、槽形、双十字形、井字形、高宽比的十字形、高宽比,长宽比的矩形、鼓形平面;(5)未述事项详见相应规范。
2)群体风压体形系数檐口、雨棚、遮阳板、阳台等水平构件计算局部上浮风荷载时,不宜小于米且高宽比的房屋,以及自振周期虑脉动风压对结构发生顺向风振的影响。
且可忽略扭转的可按下式计算:○1g为峰值因子,去g=2.50;为10米高度名义湍流强度,取值如下:○2R为脉动风荷载的共振分量因子,计算方法如下:为结构阻尼比,对钢筋混凝土及砌体结构可取;为地面粗糙修正系数,取值如下:可以由结构动力学计算确定,对于较规则的高层建筑也可采用下列公式近似计算:○3脉动风荷载的背景分量因子,对于体型和质量沿高度均匀分布的高层建筑,计算方法如下:、为系数,按下表取值:为结构第一阶振型系数,可由结构动力学确定,对于迎风面宽度较大的高层建筑,当剪力墙和框架均其主要作用时,振型系数查下表,其中H为结构总高度,结构总高度小于等于梯度≤2H,H为结构总高度,结构总高度小于等于梯度风高度。
【精品文档类】风荷载计算规律及公式
第二部分 风荷载计算一:风荷载作用下框架的弯矩计算(1)风荷载标准值计算公式:0k z s z W w βμμ=⋅⋅⋅ 其中k W 为垂直于建筑物单位面积上的风荷载标准值z β为z 高度上的风振系数,取 1.00z β= z μ为z 高度处的风压高度变化系数 s μ为风荷载体型系数,取 1.30s μ= 0w 为攀枝花基本风压,取00.40w =该多层办公楼建筑物属于C 类,位于密集建筑群的攀枝花市区。
(2)确定各系数数值因结构高度19.830H m m =<,高宽比19.81.375 1.514.4HB==<,应采用风振系数z β来考虑风压脉动的影响。
该建筑物结构平面为矩形, 1.30s μ=,由《建筑结构荷载规范》第3.7查表得0.8s μ=(迎风面)0.5s μ=-(背风面),风压高度变化系数z μ可根据各楼层标高处的高度确定,由表4-4查得标准高度处的z μ值,再用线性插值法求得所求各楼层高度的z μ值。
层数()i H m z μ z β1()/q z KN m 2()/q z KN m7女儿墙底部 17.50.79 1.00 2.370 1.480 6 16.5 0.77 1.00 2.306 1.441 5 13.2 0.74 1.00 2.216 1.385 4 9.9 0.74 1.00 2.216 1.385 3 6.6 0.74 1.00 2.216 1.385 2 3.3 0.74 1.00 2.216 1.385 1 -3.3 0.00 0.00 0.000 0.000(3)计算各楼层标高处的风荷载z 。
攀枝花基本风压取00.40/w KN mm =,取②轴横向框架梁,其负荷宽度为7.2m,由0k z s z W w βμμ=⋅⋅⋅得沿房屋高度分布风荷载标准值。
7.20.4 2.88z z s z z s z q βμμβμμ=⨯=,根据各楼层标高处的高度i H ,查得z μ代入上式,可得各楼层标高处的()q z 见表。
计算风荷载标准值Wk[2]
计算风荷载标准值Wk=βzμsμz w0
式中:Wk——风载荷标准值(KN/m2);
βz ——高度z处的风振系数;鉴于在田野树丛中,此值取1.0;
μs——风载荷体型系数;鉴于在田野树丛中,此值取1.0;
μz ————风压高度变化系数;鉴于在田野树丛中,此值取1.0;
w0 ————基本风压(KN/m2);查北京市50年不遇大风(大于8级)的气象和最大风速资料,风载荷值取0.45 KN/m2 ;
为便于简化计算,将杀虫灯分为4个部分,即太阳能板、杀虫灯、灯杆和基础。
其中太阳能板、杀虫灯、灯杆为承风部位,基础为平衡部分。
1.太阳能板:承风面积S1=0.81m*0.51m*COS40º=0.316m2;
承风阻力P1=0.316m2*0.45 KN/m2 =0.14212KN;
倾翻力矩M1=H1P1=2.65m*0.1422KN=0.37712KN.m;
同理可算:2.杀虫灯部位M2= H2P2=2.2m*0.036KN=0.08KN.m ;
3.灯杆部位M3= H3P3=1.0m*0.144KN=0.144KN.m ;
综上所述,50年不遇的大风产生最大的倾翻力矩为
∑M=M1+M2+M3=0.6 KN.m ;
而杀虫灯底盘用3-M12地脚螺栓固定在混凝土基础上。
混凝土基础的几何尺寸为0.53m*0.53m,高0.6m;混凝土的密度为1.8-2.45;(式中取2.1)即混凝土基础的重量为G=3.54KN;其倾翻阻力矩为
M阻=G*B/2=3.54KN*0.265m=0.938KN.m
经计算,M阻>∑M,故满足要求。
即该基础能够在50年不遇的强风时,不倾翻。
垂直于建筑物表面上的风荷载标准值
垂直于建筑物表面上的风荷载标准值,应按下列公式计算:1、当计算主要承重结构时:Wk =βz·μs·μz·W0式中:Wk ----风荷载标准值(KN/m2)βz ---高度Z 处的风振系数;μs---风荷载体型系数:μz ---风压高度变化系数;W0----基本风压(KN/m2)风压高度变化系数μZA 类指近海面、海岛、海岸、湖岸以及沙漠B 类指田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区C 类指密集建筑裙的城市市区D 类指有密集建筑物裙且房屋较高的城市市中心βz ---高度Z 处的风振系数高度大于30米且高宽比大于1.5考虑。
否则βz =1与结构的自振特性有关,(包括自振周期、振型等,也与结构的高度有关)。
结构在 z 高度处的风振系数βz 可按下式:式中:ξ ----脉动增大系数;ν ----脉动影响系数;φz-- 振型系数;μz---风压高度变化系数。
重要说明: 风振系数:不满足 “ 高度大于30m 且高宽比大于1.5的高柔房屋 ” =1.0.“三水准”抗震设防目标当遭受低于本地区抗震设防烈度的多遇地震影响时,一般不受损坏或不需修理可继续使用。
当遭受相当于本地区抗震设防烈度的地震影响时,可能损坏,经一般修理或不需修理仍可继续使用。
当遭受高于本地区抗震设防烈度的预估的罕遇地震影响时,不致倒塌或发生危及生命的严重破坏。
第一阶段:对绝大多数结构进行小震作用下的结构和构件承载力验算;在此基础上对各类结构按规定要求采取抗震措施。
第二阶段:对一些规范规定的结构进行大震作用下的弹塑性变形验算。
有特殊要求的建筑、地震易倒塌的建筑、有明显薄弱层的建筑,不规则的建筑等Z。
风荷载取值规范
3.1.3 风荷载建筑物受到的风荷载作用大小,与建筑物所处的地理位置、建筑物的形状和高度等多种因素有关,具体计算按照《荷载规范》第7章执行。
1、风荷载标准值计算垂直于建筑物主体结构表面上的风荷载标准值W K ,按照公式(3.1-2)计算:βz ——高度Z 处的风振系数,主要是考虑风作用的不规则性,按照《荷载规范》7.4要求取值。
多层建筑,建筑物高度<30m ,风振系数近似取1。
(1)风荷载体型系数µS 风荷载体型系数,不但与建筑物的平面外形、高宽比、风向与受风墙面所成的角度有关,而且还与建筑物的立面处理、周围建筑物的密集程度和高低等因素有关,一般按照《荷载规表3.1.10 建筑物体型系数取值表注1:当计算重要且复杂的建筑物、及需要更细致地进行风荷载作用计算的建筑物,风荷载体型系数可按照《高层规程》中附录A 采用、或由风洞试验确定。
注4:当多栋或群集的建筑物相互间距离较近时,宜考虑风力相互干扰的群体作用效应。
一般可将单体建筑的体型系数乘以相互干扰增大系数,该系数可参考类似条件的试验资料确定,必要时宜通过风洞试验确定。
注3:檐口、雨蓬、遮阳板、阳台等水平构件,计算局部上浮风荷载作用时,体型系数不宜小于2.0。
W W z s z k μμβ=)21.3(-注4:验算表面围护结构及其连接的强度时,应按照《荷载规范》7.3.3规定,采用局部风压力体型系数。
(2)风压高度变化系数µz设置风压高度变化系数,主要是考虑建筑物随着高度的增加风荷载的增大作用。
对于位于平坦或稍有起伏地形上的建筑物,其风压高度变化系数应根据场地粗糙程度按《荷载规范》7.2要求选用,表3.1.11中列出了常用风压高度变化系数的取值要求。
表3.1.11 风压高度变化系数关于地面粗糙程度的分类:A类:近海海面、海岛、海岸、湖岸及沙漠地区;B类:田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区;C类:有密集建筑群的城市市区;D类:有密集建筑群和且房屋较高的城市市区。
风荷载标准值计算方法
按老版本规范风荷载标准值计算方法:1.1风荷载标准值的计算方法幕墙属于外围护构件,按建筑结构荷载规范(GB50009-2001 2006年版)计算:wk =βgzμzμs1w…… 2006年版]上式中:wk:作用在幕墙上的风荷载标准值(MPa);Z:计算点标高:;βgz:瞬时风压的阵风系数;根据不同场地类型,按以下公式计算(高度不足5m按5m计算):βgz =K(1+2μf)其中K为地面粗糙度调整系数,μf为脉动系数A类场地:βgz =×(1+2μf) 其中:μf=×(Z/10)B类场地:βgz =×(1+2μf) 其中:μf=(Z/10)C类场地:βgz =×(1+2μf) 其中:μf=(Z/10)D类场地:βgz =×(1+2μf) 其中:μf=(Z/10)对于B类地形,高度处瞬时风压的阵风系数:βgz=×(1+2×(Z/10))=μz:风压高度变化系数;根据不同场地类型,按以下公式计算:A类场地:μz=×(Z/10)当Z>300m时,取Z=300m,当Z<5m时,取Z=5m;B类场地:μz=(Z/10)当Z>350m时,取Z=350m,当Z<10m时,取Z=10m;C类场地:μz=×(Z/10)当Z>400m时,取Z=400m,当Z<15m时,取Z=15m;D类场地:μz=×(Z/10)当Z>450m时,取Z=450m,当Z<30m时,取Z=30m;对于B类地形,高度处风压高度变化系数:μz=×(Z/10)=μs1:局部风压体型系数;按《建筑结构荷载规范》GB50009-2001(2006年版)第条:验算围护构件及其连接的强度时,可按下列规定采用局部风压体型系数μs1:一、外表面1. 正压区按表采用;2. 负压区-对墙面,取-对墙角边,取二、内表面对封闭式建筑物,按表面风压的正负情况取或。
风荷载计算方法与步骤
1 风荷载当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑物所受的风荷载。
1.1 单位面积上的风荷载标准值建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。
垂直作用于建筑物表面单位面积上的风荷载标准值ωk (KN/m ²)按下式计算:ωk =βz μs μz ω0风荷载标准值(kN/m 2)=风振系数×风荷载体形系数×风压高度变化系数×基本风压1.1.1 基本风压ω0按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最大值确定的风速v 0(m/s),再考虑相应的空气密度通过计算确定数值大小。
按公式 ω0=12ρv 02确定数值大小,但不得小于0.3kN/m 2,其中ρ的单位为t/m ³,ω0单位为kN/m 2。
也可以用公式ω0=11600v 02计算基本风压的数值,也不得小于0.3kN/m2。
1.1.2 风压高度变化系数μZ风压高度变化系数在同一高度,不同地面粗糙程度也是不一样的。
规范以B 类地面粗糙程度作为标准地貌,给出计算公式。
μZX=(H tB 10)2αB (10H tX )2αX (Z 10)2αXμZA =1.248(Z 10)0.24μZB =1.000(Z )0.30μZC =0.544(Z 10)0.44μZD =0.262(Z 10)0.601.1.3 风荷载体形系数μS1)单体风压体形系数(1)圆形平面μS =0.8;(2)正多边形及截角三角平面μS=0.8+√n,n为多边形边数;(3)高宽比HB≤4的矩形、方形、十字形平面μS=1.3;(4)V形、Y形、L形、弧形、槽形、双十字形、井字形、高宽比HB >4的十字形、高宽比HB>4,长宽比LB≤1.5的矩形、鼓形平面μS=1.4;(5)未述事项详见相应规范。
风荷载取值
3、1、3 风荷载建筑物受到得风荷载作用大小,与建筑物所处得地理位置、建筑物得形状与高度等多种因素有关,具体计算按照《荷载规范》第7章执行。
1、风荷载标准值计算垂直于建筑物主体结构表面上得风荷载标准值W K ,按照公式(3、1-2)计算:βz ——高度Z 处得风振系数,主要就是考虑风作用得不规则性,按照《荷载规范》7、4要求取值。
多层建筑,建筑物高度<30m,风振系数近似取1。
(1)风荷载体型系数µS风荷载体型系数,不但与建筑物得平面外形、高宽比、风向与受风墙面所成得角度有关,而且还与建筑物得立面处理、周围建筑物得密集程度与高低等因素有关,一般按照《荷载规表3、1、10 建筑物体型系数取值表注1:当计算重要且复杂得建筑物、及需要更细致地进行风荷载作用计算得建筑物,风荷载体型系数可按照《高层规程》中附录A 采用、或由风洞试验确定。
注4:当多栋或群集得建筑物相互间距离较近时,宜考虑风力相互干扰得群体作用效应。
一般可将单体建筑得体型系数乘以相互干扰增大系数,该系数可参考类似条件得试验资料确定,必要时宜通过风洞试验确定。
注3:檐口、雨蓬、遮阳板、阳台等水平构件,计算局部上浮风荷载作用时,体型系数不宜小于2、0。
注4:验算表面围护结构及其连接得强度时,应按照《荷载规范》7、3、3规定,采用局部W W z s z k μμβ=)21.3(-风压力体型系数。
(2)风压高度变化系数µz设置风压高度变化系数,主要就是考虑建筑物随着高度得增加风荷载得增大作用。
对于位于平坦或稍有起伏地形上得建筑物,其风压高度变化系数应根据场地粗糙程度按《荷载规范》7、2要求选用,表3、1、11中列出了常用风压高度变化系数得取值要求。
表3、1、11 风压高度变化系数A类:近海海面、海岛、海岸、湖岸及沙漠地区;B类:田野、乡村、丛林、丘陵以及房屋比较稀疏得乡镇与城市郊区;C类:有密集建筑群得城市市区;D类:有密集建筑群与且房屋较高得城市市区。
风荷载取值
3.1.3 风荷载建筑物受到的风荷载作用大小,与建筑物所处的地理位置、建筑物的形状和高度等多种因素有关,具体计算按照荷载规范第7章执行;1、风荷载标准值计算垂直于建筑物主体结构表面上的风荷载标准值W K ,按照公式3.1-2计算:βz ——高度Z 处的风振系数,主要是考虑风作用的不规则性,按照荷载规范7.4要求取值;多层建筑,建筑物高度<30m,风振系数近似取1; 1风荷载体型系数µS风荷载体型系数,不但与建筑物的平面外形、高宽比、风向与受风墙面所成的角度有关,而且还与建筑物的立面处理、周围建筑物的密集程度和高低等因素有关,一般按照荷载规表3.1.10 建筑物体型系数取值表注1:当计算重要且复杂的建筑物、及需要更细致地进行风荷载作用计算的建筑物,风荷载体型系数可按照高层规程中附录A 采用、或由风洞试验确定;注4:当多栋或群集的建筑物相互间距离较近时,宜考虑风力相互干扰的群体作用效应;一般可将单体建筑的体型系数乘以相互干扰增大系数,该系数可参考类似条件的试验资料确定,必要时宜通过风洞试验确定;W W z s z k μμβ=)21.3(-注3:檐口、雨蓬、遮阳板、阳台等水平构件,计算局部上浮风荷载作用时,体型系数不宜小于2.0;注4:验算表面围护结构及其连接的强度时,应按照荷载规范7.3.3规定,采用局部风压力体型系数;2风压高度变化系数µz设置风压高度变化系数,主要是考虑建筑物随着高度的增加风荷载的增大作用;对于位于平坦或稍有起伏地形上的建筑物,其风压高度变化系数应根据场地粗糙程度按荷载规范7.2要求选用,表3.1.11中列出了常用风压高度变化系数的取值要求;表3.1.11 风压高度变化系数关于地面粗糙程度的分类:A 类:近海海面、海岛、海岸、湖岸及沙漠地区;B 类:田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区;C 类:有密集建筑群的城市市区;D 类:有密集建筑群和且房屋较高的城市市区; 3基本风压值W 0基本风压值W 0,单位kN/m 2,以当地比较空旷平坦场地上离地10m 高、统计所得50年一遇10分钟平均最大风速为标准确定的风压值,各地的基本风压可按照荷载规范附录D 中的全国基本风压分布图查用,表3.1.12为浙江省主要城镇基本风压取值参考表;2、基本风压的取值年限荷载规范在附录D 中分别给出了n=10年、n=50年、n=100年一遇的基本风压标准值,工程设计中根据建筑物的使用性质与功能要求,一般按照下列方法选用风压标准值的取值年限:① 临时性建筑物:取n=10年一遇的基本风压标准值;② 一般的工业与民用建筑物:取n=50年一遇的基本风压标准值;③ 特别重要的建筑物、或对风压作用比较敏感的建筑物建筑物高度大于60m :取表3.1.12 浙江省主要城镇基本风压kN/m 2取值参考表n=100年一遇的基本风压标准值;在没有100年一遇基本风压标准值的地区,可近似将50年一遇的基本风压值标准值乘以1.1经验系数以后采用;3、关于风荷载作用的方向问题建筑物受到的风荷载作用来自各个方向,风荷载的主要作用方向与建筑物所在地的风玫瑰图方向一致全国主要城市风玫瑰图,可以查相应的建筑设计资料;工程设计中,一般按照风荷载作用的最大值,来计算建筑物受到的风荷载作用效应;对于抗侧力构件相互垂直布置的建筑物:一般按照两个相互垂直的主轴方向来考虑风荷载的作用效应,详图3.1.3a所示;图3.1.3a 抗侧力构件垂直布置示意图图3.1.3b 抗侧力构件多向布置示意图对于抗侧力构件多向布置的建筑物:一般按照抗侧力构件布置方向,沿着相互垂直的主轴方向次依考虑风荷载的作用效应,详图3.1.3b所示;注意:同一方向,左风荷载作用效应和右风荷载作用效应要分别进行计算;4、风洞试验高层规程3.2.8明确,对于特别重要的建筑物、特别不规则的建筑物,风荷载标准值计算公式3.1-2中的相关计算参数有必要通过风洞试验来确定,以便较精确地计算建筑物受到的风荷载作用效应,确保建筑结构的抗风能力;一般建筑物高度大于200m 、或建筑物高度大于150m 但存在下列情况之一时,宜采用风洞试验来确定建筑物的风荷载作用参数;① 平面形状不规则,立面形状复杂; ② 立面开洞或连体建筑;③ 规范或规程中没有给出体型系数的建筑物; ④ 周围地形或环境较复杂;风洞试验通常由有试验能力和试验资质的高等院校、科研院所完成,按照一定比例制作的建筑物模型置于人工模拟的风环境中,模型上不同部位埋设一定数量的电子测压孔,通过压力传感器输出电流信号、通过数据采集仪自动扫描记录并转为相关的数字信号,再经过一系列的计算机数据处理、模拟分析,可以得到建筑物受到的平均风压力和波动风压力值,供设计采用;多层建筑物,房屋高度小,风荷载作用影响较小,一般不做风洞试验; 5、梯度风基本风压与风速有关,一般风速由地面为零沿高度方向按照曲线逐渐增大,直至距离地面某一高度处达到最大值,上层风速度受地面影响较小,风速较为稳定;不同的地表面粗糙度使风速沿高度增加的梯度速率不同,详图3.1.4所示,风速变化的这种规律,称为梯度风;图3.1.4 风速随高度变化示意图6、特殊情况下基本风压的取值① 当重现期为任意年限R 时,相应风压值可按照公式3.1-2a 进行近似计算:式中:X R ——重现期为R 年的风压值kN /m 2;X 10——重现期为10年的风压值kN /m 2;X 100——重现期为100年的风压值kN /m 2; ② 当城市或建设地点的基本风压值在“全国基本风压分布图”上没有给出时,可根据附近地区规定的基本风压或长期观测资料,通过气象或地形条件的对比分析确定;在分析当地的年最大风速时,往往会遇到其实测风速的条件不符合基本风压规定的标准)21.3(a -)110ln ln )((1010010--+=RX X X X R条件,因而必须将实测的风速资料换算为标准条件的风速资料,然后再进行分析;情形一:当实测风速的位置不是l0m 高度时,标准条件风速的换算原则上应由气象台站根据不同高度风速的对比观测资料,并考虑风速大小的影响,给出非标准高度风速的换算系数,以确定标准条件高度的风速资料;当缺乏相应的观测资料时,可近似按照公式3.1-2b 进行换算:式中:ν——标准条件下l0m 高度处、时距为10分钟的平均风速值m /s ;νz ——非标准条件下z 高度m 处、时距为10分钟的平均风速值m /s ; α——实测风速高度换算系数,可根据设计手册,近似按表3.1.13取值;表3.1.13 实测风速高度换算系数参考表情形二:当最大风速资料不是时距10分钟的平均风速时,标准条件风速的换算虽然世界上不少国家采用基本风压标准值中的风速基本数据为10分钟时距的平均风速,但也有一些国家不是这样;因此对某些国外工程需要按照我国规范设计时,或国内工程需要与国外某些设计资料进行对比时,会遇到非标准时距最大风速的换算问题;实际上时距10分钟的平均风速与其它非标准时距的平均风速的比值是不确定的,表3.1.14给出了非标准时距平均风速与时距10分钟平均风速的换算系数,必要时可按照公式3.1-2c 做近似换算:式中:ν——时距为10分钟的平均风速值m /s ;νt ——时距为t 分钟的平均风速值m /s ;β——换算系数,可根据设计手册,近似按表3.1.14取用;表3.1.14 不同时距与10分钟时距风速换算系数参考表情形三:当已知风速重现期为T 年时,标准条件风压的换算当已知10分钟时距平均风速最大值的重现期为T 年时,其基本风压与重现期为50年的基本风压的关系,可按照公式3.1-2d 进行简单换算:式中:W 0——重现期为50年的基本风压值kN /m 2;W ——重现期为T 年的基本风压值kN /m 2;γ——换算系数,可根据设计手册,近似按表3.1.15取用;表3.1.15 不同重现期与重现期为50年的基本风压的换算系数参考表③ 山区的基本风压zv v α=β/t v v =γ/0W W =)21.3(b -)21.3(c -)21.3(d -山区的基本风压应通过调查后确定,如无实际资料,可按照当地邻近空旷平坦地面的基本风压值,乘以一放大系数后采用;任何情况下,山区的基本风压值不得小于0.3kN/m 2;7、围护结构的风荷载计算计算围护结构上作用的风荷载值,必须考虑阵风的影响,按照公式3.1-2e 进行:W K ——风荷载标准值,单位kN/m 2;W 0——基本风压值,单位kN/m 2,取值要求同前;βgz ——高度Z 处的阵风系数,按照荷载规范7.5要求取值;µS ——风荷载体型系数,按照荷载规范7.3.3要求取值;对于檐沟、雨蓬、遮阳板等突出构件,风力作用垂直向上,风荷载体型系数为2;µz ——风压高度变化系数,取值要求同前; 8、玻璃幕墙的风荷载计算玻璃幕墙作为围护结构的一种表现形式,在民用建筑中应用较多,其抗风设计必须满足围护结构风荷载标准值的计算要求;由于玻璃幕墙单块受荷面积较小,根据玻璃幕墙工程技术规范JGJ102-96规定,垂直于玻璃幕墙表面上的风荷载标准值,可近似按照公式3.1-2f 计算:公式中有关高度变化系数µz 、基本风压W 0的计算取值要求同前,对于体型系数µS 的取值要求如下:竖直幕墙外表面按照±1.5取用;斜玻璃幕墙可根据实际情况按照荷载规范要求取用;当建筑物进行了风洞试验时,直接根据风洞试验结果确定;任何情况下,设计玻璃幕墙用风荷载标准值W k 不得小于1.0kN/m 2;0W W z s gz K μμβ=025.2W W z s K μμ=)21.3(f -)21.3(e -。
风荷载标准值
风荷载标准值
风荷载标准值是将风力和风向按一定规定计算出来,用于对建筑物及其各种部件受风活动影响的程度进行参考的指标值。
一、计算标准
1. 计算参数:首先要确定计算的参数,包括计算的区域、风场及计算的强度均衡值之类的。
2. 计算方法:确定计算方法,根据计算所用的参数确定,一般可以采用大气环境的压力,蒸汽来源计算风压和风荷载的方法以及其他计算方法。
3. 风参数:还要确定不同区域不同时段的风参数,如最大风速,最大内力,均值风速等参数。
二、应用标准
1. 设计:确定构件在一定风速情况下,根据风荷载标准值,使用合理的设计方法防止受风活动的影响。
2. 检测:根据风荷载标准值,确定检测的点,进行受风影响的检测,确定预警阈值,保证建筑物安全使用。
3. 风环境:利用风荷载标准值,结合有限元分析,重点关注一些风环境,以确保设施及周围物体的安全。
三、风荷载标准值应用
1. 建筑物设计:根据风荷载标准值,对建筑物进行合理的设计,防止受风活动的影响,保证建筑物的安全使用。
2. 桥梁构件设计:根据风荷载标准值,对桥梁进行合理的设计,防止受风激励的影响,确保桥梁安全使用。
3. 钢结构确认:根据风荷载标准值,对钢梁等结构进行确认,确保钢梁等结构的安全使用。
4. 地面结构确认:根据风荷载标准值,确认地面结构,确保地面结构安全使用,
能够更好地抵御风荷载以及不利天气情况。
5. 抗震设计:根据风荷载标准值,对抗震设计进行确认,保证建筑物在发生地震情况下,不受外力影响,并能实现救援的目的。
风荷载标准值的计算
风荷载标准值的计算文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-风荷载标准值的计算中国建筑标准设计研究所刘达民????1.概况建筑结构荷载规范GB50009-2001是最新版本代替了GBJ9-87,从2002年3月1日起施行。
风荷载属于基础性标准,只有50年的实测数据。
风荷载计算,第风荷载对门、窗、幕墙而言是主要荷载,其破坏作用较大,属矛盾的主要方面。
建筑结构荷载规范中风荷载虽公式未变,但参数、取值有所变化。
修改后的规范更合理,计算简化,与国际上的做法接近。
门、窗、幕墙产品测试中的P3与Wk是对应关系。
2.新老规范差异风荷载部分主要差异有:a)把主体结构与围护结构区别对待。
其中阵风系数与体型系数在取值上有区别。
b)基本风压的调整由原来30年一遇改为50年一遇,提高10%左右,但地点不同,有所区别;起点由原来0.25kPa改为0.30kPa,内陆地区变化不大,但沿海地区较大;c)规范中同时提供667个城市地区的参数可直接选用,个别仍有例外d)围护结构可仍按50年选取,专业规范另有规定的除外,例JGJ113要加大10%等。
e)高度系数作了调整由原来A、B、C三类调为A、B、C、D四类,与国际上划分一致。
A、B类与原来一样,但C类稍有降低,D类为新增加。
将A、B、C、D四类数据化:即当拟建房2km为半径的迎风半径影响范围内的房屋高度和密集度区分。
取该地区主导风和最大风向为准。
以建筑物平均高度来划分地面粗糙度。
当≥18M为D类;9M<≤18M为C类;<9M为B类;对山坡、山峰给出了计算公式。
f)体型系数作了调整增加了灵活性:即①可借鉴有关资料②宜作风洞③应作风洞④可直接采用。
(1)外表面正压区:按表7.3.1采用负压区:对墙面,取-1.0;对墙角边,取-1.8;对坡度>10°的屋脊部位,取-2.2;对檐口、雨棚、遮阳板,取-2.0。
风荷载计算解析及例题
3.风荷载(wind load)1)《规范》规定的一般情况垂直于建筑物表面上的风荷载标准值:Wx=βHsHzWg其中,w,——风荷载标准值,单位为kN/m²。
w,——基本风压,单位为kN/m²。
β,——高度z处的风振系数。
μ——风荷载体型系数。
μz——风压高度变化系数,由教材表10—4查得。
表7.2.1 风压高度变化系数料高地面或海平面高度(m)地面租粉度类别A B C ()5 10 15 20 30 40 50 60 70 S) 90 100 150 200 250 300 350 400 2450 1.171.381.521.631.801.922.032.122.202.272.342.482.642.832.993.123.123.123.121.001.001.141.251.421.561.671.771.801.952.022.092.382.612.80)2.973.123.123.120.740.740.740.841.001.131.251.351.451.541.621.702.032.34)2.542.752.943.123.120.620.620.620.620.620.7300.840.931.021.111.191.271.611.922.192.452.6%2.913.12表7.3.1风荷载体型系数项次类别体型及体型系数p.1封闭式落地双坡屋面α0°30°≥60°中间值按插入法计算2封闭式双坡屋面≤15°30°≥60°Hs-0.6+0.8中间值按插入法计算2)单层厂房的风荷载(1)不考虑风振系数,取β。
=1(2)屋盖顶面斜坡部分的风荷载计算,要将垂直屋面表面的荷载投影到水平面上。
(3)均按檐口、柱顶离室外地面距离作为计算高度z 3 ) 排架中风荷载的计算(1)排架上的风荷载类型A.柱顶以下墙面:按均布风荷载考虑kN/mB.柱顶至屋脊间屋盖部分:仍取为均布的,其对排架的作用则按作用在柱顶的水平集中风荷载W 考虑严0.58-0.75.-山工8.0+A。
《建筑结构荷载规范》-风荷载计算
60° +1.0 +0.7 -0.4 -0.2 -0.5
15° +1.0 +0.3 +0.4 +0.5 +0.4
60° 30° +1.0 +0.4 +0.3 +0.4 +0.2
60° +1.0 +0.8 -0.3
0
-0.5
15° +1.0 +0.5 +0.7 +0.8 +0.6
90° 30° +1.0 +0.6 +0.8 +0.9 +0.7
表8.2.1 风压高度变化系数 μz
离地面或海
地面粗糙度类别
平面高度
A
B
C
D
(m)
5
1.09
1.00
0.65
0.51
10
1.28
1.00
0.65
0.51
15
1.42
1.13
0.65
0.51
20
1.52
1.23
0.74
0.51
30
1.67
1.39
0.88
0.51
40
1.79
1.52
1.00
0.60
50
33
封闭式
带下沉天窗
18
的
双坡屋面
或拱形屋面
封闭式
带下沉天窗 19
的双跨双坡
或拱形屋面
封闭式
带天窗挡风 20
板
的双跨屋面
封闭式
带天窗挡风 21
板
的双跨屋面
封闭式 22
锯齿形屋面
风荷载标准值计算
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
风荷载标准值的计算
中国建筑标准设计研究所刘达民
1.概况建筑结构荷载规范GB50009-2001是最新版本代替了GBJ9-87,从2002年3月1日起施行。
风荷载属于基础性标准,只有50年的实测数据。
风荷载计算,第与黑体字属强制性条文,必须执行。
风荷载对门、窗、幕墙而言是主要荷载,其破坏作用较大,属矛盾的主要方面。
建筑结构荷载规范中风荷载虽公式未变,但参数、取值有所变化。
修改后的规范更合理,计算简化,与国际上的做法接近。
门、窗、幕墙产品测试中的P3与Wk是对应关系。
2.新老规范差异风荷载部分主要差异有:a)把主体结构与围护结构区别对待。
其中阵风系数与体型系数在取值上有区别。
b)基本风压的调整由原来30年一遇改为50年一遇,提高10%左右,但地点不同,有所区别;起点由原来改为,内陆地区变化不大,但沿海地区较大;c)规范中同时提供667个城市地区的参数可直接选用,个别仍有例外d)围护结构可仍按50年选取,专业规范另有规定的除外,例JGJ113要加大10%等。
e)高度系数作了调整由原来A、B、C三类调为A、B、C、D四类,与国际上划分一致。
A、B类与原来一样,但C类稍有降低,D类为新增加。
将A、B、C、D四类数据化:即当拟建房2km为半径的迎风半径影响范围内的房屋高度和密集度区分。
取该地区主导风和最大风向为准。
以建筑物平均高度来划分地面粗糙度。
当≥18M为D类;9M<≤18M为C类;<9M为B类;对山坡、山峰给出了计算公式。
f)体型系数作了调整增加了灵活性:即①可借鉴有关资料②宜作风洞③应作风洞④可直接采用。
g)第条专对围护结构而言的(1)外表面正压区:按表采用
负压区:对墙面,取-;对墙角边,取-;对坡度>10°的屋脊部位,取-;对檐口、雨棚、遮阳板,取-。
注:屋面、墙角边的划分:作用宽度,作用高度,起点应大于。
(2)内表面对封闭式建筑物,按外表面风压的正负情况取-或。
第条还指出群体效应,要求体型系数要乘以相互干扰增大系数。
详见《工程抗风设计计算手册》的规定h)增加阵风系数(即瞬时风压)属新增加项目,且已计算完成,可直接采用。
过去是定数,现为变数,且不可混用。
3.风荷载标准值计算a)根据GB50009-2001的规定,可以区分为标准型与非标准型二大类:非标准型,即山坡、海岛、群体效应和需调查等状态而言。
公式Wk=βɡzμsμzW0式中,Wk——风荷载标准值 kPa(kN/㎡)μs ——体型系数※正压区,按条规定,可风洞试验结果,也可按表条取,最不利表面+-=+ ※负压区,按条规定有墙面,取-+(-)=-墙角,取-+(—)=-
屋脊,取-+(—)=-檐口,雨棚,遮阳板,取-+(-)=-μz ——高度系数:可查表规定,也可自行计算。
计算时按,W0——基本风压 kPa(kN/㎡)※可从附图或附表D4中查到。
b)计算实例例,北京市有一幢100M高建筑物,求风荷载标准值。
注:未交待型体、具体地点、风洞试验、群体干扰等情况。
解一、公式Wk=βɡzμsμzW0式中参数选取:βɡz——查表为A—,B—,C—;D—;μs——取正压区为+-=+ 取负压区为-+(-)=-μz——查表为A—,B—,C—,D—;W0——查表为50年一遇。
代入型式计算:Wk-A类=× ××= kPa 提高46% Wk-B类=× ××= kPa 提高30% Wk-C类=× ××= kPa 提高18% Wk-D类=× ××= kPa 以此为100% 解二、按JGJ102-96规定计算,且采用GBJ9-87规定公式,Wk=βzμsμzW0式中,βz——规定取μs——规定取±μz——规定取A—,B—,C—。
W0——取代入公式计算,Wk-A类=×±××=± kPa Wk-B类=×±××=± kPa Wk-C 类=×±××=± kPa分析:两者比较,计算出入不大。
4.注意事项a)新老规范不能混用,虽然公式未变化,参数有出入。
b)圆弧型建筑物,负压区最大可达-,如按条规定最大为-,有待探讨。
c)建筑年限也有不同GB50009规定为:10年、50年、100年。
GB50068规定为:5年、25年、50年、100年,且是强制性条文,使用时应注意。
d)风荷载计算当高度>300M时没有参数,高层应注意,双方协商。
e)当高楼林立时,风荷载标准值计算应考虑群体干扰因素。