北师大版高一数学必修试卷及答案
北师大版高一数学必修试卷及答案
高一数学必修2考试卷十二厂中学 屈丽萍一、选择题(本大题共12小题,每小题5分,共60分)1、已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.则该几何体的体积为( )(A )48 (B )64 (C )96 (D )1922、已知A (x 1,y 1)、B (x 2,y 2)两点的连线平行y 轴,则|AB |=( )A 、|x 1-x 2|B 、|y 1-y 2|C 、 x 2-x 1D 、 y 2-y 13.棱长都是1的三棱锥的表面积为( ) A. 3 B. 23 C. 33 D. 434.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( )A .25πB .50πC .125πD .都不对5、已知正方体外接球的体积是323π,那么正方体的棱长等于 ( D ) (A )22 (B )233 (C )423(D )433 6、若l 、m 、n 是互不相同的空间直线,α、β是不重合的平面,则下列命题中为真命题的是( )A .若//,,l n αβαβ⊂⊂,则//l nB .若,l αβα⊥⊂,则l β⊥C. 若,//l l αβ⊥,则αβ⊥ D .若,l n m n ⊥⊥,则//l m7、如图,在正方体1111ABCD A B C D -中,E F G H ,,,分别为1AA ,AB ,1BB ,11B C 的中点,则异面直线EF 与GH 所成的角等于( )A.45° B.60° C.90° D.120°8、方程(x-2)2+(y+1)2=1表示的曲线关于点T (-3,2)的对称曲线方程是: ( )A 、 (x+8)2+(y-5)2=1B 、(x-7)2+(y+4)2=2C 、 (x+3)2+(y-2)2=1D 、(x+4)2+(y+3)2=29、已知三点A (-2,-1)、B (x ,2)、C (1,0)共线,则x 为: ( )A 、7B 、-5C 、3D 、-110、方程x 2+y 2-x+y+m=0表示圆则m 的取值范围是 ( )A 、 m ≤2B 、 m<2C 、 m<21D 、 m ≤21 11、过直线x+y-2=0和直线x-2y+1=0的交点,且垂直于第二直线的直线方程为 ( )A 、+2y-3=0B 、2x+y-3=0C 、x+y-2=0D 、2x+y+2=012、圆心在直线x=y 上且与x 轴相切于点(1,0)的圆的方程为: ( )A 、(x-1)2+y 2=1B 、(x-1)2+(y-1)2=1C 、(x+1)2+(y-1)2=1D 、(x+1)2+(y+1)2=1二、填空题:(每小题5分,共20分)13、直线x=2y-6到直线x=8-3y 的角是 。
新北师大版高一数学必修一期末测试卷一(含详细解析)
新北师大版高一必修一期末测试卷(共2套 附解析)综合测试题(一)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2016·全国卷Ⅰ理,1)设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B =( )A .(-3,-32)B .(-3,32)C .(1,32)D .(32,3)2.(2015·湖北高考)函数f (x )=4-|x |+lg x 2-5x +6x -3 的定义域( )A .(2,3)B .(2,4]C .(2,3)∪(3,4]D .(-1,3)∪(3,6]3.下列各组函数,在同一直角坐标中,f (x )与g (x )有相同图像的一组是( )A .f (x )=(x 2)12,g (x )=(x 12 )2B .f (x )=x 2-9x +3,g (x )=x -3C .f (x )=(x 12 )2,g (x )=2log 2xD .f (x )=x ,g (x )=lg10x4.函数y =ln x +2x -6的零点,必定位于如下哪一个区间( ) A .(1,2) B .(2,3) C .(3,4)D .(4,5)5.已知f (x )是定义域在(0,+∞)上的单调增函数,若f (x )>f (2-x ),则x 的取值范围是( )A .x >1B .x <1C .0<x <2D .1<x <26.已知x 12 +x -12=5,则x 2+1x的值为( )A .5B .23C .25D .277.(2014·山东高考)已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图像如图,则下列结论成立的是( )A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <18.若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域均为R ,则( ) A .f (x )与g (x )均为偶函数 B .f (x )为偶函数,g (x )为奇函数 C .f (x )与g (x )均为奇函数 D .f (x )为奇函数,g (x )为偶函数9.(23)23 ,(25)23 ,(23)13 的大小关系为 ( )A .(23)13 >(25)23 >(23)23B .(25)23 >(23)13 >(23)23 C .(23)23 >(23)13 >(25)23D .(23)13 >(23)23 >(25)2310.已知函数f (x )=log 12 x ,则方程(12)|x |=|f (x )|的实根个数是( )A .1B .2C .3D .200611.若偶函数f (x )在(-∞,-1]上是增函数,则下列关系式中,成立的是( )A .f (-32)<f (-1)<f (2)B .f (-1)<f (-32)<f (2)C .f (2)<f (-1)<f (-32)D .f (2)<f (-32)<f (-1)12.如果一个点是一个指数函数的图像与一个对数函数的图像的公共点,那么称这个点为“好点”,在下面的五个点M (1,1),N (1,2),P (2,1),Q (2,2),G (2,12)中,“好点”的个数为( )A .0B .1C .2D .3第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中横线上) 13.若已知A ∩{-1,0,1}={0,1},且A ∪{-2,0,2}={-2,0,1,2},则满足上述条件的集合A 共有________个.14.(2014·浙江高考)设函数f (x )=⎩⎪⎨⎪⎧x 2+2x +2,x ≤0,-x 2,x >0.若f (f (a ))=2,则a =________.15.用二分法求方程x 3+4=6x 2的一个近似解时,已经将一根锁定在区间(0,1)内,则下一步可断定该根所在的区间为________.16.函数y =log 13(x 2-3x )的单调递减区间是________三、解答题(本大题共6个小题,满分70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设全集U 为R ,A ={x |x 2+px +12=0},B ={x |x 2-5x +q =0},若(∁U A )∩B ={2},A ∩(∁U B )={4},求A ∪B . 18.(本小题满分12分)(1)不用计算器计算:log 327+lg25+lg4+7log 72+(-9.8)0 (2)如果f (x -1x )=(x +1x)2,求f (x +1).19.(本小题满分12分)已知函数f (x )=-3x 2+2x -m +1. (1)当m 为何值时,函数有两个零点、一个零点、无零点; (2)若函数恰有一个零点在原点处,求m 的值.20.(本小题满分12分)已知函数f (x )是定义在R 上的奇函数,并且当x ∈(0,+∞)时,f (x )=2x .(1)求f (log 213)的值;(2)求f (x )的解析式.21.(本小题满分12分)(2015·上海高考)已知函数f (x )=ax 2+1x ,其中a 为常数(1)根据a 的不同取值,判断函数f (x )的奇偶性,并说明理由; (2)若a ∈(1,3),判断函数f (x )在[1,2]上的单调性,并说明理由.22.(本小题满分12分)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=a x -1.其中a >0且a ≠1.23.(1)求f (2)+f (-2)的值; (2)求f (x )的解析式;(3)解关于x 的不等式-1<f (x -1)<4,结果用集合或区间表示.一.选择题 1.[答案] D[解析] A ={x |x 2-4x +3<0}={x |1<x <3},B ={x |2x -3>0}={x |x >32}.故A ∩B ={x |32<x <3}.故选D.2.[答案] C[解析] 由函数y =f (x )的表达式可知,函数f (x )的定义域应满足条件:⎩⎪⎨⎪⎧4-|x |≥0,x 2-5x +6x -3>0,解得⎩⎪⎨⎪⎧-4≤x ≤xx >2且x ≠3.即函数f (x )的定义域为(2,3)∪(3,4],故应选C.3.[答案] D[解析] 选项A 中,f (x )的定义域为R ,g (x )的定义域为[0,+∞);选项B 中,f (x )的定义域为(-∞,-3)∪(-3,+∞),g (x )的定义域为R ;选项C中,f (x )=(x 12 )2=x ,x ∈[0,+∞),g (x )=2log 2x ,x ∈(0,+∞),定义域和对应关系都不同;选项D 中,g (x )=lg10x =x lg10=x ,故选D.4.[答案] B[解析] 令f (x )=ln x +2x -6,设f (x 0)=0, ∵f (1)=-4<0,f (3)=ln3>0, 又f (2)=ln2-2<0,f (2)·f (3)<0, ∴x 0∈(2,3). 5.[答案] D[解析] 由已知得⎩⎨⎧x >02-x >0x >2-x⇒⎩⎪⎨⎪⎧x >0x <2x >1,∴x ∈(1,2),故选D.6.[答案] B[解析] x 2+1x =x +1x=x +x -1=(x 12+x -12)2-2=52-2=23. 故选B. 7.[答案] D[解析] 本题考查对数函数的图像以及图像的平移.由单调性知0<a <1.又图像向左平移,没有超过1个单位长度.故0<c <1,∴选D. 8.[答案] B[解析] f (x )=3x +3-x 且定义域为R ,则f (-x )=3-x +3x ,∴f (x )=f (-x ),∴f (x )为偶函数. 同理得g (-x )=-g (x ),∴g (x )为奇函数.故选B. 9.[答案] D[解析] ∵y =(23)x 为减函数,13<23,∴(23)13 >(23)23 . 又∵y =x 23在(0,+∞)上为增函数,且23>25,∴(23)23 >(25)23 , ∴(23)13 >(23)23 >(25)23 .故选D. 10.[答案] B[解析] 在同一平面直角坐标系中作出函数y =(12)|x |及y =|log 12x |的图像如图所示,易得B.11.[答案] D[解析] ∵f (x )为偶函数,∴f (2)=f (-2).又∵-2<-32<-1,且f (x )在(-∞,-1)上是增函数,∴f (2)<f (-32)<f (-1).12.[答案] C[解析] ∵指数函数过定点(0,1),对数函数过定点(1,0)且都与y =x 没有交点, ∴指数函数不过(1,1),(2,1)点,对数函数不过点(1,2),∴点M 、N 、P 一定不是好点.可验证:点Q (2,2)是指数函数y =(2)x 和对数函数y =log 2x 的交点,点G (2,12)在指数函数y=(22)x上,且在对数函数y =log 4x 上.故选C. 二.填空题 13.[答案] 4[解析] ∵A ∩{-1,0,1}={0,1}, ∴0,1∈A 且-1∉A .又∵A ∪{-2,0,2}={-2,0,1,2}, ∴1∈A 且至多-2,0,2∈A . 故0,1∈A 且至多-2,2∈A .∴满足条件的A 只能为:{0,1},{0,1,2},{0,1,-2},{0,1,-2,2},共有4个. 14.[答案]2[解析] 此题考查分段函数、复合函数,已知函数值求自变量. 令f (a )=t ,则f (t )=2. ∵t >0时,-t 2<0≠2,∴t ≤0. 即t 2+2t +2=2,∴t =0或-2.当t =0时,f (a )=0,a ≤0时,a 2+2a +2=0无解. a >0时,-a 2=0,a =0无解.当t =-2时,a ≤0,a 2+2a +2=-2无解 a >0时-a 2=-2,a = 2. 15.[答案] (12,1)[解析] 设f (x )=x 3-6x 2+4, 显然f (0)>0,f (1)<0, 又f (12)=(12)3-6×(12)2+4>0,∴下一步可断定方程的根所在的区间为(12,1).16. [答案] (3,+∞)[解析] 先求定义域,∵x 2-3x >0,∴x >3或x <0, 又∵y =log 13u 是减函数,且u =x 2-3x .即求u 的增区间.∴所求区间为(3,+∞). 三.解答题17.[解析] ∵(∁U A )∩B ={2},A ∩(∁U B )={4}, ∴2∈B,2∉A,4∈A,4∉B ,根据元素与集合的关系,可得⎩⎪⎨⎪⎧ 42+4p +12=022-10+q =0,解得⎩⎪⎨⎪⎧p =-7,q =6.∴A ={x |x 2-7x +12=0}={3,4},B ={x |x 2-5x +6=0}={2,3},经检验符合题意. ∴A ∪B ={2,3,4}.18.[解析] (1)原式=log 3332 +lg(25×4)+2+1=32+2+3=132. (2)∵f (x -1x )=(x +1x)2=x 2+1x 2+2=(x 2+1x 2-2)+4=(x -1x )2+4∴f (x )=x 2+4,∴f (x +1)=(x +1)2+4=x 2+2x +5.19.[解析] (1)函数有两个零点,则对应方程-3x 2+2x -m +1=0有两个根,易知Δ>0, 即Δ=4+12(1-m )>0,可解得m <43;Δ=0,可解得m =43;Δ<0,可解得m >43.故m <43时,函数有两个零点;m =43时,函数有一个零点;m >43时,函数无零点.(2)因为0是对应方程的根,有1-m =0,可解得m =1.20.[解析] (1)因为f (x )为奇函数,且当x ∈(0,+∞)时,f (x )=2x , 所以f (log 213)=f (-log 23)=-f (log 23)=-2log 23=-3.(2)设任意的x ∈(-∞,0),则-x ∈(0,+∞), 因为当x ∈(0,+∞)时,f (x )=2x ,所以f (-x )=2-x , 又因为f (x )是定义在R 上的奇函数,则f (-x )=-f (x ), 所以f (x )=-f (-x )=-2-x , 即当x ∈(-∞,0)时,f (x )=-2-x ; 又因为f (0)=-f (0),所以f (0)=0,综上可知,f (x )=⎩⎪⎨⎪⎧2x ,x >00,x =0-2-x,x <0.21.[解析] (1)f (x )的定义域为{x |x ≠0,x ∈R },关于原点对称, f (-x )=a (-x )2+1-x =ax 2-1x ,当a =0时,f (-x )=-f (x )为奇函数,当a ≠0时,由f (1)=a +1,f (-1)=a -1,知f (-1)≠-f (1),故f (x )即不是奇函数也不是偶函数.(2)设1≤x 1<x 2≤2,则f (x 2)-f (x 1)=ax 22+1x 2-ax 21-1x 1=(x 2-x 1)[a (x 1+x 2)-1x 1x 2], 由1≤x 1<x 2≤2,得x 2-x 1>0,2<x 1+x 2<4,1<x 1x 2<4, -1<-1x 1x 2<-14,又1<a <3,所以2<a (x 1+x 2)<12,得a (x 1+x 2)-1x 1x 2>0,从而f (x 2)-f (x 1)>0,即f (x 2)>f (x 1),故当a ∈(1,3)时,f (x )在[1,2]上单调递增. 23.[解析] (1)∵f (x )是奇函数, ∴f (-2)=-f (2),即f (2)+f (-2)=0. (2)当x <0时,-x >0, ∴f (-x )=a -x -1.由f (x )是奇函数,有f (-x )=-f (x ), ∵f (-x )=a -x -1,∴f (x )=-a -x +1(x <0).∴所求的解析式为f (x )=⎩⎪⎨⎪⎧a x -1(x ≥0)-a -x +1(x <0).(3)不等式等价于⎩⎪⎨⎪⎧x -1<0-1<-a -x +1+1<4或⎩⎪⎨⎪⎧ x -1≥0-1<a x -1-1<4,即⎩⎪⎨⎪⎧x -1<0-3<a -x +1<2或⎩⎪⎨⎪⎧x -1≥00<a x -1<5.当a >1时,有⎩⎨⎧ x <1x >1-log a 2或⎩⎨⎧x ≥1x <1+log a 5注意此时log a 2>0,log a 5>0,可得此时不等式的解集为(1-log a 2,1+log a 5). 同理可得,当0<a <1时,不等式的解集为R . 综上所述,当a >1时,不等式的解集为(1-log a 2,1+log a 5); 当0<a <1时,不等式的解集为R .。
北师大版高一数学试卷(含答案)(必修一、五)
一、单选题1.设集合,则()A .B.C.D.【答案】B2.已知,则向量在方向上的投影为()A.B.C.D.【答案】B由题意得:向量在方向上的投影为:本题正确选项:3.已知,,则a,b,c的大小关系为()A.B.C.D.【答案】D,,因为,所以,,故,故选:D.4.已知为等差数列,其前项和为,若,,则公差等于()A.B.C.D.【答案】C由题意可得,又,所以,故选C.5.若,则()A.B.C.1D.【答案】C【详解】∵,∴,故选:C.6.已知等差数列的前项和为,,,则数列的前2020项和为()A.B.C.D.【答案】A因为数列是等差数列,所以.设公差为,因为,所以解方程组得所以数列的通项公式为,所以.设为数列的前项和,则∴7.如图是函数的部分图象2,则该解析式为()A.B.C.D.根据图象可得:,最小正周期,,经过,,,,,所以,所以函数解析式为:.故选:D8.已知函数在闭区间有最大值3,最小值2,则m的取值范围为()A.B.C.D.【答案】D解:,作出函数的图象,如图所示,当时,取得最小值,,且因为函数在闭区间上有最大值,最小值,则实数的取值范围是.故选:.9.已知O,N,P在所在平面内,且,,且,则点O,N,P依次是的()A.重心外心垂心B.重心外心内心C.外心重心垂心D.外心重心内心【答案】C由题:,所以O是外接圆的圆心,取中点,,,即所在直线经过中点,与中线共线,同理可得分别与边的中线共线,即N 是三角形三条中线交点,即重心,,,,,即,同理可得,即P是三角形的垂心.故选:C10.已知函数在上为减函数,则的取值范围是()A.B.C.D.【答案】B由可知为单调递减函数由复合函数单调性性质可知,当为减函数时对数部分为增函数,即由对数定义域的要求可知,在时恒成立所以当时,满足解得综上可知,,即11.已知函数在其定义域内单调递减,若不等式恒成立,则的取值范围()A.B.C.D.【答案】A【详解】函数在其定义域内单调递减,且,,令,则恒成立,由,可得,所以,12.已知定义在R上的奇函数,满足,当时,,若函数,在区间上有2020个零点,则m的取值范围是()A.B.C.D.【答案】A由题意,函数为R上奇函数,所以,且,又,可得,可得函数的图象关于点对称,联立可得,所以是以2为周期的周期函数,又由函数的周期为2,且关于点对称,因为当时,,由图象可知,函数和的图象在上存在四个零点,即一个周期内有4个零点,要使得函数,在区间上有2020个零点,其中都是函数的零点,可得实数满足,即.故选A.13.已知向量,,若,则实数x的值是________.【答案】【解析】【分析】根据向量垂直的条件,利用向量的数量积的运算公式,准确运算,即可求解,得到答案.【详解】由题意,向量,,因为,即,解得.故答案为:.14.已知数列的首项,,则的通项______.【答案】【解析】【分析】由已知条件可得,再利用等差数列通项公式的求法求解即可.【详解】解:由两边同除以可得,,即,所以数列以1为首项,1为公差的等差数列,所以,所以.15.已知,,若数列单调递减,则的最小值为__________.【答案】解:,分段数列在每一段上都单调递减,所以单调递减,等价于当时,成立,当时,成立所以的最小值为16.若存在实数,使得时,函数的值域也为,其中且,则实数的取值范围是______.【答案】【解析】【详解】为增函数,且时,函数的值域也为,,相当于方程有两不同实数根,有两不同实根,即有两解,整理得:,令,有两个不同的正数根,只需即可,解得,故答案为:三、解答题17.已知.(1)求函数的最小正周期及单调递减区间;(2)求函数在区间的取值范围.【答案】(1),,;(2).【详解】(1)由题意,化简得所以函数的最小正周期∵的减区间为,由,得.所以函数的单调递减区间为,.(2)因为∵,所以,即有.所以,函数在区间上的取值范围是.18.已知向量,.(1)若,求的值;(2)若,求实数的值;(3)若与的夹角是钝角,求实数的取值范围.【答案】(1)(2)(3)且.【详解】(1)因为向量,,且,所以,解得,所以;(2)因为,且,所以,解得;(3)因为与的夹角是钝角,则且与不共线.即且,所以且.【点睛】本题考查平面向量坐标运算的加减、数乘,平行、垂直的坐标表示,还考查了两向量夹角为钝角,转化为数量积小于零且不共线的问题,属于中档题.19.数列满足,且,(1)求数列的通项公式;(2)记,求数列的前项和.【答案】(1);(2)【解析】【详解】(1)∵,∴,∴∵,∴,∴数列是以1为首项,以1为公差的等差数列∴,∴(2)∵,∴∴∴20.已知数列为公差的等差数列,数列为公比的等比数列,数列满足,且有,(1)求和的通项公式;(2)求数列的前项和.【答案】(1),;(2)【详解】(1)由题意可得,,可令,可得,即有,解得(舍去),即则由等差数列通项公式可得,由等比数列通项公式可得;(2),前n项和21.已知函数(,)的图象的相邻两条对称轴之间的距离为4,且有一个零点为.(1)求函数的解析式;(2)若,且,求的值;(3)若在上恒成立,求实数的取值范围.【答案】(1);(2);(3)【详解】(1)因为函数图象的相邻两条对称轴之间的距离为4,所以函数的最小正周期是8.所以,解得.所以.因为函数有一个零点,所以,得().解得().由知,,所以;(2)由,得,即,由,得,所以.所以(3)由,得,所以当时,,若在上恒成立,则在上恒成立,则,即,解得.故的取值范围为.22.已知函数是奇函数.(1)求实数的值;(2)若,对任意有恒成立,求实数取值范围;(3)设,若,问是否存在实数使函数在上的最大值为?若存在,求出的值;若不存在,说明理由.【答案】(1)(2)(3)不存在,理由见解析.【详解】(1)函数的定义域为R,且为奇函数所以,即解得(2)由(1)可知当时,因为,即解不等式可得所以在R上单调递减,且所以不等式可转化为根据函数在R上单调递减所不等式可化为即不等式在恒成立所以恒成立化简可得由打勾函数的图像可知,当时,所以(3)不存在实数.理由如下:因为代入可得,解得或(舍)则,令,易知在R上为单调递增函数所以当时,,则根据对数定义域的要求,所以满足在上恒成立即在上恒成立令,所以,即又因为所以对于二次函数,开口向上,对称轴为因为所以所以对称轴一直位于的左侧,即二次函数在内单调递增所以,假设存在满足条件的实数,则:当时,由复合函数单调性的判断方法,可知为减函数,所以根据可知,即解得,所以舍去当时,复合函数单调性的判断方法可知为增函数,所以根据可知,即解得,所以舍去综上所述,不存在实数满足条件成立.。
北师大版高一数学必修2圆的方程练习题含答案
北师大版高一数学必修2圆的方程练习题含答案§2.2.1 圆的方程重难点:会根据不同的已知条件,利用待定系数法求圆的标准方程;了解圆的一般方程的代数特征,能实现一般方程与标准方程间的互化,根据已知条件确定方程中的系数,D、E、F.经典例题:求过三点A(0,0),B(1,1),C(4,2)的圆的方程,并求这个圆的半径长和圆心坐标.当堂练习:1.点(1,1)在圆(x-a)2+(y+a)2=4的内部,则a的取值范围是()A.-1<a<a<-1或a="">1 D.a=±1</a2.点P(m2,5)与圆x2+y2=24的位置关系是()A.在圆内 B.在圆外 C.在圆上 D.不确定3.方程(x+a)2+(y+b)2=0表示的图形是()A.点(a,b)B.点(-a,-b)C.以(a,b)为圆心的圆D.以(-a,-b)为圆心的圆4.已知一圆的圆心为点(2,-3),一条直径的两个端点分别在x轴和y轴上,则此圆的方程是()A.(x-2)2+(y+3)2=13 B.(x+2)2+(y-3)2=13 C.(x-2)2+(y+3)2=52 D.(x+2)2+(y-3)2=525.圆(x-a)2+(y-b)2=r2与两坐标轴都相切的充要条件是()A.a=b=r B.|a|=|b|=r C.|a|=|b|=|r|≠0 D.以上皆对6.圆(x-1)2+(y-3)2=1关于2x+y+5=0对称的圆方程是()A.(x+7)2+(y+1)2=1 B.(x+7)2+(y+2)2=1 C.(x+6)2+(y+1)2=1 D.(x+6)2+(y+2)2=17.如果圆的方程为x2+y2+kx+2y+k2=0,那么当圆面积最大时,圆心坐标为()A.(-1,1) B.(1,-1) C.(-1,0) D.(0,-1)8.圆x2+y2-2Rx-2Ry+R2=0在直角坐标系中的位置特征是()A.圆心在直线y=x上 B.圆心在直线y=x上, 且与两坐标轴均相切C.圆心在直线y=-x上 D.圆心在直线y=-x上, 且与两坐标轴均相切9.如果方程x2+y2+Dx+Ey+F=0与x轴相切于原点,则()A.D=0,E=0,F≠0 B.E=0,F=0,D≠0 C.D=0,F=0,E≠0 D.F=0,D≠0,E≠010.如果方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0) 所表示的曲线关于直线y=x对称,那么必有()A.D=E B.D=F C.E=F D.D=E=F11.方程x4-y4-4x2+4y2=0所表示的曲线是()A.一个圆 B.两条平行直线 C.两条平行直线和一个圆 D.两条相交直线和一个圆12.若a≠0, 则方程x2+y2+ax-ay=0所表示的图形()A.关于x轴对称B.关于y轴对称C.关于直线x-y=0对称D.关于直线x+y=0对称13.圆的一条直径的两端点是(2,0)、(2,-2),则此圆方程是()A.x2+y2-4x+2y+4=0 B.x2+y2-4x-2y-4=0 C.x2+y2-4x+2y-4=0D .x 2+y 2+4x+2y+4=014.过点P (12,0)且与y 轴切于原点的圆的方程为__________________.15.圆(x-4)2+(y-1)2=5内一点P (3,0),则过P 点的最短弦的弦长为 _____,最短弦所在直线方程为___________________.16.过点(1,2)总可以向圆x 2+y 2+kx+2y+k 2-15=0作两条切线,则k 的取值范围是_______________.17.已知圆x 2+y 2-4x-4y+4=0,该圆上与坐标原点距离最近的点的坐标是 ___________,距离最远的点的坐标是________________.18.已知一圆与直线3x+4y-2=0相切于点P (2,-1),且截x 轴的正半轴所得的弦的长为8,求此圆的标准方程.19.已知圆C :x 2+y 2-4x-6y+12=0, 求在两坐标轴上截距相等的圆的切线方程.20.已知方程x 2+y 2-2(t+3)x+2(1-4t 2)y+16t 4+9=0表示一个圆,(1)求t 的取值范围;(2)求该圆半径r 的取值范围.21.已知曲线C :x 2+y 2-4mx+2my+20m-20=0(1)求证不论m 取何实数,曲线C 恒过一定点;(2)证明当m≠2时,曲线C 是一个圆,且圆心在一条定直线上;(3)若曲线C 与y 轴相切,求m 的值.§2.2.1 圆的方程经典例题:解:设所求的圆的方程为:022=++++F Ey Dx y x∵(0,0),(11A B ,),C(4,2)在圆上,所以它们的坐标是方程的解.把它们的坐标代入上面的方程,可以得到关于F E D ,,的三元一次方程组,即??=+++=+++=02024020F E D F E D F解此方程组,可得:0,6,8==-=F E D 王新敞∴所求圆的方程为:06822=+-+y x y x 王新敞542122=-+=F E D r ;32,42-=-=-F D 王新敞得圆心坐标为(4,-3). 或将06822=+-+y x y x 左边配方化为圆的标准方程,25)3()4(22=++-y x ,从而求出圆的半径5=r ,圆心坐标为(4,-3) 王新敞当堂练习答案:1.A;2.B;3.B;4.A;5.C;6.A;7.D;8.B;9.C; 10.A; 11.D; 12.D; 13.A; 14. (x-6)2+y 2=36; 15. 23,x+y-3=0; 16.--338,23,338; 17. (2-2,2-2), (2+2,2+2); 18. 解:设所求圆圆心为Q (a,b ),则直线PQ 与直线3x+4y-2=0垂直,即1)43(21-=-?-+a b ,(1) 且圆半径r=|PQ|=22224)1()2(+=++-b b a ,(2) 由(1)、(2)两式,解得a=5或a= -511(舍),当a=5时,b=3,r=5, 故所求圆的方程为(x-5)2+(y-3)2=25. 19. 解:圆C 的方程为(x-2)2+(y-3)2=1, 设圆的切线方程为a y a x +=1或y=kx ,由x+y-a=0,d=25,25,12|32|±=+∴±==-+y x a a 得.由kx-y=0,d=x y k k k )3322(,3326,11|32|2±=∴±==+-得. 综上,圆的切线方程为x+y-52±=0或(2332±)x-y=0. 20. 解:(1)方程表示一个圆的充要条件是D 2+E 2-4F =4(t+3)2+4(1-4t 2)2-4(16t 4+9)>0, 即:7t 2-6t-1<0, .171<<-∴t (2)r 2= D 2+E 2-4F =4(t+3)2+4(1-4t 2)2-4(16t 4+9)=-28t 2+24t+4=-28(t-73)2+764, 21. 解:(1)曲线C 的方程可化为:(x 2+y 2-20)+m(-4x+2y+20)=0,由-==?=++-=-+240202402022y x y x y x , ∴不论m 取何值时,x =4, y =-2总适合曲线C 的方程,即曲线C 恒过定点(4, -2).(2)D =-4m, E =2m, F =20m-20, D 2+E 2-4F =16m 2+4m 2-80m+80=20(m-2)2.778,0,764,02???? ??∈∴??? ??∈∴r r∵m≠2, ∴(m-2)2>0, ∴D 2+E 2-4F>0, ∴曲线C 是一个圆, 设圆心坐标为(x, y), 则由-==m y m x 2 消去m 得x+2y =0, 即圆心在直线x+2y =0上.(3)若曲线C 与y 轴相切,则m≠2,曲线C 为圆,其半径r=2)2(20-m , 又圆心为(2m, -m),则2)2(20-m =|2m|, 255±=∴m .。
2024-2025年北师大版数学必修第一册指数函数的图象和性质的应用(带答案)
第2课时 指数函数的图象和性质的应用必备知识基础练知识点一 指数函数的定义域和值域 1.函数y =2x-1 的定义域是( ) A .(-∞,0) B .(-∞,0] C .[0,+∞) D.(0,+∞) 2.求下列函数的定义域和值域: (1)y =35x -1;(2)y =(12)x2-2x -3;(3)y =4x -2x+1.知识点二 指数型不等式的解法 3.若0.72x -1≤0.7x2-4,则x 的取值范围是( )A .[-1,3]B .(-∞,-1]∪[3,+∞)C .[-3,1]D .(-∞,-3]∪[1,+∞) 4.(1)解不等式:(12 )3x -1≤2;(2)已知x x2-3x +1<a x +6(a >0,且a ≠1),求x 的取值范围.知识点三 指数型函数的单调性5.若函数f (x )=(13 )|x -2|,则f (x )的单调递减区间是( )A .(-∞,2]B .[2,+∞)C .[-2,+∞) D.(-∞,-2] 6.若函数y =2-x2+xx -1在区间(-∞,3)上单调递增,则实数a 的取值范围是________.7.已知定义域为R 的函数f (x )=a -23x +1 (a ∈R )是奇函数.(1)求a 的值;(2)判断函数f (x )在R 上的单调性,并证明你的结论; (3)求函数f (x )在R 上的值域.关键能力综合练1.函数f (x )=1-2x+1x +3的定义域为( )A .(-3,0]B .(-3,1]C.(-∞,-3)∪(-3,0] D .(-∞,-3)∪(-3,1]2.函数f (x )=⎝ ⎛⎭⎪⎫13 -x 2+4x 的值域为( ) A .[81,+∞) B.⎣⎢⎡⎭⎪⎫181,+∞ C .⎝ ⎛⎦⎥⎤-∞,-181 D .(-∞,-81]3.函数f (x )=(15)x2+xx在区间[1,2]上是减函数,则实数a 的取值范围是( )A .a ≤-4B .a ≤-2C .a ≥-2D .a >-44.已知集合A ={}x |y =3+2x -x 2 ,B ={}y |y =e x+a (a ∈R ),若A ∩B =∅,则a 的取值范围为( )A .(-∞,-1]B .(-∞,-1)C .(3,+∞)D .[3,+∞)5.函数f (x )=(18)|x +2|的部分图象大致为( )6.(易错题)函数y =(14 )x +(12)x+1的值域为( )A .[34 ,+∞) B.(34 ,+∞)C .(1,+∞) D.[1,+∞)7.不等式(13)x -4>3-2x的解集是________.8.若函数y =|2x-1|在(-∞,m ]上单调递减,则m 的取值范围是________. 9.(探究题)已知函数f (x )=(13)xx2-4x +3(a ∈R ).(1)若a =-1,求f (x )的单调区间; (2)若f (x )的最大值为3,求a 的值; (3)若f (x )的值域为(0,+∞),求a 的值.核心素养升级练1.(多选题)已知函数f (x )=3x-(13 )x ,则f (x )( )A .是奇函数B .是偶函数C .在R 上是增函数D .在R 上是减函数2.(学科素养—逻辑推理与数学运算)已知函数f (x )=4x-a ·2x+4. (1)当a =5时,解关于x 的不等式f (x )>0; (2)当x ∈[0,1]时,求f (x )的最小值g (a ).第2课时 指数函数的图象和性质的应用必备知识基础练1.答案:C解析:由2x-1≥0,得2x≥1,∴x ≥0.选C. 2.解析:(1)由5x -1≥0,得x ≥15 ,所以所求函数的定义域为⎩⎨⎧⎭⎬⎫x |x ≥15 . 由5x -1 ≥0,得y ≥1,所以所求函数的值域为[1,+∞). (2)定义域为R .∵x 2-2x -3=(x -1)2-4≥-4, ∴(12)x2-2x -3≤(12 )-4=16. 又∵(12)x2-2x -3>0,∴函数y =(12)x2-2x -3的值域为(0,16].(3)函数的定义域为R .y =(2x )2-2x +1=(2x -12 )2+34,∵2x >0,∴当2x=12 ,即x =-1时,y 取最小值34 ,∴函数的值域为[34 ,+∞).3.答案:A解析:∵函数y =0.7x在R 上为减函数, 且0.72x -1≤0.7x2-4,∴2x -1≥x 2-4,即x 2-2x -3≤0. 解得-1≤x ≤3,故选A.4.解析:(1)∵2=(12)-1,∴原不等式可以转化为(12 )3x -1≤(12 )-1.∵y =(12 )x在R 上是减函数,∴3x -1≥-1,∴x ≥0. 故原不等式的解集是{x |x ≥0}. (2)分情况讨论:①当0<a <1时,函数f (x )=a x(a >0,且a ≠1)在R 上是减函数,∴x 2-3x +1>x +6,∴x2-4x -5>0,解得x <-1或x >5;②当a >1时,函数f (x )=a x(a >0,且a ≠1)在R 上是增函数,∴x 2-3x +1<x +6,∴x 2-4x -5<0,解得-1<x <5.综上所述,当0<a <1时,x <-1或x >5;当a >1时,-1<x <5.5.答案:B解析:因为f (x )=(13 )|x -2|为复合函数,则f (u )=(13 )u,u (x )=|x -2|,f (u )对u 是减函数,u (x )在[2,+∞)为增函数,在(-∞,2]为减函数,由复合函数知,f (x )的单调递减区间是[2,+∞).6.答案:a ≥6 解析:y =2-x2+xx -1在(-∞,3)上单调递增,即二次函数y =-x 2+ax -1在(-∞,3)上单调递增,因此需要对称轴x =a2≥3,解得a ≥6.7.解析:(1)若存在实数a 使函数f (x )为R 上的奇函数,则f (0)=0,得a =1. 当a =1时,f (x )=1-23x +1.∵f (-x )=1-23-x +1 =1-2·3x1+3x =1-2(3x+1)-21+3x =-1+21+3x =-f (x ),∴f (x )为R 上的奇函数.∴存在实数a =1,使函数f (x )为R 上的奇函数. (2)f (x )在R 上是增函数.证明如下:设x 1,x 2∈R 且x 1<x 2,则f (x 1)-f (x 2)=23x 2+1-23x 1+1=2(3x 1−3x 2)(3x 1+1)(3x 2+1)∵y =3x在R 上是增函数,且x 1<x 2, ∴3x 1<3x 2且(3x 1+1)( 3x 2+1)>0. ∴f (x 1)-f (x 2)<0,∴f (x 1)<f (x 2). ∴f (x )是R 上的增函数.(3)f (x )=1-23x +1 中,3x+1∈(1,+∞),∴23x+1∈(0,2). ∴f (x )的值域为(-1,1).关键能力综合练1.答案:A解析:由题意知⎩⎪⎨⎪⎧1-2x≥0,x +3>0, 解得-3<x ≤0,所以函数f (x )的定义域为(-3,0].故选A.2.答案:B解析:二次函数y =-x 2+4x 开口向下, 当x =2时,最大值为4,函数y =⎝ ⎛⎭⎪⎫13 t是单调递减函数,所以f (x )=(13)-x 2+4x 的值域为⎣⎢⎡⎭⎪⎫181,+∞ .故选B.3.答案:C解析:记u (x )=x 2+ax =(x +a2 )2-a 24,其图象为抛物线,开口向上,对称轴为直线x=-a 2.∵函数f (x )=(15)x 2+xx 在区间[1,2]上是减函数,∴函数u (x )在区间[1,2]上是增函数. 而u (x )在[-a2 ,+∞)上单调递增,∴-a2 ≤1,解得a ≥-2,故选C.4.答案:D解析:由已知,集合A 即函数y =3+2x -x 2的定义域, 由不等式3+2x -x 2≥0,即x 2-2x -3≤0,解得-1≤x ≤3,∴A ={}x |y =3+2x -x 2 ={x |-1≤x ≤3}=[-1,3],集合B 即函数y =e x +a 的值域,因为指数函数y =e x的值域为(0,+∞),所以函数y =e x+a 的值域为(a ,+∞),∴B ={}y |y =e x+a =(a ,+∞),∵A ∩B =∅,∴a 的取值范围是[3,+∞).故选D. 5.答案:B解析:令x =-2,得f (-2)=1,排除C 、D ;令x =0,得f (0)=164 ,排除A.故选B.6.答案:C解析:令t =(12 )x ,t ∈(0,+∞),则原函数可化为y =t 2+t +1=(t +12 )2+34 .因为函数y =(t +12 )2+34 在(0,+∞)上是增函数,所以y >(0+12 )2+34=1,即原函数的值域是(1,+∞).故选C. 7.答案:(-4,+∞) 解析:∵3-2x=(13 )2x ,∴(13 )x -4>(13 )2x .又函数y =(13)x 是单调递减函数,∴x -4<2x ,∴x >-4.故不等式的解集为(-4,+∞).8.答案:(-∞,0]解析:在平面直角坐标系中作出y =2x的图象,把图象沿y 轴向下平移1个单位得到y =2x-1的图象,再把y =2x-1的图象在x 轴下方的部分关于x 轴翻折,其余部分不变,如图实线部分,得到y =|2x-1|的图象.由图可知y =|2x-1|在(-∞,0]上单调递减,∴m ∈(-∞,0].9.解析:(1)当a =-1时,f (x )=(13)-x2-4x +3,令h (x )=-x 2-4x +3,由于h (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =(13 )t在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增, 即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2). (2)令g (x )=ax 2-4x +3,则f (x )=(13 )g (x ),由于f (x )的最大值为3,所以g (x )的最小值为-1,当a =0时,f (x )=(13)-4x +3,无最大值;当a ≠0时,有⎩⎪⎨⎪⎧a >03a -4a=-1 ,解得a =1,所以当f (x )的最大值为3时,a 的值为1.(3)由指数函数的性质,知要使y =(13 )g (x )的值域为(0,+∞).应使g (x )=ax 2-4x +3的值域为R ,当a =0时,g (x )=-4x +3,值域为R ,符合题意. 当a ≠0时,g (x )为二次函数,其值域不为R ,不符合题意. 故f (x )的值域是(0,+∞)时,a 的值为0.核心素养升级练1.答案:AC解析:∵f (x )=3x-(13)x ,x ∈R ,∴f (-x )=3-x -3x =-f (x ),因此函数f (x )为奇函数.又y 1=3x,y 2=-(13 )x 均为R上的增函数,∴函数f (x )=3x-(13)x 在R 上是增函数.故选AC.2.解析:(1)当a =5时,f (x )=4x -5·2x +4,令t =2x >0,h (t )=t 2-5t +4. 由t 2-5t +4>0,可得t >4或t <1,即x >2或x <0,故解集为(-∞,0)∪(2,+∞). (2)令2x=t ∈[1,2],φ(t )=t 2-at +4,对称轴:t =a2 .①当a2<1,即a <2时,g (a )=φ(1)=5-a ;②当1≤a 2≤2,即2≤a ≤4时,g (a )=φ⎝ ⎛⎭⎪⎫a 2 =-a 24+4;③当a2>2,即a >4时,g (a )=φ(2)=8-2a ;综上所述,g (a )=⎩⎪⎨⎪⎧5-a ,a <2-a24+4,2≤a ≤48-2a ,a >4.。
(北师大版)高中数学必修第一册 第四章综合测试试卷03及答案
第四章综合测试一、选择题(本大题共10小题,共50分)1.若3log 14a ,则实数a 的取值范围是( )A .304æöç÷èø,B .34æö+¥ç÷èøC .314æöç÷èø,D .()3014æö+¥ç÷èøU ,,2.已知2log 0.2a =,0.22b =,0.30.2c =,则( )A .a b c<<B .a c b<<C .c a b<<D .b c a<<3.设227a =,则3log 2等于( )A .3aB .3a C .13aD .3a4.已知a ,b ,c 均大于1,且1log log 4c c a b =g ,则下列不等式一定成立的是( )A .ac b≥B .bc a≥C .ab c≥D .ab c≤5.已知5log 2x =,2log y =123z -=,则下列关系正确的是( )A .x z y<<B .x y z<<C .z x y<<D .z y x<<6.“{}12m Î,”是“ln 1m <”成立的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件7.已知函数()()log 2a f x x =+,若图象过点()63,,则()2f 的值为( )A .2-B .2C .12D .12-8.已知2510a b ==,则11a b+=( )A .1B .2C .12D .159.已知函数()ln xf x x=,若()2a f =,()3b f =,()5c f =,则a ,b ,c 的大小关系是( )A .b c a<<B .b a c<<C .a c b<<D .c a b<<10.如果函数()f x 的图象与函数()x g x e =的图象关于直线y x =对称,则()24f x x -的单调递增区间为( )A .()0+¥,B .()2+¥,C .()02,D .()24,二、填空题(本大题共6小题,共30分)11.已知函数()()()log 401a f x ax a a =-¹>,且在[]01,上是减函数,则a 取值范围是________.12.不等式()2log 1020x -≥的解集为________.13.已知函数()()2log 13f x x =++,若()25f a +=,则a =________.14.已知()12log 11x +≥,则实数x 的取值范围是________.15.若()lg lg 2lg 2x y x y +=-,则xy=________.16.已知函数()()()log 201a f x x a a =-¹>,恒过定点M 的坐标为________;若2a =则()34f =________.三、解答题(本大题共5小题,共70分)17.(1)()()3122log 22641log ln 349e p -+æö+-+++ç÷èø;(2)若lg 2a =,lg3b =,求5log 12的值(结果用a ,b 表示)18.(1()1132081274e p -æöæö--++ç÷ç÷èøèø;(2(3)已知a ,b ,c 为正实数,x y z a b c ==,1110x y z++=,求abc 的值.19.函数()()2log 21x f x =-.(1)解不等式()1f x <;(2)若方程()()4log 4x f x m =-有实数解,求实数m 的取值范围.20.已知函数()()()()log 2log 201a a f x x x a a =+--¹>,且.(1)求函数()f x 的定义域;(2)判断函数()f x 的奇偶性;(3)解关于x 的不等式()()log 3a f x x ≥.21.设函数()13lg 1x xf x x-=++.(1)试判断函数()()()2f x f xg x +-=和函数()()()2f x f x h x --=在定义域内的奇偶性;(2)令()()3x x f x j =-,求不等式()()2x x j j --<的解集.第四章综合测试答案解析一、1.【答案】C【解析】解:3log 14a 等价于:3log log 4a a a >,可得134a a ìïíïî>>(无解)或034a a ìïíïî<<1>,解得314a æöÎç÷èø.故选:C.2.【答案】B【解析】解:22log 0.2log 10a ==<,0.20221b ==>,0.3000.20.21=∵<<,()0.30.201c =Î∴,,a c b ∴<<,故选B.3.【答案】D【解析】因为227a =,所以2233log 273log 3log 2a ===,则33log 2a=.4.【答案】C【解析】a ∵,b ,c 均大于1,且1log log 4c c a b =g ,log c a ∴、log c b 大于零,则2log log log log 2c c c c a b a b +æöç÷èøg ≤,即2log log 142c c a b +æöç÷èø≤,()log 1c ab ∴≥或()log 1c ab -≤,当且仅当log log c c a b =,即a b =时取等号,a ∵,b ,c 均大于1,则log 1c ab ≥,解得ab c ≥,故答案选C.5.【答案】A【解析】解:551log 2log 2x ==<,2log 1y =,121312z -æö==ç÷èø,.x z y ∴<<.故选:A.6.【答案】A【解析】解:对数函数的性质知ln10=,ln 2ln 1e =<,从而知{}12m Î,是ln 1m <的充分条件,反过来由ln 0m <得到0m e <<,m ∴并不是只能为1,2,“{}12m Î,”是“ln 1m <”成立的充分不必要条件,故选A.7.【答案】B【解析】解:将点()63,代入()()log 2a f x x =+中,得()3log 62log 8a a =+=,即38a =,2a =,所以()()2log 2f x x =+,所以()()22log 222f =+=.故选B.8.【答案】A【解析】解:2510a b ==∵,2log 10a =∴,5log 10b =,101010251111log 2log 5log 101log 10log 10a b +=+=+==∴,故选A.9.【答案】D【解析】解:由已知ln 2ln 33ln 22ln 3ln8ln 902366a b ---=-==<,所以a b <,ln 2ln 55ln 22ln 5ln 32ln 250251010a c ---=-==>,所以a c >,c a b ∴<<.故选D.10.【答案】C【解析】解:由题意可得函数()f x 与()x g x e =的互为反函数,故()ln f x x =,()()224ln 4f x x x x -=-,令240t x x =->,解得04x <<.故()24f x x -的定义域为()04,,本题即求函数()24f x x -在()04,上的增区间.再利用二次函数的性质可得函数()24f x x -在()04,上的增区间为()02,,故选:C.二、11.【答案】()14,【解析】解:因为0a >,所以4t ax =-是减函数,又因为函数()()()log 401a f x ax a a =-¹>,且在[]01,上是减函数,所以log a y t =是增函数,所以得1410a a ìí-´î>>,解得14a <<,a 取值范围是()14,.故答案为()14,.12.【答案】92æù-¥çúèû,【解析】解:不等式()2log 1020x -≥可化为()22log 102log 1x -≥,即1021x -≥,解得92x ≤;所以函数()f x 的解集为92æù-¥çúèû,.故答案为:92æù-¥çúèû,.13.【答案】1【解析】解:由题意可得()()22log 335f a a +=++=,故()2log 32a +=,解得1a =.故答案为1.14.【答案】[)1112æù--+¥çúèûU ,,【解析】解:()12log 11x +≥,()12log 11x +∴≥或()12log 11x +-≤,解得1012x +<≤或12x +≥,即112x --<≤或1x ≥;∴实数x 的取值范围是[)1112æù--+¥çúèûU ,,.故答案为:[)1112æù--+¥çúèûU ,,.15.【答案】4【解析】因为()lg lg 2lg 2x y x y +=-,所以()22xy x y =-,即22540x xy y -+=,解得x y =或4x y =.由已知得0x >,0y >,20x y ->,所以x y =不符合题意,当4x y =时,得4xy=.故答案为4.16.【答案】()30,5【解析】解:令()()log 20a f x x =-=,解得3x =,所以点()30M ,,当2a =时,()52234log 32log 25f ===.故答案为()30,;5.三、17.【答案】(1)解:()()3122log 22641log ln 349e p -+æö+-+++ç÷èø12281109278æö´-ç÷èøæö=++++´ç÷èø711182088=+++=;(2)lg 2a =∵,lg3b =,5lg122lg 2lg32log 12lg51lg 21a ba++===--∴.18.【答案】(1)解:原式1312325252121223333´æö-´-ç÷èøæö=--+=--+=ç÷èø;(2)原式()28125lg lg1025411lg10lg1022´´===-´--;(3)a ∵,b ,c 为正实数,0x y z a b c k ===>,1k ¹.lg lg k x a =∴,lgk lg y b =,lg lg k z c=,1110x y z ++=∵,()lg lg lg lg 0lg lg abc a b c k k ++==∴,1abc =∴.19.【答案】(1)解:()1f x <即()2log 211x -<,0212x -∴<<,123x ∴<<,20log 3x ∴<<,故不等式()1f x <的解集为{}20log 3x x <<;(2)()()24log 21log 4x x m -=-∵有实数解, 210x -∵>,0x ∴>,且40x m ->,()2214x x m -=-∴,在0x >上有解,即22241x x m =-++g g 在0x >上有解,设()21x t t =>即2221m t t =-+在1t >上有解,当1t >时,22112212122m t t t æö=-+=-+ç÷èø,故实数m 的取值范围:1m >.20.【答案】(1)解:要是函数有意义,则2020x x +ìí-î>>,解得22x -<<,故函数()f x 的定义域为()22-,;(2)()()()()()()log 2log 2log 2log 2a a a a f x x x x x f x -=--+=-é+--ù=-ëû,所以函数()f x 为奇函数;(3)()()()2log 2log 2log 2a a axf x x x x+=+--=-∵,()()log 3a f x x ≥.()2log log 32aa xx x+-∴≥,02x <<.当01a <<时,232x x x +-0<,解得213x ≤;当1a >时,2302x x x +->,解得12x ≤<或203x <≤.21.【答案】(1)解:()g x 和()h x 的定义域都是()11-,,且()()()3322x xf x f xg x -+-+==,()()()331lg 221x x f x f x xh x x-----==++,所以对任意()11x Î-,有,()()332x xg x g x -+-==,()()331331lg lg 2121x x x x x xh x h x x x---+---=+=--=--+,故函数()g x 在()11-,内是偶函数,函数()h x 在()11-,内是奇函数;(2)因为()()13lg1x xx f x x j -=-=+,所以()()2x x j j --<就是11lg lg 211x xx x-+-+-<,即1lg 11x x -+<,10101x x -+<<,解得9111x -<<.故此不等式的解集是9111æö-ç÷èø.。
2021-2022学年北师大版高中数学必修1全册检测含答案
本册综合测试时间:120分钟 分值:150分第Ⅰ卷(选择题,共50分) 一、选择题(每小题5分,共50分)1.已知集合M ={x |-3<x <1},N ={-3,-2,-1,0,1},则M ∩N =( C ) A .{-2,-1,0,1} B .{-3,-2,-1,0} C .{-2,-1,0}D .{-3,-2,-1}解析:由交集的意义可知M ∩N ={-2,-1,0}. 2.函数f (x )=x -4lg x -1的定义域是( D ) A .[4,+∞) B .(10,+∞) C .(4,10)∪(10,+∞)D .[4,10)∪(10,+∞) 解析:要使函数有意义需⎩⎪⎨⎪⎧ x -4≥0,lg x ≠1,即⎩⎪⎨⎪⎧x ≥4,x ≠10,解得:4≤x <10或x >10.3.已知幂函数f (x )=x α的部分对应值如下表,则f (x )的奇偶性是( C )A.奇函数 B .偶函数 C .非奇非偶函数D .既是奇函数,又是偶函数解析:由2=4α知α=12,∴f (x )=x 12 为非奇非偶函数.4.已知集合A ={2,0,1,4},B ={k |k ∈R ,k 2-2∈A ,k -2∉A },则集合B 中所有元素之和为( B )A .2B .-2C .0D. 2 解析:A ={2,0,1,4},B ={k |k ∈R ,k 2-2∈A ,k -2∉A },①当k 2-2=2时,k =±2,k =2时,k -2=0∈A ,∴k ≠2;k =-2时,k -2=-4∉A ,成立;②当k 2-2=0时,k =±2,k -2=±2-2∉A ,成立; ③当k 2-2=1时,k =±3,k -2=±3-2∉A ,成立; ④当k 2-2=4时,k =±6,k -2= ±6-2∉A ,成立.从而得到B ={±2,±3,±6,-2},∴集合B 中所有元素之和为-2.故选B. 5.下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),都有f (x 1)-f (x 2)x 1-x 2<0”的是( C )A .f (x )=ln xB .f (x )=(x -1)2C .f (x )=1x +1D .f (x )=x 3 解析:对任意x 1,x 2∈(0,+∞),都有f (x 1)-f (x 2)x 1-x 2<0,即x 1<x 2时,都有f (x 1)>f (x 2),即有f (x )在(0,+∞)上是减函数, 对于A ,y =ln x 在(0,+∞)上是增函数,故A 不满足;对于B ,函数在(-∞,1)上是减函数,(1,+∞)上是增函数,故B 不满足; 对于C ,函数在(-1,+∞),(-∞,-1)上均为减函数,则在(0,+∞)上是减函数,故C 满足;对于D ,函数在R 上是增函数,故D 不满足. 故选C.6.已知f (x )=⎩⎨⎧2e x -1,x <32,log 3(x 2-1),x ≥32,则f (f (2))的值是( C )A .0B .1C .2D .3解析:∵f (2)=log 3(22-1)=log 33=1, ∴f (f (2))=f (1)=2e 1-1=2.7.函数f (x )=-x 2+2(a -1)x +2在(-∞,4)上是增函数,则实数a 的范围是( D ) A .a ≤-3 B .a ≤5 C .a ≥3D .a ≥5解析:因为函数f (x )=-x 2+2(a -1)x +2在(-∞,4)上是增函数,所以-2(a -1)-2≥4,即a ≥5,故选D.8.某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y 与时间x 的关系,可选用( D )A .一次函数B .二次函数C .指数型函数D .对数型函数解析:由题意可知,函数模型对应的函数是个增函数,而且增长速度越来越慢,故应采用对数型函数来建立函数模型,故选D.9.函数f (x )的零点与g (x )=4x +2x -2的零点之差的绝对值不超过0.25,则f (x )可以是( C )A .f (x )=e x -1B .f (x )=(x -1)2C .f (x )=4x -1D .f (x )=ln(x -12)解析:g (12)=2+1-2>0,g (14)=2+12-2<0;且g (x )=4x +2x -2连续,故g (x )=4x +2x -2的零点在(14,12)上;f (x )=e x -1的零点为0,f (x )=(x -1)2的零点为1; f (x )=4x -1的零点为14,f (x )=ln(x -12)的零点为32;故选C.10.若函数y =f (x )定义域为R ,且满足f (-x )=-f (x ),当a ,b ∈(-∞,0]时总有f (a )-f (b )a -b>0(a ≠b ),若f (m +1)>f (2),则实数m 的取值范围是( B ) A .-3≤m ≤1 B .m >1C .-3<m <1D .m <-3或m >1解析:∵当a ,b ∈(-∞,0]时总有f (a )-f (b )a -b >0(a ≠b ),∴当a ,b ∈(-∞,0],a -b 与f (a )-f (b )同号, ∴f (x )在(-∞,0]上单调递增, 又∵f (-x )=-f (x ),∴f (x )为奇函数,∴f (x )在R 上为增函数, ∴由f (m +1)>f (2)得,m +1>2, ∴m >1.第Ⅱ卷(非选择题,共100分) 二、填空题(每小题5分,共25分)11.计算:lg 12-lg 58+lg 252-log 89×log 278=13.解析:lg 12-lg 58+lg 252-log 89×log 278=lg ⎝⎛⎭⎫12×85×252-2lg33lg2×3lg23lg3=lg10-23=1-23=13. 12.设f (x )是定义在R 上的偶函数,且当x >0时,f (x )=2x -3,则f (-2)=1. 解析:f (-2)=f (2)=22-3=1.13.已知函数y =log a (14x +b )(a ,b 为常数,其中a >0,a ≠1)的图像如图所示,则a +b的值为34.解析:由图像知,log a b =2,log a (34+b )=0,解得,b =14,a =12;故a +b =34.故答案为:34.14.若函数f (x )=x 2+a |x -2|在(0,+∞)上单调递增,则实数a 的取值范围是[-4,0].解析:f (x )=x 2+a |x -2|=⎩⎪⎨⎪⎧x 2+ax -2a ,x ≥2x 2-ax +2a ,x <2,要使f (x )在(0,+∞)上单调递增,则⎩⎨⎧-a2≤2a 2≤0,解得-4≤a ≤0;∴实数a 的取值范围是[-4,0].故答案为[-4,0]. 15.下列叙述:①存在m ∈R ,使f (x )=(m -1)·x m 2-4m +3是幂函数; ②函数y =1x +1在(-∞,-1)∪(-1,+∞)上是减函数;③函数y =log 2x +x 2-2在(1,2)内只有一个零点;④定义域内任意两个变量x 1,x 2,都有f (x 1)-f (x 2)x 1-x 2>0,则f (x )在定义域内是增函数.其中正确的结论序号是①③④.解析:①使f (x )=(m -1)·x m 2-4m +3是幂函数,则 m -1=1,得m =2,此时f (x )=x -1,故①正确;②减区间应为(-∞,-1)和(-1,+∞)不能合并,故②错误;③∵f (1)=log 21+1-2=-1<0,f (2)=lg 22+22-2=3>0,∴f (1)f (2)<0,且f (x )在(1,2)上单调递增.故③正确;④由已知得x 1-x 2与f (x 1)-f (x 2)同号,∴f (x )在定义域上为增函数.三、解答题(本题共6小题,共75分.解答应写出必要的文字说明,证明过程或演算步骤)16.(本题满分12分)已知全集U =R ,集合A ={x |x >4},B ={x |-6<x <6}. (1)求A ∩B ; (2)求∁R B ;(3)定义A -B ={x |x ∈A ,x ∉B },求A -B ,A -(A -B ). 解:(1)∵A ={x |x >4},B ={x |-6<x <6}, ∴A ∩B ={x |4<x <6}; (2)∁R B ={x |x ≥6,或x ≤-6}; (3)∵A -B ={x |x ∈A ,x ∉B }, ∴A -B ={x |x ≥6}, A -(A -B )={x |4<x <6}.17.(本题满分12分)(1)计算:(8125)- 13 -(-35)0+160.75+(0.25) 12 ;(2)已知:log 32=a,3b =5,试用a ,b 表示log 330 . 解:(1)原式=(1258) 13 -1+16 34 +(25100)12=52-1+23+510=10; (2)∵3b =5,∴b =log 35,∴log 330=12log 330=12log 3(2×3×5)=12(log 32+log 33+log 35)=12(a +b +1). 18.(本题满分12分)已知函数f (x )=a +b x (b >0,b ≠1)的图像过点(1,4)和点(2,16). (1)求f (x )的表达式; (2)解不等式f (x )>(12)3-x 2;(3)当x ∈(-3,4]时,求函数g (x )=log 2f (x )+x 2-6的值域.解:(1)由题知⎩⎪⎨⎪⎧4=a +b ,16=a +b 2,解得⎩⎪⎨⎪⎧ a =0,b =4或⎩⎪⎨⎪⎧a =7,b =-3.(舍去)∴f (x )=4x .(2)f (x )>(12)3-x 2,∴4x >(12)3-x 2,∴22x >23-x 2,∴2x >x 2-3, 解得-1<x <3.∴不等式的解集为(-1,3).(3)∵g (x )=log 2f (x )+x 2-6=log 24x +x 2-6 =2x +x 2-6=(x +1)2-7, 又∵x ∈(-3,4],∴g (x )min =-7,当x =4时,g (x )max =18.∴值域为[-7,18].19.(本题满分12分)如图,有一块矩形空地,要在这块空地上辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知AB =a (a >2),BC =2,且AE =AH =CF =CG ,设AE =x ,绿地面积为y .(1)写出y 关于x 的函数关系式,指出这个函数的定义域; (2)当AE 为何值时,绿地面积最大? 解:(1)S △AEH =S △CFG =12x 2,S △BEF=S △DGH =12(a -x )(2-x ).∴y =S ▭ABCD -2S △AEH -2S △BEF =2a -x 2-(a -x )(2-x )=-2x 2+(a +2)x . 由⎩⎪⎨⎪⎧x >0,a -x >0,2-x ≥0,a >2,得0<x ≤2,∴y =-2x 2+(a +2)x,0<x ≤2; (2)当a +24<2,即2<a <6时, 则x =a +24时,y 取最大值(a +2)28;当a +24≥2,即a ≥6时,y =-2x 2+(a +2)x ,在(0,2]上是增函数,则x =2时,y 取最大值2a -4.综上所述:当2<a <6时,AE =a +24时,绿地面积取最大值(a +2)28;当a ≥6时,AE =2时,绿地面积取最大值2a -4.20.(本题满分13分)已知定义域为R 的函数f (x )=-2x +a2x +1是奇函数.(1)求a 值;(2)判断并证明该函数在定义域R 上的单调性;(3)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求实数k 的取值范围. 解:(1)由题设,需f (0)=-1+a2=0,∴a =1,∴f (x )=1-2x1+2x,经验证,f (x )为奇函数,∴a =1.(3)由f (t 2-2t )+f (2t 2-k )<0, 得f (t 2-2t )<-f (2t 2-k ),∵f (x )是奇函数,∴f (t 2-2t )<f (k -2t 2), 由(2)知,f (x )是减函数, ∴原问题转化为t 2-2t >k -2t 2, 即3t 2-2t -k >0对任意t ∈R 恒成立, ∴Δ=4+12k <0,解得k <-13,所以实数k 的取值范围是⎝⎛⎭⎫-∞,-13. 21.(本题满分14分)已知函数f (x )=bx -aax (a >0,x >0)的图像过点(a,0).(1)判断函数f (x )在(0,+∞)上的单调性并用函数单调性定义加以证明; (2)若a >15,函数f (x )在[15a ,5a ]上的值域是[15a,5a ],求实数a 的值.解:(1)函数f (x )=bx -a ax (a >0,x >0)的图像过点(a,0),则0=ab -aa 2,则b =1,则f (x )=x -a ax =1a -1x, f (x )在(0,+∞)上为增函数,证明如下:设0<m <n ,则f (m )-f (n )=1a -1m -(1a -1n )=m -nmn ,由于0<m <n ,则m -n<0,mn >0,则f (m )-f (n )<0,则f (x )在(0,+∞)上为增函数. (2)由于f (x )在(0,+∞)上为增函数,则函数f (x )在[15a ,5a ]上的值域是[f (15a),f (5a )],即有⎩⎨⎧1a -5a =15a1a -15a =5a,解得a =25.。
高一数学高中数学北师大版试题答案及解析
高一数学高中数学北师大版试题答案及解析1.扇形的半径是一个圆的半径的3倍,且,则扇形的圆心角为。
【答案】【解析】设圆的半径为r,则扇形的半径为3r,根据,则.2.已知点与两个定点的距离之比为,则点的轨迹的面积为()A.2B.C.D.【答案】C【解析】由题意得,设点,则,即,整理得,所以点的轨迹表示以为圆心,半径为的圆,所以面积为,故选C.【考点】轨迹方程的求法.3.已知棱长等于2的正四面体的四个顶点在同一个球面上,则球的半径长为,球的表面积为.【答案】;6π【解析】将正四面体补成正方体,再将正方体放在一个球体中,利用它们之间的关系求解.解:如图,将正四面体补形成一个正方体,∵正四面体为2,∴正方体的棱长是,又∵球的直径是正方体的对角线,设球半径是R,∴2R=∴R=,球的表面积为6π.故填:;6π.点评:巧妙构造正方体,利用正方体的外接球的直径为正方体的对角线,从而将问题巧妙转化.若已知正四面体V﹣ABC的棱长为a,求外接球的半径,我们可以构造出一个球的内接正方体,再应用对角线长等于球的直径可求得.4.电子手表厂生产某批电子手表正品率为,次品率为,现对该批电子手表进行测试,设第X次首次测到正品,则P(1≤X≤2013)等于()A.B.C.D.【答案】B【解析】先求出P(X=0),即第0次首次测到正品,即全是次品的概率,从而可得结论.解:由题意,P(X=0)=∴P(1≤X≤2013)=1﹣P(X=0)=故选B.点评:本题考查n次独立重复实验中恰好发生k次的概率,考查学生的计算能力,属于中档题.5. 100件产品,其中有30件次品,每次取出1件检验放回,连检两次,恰一次为次品的概率为()A.0.42B.0.3C.0.7D.0.21【答案】A【解析】设恰一次为次品为事件A,根据100件产品,其中有30件次品,每次取出1件检验放回,连检两次,可求基本事件的个数,从而可求恰一次为次品的概率.解:由题意,设恰有一次取出次品为事件A,则P(A)===0.42故选A.点评:本题考查的重点是概率知识的运用,解题的关键是确定基本事件的个数,应注意每次取出1件检验放回,属于基础题.6.已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f′(x)g(x)>f(x)g′(x),且f(x)=a x•g(x)(a>0,且a≠1),.,若数列的前n项和大于62,则n的最小值为()A.6B.7C.8D.9【答案】A【解析】由f′(x)g(x)>f(x)g′(x)可得单调递增,从而可得a>1,结合,可求a.利用等比数列的求和公式可求,从而可求解:∵f′(x)g(x)>f(x)g′(x)∴f′(x)g(x)﹣f(x)g′(x)>0,∴从而可得单调递增,从而可得a>1∵,∴a=2故=2+22+…+2n=∴2n+1>64,即n+1>6,n>5,n∈N*∴n=6故选:A点评:本题主要考查了利用导数的符合判断指数函数的单调性,等比数列的求和公式的求解,解题的关键是根据已知构造函数单调递增.7.已知曲线y=x2的一条切线的斜率为,则切点的横坐标为()A.4B.3C.2D.【答案】C【解析】根据切点处的导数即为切线的斜率建立等式关系,解出方程,问题得解.解:设切点的横坐标为t==,解得t=2,y′|x=t故选C.点评:本题考查了导数的几何意义,切点处的导数即为切线的斜率,属于基础题.8.已知y=f(x)=ln|x|,则下列各命题中,正确的命题是()A.x>0时,f′(x)=,x<0时,f′(x)=﹣B.x>0时,f′(x)=,x<0时,f′(x)无意义C.x≠0时,都有f′(x)=D.∵x=0时f(x)无意义,∴对y=ln|x|不能求导【答案】C【解析】利用绝对值的意义将函数中的绝对值去掉转换为分段函数;利用基本的初等函数的导数公式及复合函数的求导法则:外函数的导数与内函数的导数的乘积,分别对两段求导数,两段的导数合起来是f(x)的导数.解:根据题意,f(x)=,分两种情况讨论:(1)x>0时,f(x)=lnx⇒f'(x)=(lnx)'=.(2)x<0时f(x)=ln(﹣x)⇒f'(x)=[ln(﹣x)]'=(这里应用定义求导.)故选C点评:本题考查绝对值的意义、考查分段函数的导数的求法、考查基本初等函数的导数公式及简单的复合函数的求导法则.9.已知,则f′()=()A.﹣1+B.﹣1C.1D.0【答案】B【解析】本题先对已知函数进行求导,再将代入导函数解之即可.解:故选B.点评:本题主要考查了导数的运算,以及求函数值,解题的关键是正确求解导函数,属于基础题.10.空间中,与向量同向共线的单位向量为()A.B.或C.D.或【答案】C【解析】利用与同向共线的单位向量向量即可得出.解:∵,∴与同向共线的单位向量向量,故选:C.点评:本题考查了与同向共线的单位向量向量,属于基础题.11.函数f(x)=xsinx+cosx的导数是()A.xcosx+sinx B.xcosx C.xcosx﹣sinx D.cosx﹣sinx【答案】B【解析】利用和及积的导数运算法则及基本初等函数的导数公式求出函数的导数.解:∵f(x)=xsinx+cosx∴f′(x)=(xsinx+cosx)′=(xsinx)′+(cosx)′=x′sinx+x(sinx)′﹣sinx=sinx+xcosx﹣sinx=xcosx故选B点评:本题考查导数的运算法则、基本初等函数的导数公式.属于基础试题12.的导数是()A.B.C.D.【答案】A【解析】利用导数的四则运算法则,按规则认真求导即可解:y′===故选A点评:本题考查了导数的除法运算法则,解题时认真计算即可,属基础题13.设函数f(x)在点x可导,则=()A.f′(x0)B.f′(x)C.2f′(x)D.不存在【答案】C【解析】利用导数的定义,把增量转化为2h,问题得以解决.解:==2f′(x).故选C.点评:本题以函数为载体,考查导数的定义,关键是理解导数的定义,从而得解.14.已知点O为坐标原点,点A在x轴上,正△OAB的面积为,其斜二测画法的直观图为△O′A′B′,则点B′到边O′A′的距离为.【答案】2【解析】画出斜二测画法的直观图为△O′A′B′,求出正△OAB的边长,B′D′的长,然后求出点B′到边O′A′的距离.解:正△OAB的面积为,边长为2,O′A′=2D′为O′A′的中点,B′D′=所以点B′到边O′A′的距离:cos45°=故答案为:点评:本题考查斜二测法画直观图,点、线、面间的距离计算,考查计算能力,记住结论平面图形和直观图形面积之比为2.15.一个平面图形的水平放置的斜二测直观图是一个等腰梯形,直观图的底角为45°,两腰和上底边长均为1,则这个平面图形的面积为.【答案】2+【解析】根据斜二测化法规则画出原平面图形,可知水平放置的图形为直角梯形,求出上底,高,下底,利用梯形面积公式求解即可.解:水平放置的图形为一直角梯形,由题意可知上底为1,高为2,下底为1+,S=(1++1)×2=2+.故答案为:2+.点评:本题考查水平放置的平面图形的直观图斜二测画法,由已知斜二测直观图根据斜二测化法规则,正确画出原平面图形是解题的关键.16.如图是某一问题的算法程序框图,它反映的算法功能是.【答案】计算|x|的值.【解析】从赋值框输入的变量x的值开始,逐渐分析写出程序运行的每一步,便可得到程序框图表示的算法的功能.解:框图首先输入变量x的值,判断x≥0,执行输出x;否则,输出x的相反数:﹣x.算法结束.故此算法执行的是计算|x|的值.故答案为:计算|x|的值.点评:本题考查了程序框图中的选择结构,选择结构是先判断后执行,满足条件时执行一个分支,不满足条件执行另一个分支,此题是基础题.17.执行程序框图,输出的T= .【答案】30.【解析】本题首先分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出变量T的值,模拟程序的运行,运行过程中各变量的值进行分析,不难得到输出结果.解:按照程序框图依次执行为S=5,n=2,T=2;S=10,n=4,T=2+4=6;S=15,n=6,T=6+6=12;S=20,n=8,T=12+8=20;S=25,n=10,T=20+10=30>S,输出T=30.故答案为:30.点评:本题主要考查了循环结构的程序框图,一般都可以反复的进行运算直到满足条件结束,本题中涉及到三个变量,注意每个变量的运行结果和执行情况.18.变量y是变量x的函数,则()A.变量x,y之间具有依赖关系B.变量x是变量y的函数C.当x每取一个值时,变量y可以有两个值与之对应D.当y每取一个值时,变量x有唯一的值与之对应【答案】A【解析】根据函数的定义去判断.解:变量y是变量x的函数,所以变量x,y之间具有依赖关系.故A正确.故选A.点评:本题主要考查函数的定义,比较基础.19.下列等式中的变量x,y不具有函数关系的是()A.y=x﹣1B.y=C.y=3x2+D.y2=x2【答案】D【解析】一般地,给定非空数集A,B,按照某个对应法则f,使得A中任一元素x,都有B中唯一确定的y与之对应,那么从集合A到集合B的这个对应,叫做从集合A到集合B的一个函数.记做y=f(x).分别利用函数的定义去判断,其中D中x对应y的取值不唯一.解:根据函数的定义可知A,B,C满足函数的定义.在D中当x=1时,y=±1;当y=2时,x=±2,不符合函数的定义.故选D.点评:本题考查函数的定义,函数的定义要求对于A中的任何一个元素在集合B中都有唯一的元素对应.否则不能构成函数.20.用列举法表示集合{x|x2-2x+1=0}为 ()A.{1,1}B.{1}C.{x=1}D.{x2-2x+1=0}【答案】B【解析】集合{x|x2-2x+1=0}实质是方程x2-2x+1=0的解集,此方程有两相等实根,为1,故可表示为{1}.故选B.【考点】集合的表示方法点评:列举法是把集合中的所有元素一一写出的方法。
高一数学高中数学北师大版试题答案及解析
高一数学高中数学北师大版试题答案及解析1.已知点与两个定点的距离之比为,则点的轨迹的面积为()A.2B.C.D.【答案】C【解析】由题意得,设点,则,即,整理得,所以点的轨迹表示以为圆心,半径为的圆,所以面积为,故选C.【考点】轨迹方程的求法.2.设P、A、B、C是球O表面上的四个点,PA、PB、PC两两垂直,且PA=3,PB=4,PC=5,则球的半径为.【答案】【解析】根据PA、PB、PC两两相互垂直,所以我们可以在球内做一个内切长方体,长方体的三条长宽高分别是5、4、3.则长方体的体对角线就是球的直径.问题转化为求矩形的对角线,利用三边的长求得答案.解:因为PA、PB、PC两两相互垂直,所以我们可以在球内做一个内切长方体,长方体的三条长宽高分别是5、4、3.长方体的体对角线就是球的直径.所以r==故答案为:点评:本题主要考查了球的性质.考查了学生形象思维能力,创造性思维能力的.3.(2011•成都二模)如图,在半径为l的球O中.AB、CD是两条互相垂直的直径,半径OP⊥平面ACBD.点E、F分别为大圆上的劣弧、的中点,给出下列结论:①E、F两点的球面距离为;②向量在向量方向上的投影恰为;③若点M为大圆上的劣弧的中点,则过点M且与直线EF、PC成等角的直线有无数条;④球面上到E、F两点等距离的点的轨迹是两个点;其中你认为正确的所有结论的序号为.【答案】①③【解析】先建立如图所示的空间直角坐标系,写出坐标E(0,,),F(,﹣,0)B(0,1,0),P(0,0,1)C(1,0,0)再一一验证即可.解:建立如图所示的空间直角坐标系,则E(0,,),F(,﹣,0)B(0,1,0),P(0,0,1)C(1,0,0)①cos∠EOF=cos∠EOBcos∠COB=cos45°cos(90°+45°)=﹣=﹣∴,对;②向量在向量方向上的投影为,错;③由于等角的值不是一定值,因此将直线EF、PC都平移到点M,可知过点M且与直线EF、PC 成等角的直线有无数多条,对;④过点EF的中点及球心O的大圆上任意点到点E、F的距离都相等,错;故答案为①③点评:本题主要考查了球的性质、球面距离及相关计算,解答的关键是建立适当的空间坐标系写出点的坐标后利用空间坐标进行计算.4.(2012•杭州一模)已知函数f(x)=,要得到f′(x)的图象,只需将f(x)的图象()个单位.A.向右平移B.向左平移C.向右平移D.向左平移【答案】D【解析】由于f′(x)=2cos(2x+),于是f′(x)=cos(2x+),利用诱导公式及平移变换规律即可得到答案.解:∵f′(x)=2cos(2x+),∴f′(x)=cos(2x+),∴将f(x)=sin(2x+)向左平移个单位可得:g(x)=f(x+)=sin[2(x+)+)]=sin[(2x+)+]=cos(2x+)=f′(x),故选D.点评:本题考查函数y=Asin(ωx+φ)的图象变换,考查简单复合函数的导数,考查理解与运算能力,属于中档题.5.已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f′(x)g(x)>f(x)g′(x),且f (x)=a x•g(x)(a>0,且a≠1),.,若数列的前n项和大于62,则n的最小值为()A.6B.7C.8D.9【答案】A【解析】由f′(x)g(x)>f(x)g′(x)可得单调递增,从而可得a>1,结合,可求a.利用等比数列的求和公式可求,从而可求解:∵f′(x)g(x)>f(x)g′(x)∴f′(x)g(x)﹣f(x)g′(x)>0,∴从而可得单调递增,从而可得a>1∵,∴a=2故=2+22+…+2n=∴2n+1>64,即n+1>6,n>5,n∈N*∴n=6故选:A点评:本题主要考查了利用导数的符合判断指数函数的单调性,等比数列的求和公式的求解,解题的关键是根据已知构造函数单调递增.6.已知曲线y=x2的一条切线的斜率为,则切点的横坐标为()A.4B.3C.2D.【答案】C【解析】根据切点处的导数即为切线的斜率建立等式关系,解出方程,问题得解.解:设切点的横坐标为t==,解得t=2,y′|x=t故选C.点评:本题考查了导数的几何意义,切点处的导数即为切线的斜率,属于基础题.7.设函数f(x)=g(x)+x+lnx,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线方程为()A.y=4x B.y=4x﹣8C.y=2x+2D.【答案】A【解析】据曲线在切点处的导数值为曲线切线的斜率,求g′(1)进一步求出f′(1),由点斜式求出切线方程.解:由已知g′(1)=2,而,所以f′(1)=g′(1)+1+1=4,即切线斜率为4,又g(1)=3,故f(1)=g(1)+1+ln1=4,故曲线y=f(x)在点(1,f(1))处的切线方程为y﹣4=4(x﹣1),即y=4x,故选A.点评:本题考查曲线在切点处的导数值为曲线切线的斜率.8.设f(x)=cos22x,则=()A.2B.C.﹣1D.﹣2【答案】D【解析】先对函数进行化简,再对函数进行求导,再把代入进行求解即可.解:∵f(x)=cos22x=∴=﹣2sin4x∴故选D.点评:本题主要考查了复合函数的求导问题,要注意{f[g(x)]}′=f′(g(x)g′(x).9.设y=﹣2e x sinx,则y′等于()A.﹣2e x cosx B.﹣2e x sinx C.2e x sinx D.﹣2e x (sinx+cosx)【答案】D【解析】利用导数乘法法则进行计算.解:∵y=﹣2e x sinx,∴y′=(﹣2e x)′sinx+(﹣2e x)•(sinx)′=﹣2e x sinx﹣2e x cosx=﹣2e x(sinx+cosx).故选D.点评:本题考查学生对导数乘法法则的运算能力,利用直接法求解.10.空间中,与向量同向共线的单位向量为()A.B.或C.D.或【答案】C【解析】利用与同向共线的单位向量向量即可得出.解:∵,∴与同向共线的单位向量向量,故选:C.点评:本题考查了与同向共线的单位向量向量,属于基础题.11.(2014•福建模拟)已知具有线性相关的两个变量x,y之间的一组数据如下:且回归方程是=0.95x+a,则当x=6时,y的预测值为()A.8.0B.8.1C.8.2D.8.3【答案】D【解析】线性回归方程=0.95x+a,必过样本中心点,首先计算出横标和纵标的平均数,代入回归直线方程求出a即可得到回归直线的方程,代入x=6,可得y的预测值.解:由已知可得==2==4.5∴=4.5=0.95×+a=1.9+a∴a=2.6∴回归方程是=0.95x+2.6当x=6时,y的预测值=0.95×6+2.6=8.3故选D点评:题考查线性回归方程,是一个运算量较大的题目,有时题目的条件中会给出要有的平均数,本题需要自己做出,注意运算时不要出错.12.下列结论正确的是()A.若y=x+,则y′=1+B.若y=cosx,则y′=sinxC.若y=,则y′=D.若y=,则y′=【答案】C【解析】利用导数的运算法则即可得出.解:A.∵,∴,因此A不正确;B.∵y=cosx,∴y′=﹣sinx;C.∵,∴,因此正确;D.∵,∴,因此不正确.综上可知:只有C正确.故选C.点评:熟练掌握导数的运算法则是解题的关键.13.函数f(x)=xsinx+cosx的导数是()A.xcosx+sinx B.xcosx C.xcosx﹣sinx D.cosx﹣sinx【答案】B【解析】利用和及积的导数运算法则及基本初等函数的导数公式求出函数的导数.解:∵f(x)=xsinx+cosx∴f′(x)=(xsinx+cosx)′=(xsinx)′+(cosx)′=x′sinx+x(sinx)′﹣sinx=sinx+xcosx﹣sinx=xcosx故选B点评:本题考查导数的运算法则、基本初等函数的导数公式.属于基础试题14.已知函数f(x)=ax3+bx2+cx+d(a≠0)的对称中心为M(x0,y),记函数f(x)的导函数为f′(x),f′(x)的导函数为f″(x),则有f″(x)=0.若函数f(x)=x3﹣3x2,则可求得=()A.4025B.﹣4025C.8050D.﹣8050【答案】D【解析】由题意对已知函数求两次导数可得图象关于点(1,﹣2)对称,即f(x)+f(2﹣x)=﹣4,而要求的式子可用倒序相加法求解,共有2011对﹣4和一个f (1)=﹣2,可得答案. 解:由题意f (x )=x 3﹣3x 2,则f′(x )=3x 2﹣6x ,f″(x )=6x ﹣6,由f″(x 0)=0得x 0=1,而f (1)=﹣2,故函数f (x )=x 3﹣3x 2关于点(1,﹣2)对称,即f (x )+f (2﹣x )=﹣4. 所以,…,,所以=﹣4×2012+(﹣2)=﹣8050,故选D .点评:本题主要考查导数的基本运算,利用条件求出函数的对称中心是解决本题的关键.15. (2014•虹口区二模)对于数列{a n },规定{△1a n }为数列{a n }的一阶差分数列,其中△1a n =a n+1﹣a n (n ∈N *).对于正整数k ,规定{△k a n }为{a n }的k 阶差分数列,其中△k a n =△k ﹣1a n+1﹣△k ﹣1a n .若数列{a n }有a 1=1,a 2=2,且满足△2a n +△1a n ﹣2=0(n ∈N *),则a 14= . 【答案】26【解析】利用新定义,可得{a n }是从第2项起,2为公差的等差数列,即可求出a 14. 解:∵△k a n =△k ﹣1a n+1﹣△k ﹣1a n ,△2a n +△1a n ﹣2=0, ∴△1a n+1=2, ∴a n+2﹣a n+1=2, ∵a 1=1,a 2=2,∴{a n }是从第2项起,2为公差的等差数列, ∴a 14=2+2(14﹣2)=26. 故答案为:26.点评:本题考查数列的应用,考查新定义,确定{a n }是从第2项起,2为公差的等差数列是关键.16. 一个平面图形的水平放置的斜二测直观图是一个等腰梯形,直观图的底角为45°,两腰和上底边长均为1,则这个平面图形的面积为 . 【答案】2+【解析】根据斜二测化法规则画出原平面图形,可知水平放置的图形为直角梯形,求出上底,高,下底,利用梯形面积公式求解即可.解:水平放置的图形为一直角梯形,由题意可知上底为1,高为2, 下底为1+, S=(1++1)×2=2+.故答案为:2+.点评:本题考查水平放置的平面图形的直观图斜二测画法,由已知斜二测直观图根据斜二测化法规则,正确画出原平面图形是解题的关键.17. 如图所示的直观图(△AOB ),其平面图形的面积为 .【答案】6【解析】根据直观图与平面图形的画法,推出平面图形的形状,根据数据关系,不难求出平面图形的面积.解:如图所示的直观图(△AOB ),其平面图形是一个直角三角形,直角边长为:3;4; 所以它的面积为:,故答案为:6.点评:本题考查直观图与平面图形的画法,注意两点:一是角度的变化;二是长度的变化;考查计算能力.18.下面程序框图,如果输入三个实数a、b、c,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的()A.c>x B.x>c C.c>b D.b>c【答案】A【解析】根据流程图所示的顺序,逐框分析程序中各变量、各语句的作用,由于该题的目的是选择最大数,因此根据第一个选择框作用是比较x与b的大小,故第二个选择框的作用应该是比较x与c的大小,而且条件成立时,保存最大值的变量X=C.解:由流程图可知:第一个选择框作用是比较x与b的大小,故第二个选择框的作用应该是比较x与c的大小,∵条件成立时,保存最大值的变量X=C故选A.点评:算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.19.如图是某一问题的算法程序框图,它反映的算法功能是.【答案】计算|x|的值.【解析】从赋值框输入的变量x的值开始,逐渐分析写出程序运行的每一步,便可得到程序框图表示的算法的功能.解:框图首先输入变量x的值,判断x≥0,执行输出x;否则,输出x的相反数:﹣x.算法结束.故此算法执行的是计算|x|的值.故答案为:计算|x|的值.点评:本题考查了程序框图中的选择结构,选择结构是先判断后执行,满足条件时执行一个分支,不满足条件执行另一个分支,此题是基础题.20.在国家法定工作日内,每周满工作量的时间为40小时,若每周工作时间不超过40小时,则每小时工资8元;如因需要加班,超过40小时的每小时工资为10元.某公务员在一周内工作时间为x小时,但他须交纳个人住房公积金和失业保险(这两项费用为每周总收入的10%).试分析算法步骤并画出其净得工资y元的算法的程序框图(注:满工作量外的工作时间为加班).【答案】见解析【解析】本题考查的知识点是设计程序框图解决实际问题,我们根据题目已知中公交车票价的定价规则易写出分段函数的解析式y=,然后我们可根据分类标准,设置出判断框中的条件,再由函数两段上的解析式,确定判断框的“是”与“否”分支对应的操作,由此即可画出流程图.解:算法如下:第一步,输入工作时间x小时.第二步,若x≤40,则y=8x•(1﹣10%),否则y=40×8(1﹣10%)+(x﹣40)×10(1﹣10%).第三步,输出y值.程序框图:点评:编写程序解决分段函数问题,要分如下几个步骤:①对题目的所给的条件的分类进行总结,写出分段函数的解析式;②根据分类标准,设置判断框的个数及判断框中的条件;③分析函数各段的解析式,确定判断框的“是”与“否”分支对应的操作;④画出流程图,再编写满足题意的程序.。
2024-2025年北师大版数学必修第一册第一章单元质量评估卷(带答案)
第一章 单元质量评估卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷 (选择题,共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x|x 2-1=0},则下列结论错误..的是( ) A .1∈A B .{-1} A C .∅⊇A D .{-1,1}=A2.王昌龄是盛唐著名的边塞诗人,被誉为“七绝圣手”.其名篇“但使龙城飞将在,不教胡马度阴山”(人在阵地在,人不在阵地在不在不知道),由此推断,胡马度过阴山是龙城飞将不在的什么条件?( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件3.已知集合M ={x|x(x -2)<0},N ={x|x -1<0},则下列Venn 图中阴影部分可以表示集合{x|1≤x<2}的是( )4.已知命题p :∃x ,y ∈Z ,2x +4y =3,则( ) A.p 是假命题,p 否定是∀x ,y ∈Z ,2x +4y ≠3 B.p 是假命题,p 否定是∃x ,y ∈Z ,2x +4y ≠3 C.p 是真命题,p 否定是∀x ,y ∈Z ,2x +4y ≠3 D.p 是真命题,p 否定是∃x ,y ∈Z ,2x +4y ≠3 5.已知a <0,-1<b <0,则( ) A.-a <ab <0 B .-a >ab >0C.a >ab >ab 2 D .ab >a >ab 26.已知集合A ={x |x 2+x -2≤0},B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x +1x -2≥0 ,则A ∩(∁R B )=( ) A.(-1,2) B .(-1,1) C.(-1,2] D .(-1,1]7.“关于x 的不等式x 2-2ax +a >0的解集为R ”的一个必要不充分条件是( )A.0<a <1 B .0<a <13C.0≤a ≤1 D.a <0或a >138.若正数a ,b 满足2a +1b =1,则2a+b 的最小值为( )A.42 B .82 C.8 D .9二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对得5分,选对但不全的得2分,有选错的得0分)9.有下列命题中,真命题有( )A.∃x ∈N *,使x 为29的约数B.∀x ∈R ,x 2+x +2>0C.存在锐角α,sin α=1.5D.已知A ={a |a =2n },B ={b |b =3m },则对于任意的n ,m ∈N *,都有A ∩B =∅10.已知1a <1b<0,下列结论中正确的是( )A.a <b B .a +b <ab C.|a |>|b | D .ab <b 211.若对任意x ∈A ,1x∈A ,则称A 为“影子关系”集合,下列集合为“影子关系”集合的是( )A.{-1,1} B .⎩⎨⎧⎭⎬⎫12,2 C.{}x |x 2>1 D .{x |x >0}12.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A ,B 两点,与y 轴交于C 点,且对称轴为x =1,点B 坐标为(-1,0),则下面结论中正确的是( )A.2a +b =0B.4a -2b +c <0C.b 2-4ac >0D.当y <0时,x <-1或x >4第Ⅱ卷 (非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中横线上)13.不等式-x 2+6x -8>0的解集为________.14.某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等,若一月至十月份销售总额至少达7 000万元,则x 的最小值为________.15.若1a +1b =12(a >0,b >0),则4a +b +1的最小值为________.16.已知非空集合A ,B 满足下列四个条件: ①A ∪B ={1,2,3,4,5,6,7}; ②A ∩B =∅;③A 中的元素个数不是A 中的元素; ④B 中的元素个数不是B 中的元素.(1)若集合A 中只有1个元素,则A =________;(2)若两个集合A 和B 按顺序组成的集合对(A ,B )叫作有序集合对,则有序集合对(A ,B )的个数是________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)已知集合A ={x |1<x <2},B ={x |m -2<x <2m }. (1)当m =2时,求A ∩B ;(2)若________,求实数m 的取值范围.请从①∀x ∈A 且x ∉B ;②“x ∈B ”是“x ∈A ”的必要条件;这两个条件中选择一个填入(2)中横线处,并完成第(2)问的解答.(如果选择多个条件分别解答,按第一个解答计分)18.(本小题满分12分)已知p :x 2-3x -4≤0;q :x 2-6x +9-m 2≤0,若p 是q 的充分条件,求m 的取值范围.19.(本小题满分12分)已知函数f (x )=ax 2+bx ,a ∈(0,1).(1)若f (1)=2,求1a +4b的最小值;(2)若f (1)=-1,求关于x 的不等式f (x )+1>0的解集.20.(本小题满分12分)为了保护环境,某工厂在政府部门的鼓励下进行技术改进:把二氧化碳转化为某种化工产品,经测算,该处理成本y (单位:万元)与处理量x (单位:吨)之间的函数关系可近似表示为y =x 2-40x +1 600,x ∈[30,50],已知每处理一吨二氧化碳可获得价值20万元的某种化工产品.(1)判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元该工厂才不会亏损?(2)当处理量为多少吨时,每吨的平均处理成本最少?21.(本小题满分12分)若集合A ={x |x 2+2x -8<0},B ={x ||x +2|>3},C ={x |x2-2mx +m 2-1<0,m ∈R }.(1)若A ∩C =∅,求实数m 的取值范围. (2)若(A ∩B )⊆C ,求实数m 的取值范围.22.(本小题满分12分)已知x >0,y >0,2xy =x +4y +a . (1)当a =16时,求xy 的最小值;(2)当a =0时,求x +y +2x +12y的最小值.第一章 单元质量评估卷1.答案:C解析:因为A ={x |x 2-1=0}={-1,1},所以选项A ,B ,D 均正确,C 不正确. 2.答案:A解析:因为人在阵地在,所以胡马度过阴山说明龙城飞将不在,因为人不在阵地在不在不知道,所以龙城飞将不在,不能确定胡马是否度过阴山,所以胡马度过阴山是龙城飞将不在的充分条件,结合选项,可得A 正确.3.答案:B解析:x (x -2)<0⇒0<x <2,x -1<0⇒x <1,选项A 中Venn 图中阴影部分表示M ∩N =(0,1),不符合题意;选项B 中Venn 图中阴影部分表示∁M (M ∩N )=[1,2),符合题意;选项C 中Venn 图中阴影部分表示∁N (M ∩N )=(-∞,0],不符合题意;选项D 中Venn 图中阴影部分表示M ∪N =(-∞,2),不符合题意.故选B.4.答案:A解析:由于x ,y 是整数,2x +4y 是偶数,所以p 是假命题.原命题是存在量词命题,其否定是全称量词命题,注意到要否定结论,所以p 的否定是“∀x ,y ∈Z ,2x +4y ≠3”.故选A.5.答案:B解析:∵a <0,-1<b <0,∴ab >0,a <ab 2<0,故A ,C ,D 都不正确,正确答案为B.6.答案:D解析:由x 2+x -2≤0,得-2≤x ≤1,∴A =[-2,1].由x +1x -2≥0,得x ≤-1或x >2,∴B =(-∞,-1]∪(2,+∞).则∁R B =(-1,2],∴A ∩(∁R B )=(-1,1].故选D.7.答案:C解析:因为关于x 的不等式x 2-2ax +a >0的解集为R ,所以函数f (x )=x 2-2ax +a 的图象始终落在x 轴的上方,即Δ=4a 2-4a <0,解得0<a <1,因为要找其必要不充分条件,从而得到(0,1)是对应集合的真子集,故选C.8.答案:D解析:∵a >0,b >0,且2a +1b =1,则2a+b =⎝ ⎛⎭⎪⎫2a +b ⎝ ⎛⎭⎪⎫2a +1b =5+2ab+2ab ≥5+4=9,当且仅当2ab =2ab 即a =13,b =3时取等号,故选D.9.答案:AB解析:A 中命题为真命题.当x =1时,x 为29的约数成立;B 中命题是真命题.x 2+x +2=⎝ ⎛⎭⎪⎫x +12 2+74 >0恒成立;C 中命题为假命题.根据锐角三角函数的定义可知,对于锐角α,总有0<sin α<1;D 中命题为假命题.易知6∈A ,6∈B ,故A ∩B ≠∅.10.答案:BD解析:因为1a <1b<0,所以b <a <0,故A 错误;因为b <a <0,所以a +b <0,ab >0,所以a +b <ab ,故B 正确;因为b <a <0,所以|a |>|b |不成立,故C 错误;ab -b 2=b (a -b ),因为b <a <0,所以a -b >0,即ab -b 2=b (a -b )<0,所以ab <b 2成立,故D正确.故选BD.11.答案:ABD解析:根据“影子关系”集合的定义,可知{-1,1},⎩⎨⎧⎭⎬⎫12,2 ,{x |x >0}为“影子关系”集合,由{x |x 2>1},得{x |x <-1或x >1},当x =2时,12 ∉{x |x 2>1},故不是“影子关系”集合.故选ABD.12.答案:ABC解析:∵二次函数y =ax 2+bx +c (a ≠0)图象的对称轴为x =1,∴-b2a =1,得2a +b=0,故A 正确;当x =-2时,y =4a -2b +c <0,故B 正确;该函数图象与x 轴有两个交点,则b 2-4ac >0,故C 正确;∵二次函数y =ax 2+bx +c (a ≠0)的图象的对称轴为x =1,点B 的坐标为(-1,0),∴点A 的坐标为(3,0),∴当y <0时,x <-1或x >3,故D 错误.故选ABC.13.答案:(2,4)(或写成{x |2<x <4}) 解析:原不等式等价于x 2-6x +8<0, 即(x -2)(x -4)<0,得2<x <4. 14.答案:20解析:把一月份至十月份的销售额相加求和,列出不等式,求解. 七月份:500(1+x %),八月份:500(1+x %)2. 所以一月份至十月份的销售总额为:3 860+500+2[500(1+x %)+500(1+x %)2]≥7 000,解得1+x %≤-2.2(舍)或1+x %≥1.2,所以x min =20. 15.答案:19解析:由1a +1b =12 ,得2a +2b=1,4a +b +1=(4a +b )⎝ ⎛⎭⎪⎫2a +2b +1=8+2+8a b +2b a+1≥11+28a b ·2ba=19.当且仅当8a b =2ba,即a =3,b =6时,4a +b +1取得最小值19.16.答案:(1){6} (2)32解析:(1)若集合A 中只有1个元素,则集合B 中有6个元素,所以6∉B ,故A ={6}. (2)当集合A 中有1个元素时,A ={6},B ={1,2,3,4,5,7},此时有序集合对(A ,B )有1个;当集合A 中有2个元素时,5∉B ,2∉A ,此时有序集合对(A ,B )有5个;当集合A中有3个元素时,4∉B ,3∉A ,此时有序集合对(A ,B )有10个;当集合A 中有4个元素时,3∉B ,4∉A ,此时有序集合对(A ,B )有10个;当集合A 中有5个元素时,2∉B ,5∉A ,此时有序集合对(A ,B )有5个;当集合A 中有6个元素时,A ={1,2,3,4,5,7},B ={6},此时有序集合对(A ,B )有1个.综上,可知有序集合对(A ,B )的个数是1+5+10+10+5+1=32.17.解析:(1)当m =2时,B ={x |0<x <4}, 所以A ∩B ={x |1<x <2}. (2)若选择条件①,由∀x ∈A 且x ∉B 得:A ∩B =∅, 当B =∅时,m -2≥2m ,即m ≤-2; 当B ≠∅时,m -2<2m ,即m >-2m -2≥2或2m ≤1,即m ≥4或m ≤12 , 所以m ≥4或-2<m ≤12,综上所述:m 的取值范围为:m ≥4或m ≤12.若选择条件②,由“x ∈B ”是“x ∈A ”的必要条件得:A ⊆B,即⎩⎪⎨⎪⎧m -2≤12m ≥2 ,所以1≤m ≤3. 18.解析:由x 2-3x -4≤0,解得-1≤x ≤4, 由x 2-6x +9-m 2≤0,可得[x -(3+m )][x -(3-m )]≤0,① 当m =0时,①式的解集为{x |x =3};当m <0时,①式的解集为{x |3+m ≤x ≤3-m }; 当m >0时,①式的解集为{x |3-m ≤x ≤3+m };若p 是q 的充分条件,则集合{x |-1≤x ≤4}是①式解集的子集.可得⎩⎪⎨⎪⎧m <0,3+m ≤-1,3-m ≥4 或⎩⎪⎨⎪⎧m >0,3-m ≤-1,3+m ≥4,解得m ≤-4或m ≥4.故m 的取值范围是(-∞,-4]∪[4,+∞). 19.解析:(1)由f (1)=2可得:a +b =2, 因为a ∈(0,1),所以2-b ∈(0,1)⇒1<b <2,所以1a +4b =12 ×(a +b )⎝ ⎛⎭⎪⎫1a +4b =12 ×⎝ ⎛⎭⎪⎫1+4+b a +4a b ≥12 ×⎝ ⎛⎭⎪⎫5+2b a ·4a b =92,当且仅当b a =4a b 时取等号,即当且仅当a =23 ,b =43 时取得最小值为92.(2)由f (1)=-1可得:a +b =-1, 则f (x )+1>0化为:ax 2-(a +1)x +1=(ax -1)(x -1)>0,因为0<a <1,所以1a>1,则解不等式可得x >1a或x <1,则不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >1a或x <1 .20.解析:(1)当x ∈[30,50]时,设该工厂获利为S 万元,则S =20x -(x 2-40x +1 600)=-(x -30)2-700,所以当x ∈[30,50]时,S 的最大值为-700,因此该工厂不会获利,国家至少需要补贴700万元,该工厂才不会亏损.(2)由题知,二氧化碳的平均处理成本P =y x=x +1 600x-40,x ∈[30,50],当x ∈[30,50]时,P =x +1 600x-40≥2x ·1 600x-40=40,当且仅当x =1 600x,即x =40时等号成立,所以当处理量为40吨时,每吨的平均处理成本最少.21.解析:(1)由已知可得A ={x |-4<x <2},B ={x |x <-5或x >1},C ={x |m -1<x <m +1}.若A ∩C =∅,则m -1≥2或m +1≤-4, 解得m ≥3或m ≤-5.所以实数m 的取值范围为{m |m ≤-5或m ≥3}. (2)结合(1)可得A ∩B ={x |1<x <2}.若(A ∩B )⊆C ,即{x |1<x <2}⊆{x |m -1<x <m +1}, 则⎩⎪⎨⎪⎧m -1≤1m +1≥2,解得1≤m ≤2.所以实数m 的取值范围为{m |1≤m ≤2}.22.解析:(1)当a =16时,2xy =x +4y +16≥2x ·4y +16=4xy +16, 即2xy ≥4xy +16, 即(xy +2)(xy -4)≥0, 所以xy ≥4,即xy ≥16,当且仅当x =4y =8时等号成立, 所以xy 的最小值为16.(2)当a =0时,2xy =x +4y ,即12y +2x=1,所以x+y+2x+12y=x+y+1=(x+y)⎝⎛⎭⎪⎫2x+12y+1=72+2yx+x2y≥72+22yx·x2y=112,当且仅当2yx=x2y,即x=3,y=32时等号成立,所以x+y+2x+12y的最小值为112.。
2024-2025年北师大版数学必修第一册4.3.3.2对数函数的综合应用(带答案)
第2课时 对数函数的综合应用必备知识基础练知识点一 利用单调性求范围问题 1.若log a 23 <1,则a 的取值范围是( )A .(0,23 )B .(23 ,+∞)C .(23 ,1)D .(0,23)∪(1,+∞)2.不等式log 2(2x +3)>log 2(5x -6)的解集为( ) A .(-∞,3) B .(-32 ,3)C .(-32 ,65 )D .(65,3)3.已知a >0且a ≠1,若函数y =log a (4-ax )在[1,2]上是减函数,则实数a 的取值范围是( )A .(0,1)B .(1,2)C .(1,2]D .(1,4) 知识点二 对数函数的实际应用4.某种动物繁殖数量y (只)与时间x (年)的关系为y =m log 2(x +1),设这种动物第一年有200只,到第7年它们发展到( )A .300只B .400只C .500只D .600只5.某工厂生产一种溶液,按市场要求杂质含量不得超过0.1%,而这种溶液最初的杂质含量为2%,现进行过滤,已知每过滤一次杂质含量减少13 ,则使产品达到市场要求的最少过滤次数为(参考数据:lg 2≈0.301,lg 3≈0.477)( )A .10B .9C .8D .7知识点三 对数函数的综合应用6.已知函数y =log 2(x 2-2kx +k )的值域为R ,则k 的取值范围是( ) A .0<k <1 B .0≤k <1C .k ≤0或k ≥1 D.k =0或k ≥17.若函数f (x )=log a (x +x 2+2a 2)是奇函数,则a =________. 8.已知奇函数f (x )=ln ax +1x -1. (1)求实数a 的值;(2)判断函数f (x )在(1,+∞)上的单调性,并利用函数单调性的定义证明; (3)当x ∈[2,5]时,ln (1+x )>m +ln (x -1)恒成立,求实数m 的取值范围.关键能力综合练1.已知实数a =log 45,b =(12 )0,c =log 30.4,则a ,b ,c 的大小关系为( )A .b <c <aB .b <a <cC .c <a <bD .c <b <a2.已知函数f (x )=lg 1-x1+x ,f (a )=b ,则f (-a )=( )A .bB .-bC .1bD .-1b3.函数f (x )=|log 12x |的单调递增区间是( )A .(0,12] B .(0,1] C .(0,+∞) D.[1,+∞)4.若f (x )=⎩⎪⎨⎪⎧ax -2a ,x ≤2,log a (x 2-ax ),x >2 在(-∞,+∞)上单调递增,则实数a 的取值范围为( )A .⎣⎢⎡⎭⎪⎫34,1B .⎝ ⎛⎦⎥⎤1,32 C .(1,2) D .(1,2]5.(探究题)当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,则a 的取值范围是( ) A .(0,1) B .(1,2) C .(1,2] D .(0,12 )6.(易错题)函数f (x )=log 0.6(2-x ) 的定义域为________.7.已知函数f (x )=ln (x +x 2+1 )+1,若实数a 满足f (-a )=2,则f (a )=________. 8.写出一个同时满足下列两个条件的函数f (x )=________. ①对∀x 1,x 2∈(0,+∞),有f (x 1x 2)=f (x 1)+f (x 2); ②当x ∈(4,+∞)时,f (x )>1恒成立.9.已知a >0,a ≠1且log a 3>log a 2,若函数f (x )=log a x 在区间[a ,2a ]上的最大值与最小值之差为1.(1)求a 的值;(2)解不等式log 13(x -1)>log 13(a -x );(3)求函数g (x )=|log a x -1|的单调区间.核心素养升级练1.(多选题)若定义域为[0,1]的函数f (x )同时满足以下三个条件:①对任意的x ∈[0,1],总有f (x )≥0; ②f (1)=1;③若x 1≥0,x 2≥0,x 1+x 2≤1,则有f (x 1+x 2)≥f (x 1)+f (x 2).就称f (x )为“A 函数”,下列定义在[0,1]上的函数中,是“A 函数”的有( ) A .f (x )=log 12(x +1)B .f (x )=log 2(x +1)C .f (x )=xD .f (x )=2x-12.(学科素养—逻辑推理)若函数f (x )=log a x (a >0且a ≠1)在⎣⎢⎡⎦⎥⎤12,4 上的最大值为2,最小值为m ,函数g (x )=(3+2m )x 在[0,+∞)上是增函数,则a -m 的值是________.第2课时 对数函数的综合应用必备知识基础练1.答案:D解析:由log a 23 <1,得log a 23<log a a ,若a >1,由函数y =log a x 为增函数,得a >23 ,所以a >1;若0<a <1,由函数y =log a x 为减函数,得0<a <23 ,所以0<a <23 .综上所述,0<a <23 或a >1.故选D.2.答案:D解析:由⎩⎪⎨⎪⎧2x +3>0,5x -6>0,2x +3>5x -6,得65<x <3.3.答案:B解析:y =4-ax 在[1,2]上是减函数,y =log a (4-ax )在[1,2]上是减函数,故a >1, 考虑定义域:4-2a >0,故a <2, 综上所述:1<a <2.故选B. 4.答案:D解析:由已知第一年有200只,得m =200.将m =200,x =7代入y =m log 2(x +1),得y =600.5.答案:C解析:设经过n 次过滤,产品达到市场要求,则2100 ×(23 )n ≤11000 ,即(23 )n ≤120 ,由n lg 23 ≤-lg 20,即n (lg 2-lg 3)≤-(1+lg 2),得n ≥1+lg 2lg 3-lg 2 ≈7.4,所以选C.6.答案:C解析:令t =x 2-2kx +k ,由y =log 2(x 2-2kx +k )的值域为R ,得函数t =x 2-2kx +k 的图象一定恒与x 轴有交点,所以Δ=4k 2-4k ≥0,即k ≤0或k ≥1.7.答案:22解析:∵x +x 2+2a 2>0恒成立,∴函数f (x )的定义域为R ,又∵f (x )是奇函数,∴f (0)=0,即log a 2a 2=0, ∴2a 2=1,∴a =22. 综验证,此时函数y =log a (x +x 2+1 )为奇函数,满足题意,故a =22. 8.解析:(1)∵f (x )是奇函数, ∴f (-x )=-f (x ),即ln -ax +1-x -1 =-ln ax +1x -1,∴ax -1x +1 =x -1ax +1即(a 2-1)x 2=0,解得a =±1, 经检验,a =-1时不符合题意,∴a =1.(2)f (x )在(1,+∞)上为减函数.证明如下:由(1)知,f (x )=ln x +1x -1,任取x 1,x 2∈(1,+∞),且x 1<x 2,则f (x 1)-f (x 2)=lnx 1+1x 1-1 -ln x 2+1x 2-1 =ln (x 1+1x 1-1 ·x 2-1x 2+1 )=ln (x 1x 2+x 2-x 1-1x 1x 2+x 1-x 2-1),∵x 1<x 2,∴x 2-x 1>0,x 1x 2+x 2-x 1-1x 1x 2+x 1-x 2-1>1,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), ∴f (x )在(1,+∞)上为减函数.(3)由已知得m <ln (1+x )-ln (x -1),即m <ln x +1x -1. 由(2)知f (x )=lnx +1x -1在[2,5]上为减函数, ∴当x =5时,(lnx +1x -1 )min =ln 32 ,∴m <ln 32. 关键能力综合练1.答案:D解析:由题意知,a =log 45>1,b =(12 )0=1,c =log 30.4<0,故c <b <a .2.答案:B解析:由1-x1+x >0,得f (x )的定义域为(-1,1).因为f (-x )=lg 1+x 1-x =-lg 1-x1+x =-f (x ),所以f (x )是奇函数,所以f (-a )=-f (a )=-b . 3.答案:D解析:f (x )的图象如图所示,由图象可知单调递增区间为[1,+∞).4.答案:B解析:若f (x )=⎩⎪⎨⎪⎧ax -2a ,x ≤2,log a (x 2-ax ),x >2 在(-∞,+∞)上单调递增, 则⎩⎪⎨⎪⎧a >0a >122-2a ≥0a2≤22a -2a ≤log a(22-2a ),解得1<a ≤32 ,即实数a 的取值范围为⎝ ⎛⎦⎥⎤1,32 .故选B. 5.答案:C解析:设f 1(x )=(x -1)2,f 2(x )=log a x ,要使当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,只需f 1(x )=(x -1)2在(1,2)上的图象在f 2(x )=log a x 的下方即可.当0<a <1时,显然不成立.当a >1时,如图所示,要使在(1,2)上,f 1(x )=(x -1)2的图象在f 2(x )=log a x 的下方,只需f 1(2)≤f 2(2),即(2-1)2≤log a 2,∴log a 2≥1,∴1<a ≤2.6.答案:[1,2)解析:要使函数f (x )有意义,则需满足⎩⎪⎨⎪⎧log 0.6(2-x )≥0,2-x >0, 解得1≤x <2.7.答案:0解析:设g (x )=ln (x +x 2+1 ),则g (-x )=ln (-x +(-x )2+1 )=ln 1x +x 2+1=-ln (x +x 2+1 )=-g (x ),又g (x )的定义域关于原点对称,所以g (x )为奇函数.因此f (-a )=g (-a )+1=2,所以g (-a )=1,从而g (a )=-1,所以f (a )=g (a )+1=-1+1=0.8.答案:log 2x (答案不唯一)解析:因为由f (x )满足的两个条件可以联想到对数函数,当f (x )=log 2x 时,对∀x 1,x 2∈(0,+∞),f (x 1x 2)=log 2(x 1x 2)=log 2x 1+log 2x 2=f (x 1)+f (x 2),满足条件①;当x ∈(4,+∞)时,f (x )>log 24=2>1,满足条件②. 9.解析:(1)∵log a 3>log a 2,∴a >1, ∴y =log a x 在[a ,2a ]上为增函数, ∴log a (2a )-log a a =1,∴a =2.(2)依题意可知⎩⎪⎨⎪⎧x -1<2-x ,x -1>0,2-x >0,解得1<x <32,∴所求不等式的解集为(1,32 ).(3)∵g (x )=|log 2x -1|,∴g (x )=⎩⎪⎨⎪⎧log 2x -1,x ≥2,1-log 2x ,0<x <2.∴函数g (x )在(0,2)上为减函数,在[2,+∞)上为增函数, 即g (x )的单调递减区间为(0,2),单调递增区间为[2,+∞).核心素养升级练1.答案:CD解析:选项A 中,f (1)=log 12(1+1)=-1,f (x )=log 12(x +1)不是“A 函数”.选项B 中,若x 1≥0,x 2≥0,x 1+x 2≤1,则f (x 1)+f (x 2)=log 2(x 1+1)+log 2(x 2+1)=log 2(x 1x 2+x 1+x 2+1)≥log 2(x 1+x 2+1)=f (x 1+x 2),不满足③,因此,f (x )=log 2(x +1)不是“A 函数”.选项C 中,f (x )显然满足①②,又f (x 1+x 2)=x 1+x 2=f (x 1)+f (x 2),因此,f (x )=x 是“A 函数”.选项D 中,f (x )显然满足①②.∵f (x 1+x 2)=2x 1+x 2-1,f (x 1)+f (x 2)=2x 1+2x 2-2,∴f (x 1+x 2)-[f (x 1)+f (x 2)]=2x 1+x 2-2x 1-2x 2+1=(2x 1-1)( 2x 2-1).又x 1,x 2∈[0,1],∴2x 1-1≥0,2x 2-1≥0.从而f (x 1+x 2)≥f (x 1)+f (x 2).因此,f (x )=2x-1是“A 函数”.故选CD.2.答案:3解析:当a >1时,函数f (x )=log a x 是正实数集上的增函数,而函数f (x )=log a x 在⎣⎢⎡⎦⎥⎤12,4 上的最大值为2,因此有f (4)=log a 4=2,解得a =2,所以m =log 212 =-1,此时g (x )=x 在[0,+∞)上是增函数,符合题意,因此a -m =2-(-1)=3;当0<a <1时,函数f (x )=log a x 是正实数集上的减函数,而函数f (x )=log a x 在⎣⎢⎡⎦⎥⎤12,4上的最大值为2,因此有f ⎝ ⎛⎭⎪⎫12 =log a 12 =2,a =22 ,所以m =log 22 4=-4,此时g (x )=-5x 在[0,+∞)上是减函数,不符合题意.综上所述,a =2,m =-1,a -m =3.。
2024-2025年北师大版数学必修第一册1.4.1一元二次函数(带答案)
4.1 一元二次函数必备知识基础练知识点一一元二次函数的解析式1.一个二次函数图象的顶点坐标是(2,4),且过另一点(0,-4),则这个二次函数的解析式为( )A.y=-2(x+2)2+4B.y=-2(x-2)2+4C.y=2(x+2)2-4D.y=2(x-2)2-42.已知一元二次函数的图象过点(2,-1),(-1,-1),且函数值的最大值为8,求一元二次函数的解析式.知识点二一元二次函数的图象变换3.将抛物线y=-3x2先向左平移1个单位长度,再向下平移2个单位长度,得到的抛物线的解析式是( )A .y =-3(x -1)2-2 B .y =-3(x -1)2+2 C .y =-3(x +1)2-2 D .y =-3(x +1)2+24.将抛物线y =-x 2+2x -1向右平移一个单位长度,向上平移2个单位长度,得到的抛物线的解析式是( )A .y =-x 2+2 B .y =-x 2+4x -2 C .y =-x 2-2 D .y =-x 2+4x -6 知识点三 一元二次函数的图象与性质5.对于二次函数y =ax 2+(1-2a )x (a >0),下列说法错误的是( ) A .当a =12 时,该二次函数图象的对称轴为y 轴B .当a >12 时,该二次函数图象的对称轴在y 轴的右侧C .该二次函数的图象的对称轴可为x =1D .当x >2时,y 的值随x 的值增大而增大6.已知二次函数y =ax 2+bx +c 的图象过点A (1,2),B (3,2),C (5,7).若点M (-2,y 1),N (-1,y 2),K (8,y 3)也在二次函数y =ax 2+bx +c 的图象上,则下列结论正确的是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 27.当a -1≤x ≤a 时,函数y =x 2-2x +1的最小值为1,则a 的值为( ) A .1 B .2 C .1或2 D .0或3关键能力综合练1.已知抛物线y =x 2+bx +c 的顶点坐标为(1,-3),则抛物线对应的函数解析式为( )A .y =x 2-2x +2 B .y =x 2-2x -2 C .y =-x 2-2x +1 D .y =x 2-2x +12.一元二次函数y =ax 2+bx +c (a ≠0)与y =bx 2+ax +c (b ≠0)在同一平面直角坐标系中的图象可能是( )3.把函数y =2x 2-4x -5的图象向左平移2个单位长度,再向下平移3个单位长度后,所得到的函数图象的解析式为( )A .y =2x 2+4x -8 B .y =2x 2-8x +8 C .y =2x 2+4x -2 D .y =2x 2-8x -24.若函数f (x )=x 2+bx +c 满足f (1)=0,f (-1)=8,则下列判断错误的是( ) A .b +c =-1 B .f (3)=0C .f (x )图象的对称轴为直线x =4D .f (x )的最小值为-15.(探究题)已知二次函数y =ax 2+bx +c 同时满足下列条件:图象的对称轴是x =1,最值是15,图象与x 轴有两个交点,其横坐标的平方和为15-a ,则b 的值是( )A .4或-30B .-30C .4D .6或-206.函数y =x 2+m 的图象向下平移2个单位长度,得到函数y =x 2-1的图象,则实数m =________.7.设函数f (x )=4x 2-(a +1)x +5在[-1,+∞)上f (x )随x 的增大而增大,在(-∞,-1]上f (x )随x 的增大而减小,则f (-1)=________.8.(易错题)当x ∈[-2,1]时,二次函数y =-(x -m )2+m 2+1有最大值3,则实数m 的值为________.9.已知二次函数y =-12 x 2-x +72.(1)用配方法把这个二次函数的解析式化为y =a (x +m )2+k 的形式; (2)写出这个二次函数图象的开口方向、顶点坐标和对称轴;(3)将二次函数y =-12 x 2的图象如何平移能得到二次函数y =-12 x 2-x +72 的图象,请写出平移方法.核心素养升级练1.(多选题)若关于x 的一元二次方程(x -2)(x -3)=m 有实数根x 1,x 2,且x 1<x 2,则下列结论中说法正确的是( )A .当m =0时,x 1=2,x 2=3B .m >-14C .当m >0时,2<x 1<x 2<3D .当m >0时,x 1<2<3<x 22.(学科素养—逻辑推理)已知抛物线y =ax 2+6x -8与直线y =-3x 相交于点A (1,m ). (1)求抛物线的解析式;(2)请问(1)中的抛物线经过怎样的平移就可以得到y =ax 2的图象.4.1 一元二次函数必备知识基础练1.答案:B解析:设抛物线的解析式为y =a (x -2)2+4,把(0,-4)代入得a (-2)2+4=-4,解得a =-2,所以抛物线的解析式为y =-2(x -2)2+4,故选B.2.解析:设y =ax 2+bx +c (a ≠0),由题意,得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a=8, 解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.故所求一元二次函数的解析式为y =-4x 2+4x +7. 3.答案:C解析:将抛物线y =-3x 2向左平移1个单位长度所得抛物线的解析式为y =-3(x +1)2,再向下平移2个单位长度所得抛物线的解析式为y =-3(x +1)2-2.故选C.4.答案:B解析:将抛物线y =-(x -1)2向右平移一个单位长度所得抛物线的解析式为y =-(x -1-1)2,再向上平移2个单位长度所得抛物线的解析式为y =-(x -1-1)2+2,即y =-(x -2)2+2,即y =-x 2+4x -2.故选B.5.答案:C解析:该抛物线的对称轴为x =-1-2a 2a =1-12a ,A 中,当a =12 时,此时x =0,即二次函数的图象对称轴为x =0,即y 轴,故正确;B 中,当a >12 时,此时x =1-12a >0,此时对称轴在y 轴的右侧,故正确;C 中,由于a >0,故对称轴不可能是x =1,故错误;D 中,由于1-12a <1,所以对称轴x <1,由于a >0,∴抛物线的开口向上,∴x >2时,y 的值随x的值增大而增大,故正确,故选C.6.答案:B解析:把A (1,2),B (3,2),C (5,7)代入y =ax 2+bx +c 得⎩⎪⎨⎪⎧a +b +c =2,9a +3b +c =2,25a +5b +c =7,解得⎩⎪⎨⎪⎧a =58,b =-52,c =318.∴函数解析式为y =58 x 2-52 x +318 =58 (x -2)2+118 .∴当x >2时,y 随x 的增大而增大;当x <2时,y 随x 的增大而减小;根据对称性,K (8,y 3)的对称点是(-4,y 3),所以y 2<y 1<y 3.故选B.7.答案:D解析:当y =1时,有x 2-2x +1=1,解得x 1=0,x 2=2,∵当a -1≤x ≤a 时,函数有最小值1,∴a -1=2或a =0,∴a =3或a =0.故选D.关键能力综合练1.答案:B解析:因为抛物线y =x 2+bx +c 的顶点坐标为(1,-3),所以y =(x -1)2-3,即y =x 2-2x -2.故选B.2.答案:D解析:由于一元二次函数y =ax 2+bx +c (a ≠0)与y =bx 2+ax +c (b ≠0)的图象的对称轴方程分别是x =-b 2a ,x =-a 2b ,则-b 2a 与-a2b同号,即它们的图象的对称轴位于y 轴的同一侧,由此排除A ,B ;由C ,D 中给出的图象,可判定两函数图象的开口方向相反,故ab <0,于是-b 2a >0,-a2b>0,即两函数图象的对称轴都位于y 轴右侧,排除C ,故选D.3.答案:A解析:y =2x 2-4x -5=2(x -1)2-7,将y =2(x -1)2-7的图象向左平移2个单位长度得y =2(x -1+2)2-7,再向下平移3个单位长度得y =2(x +1)2-7-3,即y =2x 2+4x -8.故选A.4.答案:C解析:由题得⎩⎪⎨⎪⎧1+b +c =01-b +c =8 ,解得b =-4,c =3,所以f (x )=x 2-4x +3=(x -2)2-1,因为f (1)=0,∴b +c =-1,所以选项A 正确;所以f (3)=0,所以选项B 正确;因为f (x )min =-1,所以选项D 正确; 因为f (x )=0的对称轴为x =2,所以选项C 错误.故选C. 5.答案:C解析:∵对称轴是x =1,最值是15,∴可设y =a (x -1)2+15,∴y =ax 2-2ax +15+a , 设方程ax 2-2ax +15+a =0的两个根是x 1,x 2,则x 1+x 2=--2a a =2,x 1x 2=15+a a,∵二次函数的图象与x 轴有两个交点,其横坐标的平方和为15-a ,则x 21 +x 22 =(x 1+x 2)2-2x 1x 2=15-a ,∴22-2(15+a )a=15-a ,即a 2-13a -30=0,∴a 1=15(不符合题意,舍去),a 2=-2,∴y =-2(x -1)2+15=-2x 2+4x +13,∴b =4.故选C.6.答案:1解析:因为函数y =x 2-1的图象向上平移2个单位长度,得到函数y =x 2+1的图象,所以m =1.7.答案:1 解析:由题意可得a +18=-1,解得a =-9.∴f (x )=4x 2+8x +5.∴f (-1)=4×(-1)2+8×(-1)+5=1.8.答案:32或-2解析:二次函数的对称轴为x =m ,①当m <-2时,x =-2时二次函数有最大值,此时-(-2-m )2+m 2+1=3,解得m =-32,与m <-2矛盾,故m 值不存在;②当-2≤m ≤1时,x =m 时二次函数有最大值,此时m 2+1=3,解得m =-2 或m =2 (舍去);③当m >1时,x =1时二次函数有最大值,此时-(1-m )2+m 2+1=3,解得m =32 .综上所述,m 的值为32或-2 .9.解析:(1)y =-12 x 2-x +72 =-12 (x +1)2+4,即y =-12(x +1)2+4.(2)因为a =-12 <0,所以该抛物线的开口方向向下,由y =-12 (x +1)2+4知,抛物线的顶点坐标是(-1,4),对称轴为直线x =-1.(3)∵y =-12 (x +1)2+4,∴将y =-12 x 2的图象向左平移1个单位长度,再向上平移4个单位长度即可.核心素养升级练1.答案:ABD解析:当m =0时,(x -2)(x -3)=0, ∴x 1=2,x 2=3,故A 对;方程(x -2)(x -3)=m 化为x 2-5x +6-m =0,由方程有两个不等实根得Δ=25-4(6-m )=1+4m >0,∴m >-14 ,故B 对;当m >0时,画出函数y =(x -2)(x -3)和函数y =m 的图象如图,由(x -2)(x -3)=m 得,函数y =(x -2)·(x -3)和函数y =m 的交点横坐标分别为x 1,x 2,由图可知,x 1<2<3<x 2,故C 错,D 对.故选ABD.2.解析:(1)∵点A (1,m )在直线y =-3x 上,∴m =-3×1=-3. 把x =1,y =-3代入y =ax 2+6x -8, 得a +6-8=-3,解得a =-1, ∴抛物线的解析式是y =-x 2+6x -8.(2)∵y=-x2+6x-8=-(x-3)2+1,∴该抛物线的顶点坐标为(3,1).因此,把抛物线y=-x2+6x-8向左平移3个单位长度得到y=-x2+1的图象,再把y=-x2+1的图象向下平移1个单位长度就可以得到y=-x2的图象.。
高一数学试题及答案上册北师大版
高一数学试题及答案上册北师大版一、选择题(每题3分,共15分)1. 下列函数中,哪一个是一次函数?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = sin(x)答案:B2. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B。
A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 4}答案:B3. 若a + b = 5,a - b = 3,求a和b的值。
A. a = 4, b = 1B. a = 1, b = 4C. a = 2, b = 3D. a = 3, b = 2答案:A4. 已知sin(θ) = 1/2,θ为锐角,求cos(θ)的值。
A. √3/2B. -√3/2C. 1/2D. -1/2答案:A5. 抛物线y = x^2 - 2x + 1的顶点坐标是什么?A. (1, 0)B. (1, 1)C. (-1, 2)D. (0, 1)答案:B二、填空题(每题2分,共10分)6. 函数y = f(x) = x^3 - 2x^2 + 3x的导数是______。
答案:f'(x) = 3x^2 - 4x + 37. 已知等差数列的首项a1 = 3,公差d = 2,求第5项a5的值。
答案:a5 = 3 + 4 × 2 = 118. 圆的半径为5,求其面积。
答案:π × 5^2 = 25π9. 点P(1, 2)到直线x + 2y - 5 = 0的距离是______。
答案:|1 + 4 - 5| / √(1^2 + 2^2) = √5 / 510. 已知向量a = (3, -1),b = (2, 4),求向量a与b的点积。
答案:3 × 2 + (-1) × 4 = 2三、解答题(共75分)11. 解不等式:2x^2 - 5x + 3 < 0。
(10分)答案:首先,将不等式分解为(2x - 1)(x - 3) < 0。
高一数学试题及答案上册北师大版
高一数学试题及答案上册北师大版一、选择题(每题4分,共40分)1. 若函数f(x) = x^2 - 6x + 8,下列说法正确的是:A. 函数f(x)的图像开口向上B. 函数f(x)的图像开口向下C. 函数f(x)的图像顶点坐标为(3, -1)D. 函数f(x)的图像顶点坐标为(3, 1)答案:B2. 已知集合A={1, 2, 3},B={2, 3, 4},则A∩B等于:A. {1, 2, 3}B. {2, 3}C. {1, 4}D. {2, 3, 4}答案:B3. 已知等差数列{a_n}的首项为2,公差为3,那么a_5等于:A. 14B. 15C. 17D. 18答案:A4. 已知函数y = 2x - 1的图象与x轴交点的坐标为:A. (0.5, 0)B. (0, -1)C. (1, 0)D. (-1, 0)答案:B5. 已知a > 0,b > 0,且a + b = 1,那么ab的最大值为:A. 1/4B. 1/2C. 1/3D. 1/6答案:A6. 已知函数f(x) = x^3 - 3x^2 + 4x,求f'(x):A. 3x^2 - 6x + 4B. x^2 - 6x + 4C. 3x^2 - 6xD. x^2 - 6x + 4x答案:A7. 已知向量a = (2, 3),b = (-1, 2),则向量a与向量b的夹角θ满足:A. cosθ = -1/√13B. cosθ = 1/√13C. cosθ = √13D. cosθ = -√13答案:B8. 已知函数f(x) = x^2 - 4x + 3,求f(2):A. -1B. 1C. 3D. 5答案:A9. 已知方程x^2 - 5x + 6 = 0的根为:A. 2, 3B. -2, -3C. 1, 6D. 2, -3答案:A10. 已知函数y = √x + 1,求其定义域:A. (-∞, 0)B. [0, +∞)C. (-∞, 1)D. (1, +∞)答案:B二、填空题(每题4分,共20分)1. 已知函数f(x) = x^2 - 4x + 3,求其对称轴方程为______。
最新北师大版高一数学必修一测试题全套及答案
最新北师大版高一数学必修一测试题全套及答案第一章测试题一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|-1≤x<3},B={x|2<x≤5},则A∪B等于()A.{x|2<x<3}B.{x|-1≤x≤5}C.{x|-1<x<5} D.{x|-1<x≤5}解析:结合数轴分析可知,A∪B={x|-1≤x≤5}.答案:B2.符合条件{a}P⊆{a,b,c}的集合P的个数是()A.2 B.3C.4 D.5解析:集合P内除了含有元素a外,还必须含b,c中至少一个,故P={a,b},{a,c},{a,b,c}共3个.答案:B3.已知集合A,B均为集合U={1,3,5,7,9}的子集,若A∩B={1,3},(∁U A)∩B={5},则集合B等于()A.{1,3} B.{3,5}C.{1,5} D.{1,3,5}解析:画出满足题意的Venn图,由图可知B={1,3,5}.答案:D4.设M={x|x=a2+1,a∈N*},P={y|y=b2-4b+5,b∈N*},则下列关系正确的是() A.M=P B.M PC.P M D.M与P没有公共元素解析:∵a∈N*,∴x=a2+1=2,5,10,….∵b∈N*,∴y=b2-4b+5=(b-2)2+1=1,2,5,10,….∴M P.答案:B5.若全集U={1,2,3,4,5,6},M={2,3},N={1,4},则集合{5,6}等于()A.M∪N B.M∩NC.(∁U M)∪(∁U N) D.(∁U M)∩(∁U N)解析:∵∁U M={1,4,5,6},∁U N={2,3,5,6},∴(∁U M)∩(∁U N)={5,6}.答案:D6.如图,I为全集,M,P,S是I的三个子集,则阴影部分所表示的集合是() A.(M∩P)∩S B.(M∩P)∪SC.(M∩P)∩(∁I S)D.(M∩P)∪(∁I S)解析:阴影部分在M中,也在P中但不在S中,故表示的集合为(M∩P)∩(∁I S).答案:C7.已知集合A={x|x<3,或x≥7},B={x|x<a}.若(∁U A)∩B≠∅,则a的取值范围为() A.a>3 B.a≥3C.a≥7 D.a>7解析:因为A={x|x<3,或x≥7},所以∁U A={x|3≤x<7},又(∁U A)∩B≠∅,则a>3.答案:A8.已知集合A={x|x>a},B={x|1<x<2},且A∪(∁R B)=R,则实数a的取值范围是() A.{a|a≤1} B.{a|a<1}C.{a|a≥2} D.{a|a>2}解析:∁R B={x|x≤1或x≥2},∵A∪(∁R B)=R,∴a≤1.答案:A9.若集合A={x||x|=1},B={x|ax=1},若A∪B=A,则实数a的值为()A.1 B.-1C.1或-1 D.1或0或-1解析:∵A={-1,1}且A∪B=A,∴B⊆A,∴B={-1}或{1}或∅.当B={1}时a=1;当B={-1}时a=-1;当B=∅时a=0.∴a的值为0或1或-1.答案:D10.定义集合M与N的新运算:M⊕N={x|x∈M或x∈N且x∉M∩N},则(M⊕N)⊕N =()A.M∩N B.M∪NC.M D.N解析:按定义,M⊕N表示右上图的阴影部分,两圆内部的公共部分表示M∩N.(M⊕N)⊕N应表示x∈M⊕N或x∈N且x∉(M⊕N)∩N的所有x的集合,(M⊕N)∩N表示右下图右边的阴影部分,因此(M⊕N)⊕N=M.答案:C二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)11.已知集合A={x|x≤2},B={x|x>a},如果A∪B=R,那么a的取值范围是________.解析:如图中数轴所示,要使A∪B=R,需满足a≤2.答案:a≤212.集合A={1,2,3,5},当x∈A时,若x-1∉A,x+1∉A,则称x为A的一个“孤立元素”,则A中孤立元素的个数为________.解析:当x=1时,x-1=0∉A,x+1=2∈A;当x=2时,x-1=1∈A,x+1=3∈A;当x=3时,x-1=2∈A,x+1=4∉A;当x=5时,x-1=4∉A,x+1=6∉A;综上可知,A中只有一个孤立元素5.答案:513.设U=R,A={x|x>0},B={x|x>1},则A∩(∁U B)=________________________________________________________________________.解析:∵∁U B={x|x≤1},借助数轴可以求出∁U B与A的交集为图中阴影部分,即{x|0<x≤1}.答案:{x|0<x≤1}14.已知集合A{2,3,7},且A中至多有1个奇数,则这样的集合共有________个.解析:(1)若A中有且只有1个奇数,则A={2,3}或{2,7}或{3}或{7};(2)若A中没有奇数,则A={2}或∅.答案:6三、解答题(本大题共4个小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(12分)已知M ={1,t },N ={t 2-t +1},若M ∪N =M ,求t 的取值集合. 解析: ∵M ∪N =M , ∴N ⊆M ,即t 2-t +1∈M ,(1)若t 2-t +1=1,即t 2-t =0,解得t =0或t =1,当t =1时,M 中的两元素相同,不符合集合中元素的互异性,舍去.∴t =0. (2)若t 2-t +1=t ,即t 2-2t +1=0,解得t =1, 由(1)知不符合题意,舍去. 综上所述,t 的取值集合为{0}.16.(12分)已知集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}. (1)求A ∩B ;(2)若集合C ={x |2x +a >0},满足B ∪C =C ,求实数a 的取值范围. 解析: (1)∵B ={x |x ≥2}, ∴A ∩B ={x |2≤x <3}(2)∵C =⎩⎨⎧⎭⎬⎫x ⎪⎪x >-a 2,B ∪C =C ⇔B ⊆C ,∴-a2<2, ∴a >-4.∴a 的取值范围是{a |a >-4}.17.(13分)若集合A ={x |-3≤x ≤4}和B ={x |2m -1≤x ≤m +1}. (1)当m =-3时,求集合A ∩B . (2)当B ⊆A 时,求实数m 的取值范围.解析: (1)当m =-3时,B ={x |-7≤x ≤-2}, A ∩B ={x |-3≤x ≤-2}. (2)∵B ⊆A ,∴B =∅或B ≠∅. 当B =∅时,2m -1>m +1,即m >2. 当B ≠∅时,有 ⎩⎪⎨⎪⎧2m -1≤m +12m -1≥-3m +1≤4,即-1≤m ≤2.综上所述,所求m 的范围是m ≥-1.18.(13分)已知全集U =R ,集合A ={a |a ≥2或a ≤-2},B ={a |关于x 的方程ax 2-x+1=0有实根}.求A ∪B ,A ∩B ,A ∩(∁U B ).解析: A ={a |a ≥2或a ≤-2}, 对于方程ax 2-x +1=0有实根, 当a =0时,x =1;当a ≠0时,Δ=1-4a ≥0,a ≤14. 所以B =⎩⎨⎧⎭⎬⎫a | a ≤14 .所以A ∪B =⎩⎨⎧⎭⎬⎫a | a ≤14或a ≥2,A ∩B ={a |a ≤-2}, A ∩(∁U B )={a |a ≥2}.第二章 测试题一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =x 2-2x 的定义域为{0,1,2,3},那么其值域为( ) A .{-1,0,3} B .{0,1,2,3} C .{y |-1≤y ≤3}D .{y |0≤y ≤3}解析: 当x =0时y =0,当x =1时y =-1, 当x =2时y =0,当x =3时y =3,值域为{-1,0,3}. 答案: A2.幂函数y =xm 2-2m -3(m ∈Z )的图像如图所示,则m 的值为( )A .-1<m <3B .0C .1D .2解析: 从图像上看,由于图像不过原点,且在第一象限下降,故m 2-2m -3<0,即-1<m <3;又从图像看,函数是偶函数,故m 2-2m -3为负偶数, 将m =0,1,2分别代入,可知当m =1时,m 2-2m -3=-4,满足要求.答案: C3.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )解析: 汽车经过启动、加速行驶、匀速行驶、减速行驶直至停车,在行进过程中s 随时间t 的增大而增大,故排除D.另外汽车在行进过程中有匀速行驶的状态,故排除C.又因为在开始时汽车启动后加速行驶的过程中行驶路程s 随时间t 的变化越来越快,在减速行驶直至停车的过程中行驶路程s 随时间t 的变化越来越慢,排除B.答案: A4.函数y =f (x )的图像与直线x =a (a ∈R )的交点有( ) A .至多有一个 B .至少有一个 C .有且仅有一个D .有一个或两个以上解析: 由函数的定义对于定义域内的任意一个x 值,都有唯一一个y 值与它对应,所以函数y =f (x )的图像与直线x =a (a ∈R )至多有一个交点(当a 的值不在定义域时,也可能没有交点).答案: A5.对于定义域为R 的奇函数f (x ),下列结论成立的是( ) A .f (x )-f (-x )>0 B .f (x )-f (-x )≤0 C .f (x )·f (-x )≤0D .f (x )·f (-x )>0解析: f (-x )=-f (x ),则f (x )·f (-x )=-f 2(x )≤0. 答案: C6.函数y =x 2+bx +c (x ∈[0,+∞))是单调函数,则有( ) A .b ≥0 B .b ≤0 C .c ≥0D .c ≤0解析: 作出函数y =x 2+bx +c 的简图,对称轴为x =-b2.因该函数在[0,+∞)上是单调函数,故对称轴只要在y 轴及y 轴左侧即可,故-b2≤0,所以b ≥0.答案: A7.幂函数y =f (x )图像如图,那么此函数为( )A .y =x -2B .y =x 32 C .y =x 12D .y =x 23解析: 可设函数为y =x α,将(2,2)代入得α=12. 答案: C8.某工厂的大门是一抛物线形水泥建筑物,大门的地面宽度为8 m ,两侧距离地面3 m 高处各有一个壁灯,两壁灯之间的水平距离为6 m ,如图所示.则厂门的高约为(水泥建筑物厚度忽略不计,精确到0.1 m)( )A .6.9 mB .7.0 mC .7.1 mD .6.6 m解析: 建立如图所示的坐标系,于是由题设条件知抛物线的方程为y =ax 2(a <0),设点A 的坐标为(4,-h ),则C (3,3-h ),将这两点的坐标代入y =ax 2,可得⎩⎪⎨⎪⎧-h =a ·42,3-h =a ·32,解得⎩⎨⎧a =-37,h =487≈6.9,所以厂门的高约为6.9 m.答案: A9.设f (x )=⎩⎪⎨⎪⎧x +3,(x >10),f (f (x +5)),(x ≤10),则f (5)的值是( ) A .24 B .21 C .18D .16解析: f (5)=f (f (10)),f (10)=f (f (15))=f (18)=21,f (5)=f (21)=24. 答案: A10.下列函数中,满足“对任意x 1,x 2∈(0,+∞),都有f (x 1)-f (x 2)x 1-x 2>0”的是( ) A .f (x )=2xB .f (x )=-3x +1C .f (x )=x 2+4x +3D .f (x )=x +1x解析: f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在(0,+∞)上为增函数,而f (x )=2x 及f (x )=-3x +1在(0,+∞)上均为减函数,故排除A ,B.f (x )=x +1x 在(0,1)上递减,在[1,+∞)上递增,故排除D.答案: C二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)11.若函数f (x )=⎩⎪⎨⎪⎧x -12,x >0,-2,x =0,(x +3)12,x <0,则f (f (f (0)))=________.解析: f (0)=-2,f (f (0))=f (-2)=(-2+3)12=1,f (f (f (0)))=f (1)=1-12=1. 答案: 112.设函数f (x )是R 上的减函数,若f (m -1)>f (2m -1),则实数m 的取值范围是________. 解析: 由题意得m -1<2m -1,故m >0. 答案: (0,+∞)13.设函数f (x )=(x +1)(x +a )x为奇函数,则a =________. 解析: f (-x )=(1-x )(a -x )-x ,又f (x )为奇函数,故f (x )=-f (-x ), 即(x +1)(x +a )x =(1-x )(a -x )x ,所以x 2+(a +1)x +a x =x 2-(a +1)x +a x , 从而有a +1=-(a +1),即a =-1. 答案: -114.已知函数f (x ),g (x )分别由下表给出:当g [f (x )]=2时,x =解析: ∵g [f (x )]=2,∴f (x )=2,∴x =1. 答案: 1三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(12分)已知二次函数y =f (x )的最大值为13,且f (3)=f (-1)=5,求f (x )的解析式,并求其单调区间.解析: ∵f (3)=f (-1)=5, ∴对称轴为x =1,又∵最大值为13,∴开口向下,设为f (x )=a (x -1)2+13(a <0),代入x =-1, ∴4a +13=5,∴a =-2, ∴f (x )=-2(x -1)2+13.函数在(-∞,1]上单调递增,在[1,+∞)上单调递减. 16.(12分)已知函数f (x )=x 2+ax ,且f (1)=2, (1)证明函数f (x )是奇函数;(2)证明f (x )在(1,+∞)上是增函数; (3)求函数f (x )在[2,5]上的最大值与最小值.解析: (1)证明:f (x )的定义域为{x |x ≠0},关于原点对称,因为f (1)=2所以1+a =2,即a =1f (x )=x 2+1x =x +1x f (-x )=-x -1x =-f (x ) 所以f (x )是奇函数.(2)证明:任取x 1,x 2∈(1,+∞)且x 1<x 2 f (x 1)-f (x 2)=x 1+1x 1-(x 2+1x 2) =(x 1-x 2)·x 1x 2-1x 1x 2∵x 1<x 2,且x 1x 2∈(1,+∞) ∴x 1-x 2<0,x 1x 2>1,∴f (x 1)-f (x 2)<0 所以f (x )在(1,+∞)上为增函数.(3)由(2)知,f (x )在[2,5]最小值为f (2)=52.17.(13分)已知函数f (x )=1x 2+1,令g (x )=f ⎝⎛⎭⎫1x .(1)如图,已知f (x )在区间[0,+∞)的图像,请据此在该坐标系中补全函数f (x )在定义域内的图像,并说明你的作图依据;(2)求证:f (x )+g (x )=1(x ≠0).解析: (1)∵f (x )=1x 2+1,所以f (x )的定义域为R . 又任意x ∈R ,都有f (-x )=1(-x )2+1=1x 2+1=f (x ), 所以f (x )为偶函数,故f (x )的图像关于y 轴对称,补全图像如图所示.(2)证明:∵g (x )=f ⎝⎛⎭⎫1x =1⎝⎛⎭⎫1x 2+1=x 21+x 2(x ≠0), ∴f (x )+g (x )=11+x 2+x 21+x 2=1+x 21+x 2=1, 即f (x )+g (x )=1(x ≠0).18.(13分)已知函数f (x )=ax 2+(2a -1)x -3在区间⎣⎡⎦⎤-32,2上的最大值为1,求实数a的值.解析: 当a =0时,f (x )=-x -3,f (x )在⎣⎡⎦⎤-32,2上不能取得1,故a ≠0.∴f (x )=ax 2+(2a -1)x -3(a ≠0)的对称轴方程为 x 0=1-2a 2a .(1)令f ⎝⎛⎭⎫-32=1,解得a =-103, 此时x 0=-2320∈⎣⎡⎦⎤-32,2, 因为a <0,f (x 0)最大,所以f ⎝⎛⎭⎫-32=1不合适;(2)令f (2)=1,解得a =34, 此时x 0=-13∈⎣⎡⎦⎤-32,2,因为a =34>0,x 0=-13∈⎣⎡⎦⎤-32,2,且距右端点2较远, 所以f (2)最大,合适;(3)令f (x 0)=1,得a =12(-3±22), 验证后知只有a =12(-3-22)才合适. 综上所述,a =34或a =-12(3+22).第三章 测试题一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.化简[3(-5)2]34的结果为( ) A .5 B .5 C .- 5D .-5解析: [3(-5)2]34=(352)34=523×34=512= 5.答案: B2.若log 513·log 36·log 6x =2,则x =( )A .9B .19C .25D .125解析: 由换底公式,得lg 1 3lg 5·lg 6lg 3·lg xlg 6=2,∴-lg xlg 5=2.∴lg x=-2lg 5=lg 125.∴x=125.答案:D3.已知函数f(x)=4+a x+1的图像恒过定点P,则点P的坐标是()A.(-1,5) B.(-1,4)C.(0,4) D.(4,0)解析:∵y=a x恒过定点(0,1),∴y=4+a x+1恒过定点(-1,5).答案:A4.函数y=(a2-1)x在(-∞,+∞)上是减函数,则a的取值范围是()A.|a|>1 B.|a|>2C.a> 2 D.1<|a|<2解析:由0<a2-1<1得1<a2<2,∴1<|a|< 2.答案:D5.函数y=a x-1的定义域是(-∞,0],则a的取值范围是()A.a>0 B.a>1C.0<a<1 D.a≠1解析:由a x-1≥0得a x≥1,又知此函数的定义域为(-∞,0],即当x≤0时,a x≥1恒成立,∴0<a<1.答案:C6.函数y=f(x)=a x-b的图像如图所示,其中a,b为常数,则下列结论正确的是() A.a>1,b<0B.a>1,b>0C.0<a<1,b>0D.0<a<1,b<0解析:由图像得函数是减函数,∴0<a<1.又分析得,图像是由y =a x 的图像向左平移所得, ∴-b >0,即b <0.从而D 正确. 答案: D7.函数y =⎩⎪⎨⎪⎧3x -1-2,x ≤1,⎝⎛⎭⎫13x -1-2,x >1的值域是( )A .(-2,-1)B .(-2,+∞)C .(-∞,-1]D .(-2,-1]解析: 当x ≤1时,0<3x -1≤31-1=1, ∴-2<3x -1-2≤-1. 当x >1时,⎝⎛⎭⎫13x<⎝⎛⎭⎫131, ∴0<⎝⎛⎭⎫13x -1<⎝⎛⎭⎫130=1, 则-2<⎝⎛⎭⎫13x -1-2<1-2=-1.答案: D8.某工厂6年来生产甲种产品的情况是:前3年年产量的增大速度越来越快,后3年年产量保持不变,则该厂6年来生产甲种产品的总产量C 与时间t (年)的函数关系图像为( )解析: 由题意知前3年年产量增大速度越来越快,可知在单位时间内,C 的值增大的很快,从而可判定结果.答案: A9.设函数f (x )=⎩⎪⎨⎪⎧log 2(x -1),x ≥2,⎝⎛⎭⎫12x -1,x <2,若f (x 0)>1,则x 0的取值范围是( )A .(-∞,0)∪(2,+∞)B .(0,2)C .(-∞,-1)∪(3,+∞)D .(-1,3)解析: 当x 0≥2时,∵f (x 0)>1, ∴log 2(x 0-1)>1,即x 0>3;当x 0<2时,由f (x 0)>1得⎝⎛⎭⎫12x 0-1>1,⎝⎛⎭⎫12x 0>⎝⎛⎭⎫12-1,∴x 0<-1. ∴x 0∈(-∞,-1)∪(3,+∞). 答案: C10.函数f (x )=log a (bx )的图像如图,其中a ,b 为常数.下列结论正确的是( ) A .0<a <1,b >1 B .a >1,0<b <1 C .a >1,b >1D .0<a <1,0<b <1解析: 由于函数单调递增,∴a >1,又f (1)>0, 即log a b >0=log a 1,∴b >1. 答案: C二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 11.若函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫13x,x ∈[-1,0],3x ,x ∈(0,1],则f ⎝⎛⎭⎫log 312=________. 解析: ∵-1=log 313<log 312<log 31=0,∴f ⎝⎛⎭⎫log 312=⎝⎛⎭⎫13log 312=3-log 312=3log 32=2.答案: 212.将甲桶中的a 升水缓慢注入空桶乙中,t 分钟后甲桶中剩余的水量符合指数衰减曲线y =a e nt .假设过5分钟后甲桶和乙桶的水量相等,若再过m 分钟甲桶中的水只有a8升,则m=________.解析: 根据题意12=e 5n ,令18a =a e nt ,即18=e nt ,因为12=e 5n ,所以⎝⎛⎭⎫123=e 5n ×3.故18=e 15n ,解得t =15, 故m =15-5=10. 答案: 1013.若函数y =2x +1,y =b ,y =-2x -1三图像无公共点,结合图像则b 的取值范围为________.解析: 如图.当-1≤b ≤1时,此三函数图像无公共点. 答案: [-1,1]14.函数f (x )=-a 2x -1+2恒过定点的坐标是________. 解析: 令2x -1=0,解得x =12,又f ⎝⎛⎭⎫12=-a 0+2=1, ∴f (x )过定点⎝⎛⎭⎫12,1. 答案: ⎝⎛⎭⎫12,1三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(12分)计算下列各式的值: (1)(32×3)6+(2×2)43-(-2 008)0; (2)lg 5lg 20+(lg 2)2;(3)(log 32+log 92)·(log 43+log 83)+(log 3312)2+ln e -lg 1. 解析: (1)原式=(213×312)6+(2×212)12×43-1=213×6×312×6+232×12×43-1 =22×33+21-1 =4×27+2-1 =109.(2)原式=lg 5lg(5×4)+(lg 2)2 =lg 5(lg 5+lg 4)+(lg 2)2 =(lg 5)2+lg 5lg 4+(lg 2)2 =(lg 5)2+2lg 5lg 2+(lg 2)2=(lg 5+lg 2)2=1.(3)原式=⎝⎛⎭⎫lg 2lg 3+lg 22lg 3·⎝⎛⎭⎫lg 32lg 2+lg 33lg 2+14+12-0 =3lg 22lg 3·5lg 36lg 2+34=54+34=2. 16.(12分)已知函数f (x )=log a (1-x )+log a (x +3)(a >0,且a ≠1). (1)求函数f (x )的定义域和值域;(2)若函数f (x )有最小值为-2,求a 的值.解析: (1)由⎩⎪⎨⎪⎧1-x >0x +3>0得-3<x <1,所以函数的定义域{x |-3<x <1}, f (x )=log a (1-x )(x +3), 设t =(1-x )(x +3)=4-(x +1)2, 所以t ≤4,又t >0,则0<t ≤4.当a >1时,y ≤log a 4,值域为{y |y ≤log a 4}. 当0<a <1时,y ≥log a 4,值域为{y |y ≥log a 4}. (2)由题意及(1)知:当0<a <1时,函数有最小值, 所以log a 4=-2,解得:a =12.17.(13分)已知函数f (x )=3x ,且f (a +2)=18,g (x )=3a -4x 的定义域为[0,1]. (1)求函数g (x )的解析式; (2)判断函数g (x )的单调性.解析: (1)∵f (x )=3x ,∴f (a +2)=3a +2=18,∴3a =2. ∴g (x )=2-4x (x ∈[0,1]).(2)设x 1,x 2为区间[0,1]上任意两个值,且x 1<x 2, 则g (x 2)-g (x 1)=2-4x 2-2+4x 1=(2x 1-2x 2)(2x 1+2x 2), ∵0≤x 1<x 2≤1,∴2x 2>2x 1>1, ∴g (x 2)<g (x 1).所以,函数g (x )在[0,1]上是减函数.18.(13分)已知f (x )=-x +log 21-x1+x ,(1)求f (x )的定义域; (2)求f ⎝⎛⎭⎫-12 012+f ⎝⎛⎭⎫12 012;(3)当x ∈(-a ,a ](其中a ∈(-1,1),且a 为常数)时,f (x )是否存在最小值?如果存在,求出最小值;如果不存在,请说明理由.解析: (1)由1-x 1+x >0得x -1x +1<0∴⎩⎪⎨⎪⎧x -1>0x +1<0或⎩⎪⎨⎪⎧x -1<0x +1>0, ∴-1<x <1,即f (x )的定义域为(-1,1). (2)对x ∈(-1,1)有f (-x )=-(-x )+log 21+x 1-x=-⎝ ⎛⎭⎪⎫-x +log 21-x 1+x =-f (x ) ∴f (x )为奇函数∴f ⎝⎛⎭⎫-12 012=-f ⎝⎛⎭⎫12 012. ∴f ⎝⎛⎭⎫-12 012+f ⎝⎛⎭⎫12 012=0. (3)设-1<x 1<x 2<1, 则1-x 11+x 1-1-x 21+x 2=2(x 2-x 1)(1+x 1)(1+x 2). ∵-1<x 1<x 2<1,∴x 2-x 1>0,(1+x 1)(1+x 2)>0, ∴1-x 11+x 1>1-x 21+x 2. ∴函数y =1-x1+x在(-1,1)上是减函数.从而得f (x )=-x +log 21-x1+x在(-1,1)上也是减函数.又a ∈(-1,1),∴当x ∈(-a ,a ]时,f (x )有最小值,且最小值为f (a )=-a +log 21-a1+a.第四章 测试题一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =(x -1)(x 2-2x -3)的零点为( ) A .1,2,3 B .1,-1,3 C .1,-1,-3D .无零点解析: 令y =(x -1)(x 2-2x -3)=0,解得x =1,-1,3,故选B. 答案: B2.下列函数中没有零点的是( ) A .f (x )=log 2x -3 B .f (x )=x -4 C .f (x )=1x -1D .f (x )=x 2+2x解析: 由于函数f (x )=1x -1中,对任意自变量x 的值,均有1x -1≠0,故该函数不存在零点.答案: C3.如图所示的函数图像与x 轴均有交点,其中不能用二分法求图中交点横坐标的是( )A .①③B .②④C .①②D .③④解析: 对于①③在函数零点两侧函数值的符号相同,故不能用二分法求. 答案: A4.已知函数f (x )=e x -x 2+8x ,则在下列区间中f (x )必有零点的是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)解析: f (-1)=1e -9<0,f (0)=e 0=1>0,f (x )是连续函数,故f (x )在(-1,0)上有一零点.答案: B5.若函数f (x )的图像是连续不断的,且f (0)>0, f (1)·f (2)·f (4)<0,则下列说法中正确的是( )A .函数f (x )在区间(0,1)内有零点B .函数f (x )在区间(1,2)内有零点C .函数f (x )在区间(0,2)内有零点D .函数f (x )在区间(0,4)内有零点解析: 因为f (0)>0,f (1)·f (2)·f (4)<0,则f (1),f (2),f (4)恰有一负两正或三个都是负的,函数的图像与x 轴相交有多种可能.例如,所以函数f (x )必在区间(0,4)内有零点. 答案: D6.二次函数y =x 2+px +q 的零点为1和m ,且-1<m <0,那么p 、q 应满足的条件是( ) A .p >0且q <0 B .p >0且q >0 C .p <0且q >0D .p <0且q <0解析: 由已知得f (0)<0,-p2>0,解得q <0,p <0.答案: D7.若x 0是方程ln x +x =4的解,则x 0属于区间( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)解析: 构造函数f (x )=ln x +x -4,则函数f (x )的图像是连续不断的一条曲线,又f (2)=ln 2+2-4<0,f (3)=ln 3+3-4>0,所以f (2)·f (3)<0,故函数的零点所在区间为(2,3),即方程ln x +x =4的解x 0属于区间(2,3),故选C.答案: C8.若函数f (x )=ax +b 只有一个零点2,那么函数g (x )=bx 2-ax 的零点是( ) A .0,2 B .0,-12C .0,12D .2,12解析: 函数f (x )=ax +b 只有一个零点2,则2a +b =0,所以b =-2a (a ≠0),所以g (x )=-2ax 2-ax =-ax (2x +1),故函数g (x )有两个零点0,-12,故选B.答案: B9.当x ∈(4,+∞)时,f (x )=x 2,g (x )=2x ,h (x )=log 2x 的大小关系是( ) A .f (x )>g (x )>h (x ) B .g (x )>f (x )>h (x ) C .g (x )>h (x )>f (x )D .f (x )>h (x )>g (x )解析: 在同一坐标系中,画出三个函数的图像,如右图所示. 当x =2时,f (x )=g (x )=4,当x =4时,f (x )=g (x )=16,当x >4时,g (x )图像在最上方,h (x )图像在最下方,故g (x )>f (x )>h (x ). 答案: B10.为了改善某地的生态环境,政府决心绿化荒山,计划第一年先植树0.5万亩,以后每年比上年增加1万亩,结果第x 年植树亩数y (万亩)是时间x (年)的一次函数,这个函数的图像是( )解析: 函数解析式为y =x +0.5,故选A. 答案: A二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 11.用二分法求方程x 3+4=6x 2的一个近似解时,已经将一根锁定在区间(0,1)内,则下一步可断定该根所在的区间为________.解析: 设f (x )=x 3-6x 2+4, 显然f (0)>0,f (1)<0, 又f ⎝⎛⎭⎫12=⎝⎛⎭⎫123-6×⎝⎛⎭⎫122+4>0, ∴下一步可断定方程的根所在的区间为⎝⎛⎭⎫12,1. 答案: ⎝⎛⎭⎫12,112.函数f (x )=x 3-x 2-x +1在[0,2]上的零点有________个. 解析: x 3-x 2-x +1=(x -1)2(x +1), 由f (x )=0得x =1或x =-1. ∴f (x )在[0,2]上有1个零点. 答案: 113.已知函数f (x )=⎩⎨⎧2x ,(x ≥2)(x -1)3,(x <2)若函数y =f (x )-k 有两个零点,则实数k 的取值范围是________.解析: 画出分段函数f (x )的图像如图所示.结合图像可以看出,函数y =f (x )-k 有两个零点,即y =f (x )与y =k 有两个不同的交点,k 的取值范围为(0,1).答案: (0,1)14.已知函数t =-144lg ⎝⎛⎭⎫1-N100的图像可表示打字任务的“学习曲线”,其中t (小时)表示达到打字水平N (字/分钟)所需的学习时间,N (字/分钟)表示每分钟打出的字数,则按此曲线要达到90字/分钟的水平,所需的学习时间是________小时.解析: 当N =90时,t =-144lg ⎝⎛⎭⎫1-90100=144. 答案: 144三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(12分)若函数y =ax 2-x -1只有一个零点,求实数a 的取值范围. 解析: (1)若a =0,则f (x )=-x -1为一次函数,函数必有一个零点-1.(2)若a ≠0,函数是二次函数,因为二次方程ax 2-x -1=0只有一个实数根,所以Δ=1+4a =0,得a =-14.综上,当a =0和-14时函数只有一个零点.16.(12分)以下是用二分法求方程x 3+3x -5=0的一个近似解(精确度0.1)的不完整的过程,请补充完整,并写出结论.设函数f (x )=x 3+3x -5,其图像在(-∞,+∞)上是连续不断的一条曲线. 先求值:f (0)=________,f (1)=________,f (2)=________,f (3)=________. 所以f (x )在区间________内存在零点x 0,填表:结论:________________________________________________________________________. 解析: -5 -1 9 31 (1,2)∵∴原方程的近似解可取为1.187 5.17.(13分)某商品在近100天内,商品的单位f (t )(元)与时间t (天)的函数关系式如下:f (t )=⎩⎨⎧t4+22,0≤t ≤40,t ∈Z ,-t2+52,40<t ≤100,t ∈Z .销售量g (t )与时间t (天)的函数关系式是( ) g (t )=-t 3+1123(0≤t ≤100,t ∈Z ).这种商品在这100天内哪一天的销售额最高?解析: 依题意,该商品在近100天内日销售额F (t )与时间t (天)的函数关系式为F (t )=f (t )·g (t )=⎩⎨⎧⎝⎛⎭⎫t 4+22⎝⎛⎭⎫-t 3+1123,0≤t ≤40,t ∈Z ,⎝⎛⎭⎫-t 2+52⎝⎛⎭⎫-t 3+1123,40<t ≤100,t ∈Z .(1)若0≤t ≤40,t ∈Z ,则F (t )=⎝⎛⎭⎫t 4+22⎝⎛⎭⎫-t 3+1123 =-112(t -12)2+2 5003,当t =12时,F (t )max =2 5003(元).(2)若40<t ≤100,t ∈Z ,则 F (t )=⎝⎛⎭⎫-t 2+52⎝⎛⎭⎫-t 3+1123 =16(t -108)2-83,∵t =108>100, ∴F (t )在(40,100]上递减,∴当t =41时,F (t )max =745.5.∵2 5003>745.5,∴第12天的日销售额最高.18.(13分)据气象中心观察和预测:发生于M 地的沙尘暴一直向正南方向移动,其移动速度v (km/h)与时间t (h)的函数图像如图所示,过线段OC 上一点T (t ,0)作横轴的垂线l ,梯形OABC 在直线l 左侧部分的面积即为t (h)内沙尘暴所经过的路程s (km).(1)当t =4时,求s 的值;(2)将s 随t 变化的规律用数学关系式表示出来;(3)若N 城位于M 地正南方向,且距M 地650 km ,试判断这场沙尘暴是否会侵袭到N 城,如果会,在沙尘暴发生后多长时间它将侵袭到N 城?如果不会,请说明理由.解析: (1)由图像可知:当0≤t ≤10时,v =3t ,则 当t =4,v =3×4=12, 故s =12×4×12=24.(2)当0≤t ≤10时, s =12·t ·3t =32t 2, 当10<t ≤20时,s =12×10×30+30(t -10)=30t -150; 当20<t ≤35时,s =12×10×30+10×30+(t -20)×30-12×(t -20)×2(t -20)=-t 2+70t -550. 综上,可知s =⎩⎪⎨⎪⎧32t 2,t ∈[0,10]30t -150,t ∈(10,20]-t 2+70t -550,t ∈(20,35].(3)∵t ∈[0,10]时,s max =32×102=150<650,t ∈(10,20]时,s max =30×20-150=450<650, ∴当t ∈(20,35]时,令-t 2+70t -550=650. 解得t 1=30,t 2=40. ∵20<t ≤35, ∴t =30.即沙尘暴发生30 h 后将侵袭到N 城.模块质量评估(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列表示错误的是( ) A .{a }∈{a ,b } B .{a ,b }⊆{b ,a } C .{-1,1}⊆{-1,0,1}D .∅⊆{-1,1}解析: A 中两个集合之间不能用“∈”表示,B ,C ,D 都正确. 答案: A2.若集合A ={y |y =2x ,x ∈R },B ={y |y =x 2,x ∈R },则( ) A .A ⊆B B .A ⊇B C .A =BD .A ∩B =∅解析: A ={y |y >0},B ={y |y ≥0},∴A ⊆B . 答案: A3.设a =log 32,b =log 52,c =log 23,则( ) A .a >c >b B .b >c >a C .c >b >aD .c >a >b解析: 易知log 23>1,log 32,log 52∈(0,1).在同一平面直角坐标系中画出函数y =log 3x 与y =log 5x 的图像,观察可知log 32>log 52.所以c >a >b .比较a ,b 的其他解法:log 32>log 33=12,log 52<log 55=12,得a >b ;0<log 23<log 25,所以1log 23>1log 25,结合换底公式即得log 32>log 52. 答案: D4.函数y =ax 2+bx +3在(-∞,-1]上是增函数,在[-1,+∞)上是减函数,则( ) A .b >0且a <0 B .b =2a <0 C .b =2a >0D .a ,b 的符号不定解析: 由题知a <0,-b2a =-1,∴b =2a <0.答案: B5.要得到y =3×⎝⎛⎭⎫13x的图像,只需将函数y =⎝⎛⎭⎫13x的图像( ) A .向左平移3个单位长度 B .向右平移3个单位长度 C .向左平移1个单位长度D .向右平移1个单位长度解析: 由y =3×⎝⎛⎭⎫13x=⎝⎛⎭⎫13-1×⎝⎛⎭⎫13xx -1正确.答案: D6.在同一坐标系内,函数y =x a (a <0)和y =ax +1a的图像可能是如图中的( )解析: ∵a <0,∴y =ax +1a 的图像不过第一象限.还可知函数y =x a (a <0)和y =ax +1a 在各自定义域内均为减函数.答案: B7.设a =log 54,b =(log 53)2,c =log 45,则( ) A .a <c <b B .b <c <a C .a <b <cD .b <a <c解析: ∵0<log 53<log 54<1,log 45>1,∴b <a <c . 答案: D8.若函数f (x )=ax 2+2x +1至多有一个零点,则a 的取值范围是( ) A .1B .[1,+∞)C .(-∞,-1]D .以上都不对解析: 当f (x )有一个零点时,若a =0,符合题意, 若a ≠0,则Δ=4-4a =0得a =1, 当f (x )无零点时,Δ=4-4a <0,∴a >1. 综上所述,a ≥1或a =0. 答案: D9.已知函数f (x )=log a |x |在(0,+∞)上单调递增,则( ) A .f (3)<f (-2)<f (1) B .f (1)<f (-2)<f (3) C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)解析: 因为f (x )=log a |x |在(0,+∞)上单调递增,所以a >1,f (1)<f (2)<f (3).又函数为f (x )=log a |x |为偶函数,所以f (2)=f (-2),所以f (1)<f (-2)<f (3).答案: B10.设f (x )是奇函数,且在(0,+∞)内是增加的,又f (-3)=0,则x ·f (x )<0的解集是( ) A .{x |x <-3,或0<x <3} B .{x |-3<x <0,或x >3} C .{x |x <-3,或x >3}D .{x |-3<x <0,或0<x <3}解析: ∵f (x )是奇函数, ∴f (3)=-f (-3)=0. ∵f (x )在(0,+∞)是增加的, ∴f (x )在(-∞,0)上是增加的.结合函数图像x ·f (x )<0的解为0<x <3或-3<x <0. 答案: D11.一个商人有一批货,如果月初售出可获利1 000元,再将收益都存入银行,已知银行月息为2.4%;如果月末售出可获利1 200元,但要付50元货物保管费.这个商人若要获得最大收益,则这批货( )A .月初售出好B .月末售出好C .月初或月末一样D .由成本费的大小确定出售时机解析: 设这批货成本为a 元,月初售出可收益y 1=(a +1 000)×(1+2.4%)(元),月末售出可收益y 2=a +1 200-50=a +1 150(元).则y 1-y 2=(a +1 000)×1.024-a -1 150 =0.024a -126.当a >1260.024>5 250时,月初售出好;当a <5 250时,月末售出好;当a =5 250时,月初、月末收益相等,但月末售出还要保管一个月,应选择月初售出. 答案: D12.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内解析: 计算出函数在区间端点处的函数值并判断符号,再利用零点的存在条件说明零点的位置.∵f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a ), ∴f (a )=(a -b )(a -c ),f (b )=(b -c )(b -a ), f (c )=(c -a )(c -b ),∵a <b <c ,∴f (a )>0,f (b )<0,f (c )>0,∴f (x )的两个零点分别位于区间(a ,b )和(b ,c )内. 答案: A二、填空题(本大题共4分.请把正确答案填在题中横线上)13.设g (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,则g ⎝⎛g .解析: ∵g ⎝⎛⎭⎫12=ln 12<0,∴g ⎝⎛⎭⎫g ⎝⎛⎭⎫12=eln 12=12. 答案: 1214.已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =________.解析: A ={x |0<x ≤4},B =(-∞,a ).若A ⊆B ,则a >4,即a 的取值范围为(4,+∞),∴c =4. 答案: 415.函数y =22-2x -3x 2的递减区间是________. 解析: 令u =2-2x -3x 2,y =2u ,由u =-3x 2-2x +2知,u 在⎝⎛⎭⎫-13,+∞上为减函数,而y =2u 为增函数,所以函数的递减区间为⎝⎛⎭⎫-13,+∞. 答案: ⎝⎛⎭⎫-13,+∞ 16.函数f (x )=⎩⎪⎨⎪⎧4x -4,x ≤1,x 2-4x +3,x >1的图像和函数g (x )=log 2x 的图像有________个交点.解析: 作出函数y =f (x )与y =g (x )的图像如图,由图可知,两个函数的图像有3个交点.答案: 3三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知集合A ={x |3≤x <7},B ={x |2<x <10},C ={x |x <a }. (1)求A ∪B ; (2)求(∁R A )∩B ;(3)若A ⊆C ,求a 的取值范围.解析: (1)因为A ={x |3≤x <7},B ={x |2<x <10}, 所以A ∪B ={x |2<x <10}.(2)因为A ={x |3≤x <7},所以∁R A ={x |x <3或x ≥7}. 因为B ={x |2<x <10},所以(∁R A )∩B ={x |2<x <3或7≤x <10}.(3)因为A ={x |3≤x <7},C ={x |x <a },A ⊆C , 所以a 需满足a ≥7.18.(本小题满分12分)已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈(2,5].(1)在直角坐标系内画出f (x )的图像; (2)写出f (x )的单调递增区间.解析: (1)函数f (x )的图像如下图所示:(2)函数f (x )的单调递增区间为[-1,0]和[2,5]. 19.(本小题满分12分)计算下列各式的值: (1)⎝⎛⎭⎫21412-(-9.6)0-⎝⎛⎭⎫82723+⎝⎛⎭⎫32-2. (2)log 34273+lg 25+lg 4+7log 72. 解析: (1)原式=⎝⎛⎭⎫9412-1-⎝⎛⎭⎫233×23+⎝⎛⎭⎫32-2 =⎝⎛⎭⎫322×12-1-⎝⎛⎭⎫232+⎝⎛⎭⎫232=32-1=12. (2)原式=log 33343+lg(25×4)+2=log 33-14+lg 102+2=-14+2+2=154.20.(本小题满分12分)若二次函数f (x )=ax 2+bx +c (a ≠0)满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式;(2)若在区间[-1,1]上,不等式f (x )>2x +m 恒成立,求实数m 的取值范围. 解析: (1)由f (0)=1得,c =1.∴f (x )=ax 2+bx +1, 又∵f (x +1)-f (x )=2x ,∴a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x ,即2ax +a +b =2x ,∴⎩⎪⎨⎪⎧2a =2,a +b =0,∴⎩⎪⎨⎪⎧a =1,b =-1. 因此,f (x )=x 2-x +1.(2)f (x )>2x +m 等价于x 2-x +1>2x +m ,即x 2-3x +1-m >0,要使此不等式在[-1,1]上恒成立,只需使函数g (x )=x 2-3x +1-m 在[-1,1]上的最小值大于0即可.∵g (x )=x 2-3x +1-m 在[-1,1]上单调递减, ∴g (x )min =g (1)=-m -1, 由-m -1>0,得m <-1.因此满足条件的实数m 的取值范围是(-∞,-1).21.(本小题满分13分)定义在[-1,1]上的偶函数f (x ),已知当x ∈[0,1]时的解析式为f (x )=-22x +a 2x (a ∈R ).(1)求f (x )在[-1,0]上的解析式. (2)求f (x )在[0,1]上的最大值h (a ). 解析: (1)设x ∈[-1,0], 则-x ∈[0,1],f (-x )=-2-2x+a 2-x ,又∵函数f (x )为偶函数, ∴f (x )=f (-x ), ∴f (x )=-2-2x+a 2-x ,x ∈[-1,0].(2)∵f (x )=-22x +a 2x ,x ∈[0,1], 令t =2x ,t ∈[1,2]. ∴g (t )=at -t 2=-⎝⎛⎭⎫t -a 22+a 24. 当a2≤1,即a ≤2时,h (a )=g (1)=a -1; 当1<a2<2,即2<a <4时,h (a )=g ⎝⎛⎭⎫a 2=a24;当a2≥2,即a ≥4时,h (a )=g (2)=2a -4. 综上所述,h (a )=⎩⎪⎨⎪⎧a -1, a ≤2,a24, 2<a <4,2a -4, a ≥4.22.(本小题满分13分)通过研究学生的学习行为,心理学家发现,学生接受能力依赖于老师引入概念和描述问题所用的时间,讲座开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持理想的状态,随后学生的注意力开始分散.分析结果和实验表明,用f (x )表示学生掌握和接受概念的能力(f (x )的值越大,表示接受能力越强),x 表示提出和讲授概念的时间(单位:分),可以有以下公式:f (x )=⎩⎪⎨⎪⎧-0.1x 2+2.6x +43, (0<x ≤10)59, (10<x ≤16)-3x +107, (16<x ≤30)(1)开讲多少分钟后,学生的接受能力最强?能维持多少分钟? (2)开讲5分钟与开讲20分钟比较,学生的接受能力何时强一些?(3)一个数学难题,需要55的接受能力以及13分钟的时间,老师能否及时在学生一直达到所需接受能力的状态下讲授完这个难题?解析: (1)当0<x ≤10时, f (x )=-0.1x 2+2.6x +43 =-0.1(x -13)2+59.9,故f (x )在0<x ≤10时递增,最大值为f (10)=-0.1×(10-13)2+59.9=59. 当10<x ≤16时,f (x )=59.当x >16时,f (x )为减函数,且f (x )<59.因此,开讲10分钟后,学生达到最强接受能力(为59),能维持6分钟时间. (2)f (5)=-0.1×(5-13)2+59.9=53.5, f (20)=-3×20+107=47<53.5,故开讲5分钟时学生的接受能力比开讲20分钟时要强一些. (3)当0<x ≤10时,令f (x )=55, 解得x =6或x =20(舍), 当x >16时,令f (x )=55, 解得x =1713.因此学生达到(含超过)55的接受能力的时间为1713-6=1113<13,所以老师来不及在学生一直达到所需接受能力的状态下讲授完这个难题.。
北师大版高一数学必修2试卷及答案
A 、(x+8)2+(y-5)2=1B 、(x-7)2+(y+4)2=2C 、(x+3)2+(y-2)2=lD 、(x+4)2+(y+3)2=2 高一数学必修2考试卷 十二厂中学屈丽萍 一、选择题(本大题共12小题,每小题5分,共60分) 1、已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰 三角形,侧视图(或称左视图)是一个底边长为6、高为4的几何体的体积为() (A)48(B)64(C)96(D)192 2、已知A (x i ,y i )、B (x 2,y 2)两点的连线平行y 轴, A 、|x-x|B 、|y-y|C 、x-x D 、 121221 3•棱长都是1的三棱锥的表面积为() A.<3B.2朽C.3朽D.4©3 4、长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是() A .25兀B .55C .125兀D .都不对 325、已知正方体外接球的体积是3“,那么正方体的棱长等于(D ) 3 (A )2迈(B )叵(C )包(D )痘333 6、若1、m 、n 是互不相同的空间直线,a 、B 是不重合的平面,则下列命题中为真命题的是()A.若a //P ,/u a ,n u R ,则l //nB.若a 丄B ,/u a ,则1丄B 等腰三角形•则该 则|AB |=() y 2-y 1C.若l 丄a ,l 〃B ,则a 丄BD.若l 丄n,m 丄n ,则 7、如图,在正方体ABCD -ABCD 中,EF ,G ,H 分别为1111 BC 的中点,则异面直线EF 与GH 所成的角等于() 11 A.45°B.60°C.90°D.120° 8、方程(x-2)2+(y+l )2=l 表示的曲线关于点T (-3,2)的对l //m AA ,AB ,BB , 11 称曲线方程是:。
2024-2025年北师大版数学必修第一册4.3.3.1对数函数的图象和性质(带答案)
第1课时 对数函数的图象和性质必备知识基础练知识点一 对数函数的定义域和值域 1.求下列函数的定义域: (1)y =1log 2(x -1);(2)y =log 2(16-4x); (3)y =log x -1(3-x ); (4)y =1log 0.5(4x -3).2.(1)求函数y =log 13(-x 2+4x -3)的值域;(2)求函数f (x )=log 2(2x )·log 2x (12 ≤x ≤2)的最大值和最小值.知识点二 对数函数的图象及应用 3.函数y =lg (x +1)的图象大致是( )4.如图(1)(2)(3)(4)中,不属于函数y =log 15x ,y =log 17x ,y =log 5x 的一个是( )A .(1)B .(2)C .(3)D .(4)5.已知函数y =log a (x +3)+1(a >0且a ≠1),则函数恒过定点( ) A .(1,0) B .(-2,0) C .(0,1) D .(-2,1) 知识点三 对数函数的单调性及应用6.设a =log 0.70.8,b =log 1.10.9,c =1.10.9,则a 、b 、c 的大小关系是( ) A .a <b <c B .b <c <a C .b <a <c D .c <a <b7.函数f (x )=log 13(x 2-2x -8)的单调递增区间是( )A .(-∞,-2)B .(-∞,1)C .(1,+∞)D .(4,+∞) 8.已知f (x )=log a 1+x 1-x (a >0,且a ≠1).(1)求f (x )的定义域;(2)求使f (x )>0的x 的取值范围.关键能力综合练1.函数y=3-x2-log2(x+1)的定义域是( )A.(-1,3) B.(-1,3]C.(-∞,3) D.(-1,+∞)2.设a=log43,b=log53,c=log45,则( )A.a>c>b B.b>c>aC.c>b>a D.c>a>b3.(易错题)函数y=log a(x-1)+log a(x+1)(a>0且a≠1)的图象必过定点( ) A.(3,0) B.(±2,0)C.(2,0) D.(-2,0)4.华罗庚是享誉世界的数学大师,其斐然成绩早为世人所推崇.他曾说:“数缺形时少直观,形缺数时难入微”.告知我们把“数”与“形”,“式”与“图”结合起来是解决数学问题的有效途径.若函数f(x)=log a(x+b)(a>0且a≠1,b∈R)的大致图象如图,则函数g(x)=a-x-b的大致图象是( )5.函数f (x )=log 2(x 2-4x +12)的值域为( )A .[3,+∞) B.(3,+∞) C .(-∞,-3) D .(-∞,-3] 6.函数f (x )=log 2x +log 2(2-x )的单调递减区间为( ) A .[1,2)B .(0,1]C .(-∞,1]D .[1,+∞) 7.函数f (x )=log 12(2 -|x |)的单调递增区间为________.8.一次函数y =mx +n (m >0,n >0)的图象经过函数f (x )=log a (x -1)+1的定点,则1m+2n的最小值为________. 9.(探究题)已知函数f (x )=log 2(1-x 2). (1)求函数的定义域;(2)请直接写出函数的单调区间,并求出函数在区间[22,1)上的值域.核心素养升级练1.(多选题)已知函数f (x )=ln (x -2)+ln (6-x ),则( ) A .f (x )在(2,6)上单调递增 B .f (x )在(2,6)上的最大值为2ln 2 C .f (x )在(4,6)上单调递减 D .y =f (x )的图象关于直线x =4对称2.(情境命题—学术探究)已知函数f (x )=log a (a x-1)(a >0,a ≠1). (1)当a =12时,求函数f (x )的定义域;(2)当a >1时,求关于x 的不等式f (x )<f (1)的解集;(3)当a =2时,若不等式f (x )-log 2(1+2x)>m 对任意实数x ∈[1,3]恒成立,求实数m 的取值范围.第1课时 对数函数的图象和性质必备知识基础练1.解析:(1)要使函数式有意义,需⎩⎪⎨⎪⎧x -1>0,log 2(x -1)≠0, 解得x >1,且x ≠2.故函数y =1log 2(x -1)的定义域是{x |x >1,且x ≠2}.(2)要使函数式有意义,需16-4x>0,解得x <2. 故函数y =log 2(16-4x)的定义域是{x |x <2}.(3)要使函数式有意义,需⎩⎪⎨⎪⎧3-x >0,x -1>0,x -1≠1, 解得1<x <3,且x ≠2.故函数y =log (x -1)(3-x )的定义域是{x |1<x <3,且x ≠2}.(4)由log 0.5(4x -3)>0,可得0<4x -3<1,即3<4x <4,解得34<x <1.所以原函数的定义域为(34,1). 2.解析:(1)由-x 2+4x -3>0,解得1<x <3,∴函数的定义域是(1,3). 设u =-x 2+4x -3(1<x <3),则u =-(x -2)2+1.∵1<x <3,∴0<u ≤1,则y ≥0,即函数的值域是[0,+∞). (2)f (x )=log 2(2x )·log 2x =(1+log 2x )·log 2x =(log 2x +12 )2-14 .∵12≤x ≤2,即-1≤log 2x ≤1, ∴当log 2x =-12 时,f (x )取得最小值-14 ;当log 2x =1时,f (x )取得最大值2. 3.答案:C解析:由底数大于1可排除A 、B ,y =lg (x +1)可看作是y =lg x 的图象向左平移1个单位.(或令x =0得y =0,而且函数为增函数)4.答案:B解析:∵log 17 15 <log 17 17 =log 1515 ,∴(3)是y =log 17x ,(4)是y =log 15x ,又y =log 15x =-log 5x 与y =log 5x 关于x 轴对称,∴(1)是y =log 5x .故选B. 5.答案:D解析:令x +3=1,解得x =-2,y =1, 所以函数恒过定点(-2,1).故选D. 6.答案:C解析:由y =log 0.7x 是减函数,且0.7<0.8<1得, log 0.70.7>log 0.70.8>log 0.71,即0<a <1; 由y =log 1.1x 是增函数,且0.9<1得, log 1.10.9<log 1.11=0,即b <0; 由y =1.1x是增函数,且0.9>0得, 1.10.9>1.10=1,即c >1. 因此,b <a <c .故选C. 7.答案:A解析:由x 2-2x -8>0,得x <-2或x >4.令g (x )=x 2-2x -8,易知函数g (x )在(4,+∞)上单调递增,在(-∞,-2)上单调递减,所以函数f (x )的单调递增区间为(-∞,-2).8.解析:(1)由1+x1-x >0,得-1<x <1,故所求的定义域为(-1,1).(2)①当a >1时,由log a 1+x 1-x >0=log a 1,得1+x1-x >1, 即⎩⎪⎨⎪⎧-1<x <1,1+x >1-x , 所以0<x <1;②当0<a <1时,由log a 1+x 1-x >0=log a 1,得0<1+x1-x <1,即⎩⎪⎨⎪⎧-1<x <1,1+x <1-x .所以-1<x <0,故当a >1时,所求范围为0<x <1; 当0<a <1时,所求范围为-1<x <0.关键能力综合练1.答案:A解析:依题意得⎩⎪⎨⎪⎧3-x ≥0,log 2(x +1)≠2,x +1>0, 解得-1<x <3,所以函数的定义域是(-1,3),故选A. 2.答案:D解析:a =log 43<log 44=1;c =log 45>log 44=1,∵log 53=lg 3lg 5 ,log 43=lg 3lg 4 ,lg 5>lg4,∴log 53<log 43,∴b <a <c ,故选D.3.答案:C解析:由⎩⎪⎨⎪⎧x -1>0,x +1>0 得x >1,∴y =log a (x -1)+log a (x +1)(a >0,且a ≠1)的定义域为(1,+∞),∴y =log a (x 2-1)(a >0,且a ≠1,x >1). 令x 2-1=1,得x 2=2,又x >1,∴x =2 . 当x =2 时,y =log a [(2 )2-1]=0,因此y =log a (x -1)+log a (x +1)的图象必过定点(2 ,0),故选C. 4.答案:C解析:由题意,根据函数f (x )=log a (x +b )的图象,可得0<a <1,0<b <1, 根据指数函数y =a -x(0<a <1)的图象与性质,结合图象变换向下移动b 个单位,可得函数g (x )=a -x-b 的图象只有选项C 符合.故选C.5.答案:A解析:∵x 2-4x +12=(x -2)2+8≥8,且函数y =log 2x 在(0,+∞)上为增函数,∴f (x )≥log 28=3.6.答案:A解析:对于f (x )=log 2x +log 2(2-x )有⎩⎪⎨⎪⎧x >02-x >0 ,解得函数f (x )=log 2x +log 2(2-x )的定义域为(0,2), 又f (x )=log 2x +log 2(2-x )=log 2[x (2-x )],对于y =x (2-x )=-x 2+2x ,其在(0,1)上单调递增,在[1,2)上单调递减, 又y =log 2x 在(0,+∞)上单调递增, 由复合函数单调性的规则:同增异减得函数f (x )=log 2x +log 2(2-x )的单调递减区间为[1,2).故选A. 7.答案:[0,2 )解析:由2 -|x |>0,得-2 <x <2 ,所以函数f (x )的定义域为(-2 ,2 ). ∵函数u =2 -|x |在[0,2 )上为减函数,且函数y =log 12u 为减函数,∴函数f (x )的单调递增区间为[0,2 ). 8.答案:8解析:对于函数f (x )=log a (x -1)+1,令x -1=1,∴x =2,y =1,则该函数图象过定点(2,1),将(2,1)代入y =mx +n (m >0,n >0),得2m +n =1,故1m +2n=⎝ ⎛⎭⎪⎫1m +2n (2m +n )=4+n m +4mn≥4+2n m ·4m n =8,当且仅当n m =4m n 且2m +n =1,即m =14 ,n =12时取等号.9.解析:(1)由1-x 2>0得定义域为{x |-1<x <1}.(2)令u =1-x 2,则u 在(-1,0]上单调递增,在(0,1)上单调递减.又f (u )=log 2u 单调递增,故f (x )在(-1,0]上单调递增,在(0,1)上单调递减. ∴函数f (x )在[22,1)上为减函数, ∴函数f (x )在[22,1)上的值域为(-∞,-1].核心素养升级练1.答案:BCD解析:因为f (x )=ln (x -2)+ln (6-x )=ln [(x -2)(6-x )],定义域为(2,6),令t =(x -2)(6-x ),则y =ln t ,二次函数t =(x -2)(6-x )的对称轴为直线x =4,所以f (x )在(2,4)上单调递增,在(4,6)上单调递减,A 错误,C ,D 正确;当x =4时,t 有最大值,所以f (x )max =ln (4-2)+ln (6-4)=2ln 2,故B 正确.故选BCD.2.解析:(1)当a =12 时,f (x )=log 12 (12x -1),由12x -1>0,得x <0,故函数f (x )的定义域为(-∞,0).(2)f (x )=log a (a x-1)(a >1)的定义域为(0,+∞),当x 1>x 2>0时,f (x 1)-f (x 2)=log a (a a 1-1)-log a (a a 2-1)=log a a a 1-1a a 2-1>0, 所以函数f (x )为(0,+∞)上的增函数,由f (x )<f (1),知⎩⎪⎨⎪⎧x >0x <1 ,故关于x 的不等式f (x )<f (1)的解集为{x |0<x <1}.(3)设g (x )=f (x )-log 2(1+2x)=log 22x-12x +1,x ∈[1,3],设t =2x-12x +1 =1-22x +1 ,x ∈[1,3].易知t =1-22x +1 在x ∈[1,3]上单调递增.所以t ∈[13 ,79 ],故g (x )min =log 213.因为m <g (x )对任意x ∈[1,3]恒成立,所以m <g (x )min . 故m 的取值范围是(-∞,log 213 ).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修2考试卷
十二厂中学 屈丽萍
一、选择题(本大题共12小题,每小题5分,共60分)
1、已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边
长为8、高为4的等腰三角形,侧视图(或称左视图)是一个
底边长为6、高为4的等腰三角形.则该几何体的体积为
( )
(A )48 (B )64 (C )96 (D )192
2、已知A (x 1,y 1)、B (x 2,y 2)两点的连线平行y 轴,则|AB |=( )
A 、|x 1-x 2|
B 、|y 1-y 2|
C 、 x 2-x 1
D 、 y 2-y 1
3.棱长都是1的三棱锥的表面积为( ) A. 3 B. 23 C. 33 D. 43
4.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,
则这个球的表面积是( )
A .25π
B .50π
C .125π
D .都不对
5、已知正方体外接球的体积是
323π,那么正方体的棱长等于 ( D ) (A )22 (B )23 (C )423
(D )43 6、若l 、m 、n 是互不相同的空间直线,α、β是不重合的平面,则下列命题中为
真命题的是( )
A .若//,,l n αβαβ⊂⊂,则//l n
B .若,l αβα⊥⊂,则l β⊥
C. 若,//l l αβ⊥,则αβ⊥ D .若,l n m n ⊥⊥,则//l m
7、如图,在正方体1111ABCD A B C D -中,E F G H ,,,分别为
1AA ,AB ,1BB ,11B C 的中点,则异面直线EF 与GH 所成的角等于( )
A F D B
C G E 1B H 1C 1D
1A
A.45° B.60° C.90° D.120°
8、方程(x-2)2+(y+1)2=1表示的曲线关于点T (-3,2)的对称曲线方程是: ( )
A 、 (x+8)2+(y-5)2=1
B 、(x-7)2+(y+4)2=2
C 、 (x+3)2+(y-2)2=1
D 、(x+4)2+(y+3)2=2
9、已知三点A (-2,-1)、B (x ,2)、C (1,0)共线,则x 为: ( )
A 、7
B 、-5
C 、3
D 、-1
10、方程x 2+y 2-x+y+m=0表示圆则m 的取值范围是 ( )
A 、 m ≤2
B 、 m<2
C 、 m<21
D 、 m ≤2
1
11、过直线x+y-2=0和直线x-2y+1=0的交点,且垂直于第二直线的直线方程
为 ( )
A 、+2y-3=0
B 、2x+y-3=0
C 、x+y-2=0
D 、2x+y+2=0
12、圆心在直线x=y 上且与x 轴相切于点(1,0)的圆的方程为: ( )
A 、(x-1)2+y 2=1
B 、(x-1)2+(y-1)2=1
C 、(x+1)2+(y-1)2=1
D 、(x+1)2+(y+1)2=1
二、填空题:(每小题5分,共20分)
13、直线x=2y-6到直线x=8-3y 的角是 。
14、圆:x 2+y 2-2x-2y=0的圆心到直线xcos θ +ysin θ=2的最大距离
是 。
15.正方体的内切球和外接球的半径之比为_____
16如图,△ABC 是直角三角形,∠ACB=︒90,PA ⊥平面ABC ,此图形中有 个直
角三角形。
三 解答题:(共70分)
17.(10分)如图,PA ⊥平面ABC ,平面PAB ⊥平面PBC
求证:AB ⊥BC
P A B C
18.在长方体1111D C B A ABCD -中,已知
3,41===DD DC DA ,求异面直线B A 1与C B 1所
成角的余弦值 。
(10分)
19、求过原点且与直线x=1及圆(x-1)2+(y-2)2=1
相切的圆的方程。
(12分)
20、在△ABC 中,BC 边上的高所在直线方程为x-2y+1=0,∠A 的平分线所在直线方程为y=0若点B 坐标为(1,2),求点A 和C 的坐标。
(12分)
21.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AB AD AC CD ⊥⊥,,
60ABC ∠=°,PA AB BC ==,E 是PC 的中点.
(14分) (Ⅰ)求PB 和平面PAD 所成的角的大小;
(Ⅱ)证明AE ⊥平面PCD ;
(Ⅲ)求二面角A PD C --的正弦值.
22、设圆:(1)截y 轴所得弦长为2;(2)被x 轴分成两段圆弧,其弧长的比为3∶1。
则在满足条件(1)、(2)的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程。
(12分) A B C D
P E
答案:一选择题:1B 2.B 3.B 长方体对角线是球直径,
2
2450
2
l R R S R
ππ
======
4.D 5、C6、B
7.A
因为四个面是全等的正三角形,则44
4
S S
==⨯=
表面积底面积
8.A;9A;10.C;11.B;12.B
二填空题13.
4
3π
;14 2+2;15、正方体的棱长是内切球的直径,正方体的对角线是外接球的直径,设棱长是a
22,
22
a
a r r r r r r
=====
内切球内切球外接球外接球内切球外接球
,,:
16、4
三解答题:
17、证明:过A作AD⊥PB于D,由平面PAB⊥平面PBC ,得AD⊥平PBC,故AD⊥BC,
又BC⊥PA,故BC⊥平面PAB,所以BC⊥AB
18、连接D
A
1
,D
BA
C
B
D
A
1
1
1
,
//∠
∴
Θ为异面直线B
A
1
与C
B
1
所成的角.
连接BD,在△DB
A
1
中,2
4
,5
1
1
=
=
=BD
D
A
B
A,
则
D
A
B
A
BD
D
A
B
A
D
BA
1
1
2
2
1
2
1
12
cos
⋅
⋅
-
+
=
∠
25
9
5
5
2
32
25
25
=
⋅
⋅
-
+
=
19. (x-
8
3
)2+(y-
2
1
)=
24
25
.
20.(1)k≠-9且k≠1;(2)k=
2
13
1±
;(3)k=-9;(4)k=1.
20. A (-1,0) , C (5, -6) .
21、(Ⅰ)解:在四棱锥P ABCD
-中,因PA⊥底面ABCD,AB⊂平面ABCD,故PA AB
⊥.
又AB AD
⊥,PA AD A
=
I,从而AB⊥平面PAD.故PB在平面PAD内的射影为PA,从而APB
∠为PB和平面PAD所成的角.
在Rt PAB
△中,AB PA
=,故45
APB=o
∠.
所以PB和平面PAD所成的角的大小为45o.
(Ⅱ)证明:在四棱锥P ABCD
-中,
因PA⊥底面ABCD,CD⊂平面ABCD,故CD PA
⊥.
由条件CD AC
⊥,PA AC A
=
I,CD
∴⊥面PAC.又AE⊂面PAC,AE CD
∴⊥.由PA AB BC
==,60
ABC=o
∠,可得AC PA
=.E
Q是PC的中点,AE PC
∴⊥,
A
B
C
D
P
E
M
PC CD C ∴=I .综上得AE ⊥平面PCD .
(Ⅲ)解:过点E 作EM PD ⊥,垂足为M ,连结AM .由(Ⅱ)知,AE ⊥平面PCD ,AM 在平面PCD 内的射影是EM ,则AM PD ⊥.
因此AME ∠是二面角A PD C --的平面角.由已知,得30CAD =o
∠.设AC a =,得 PA a =
,3AD a =
,3PD a =
,2
AE =. 在Rt ADP △中,AM PD ⊥Q ,AM PD PA AD ∴=g g ,则
3
PA AD AM PD ==g .在Rt AEM △
中,sin AE AME AM == 22. 设所求圆的圆心为P (a,b ),半径为r ,则P 到x 轴、y 轴的距离分别为|b|、|a|.
由题设得:⎪⎩⎪⎨⎧+==1
22222a r b r ∴ 2b 2-a 2=1 又点P (a,b )到直线 x -2y =0距离为 d =5|
2|b a - .
∴5d 2=|a -2b|2= a 2+4b 2-4ab ≥a 2+4b 2-2(a 2+b 2)=2b 2-a 2=1 .
当且仅当a=b 时,上式等号成立,d 取得最小值. ∴ ⎪⎩⎪⎨
⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=1
1b a 故所求圆的方程为(x ±1)2+(y ±1)2=2 .。