高等数学考研讲义第八节

合集下载

高数课件第八章

高数课件第八章
无穷小分出法:以分母中自变量的最高次幂除分 子,分母,以分出无穷小,然后再求极限.
例5
1 2 n 求 lim ( 2 2 2 ). n n n n
n 时, 是无限多个无穷小之和.

先变形再求极限.
1 2 n 1 2 n lim( 2 2 2 ) lim n n n n n n2
x x0
lim f [ ( x)] lim f (u ) A.
u a
意义:
x x0
lim f [ ( x )]
令 u ( x)
a lim ( x )
x x0
lim f ( u)
u a
ห้องสมุดไป่ตู้
(无穷小因子分出法)
小结:当a 0 0, b0 0, m和n为非负整数时有
a0 , 当 n m , b 0 m m 1 a 0 x a1 x am lim 0,当n m , n n 1 x b x b x bn 0 1 , 当n m ,
1 2 1 2 2 , 有界, B( B ) B , 故 B( B ) B 2
( 3)成立.
推论1 如果 lim f ( x )存在, 而c为常数, 则
lim[cf ( x )] c lim f ( x ).
常数因子可以提到极限记号外面. 推论2
如果 lim f ( x )存在, 而n是正整数, 则 lim[ f ( x )]n [lim f ( x )]n .
2
0 解 x 1时, 分子, 分母的极限都是零. ( 型 ) 0 先约去不为零的无穷小因子x 1后再求极限.
x2 1 ( x 1)( x 1) lim 2 lim x 1 x 2 x 3 x 1 ( x 3)( x 1)

南京工业大学《高等数学》ch1-8

南京工业大学《高等数学》ch1-8

x
x
2 sin
2
cos(x0
) 2
2 sin
x 2
cos(x0
x ) 2
2 sin x 2
x
由夹挤准则可知:当x 0时, lim y 0 x 0
再由 x0 点的任意性推知 y sin x 在(,)连续。
机动 前页 后页 返回
定义 2 设 y=f ( x) 在 Ux0,δ内有定义,

lim
(1) 函数 在 无定义 ;
(2) 函数 在 虽有定义 , 但
不存在;
(3) 函数 在 虽有定义 , 且
存在 , 但
lim f (x) f (x0)
x x0
这样的点 称为间断点 .
机动 前页 后页 返回
间断点分类
第一类间断点: 及
均存在 ,
若 若 第二类间断点:
称 x0为可去间断点 . 称 x0 为跳跃间断点 .
第八节 函数的连续性 与间断点
第八节 函数的连续性与间断点
一、函数连续性的定义 二、函数的间断点 三、内容小结
机动 前页 后页 返回
一、函数连续性的定义
连续 y
y=f(x)
间断 y
y=f(x)
0 x0
x1 x
0
x0
x1
x
机动 前页 后页 返回
1.增量(改变量)
当 x由 x0 x1 时,记 x=x1-x0 ,称为自变量增量;
连续函数.
提示: f (0 ) 0 , f (0 ) f (0) a
2. 试确定函数 f (x)
1
x
间断点的类型.
1 e1x
答案: x 0 为无穷间断点;
x 1 为跳跃间断点.

MBA《数学》第八章考研讲义

MBA《数学》第八章考研讲义

MBA 《数学》第八章 立体几何【大纲要求】空间几何体:长方体、柱体、球体.考试要点剖析一、长方体设3条相邻的棱边长是a ,b ,c .1.全面积:.2.体积:V abc =.3.体对角线:222d a b c =++.4.所有棱长和: ()4l a b c =++.当a b c ==时的长方体称为正方体,且有26S a =全,3V a =,3d a =.二、柱体1.柱体的分类圆柱:底面为圆的柱体称为圆柱.棱柱:底面对多边形的柱体称为棱柱,底面为n 边形的就称为n 棱柱.2.柱体的一般公式无论是圆柱还是棱柱,侧面展开图均为矩形,其中一边长为底面的周长,另一边为柱体的高. 侧面积:S =⨯底面周长高(展开矩形的面积).体积:V =⨯底面积高.3.对于圆柱的公式()2F ab bc ac =++设高为h ,底面半径为r .体积:2V r h π=.侧面积:2S rh π=(其侧面展开图为一个长为2r π,宽为h 的长方形).全面积:2222F S S rh r ππ=+=+侧底. 三、球设球的半径为r .1.球表面积,24S r π=;2.球的体积,343V r π=. 四、长方体、正方体、圆柱与球的关系设圆柱底面半径为r ,球半径为R ,圆柱的高为h .内切球 外接球 长方体无,只有正方体才有 体对角线2l R = 正方体 棱长2a R = 体对角线2l R =(23R a =) 圆柱只有轴截面是正方形的圆柱才有,此时有22r h R == ()2222h r R += 【注意】(1)在这些关系中,一定要注意寻找几何关系时要利用几何体的轴截面;(2)关系是相互的,可以说正方体的外接球,也可以说球的内接正方体,其实质是一样的.考点练习一、问题求解如图,正方体的棱长为,是的中点,则的长为1.3ABCD A B C D ''''-2F C D ''AF ()A 3()B 5()C 5()D 22()E 32.将体积为和的两个实心金属球熔化后铸成一个实心大球,求大球的表面积( )3.体的体积是( )4. (A )0.38 (B )0.59 (C )5.如图,在半径为10厘米的球体上开一个底面半径是6厘米的圆柱形洞,则洞的内壁面积为(单位:平方厘米)A .48πB .288πC .96πD .576πE .192π二、条件充分性判断题()20131-34cm π332cm π()A 232cm π()B 36π()20111-()A 383R ()B 3(6.底面半径为,高为的圆柱体表面积为,半径为的球体表面积为,则()20151-r h 1S R 2S 12S S ≤()12r h R +≥()223h r R +≤。

第六版高数第九章第8节

第六版高数第九章第8节
令 A fxx(x , y ), B fxy(x , y ),C= fyy(x , y ) = = 0 0 0 0 0 0 A<0 时取极大值; 时取极大值; :1)当 C 2 则:1)当 A −B >0 时, 具有极值 A>0 时取极小值. 时取极小值. C 2 2) 当 A −B <0时, 没有极值. 没有极值.
高等数学(下)
仲恺农业工程学院
1.极值的定义: 1.极值的定义: 极值的定义 若函数
的某邻域内有
则称函数在该点取得极大值(极小值). 则称函数在该点取得极大值(极小值). 极大值和极小 值统称为极值,使函数取得极值的点称为极值点. 值统称为极值,使函数取得极值的点称为极值点. 例如: 例如: 有极小值; 在点 (0,0) 有极小值; 有极大值; 在点 (0,0) 有极大值; x 无极值. 在点 (0,0) 无极值.
高等数学(下)
仲恺农业工程学院
方法2 拉格朗日乘数法(推导过程略) 方法2 拉格朗日乘数法(推导过程略) , ) 极 . 在 件 (x y =0 , 求 数 = f(x y 的 值 条ϕ , ) 下 函 z , ) ( , ) 拉格朗日函数 F= f(x y +λϕ x y 则极值点满足: 则极值点满足: 条件为 ( , , 如 u= f(x y z) ,条件为ϕ x y z)=0ψ x y z)=0 , ( , , , , , , 则设 F= f(x y z)+λϕ x y z)+λψ x y z) 1 ( , , 2 ( , ,
x y z + + = 1下求V 的最小值: 的最小值: 在条件 a b c
(V ( x0 , y0 , z0 ) 与 u = ln( x0 y0 z0 ) = ln x0 + ln y0 + ln z0 的 驻点 相 同)

武忠祥《2016高等数学辅导讲义》第八章解答

武忠祥《2016高等数学辅导讲义》第八章解答
2 2 2
(2)令 f ( x, y ) g ( x, y ) 5 x 5 y 8 xy. 由题意,只需求 f ( x, y ) 在约束条件 75 x y xy 0 下的最大值点. 令 L( x, y , ) 5 x 5 y 8 xy (75 x y xy ) ,则
21.【解】应填1. 22.【解】在点 (0,0,1) 沿方向 0,0 2和点 (0,0,1) 沿方向 0,02 的方向导数最大,其最大 值为 4. 23.【解】
x y z a , x ay 0. a a2 0
24.【解】设经过 l 且垂直于 的平面方程为 1 : A( x 1) By C ( z 1) 0 ,则由条件可 知
n {2,2,3}.
14.【解】应填
1 0, 2 , 3 . 5


2
15.【解】应填 x z 1 y . 设点 M ( x, y, z ) 是旋转曲面上的任一点,设它在直线上的对 应 点 M ( x, y , z ) , 由 于 M 在 直 线 上 , 所 以 有 x 1, y z , 由 题 意 有
z z x y {dx, dy} // , , x y x2 y2 x2 y2 4 1 9 1 16 36 16 36

4
dx dy 即 , 这就是投影曲线应满足的微分方程,解之得 y Cx 9 . x y 4 9
主编:武忠祥
2016 高等数学辅导讲义练习题解答
《高等数学辅导讲义》 练习题解答
第八章 向量代数与空间解析几何及多元微分在几何上的应用
1.【解】应选(C). L1 和 L2 的方向向量分别为 s1 {1,2,1} 和 s2 {1,1,2} ,

高等数学第八章解析几何(数学第八章平面解析几何)

高等数学第八章解析几何(数学第八章平面解析几何)

高等数学第八章解析几何(数学第八章平面解析几何)
双曲线的定义:
2.双曲线的标准方程
双曲线与椭圆的比较
以F1,F2所在直线为某轴,线段F1F2的垂直平分线为y轴,建立平
面直角坐标系某Oy,此时双曲线的焦点分别为F1(-c,0),F2(c,0)设
P(某,y)是双曲线上一点,则,(,PF1,-,PF2,),=2a,因为,PF1,
=√(〖(某c)〗^2y^2),,PF_2,=√(〖(某-c)〗^2y^2),所以√(〖(某c)〗^2y^2)-√((某-c)^2y^2)=±2a①
且②与①右边同时取正号或负号,①②整理得
将③式平方再整理得〖c^2-a〗^2/a^2 某^2-y^2= 〖c^2-a〗^2 ④因
为c>a>0,所以〖c^2-a〗^2>0设〖c^2-a〗^2=b^2且b>0,则④可化为某
^2/a^2 -y^2/b^2 =1 (a>0,b>0) 求双曲线的标准方程:与求椭圆的标准
方程的方法相似,可以先根据其焦点位置设出标准方程,然后用待定系数法
求出a,b的值.若焦点位置不确定,可按焦点在某轴和y轴上两种情况讨论
求解,此方法思路清晰,但过程复杂.若双曲线过两定点,可设其方程为m某
² ny²=1(mn<0),通过解方程组即可确定m,n,避免了讨论,从而简化求解过程.双曲线的几何性质
(1)双曲线与椭圆的六个不同点:
(2)等轴双曲线:是实轴和虚轴等长的双曲线,它的渐近线方程是
y=±某,离心率为√2.(3)共轭双曲线:以已知双曲线的虚轴为实轴,实轴为
虚轴的双曲线叫做原双曲线的共轭双曲线
私信我领取全套免费学习资料,。

11-8高等数学经典讲义

11-8高等数学经典讲义
f(x)a 2 0n 1(a nco n lx s b nsin ln x),
其中a系 n,bn为 数
a n 1 l llf(x )cn o lx d s ,x(n 0 ,1 ,2 , ) b n 1 l llf(x )sn i lx n d,x(n 1 ,2 , )
一、以2L为周期的Fourier级数
n2k
当n1,3,5, ,
0 当n2,4,6,
f ( x ) k 2 k (s x i1 s n 3 i x n 1 s5 i x n ) 2 23 25 2
( x ; x 0 , 2 , 4 , )
二、典型例题
例 2将 函 数 f(x )1 0 x5x1展 0开 成
10,
n
(n1,2,)
故 f(x )1 0 x1 0( 1 )nsin n x(5x1)5 n 1 n 5
三、小结
以2L为周期的傅氏系数; 利用变量代换求傅氏展开式; 求傅氏展开式的步骤; 1.画图形验证是否满足狄氏条件(收敛域,奇偶性); 2.求出傅氏系数; 3.写出傅氏级数,并注明它在何处收敛于f (x).
(1)如果 f(x)为奇函 , 则有数
f(x)n 1bnsinnlx, 其中 b n 为 b n 2 l 系 0 lf(x )s 数 n i lx n d ,x (n1,2,)
(2)如果 f(x)为偶函 , 数 则有
f(x)a20n 1ancon slx, 其中 a n 为 a n 系 2 l0 lf(x 数 )cn o lx d s x (n0,1,2,)
高等数学(下)
理工大学理学院数理系 计算数学教研室
第十一章 无穷级数
第八节 一般周期函数的Fourier级数
一、以2L为周期的Fourier 二、典型例题 三、小结

高等数学第六版(同济版)第八章复习资料

高等数学第六版(同济版)第八章复习资料

第八章 空间解析几何与向量代数§8.1向量及其线性运算一、向量的相关概念1.向量的定义:称既有大小又有方向的量为向量(或矢量).2. 向量的数学表示法:用一条有方向的线段表示,记为 AB 或a .3. 向量的模:称向量的大小为向量的模,记为||a .4. 自由向量:称与起点无关的向量为自由向量.(如位移)5. 单位向量:称模为1的向量为单位向量,记作e .6. 零向量:称模为0的向量为零向量,记作0.7. 两向量相等:若向量与同模同方向,则称的与相等,记作=.(即两个向量平移后重合.)8. 两向量的夹角:],0[),(πϕ∈=∧b a ,≠,.9. 两向量平行:若非零向量a 与b 所成的角•b a 0),(=∧或π,则称的a 与b 平行,记作b //a . 规定: 零向量与任何向量平行.10. 两向量垂直:若非零向量a 与b 所成的角•2/),(π=∧,则称的a 与b 垂直,记作⊥.注: 零向量可认为与任何向量平行或垂直.11. 向量共线:平行的向量可移动到同一条直线上,也称之为向量共线.12. 向量共面:将)3(≥k k 个向量的起点放到同一点时,若k 个终点与公共起点在一个平面上,则称这k 个向量共面. 二、向量的线性运算 1.向量的加减法 (1). 向量的加法①.运算法则:设有向量a 与b ,求a 与b 的和.I. 三角形法则:c AC BC AB b a ==+=+.II. 平行四边形法则:==+=+=+.②.运算规律:1°. 交换律:a b b a +=+.2°. 结合律:)()(c b a c b a ++=++.注:)3(≥n 个向量相加的法则:用前一个向量的终点作为后一个向量的起点,依次作向量n a a a ,,,21 ,再以第一个向量的起点为起点,最后一个向量的终点为终点作一向量,这个向量即为所求向量的和,即n a a a s +++= 21. (2). 向量的减法①.负向量:称与向量a 同模反向的向量为它的负向量,记作a -.②. 两向量的差:称向量b 与向量a 的负向量a -的和为b 与a 的差向量,记作)(-+=-. 注:特别地,当a b =时,0)(=-+=-a a a a . ③.运算法则:设有向量a 与b ,求a 与b 的差.I.平行四边形法则:AB OC OA OB a b ==-=-. II.三角形法则:AB OA OB a b =-=-. (3). 运算定理:||||||+≤±. 2.向量与数的乘法(1). 定义:称向量与实数λ的乘积λ为向量的数乘. 注:1°. 规定a λ是一个向量.2°. ||||||a a ⋅=λλ3°. 若0>λ,则a λ与a 同向;若0<λ,则a λ与a 反向;若0=λ,则0=a λ. (2). 运算规律:①. 结合律:a a a )()()(λμλμμλ==. ②. 分配律:b a b a λλλ+=+)(. (3). 性质①.向量a 的同向单位向量:||a ae a =,a e a a ⋅=||. ②.向量平行的充要条件(定理):若向量0≠a ,则向量b 平行于a 的充分必要条件是:存在唯一的实数λ,使a b λ=.③.数轴上的点P 的坐标为x 的充要条件为:i x OP =,其中向量i 为数轴的单位向量,实数x称为有向线段OP 的值.例1. 如图,用a 、b 表示MA 、MB 、MC 以及MD .解:由于MC AC b a 2==+,故()b a MC +=21,进而()b a MA +-=21. 又MD BD a b 2==-,故()-=21,进而()()-=--=2121.三、空间直角坐标系1. 空间直角坐标系:oxyz 坐标系或],,;[O 坐标系.2. 坐标面:xoy 面;yoz 面;zox 面.3. 卦限:),,(+++→z y x I ;),,(++-→z y x II ;),,(+--→z y x III ;),,(+-+→z y x IV ; ),,(-++→z y x V ;),,(-+-→z y x VI ; ),,(---→z y x VII ;),,(--+→z y x VIII .4. 空间点的坐标:),,(z y x M .OM r =(向径)OR OQ OP ++=k z j y i x ++=. (1). 向量r 的坐标分解式:k z j y i x r ++=. (2). 向量的分向量:z y x ,,. (3). 向量的坐标:),,(z y x =. (4). 点M 的坐标:),,(z y x M .注:1°. xoy 面上点M 的坐标:)0,,(y x M ; 2°. x 轴上点M 的坐标:)0,0,(x M ;yoz 面上点M 的坐标:),,0(z y M ; y 轴上点M 的坐标:)0,,0(y M ;zox 面上点M 的坐标:),0,(z x M . z 轴上点M 的坐标:),0,0(z M .四、利用坐标作向量的线性运算:设),,(z y x a a a =,),,(z y x b b b =. 1. 向量线性运算的坐标表示:(1). 加减法:),,(z z y y x x b a b a b a ±±±=±. (2). 数乘:),,(z y x a a a λλλλ=.(3). 两向量平行:)0,,(,),,(),,(≠==⇔=⇔z y x zzy y x x z y x z y x a a a a b a b a b a a a b b b b //a λ.注:1°. 若0,,0≠=z y x a a a ,则⎪⎩⎪⎨⎧==⇔z z yy x ab a b b b //a 0.2°. 若0,0≠==z y x a a a ,则⎩⎨⎧==⇔00yx b b //.例2. 已知)2,1,2(=,)2,1,1(--=,求线性方程组⎪⎩⎪⎨⎧=-=-by x ay x 2335的解向量.解:方程①乘2减去方程②乘3得:b a x 32-=)2,1,1(3)2,1,2(2---=)10,1,7(-=,方程①乘3减去方程②乘5得:b a y 53-=)2,1,1(5)2,1,2(3---=)16,2,11(-=.例3. 已知两点),,(111z y x A 、),,(222z y x B 及实数1-≠λ,在直线AB 上求一点M ,使λ=. 解:因为OA OM AM -=,OM OB MB -=,因此有)(-=-λ,整理得)(11OM λλ++=, 代入坐标得)],,(),,[(11222111z y x z y x OM λλ++=⎪⎭⎫ ⎝⎛++++++=λλλλλλ1,1,1212121z z y y x x , 从而得到点M 的坐标⎪⎭⎫⎝⎛++++++λλλλλλ1,1,1212121z z y y x x M .注:线段AB 中点坐标公式⎪⎭⎫⎝⎛+++2,2,2212121z z y y x x M .五、向量的模、方向角、投影 1.向量的模与两点间距离公式:(1). 向量的模:k z j y i x z y x OM r ++===),,(,222||z y x ++=. (2). 两点间距离公式:点),,(111z y x A 与),,(222z y x B 之间的距离:212212212)()()(|z z y y x x AB -+-+-=.推导:因为()121212,,z z y y x x OA OB AB ---=-=,所以|)()()(||||212212212z z y y x x AB AB -+-+-==.例4. 求证以三点)1,3,4(1M 、)2,1,7(2M 、)3,2,5(3M 为顶点的三角形是一个等腰三角形. 解:由两点间距离公式,有 14)12()31()47(||22221=-+-+-=M M ;6)23()12()75(||22232=-+-+-=M M ; 6)31()23()54(||22213=-+-+-=M M ,由于||||1322M M M M =,故321M M M ∆为等腰三角形. 例5. 在z 轴上求与两点)7,1,4(-A 、)2,5,3(-B 等距离的点. 解:由题可设所求点为),0,0(z M ,有||||MB MA =,即222222)2()05()03()7()10()40(z z --+-+-=-+-++,整理得914=z ,故所求点为⎪⎭⎫ ⎝⎛914,0,0M . 例6. 已知两点)5,0,4(A 、)3,1,7(B ,求与AB 同向的单位向量e .解:因为)2,1,3()53,01,47(-=---=,所以14)2(13||222=-++=,于是)2,1,3(141||-==AB .2. 方向角与方向余弦(1). 向量的方向角:称非零向量r 与三条坐标轴的夹角γβα,,为向量r 的方向角,],0[,,πγβα∈.(2). 向量的方向余弦:方向角的余弦γβαcos ,cos ,cos .222||cos zy x x r ++==α,222||cos zy x y r ++==β,222||cos zy x z r ++==γ.注:1°. 1cos cos cos 222=++γβα;2sin sin sin 222=++γβα.2°. )cos ,cos ,(cos ),,||||γβα===z y x r r r e . 例7. 已知两点)2,2,2(1M 、)0,3,1(2M ,计算向量21M M 的模、方向余弦和方向角. 解:由于)2,1,1()20,23,21(21--=---=M M ,从而有2)2(1)1(||22221=-++-=M M于是,21cos -=α,21cos =β,22cos -=γ,由此可得43,3,32πγπβπα===.例8.设点A 位于第I 卦限,向径与x 轴、y 轴的夹角依次为3π、4π,且6||=OA ,求点A 的坐标.解:由于3πα=,4πβ=,并且1cos cos cos 222=++γβα,有4122211cos 222=⎪⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-=γ,由题可知0cos >γ,故21cos =γ,于是)3,23,3(21,22,216||=⎪⎪⎭⎫ ⎝⎛==e ,故点A 的坐标为)3,23,3(. 3. 向量在轴上的投影(1). 向量在轴上的投影:设向量与u 轴正向的夹角为ϕ,称数ϕcos ||为向量在u 轴上的投影,记作j u Pr 或u )(.注:向量),,(z y x a a a a =在三个坐标轴上的投影即为对应的坐标,即x x a j =Pr ,y y a j =Pr ,z z a j =Pr .(2). 投影的性质:①.j j j u u u Pr Pr )(Pr +=+. ②.j j u u Pr )(Pr λλ=.例9.设立方体的一条对角线为OM ,一条棱为OA ,且|OA|= a ,求OA 在OM 方向上的投影OA j OM Pr .解:记ϕ=∠MOA ,有31||||cos ==OM OA ϕ, 于是3cos ||Pr a OA OA j OM ==ϕ.§8.2数量积、向量积一、两向量的数量积1.常力沿直线所作的功:θcos ||||S F W ⋅= 2. 两向量的数量积(1). 定义:称向量与的模及其夹角余弦的乘积),cos(||||∧⋅⋅b a b a 为与的数量积,也称为内积或点积,记作b a ⋅.注:1°. a j b b j a b a Pr ||Pr ||==⋅.2°. 2||=⋅. 3°. 0=⋅⇔⊥b a b a . (2). 运算规律①.交换律:a b b a ⋅=⋅.(由定义可知) ②.分配律:c b c a c b a ⋅+⋅=⋅+)(c b c a b j c a j c b a j c c b a ⋅+⋅=⋅+⋅=+⋅=⋅+Pr ||Pr ||)(Pr ||)(③.结合律:)()(⋅=⋅λλ;)()()(⋅=⋅λμμλ.3. 两向量数量积的坐标表示式:若),,(z y x a a a a =,),,(z y x b b b =,则z z y y x x b a b a b a b a ++=⋅.4. 两非零向量夹角余弦的坐标公式:222222||||),cos(||||zy x zyxz z y y x x bb b aa ab a b a b a b a ba b a b a ++++++=⋅=⋅⋅∧.例1. 试用向量证明三角形的余弦定理: θcos 2222ab b a c -+=. 解:在ABC ∆中,记a BC =||,b CA =||,c AB =||,a CB =,b CA =,c AB =,有b a c -=,从而⋅+⋅-⋅=-⋅-=⋅=2)()(||22||cos ||||2||+⋅-=θ,即θcos 2222ab b a c -+=.例2. 已知三点)1,1,1(M 、)1,2,2(A 和)2,1,2(B ,求AMB ∠.解:由题可得)0,1,1()11,12,12(=---=MA ,)1,0,1()12,11,12(=---=MB ,于是21221||||cos =⋅=⋅=∠MB MA AMB ,故3π=∠AMB .例3. 设液体流过平面S 上面积为A 的一个区域,液体在这区域上各点处的流速均为(常向量)v . 设为垂直于S 的单位向量,计算单位时间内经过这区域流向所指一侧的液体的质量m (液体的密度为ρ).解:单位时间内经过该区域的液体的体积为n v A v A V ⋅==θcos ||, 所求质量为n v A V m ⋅==ρρ. 二、两向量的向量积1. 力对支点的力矩:M .模:||||||OQ =θsin ||||=; 方向:与及的方向成右手规则. 2. 两向量的向量积(1).定义:设有向量a 与b ,夹角为θ,称c 为a 与b 的向量积(叉积、外积),其中c 的模θsin ||||||b a c =,方向与a 和b 的方向符合右手规则,记作b a c ⨯=. 注:1°. 0=⨯a a .2°. 0//=⨯⇔b a b a .3°. ||⨯的几何意义:以a 与b 为邻边的平行四边形的面积. (2).运算规律①.反交换律:⨯-=⨯. ②.分配律:c b c a c b a ⨯+⨯=⨯+)(. ③.结合律:)()()(b a b a b a ⨯=⨯=⨯λλλ.(3). 两向量的向量积的坐标表示式:设k a j a i a a z y x ++=,k b j b i b b z y x ++=,则b b a a b b a a b b a a b a xx xzz zyy ++=⨯zyxz y x b b b a a a =⨯.例4. 试用两向量的向量积证明三角形正弦定理:CcB b A a sin sin sin ==. 证明:在三角形ABC ∆中,记a BC =||,b CA =||,c AB =||,由于||21||21||21CB CA BA BC AC AB S ABC ⨯=⨯=⨯=∆,即c b a B c a A c b sin sin sin ⋅=⋅=⋅, 整理得 C cB b A a sin sin sin ==. 例5. 设)1,1,2(-=,)2,1,1(-=,计算b a ⨯.解:k j i kj b a 352111--=--=⨯. 例6. 已知三角形ABC 的顶点分别是)3,2,1(A 、)5,4,3(B 和)7,4,2(C ,求三角形ABC 的面积.解:由于)2,2,2(=AB ,)4,2,1(=AC ,有26422+-==⨯,于是142)6(421|264|21||21222=+-+=+-=⨯=S ABC ∆. 例7. 设刚体一角速度ω绕l 轴旋转,计算刚体上一点M 的线速度v . 解:在轴l 上引进一个角速度向量ω,使ωω=||,其方向与旋转方向 符合右手法则,在l 上任取一点O ,作向径=,它与ω的夹角为θ, 则点M 离开转轴的距离θsin ||a =,由物理学中线速度和角速度的关系可知,θωωsin ||||||||r a v ==,且ω、r 、v 符合右手规则,于是r v ⨯=ω.§8.3曲面及其方程一、曲面方程的相关概念1.曲面方程:若曲面S 上任一点的坐标都满足方程(*)0),,(=z y x F ,且不在曲面S 上的点的坐标都不满足方程(*),则称方程(*)为曲面S 的方程,而称曲面S 为称方程(*)的图形.2.关于曲面的两个基本问题(1). 已知一曲面作为空间点的几何轨迹,建立该曲面的方程.(2). 已知关于点),,(z y x M 的坐标x 、y 、z 之间的一个方程0),,(=z y x F ,研究该方程所表示曲面的形状.例1. 建立球心在点),,(0000z y x M 、半径为R 的球面方程.解:设),,(z y x M 为所求球面上任一点,有R M M =||0,即R z z y y x x =-+-+-202020)()()(, 整理得 2202020)()()(R z z y y x x =-+-+-.例2. 设有点)3,2,1(A 和)4,1,2(-B ,求线段AB 的垂直平分面的方程. 解:设),,(z y x M 为所求平面上任一点,由题意,有||||BM AM =,即222222)4()1()2()3()2()1(-+++-=-+-+-z y x z y x ,整理得 07262=-+-z y x .例3. 方程042222=+-++y x z y x 表示怎样的曲面?解:原方程变形为5)2()1(222=+++-z y x ,表示以)0,2,1(0-M 为球心,以5为半径的球面. 二、旋转曲面1. 定义:称由一条平面曲线绕其平面上一条定直线旋转一周所成的曲面为旋转曲面,称旋转曲线为旋转曲面的母线,定直线为旋转曲面的轴.2. 旋转曲面的方程:曲线C :0),(=z y f 绕z 轴旋转一周所成的旋转曲面方程为:0),(22=+±z y x f .(绕y 轴旋转一周所成的旋转曲面方程为:0),(22=+±x z y f .)(巧记:绕谁谁不动,缺谁补上谁.)推导:在曲线C 上任取一点),,0(111z y M ,有0),(11=z y f ,且点1M 到z 轴的距离||1y d =.当曲线C 绕z 轴旋转时,点1M 绕z 轴旋转到点),,(z y x M ,其中1z z =,点M 到z 轴的距离221y x d +=,由于1d d =,有221||y x y +=, 即221y x y +±=,代入曲线方程有0),(22=+±z y x f .注:1°. 曲线C :0),(=y x f 绕x 轴旋转一周所成的旋转曲面方程为:0),(22=+±z y x f ;绕y 轴旋转一周所成的旋转曲面方程为:0),(22=+±y x z f .2°. 曲线C :0),(=x z f 绕z 轴旋转一周所成的旋转曲面方程为:0),(22=+±y x z f ;绕x 轴旋转一周所成的旋转曲面方程为:0),(22=+±x z y f .3. 常见旋转曲面及其方程(1). 圆锥面及其方程①.圆锥面:称由直线L 绕与其相交的直线旋转一周所成的曲面为圆锥面,称两直线的交点为圆锥面的顶点,称两直线的夹角)2/,0(πα∈为圆锥面的半顶角.②.圆锥面的方程:以坐标原点o 为顶点,以α为半顶角,以z 轴为旋转轴的圆锥面的方程为:)(2222y x a z +=,其中αcot =a .推导:在yoz 坐标面上,过原点且与z 轴夹角为α的直线方程为y z ⋅=αcot ,于是,直线L 绕z 轴旋转而成的圆锥面的方程为)(cot 22y x z +±⋅=α,整理得)()(cot 2222222y x a y x z +⋅=+⋅=α.注:1°. 以坐标原点O 为顶点,以α为半顶角,以x 轴为旋转轴的圆锥面的方程为:)(2222z y a x +=,其中αcot =a .2°. 以坐标原点O 为顶点,以α为半顶角,以y 轴为旋转轴的圆锥面的方程为:)(2222x z a y +=,其中αcot =a .(2). 旋转双曲面及其方程①.旋转双曲面:称由双曲线绕其对称轴旋转一周所成的曲面为旋转双曲面,分为单叶和双叶双曲面.②.旋转双曲面的方程:(双曲线:12222=-cz a x ) 旋转单叶双曲面的方程:(绕z 轴旋转) 122222=-+cz a y x . 旋转双叶双曲面的方程:(绕x 轴旋转) 122222=+-cz y a x .三、柱面1. 柱面的定义: 称由直线L 沿定曲线C 平行于定直线l 移动所成的轨迹为柱面,称定曲线C 为柱面的准线,动直线L 为柱面的母线.2. 几种常见柱面及其方程(缺谁母线平行谁)(1). 圆柱面:222R y x =+. (准线为xoy 坐标面上的圆:222R y x =+,母线平行z 轴.)222R z y =+. (准线为yoz 坐标面上的圆:222R z y =+,母线平行x 轴.)222R x z =+. (准线为zox 坐标面上的圆:222R x z =+,母线平行y 轴.)(2). 过坐标轴的平面:0=-y x ,过z 轴,准线为xoy 坐标面上的直线0=-y x .0=-z y ,过x 轴,准线为yoz 坐标面上的直线0=-z y .0=-x z ,过y 轴,准线为zox 坐标面上的直线0=-x z .四、二次曲面1. 椭球面:1222222=++c z b y a x .2. 椭圆锥面:22222z by a x =+. 3. 单叶双曲面:1222222=-+c z b y a x . 4. 双叶双曲面:1222222=--cz b y a x . 5. 椭圆抛物面:z b y a x =+2222. 6. 双曲抛物面:z by a x =-2222. 7. 椭圆柱面:12222=+b y a x . 8. 双曲柱面:12222=-by a x 9. 抛物柱面:ay x =2.§8.4空间曲线及其方程一、空间曲线:称空间两曲面的交线为空间曲线,记为C .二、空间曲线的方程1. 一般式(面交式)方程:⎩⎨⎧==0),,(0),,(z y x G z y x F . 例如:⎩⎨⎧=+=+632122y x y x 表示圆柱面122=+y x 与平面632=+y x 的交线. 又如:⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛---=22222222a y a x y x a z 表示上半球面222y x a z --=与圆柱面22222⎪⎭⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛-a y a x 的交线.2. 参数方程:⎪⎩⎪⎨⎧===)()()(t z z t y y t x x ,其中点),,(z y x M 随着参数t 的变化遍历曲线C .例1. 称由点),,(z y x M 在圆柱面222a y x =+上以角速度ω绕z 轴旋转,又同时以线速度v 沿平行z 轴的正向上升所成的图形为螺旋线,求其参数方程.解:取时间t 为参数,0=t 对应点)0,0,(a A ,t 对应点),,(z y x M ,作M 在xoy 面上的投影'M ,有)0,,('y x M ,且t AOM ω=∠',于是t a AOM OM x ωcos 'cos |'|=∠=,t a AOM OM y ωsin 'sin |'|=∠=,又vt MM z ==',于是,螺旋线的参数方程为⎪⎩⎪⎨⎧===vt z t a y t a x ωωsin cos , 令ωωθv b t ==,,则螺旋线的参数方程为⎪⎩⎪⎨⎧===θθθb z a y a x sin cos . 三、空间曲线在坐标面上的投影1.投影柱面:称以空间曲线C 为准线,母线平行于z 轴的柱面为曲线C 关于xoy 坐标面的投影柱面.2. 空间曲线的投影:称空间曲线C 关于xoy 坐标面的投影柱面与xoy 坐标面的交线为空间曲线C 在xoy 坐标面上的投影曲线,也称为投影.3. 空间曲线的投影方程:空间曲线C :⎩⎨⎧==0),,(0),,(z y x G z y x F 在xoy 坐标面上的投影方程为⎩⎨⎧==00),(z y x H ,其中0),(=y x H 为方程组⎩⎨⎧==0),,(0),,(z y x G z y x F 消去z 所得的投影柱面方程. 注:1°. 空间曲线曲线C :⎩⎨⎧==0),,(0),,(z y x G z y x F 在yoz 坐标面上的投影方程为⎩⎨⎧==00),(x z y R . 2°. 空间曲线曲线C :⎩⎨⎧==0),,(0),,(z y x G z y x F 在zox 坐标面上的投影方程为⎩⎨⎧==00),(y x z T .例2. 求曲线⎪⎩⎪⎨⎧=-+-+=++1)1()1(1222222z y x z y x 在xoy 坐标面上的投影方程. 解:现求曲线C 在关于xoy 坐标面上的投影方程,将方程组⎪⎩⎪⎨⎧=-+-+=++1)1()1(1222222z y x z y x 消去z 得投影柱面方程:02222=-+y y x ,于是所求投影方程为⎩⎨⎧==-+002222z y y x .例3. 求由上半球面224y x z --=和锥面)(322y x z +=所围成的立体在xoy 坐标面上的投影. 解:先求曲线⎪⎩⎪⎨⎧+=--=)(342222y x z y x z 关于xoy 坐标面的投影方程,消去z 得投影柱面方程:122=+y x ,故曲线⎪⎩⎪⎨⎧+=--=)(342222y x z y x z 在xoy 坐标面上的投影方程为⎩⎨⎧==+0122z y x ,从而所求投影为圆域:122≤+y x .§8.5平间及其方程一、平面的点法式方程1.平面的法向量:称垂直于一平面的非零向量为该平面的法线向量.2.平面的点法式方程:过点),,(0000z y x M ,以向量),,(C B A =为一法向量的平面∏的方程为:0)()()(000=-+-+-z z C y y B x x A .推导:在平面∏上任取一点),,(z y x M ,有向量),,(0000z z y y x x M M ---=,由于M M n 0⊥,有00=⋅M M n ,即有0)()()(000=-+-+-z z C y y B x x A (1),即平面∏上的点的坐标都满足方程(1).反之,若点),,(z y x M 不在平面∏上,则向量M M 0不垂直法向量n ,从而00≠⋅M M n ,即不在平面∏上的点的坐标都不满足方程(1).于是得到平面∏的点法式方程0)()()(000=-+-+-z z C y y B x x A .例1. 求过点)0,3,2(-且以)3,2,1(-=为法向量的平面的方程.解:由平面的点法式方程得 0)0(3)3(2)2(=-++--z y x ,整理得 0832=-+-z y x . 例2. 求过三点)4,1,2(1-M 、)2,3,1(2--M 和)3,2,0(3M 的平面的方程. 解:先求所求平面的一个法向量n ,由题可得向量)6,4,3(21--=M M ,)1,3,2(31--=M M ,可取 k j i kj i M M M M n -+=----=⨯=9141326433121,于是所求平面的方程为0)4()1(9)2(14=--++-z y x ,整理得015914=--+z y x .二、平面的一般方程1. 平面的一般方程:0=+++D Cz By Ax (*)推导:若点),,(0000z y x M 满足方程(*),则有0000=+++D Cz By Ax , (**)两方程相减得0)()()(000=-+-+-z z C y y B x x A , (***)方程(***)为过点),,(0000z y x M ,以向量),,(C B A n =为一法向量的平面的点法式方程.由于方程(*)与(***)同解,可知任何一个三元一次方程(*)的图形总是一个平面,称0=+++D Cz By Ax 为平面的一般方程,其一法线向量为),,(C B A n =.2. 几种特殊平面的一般方程:(缺谁平行谁)(1). 过原点的平面方程:0=++Cz By Ax ,法向量为),,(C B A =.(2). 平行x 轴的平面方程:0=++D Cz By ,法向量为),,0(C B n =.(3). 垂直于x 轴 (平行yoz 坐标面) 的平面方程:0=+D Ax ,法向量为)0,0,(A n =. 例3.求通过x 轴和点)1,3,4(--的平面的方程.解:由题意,可设所求平面的方程为:0=+Cz By ,(*)又点)1,3,4(--在该平面上,有03=--C B ,得B C 3-=,代入方程(*)得03=-z y . 例4. 设一平面与x 、y 、z 轴的交点依次为)0,0,(a P 、)0,,0(b Q ,),0,0(c R ,求该平面的方程.解:设所求平面的方程为0=+++D Cz By Ax ,(*) 将P 、Q 、R 三点坐标代入得⎪⎩⎪⎨⎧=+=+=+000D cC D bB D aA ,得a D A -=,b D B -=,cD C -=,代入方程(*), 从而有所求平面方程为1=++cz b y a x ,称之为平面的截距式方程. 三、两平面的夹角及点到平面的距离 1. 两平面的夹角:称两平面的法线向量的夹角(锐角)为两平面的夹角.2. 两平面夹角的余弦:设平面1∏的法线向量为),,(1111C B A n =,平面2∏的法线向量为),,(2222C B A n =,两平面的夹角为θ,则22222221212121212121|||),cos(|cos C B A C B A C C B B A A n n ++⋅++++==∧θ.注:1°. 212121212121////D D C C B B A A n n ≠==⇔⇔∏∏. 2°. 021********=++⇔⊥⇔⊥C C B B A A n n ∏∏.3. 点到平面的距离:平面0:=+++D Cz By Ax ∏外一点),,(0000z y x P 到平面∏的距离为222000||C B A D Cz By Ax d +++++=.推导:在平面∏上任取一点),,(1111z y x P ,过点0P 作平面∏的一法向量n , 有|||Pr |001NP P P j d ==,由于01010101010101||||||||cos ||Pr P P e P P n P P n P P n P P P P P P j n ⋅=⋅=⋅== θ, 由于⎪⎪⎭⎫ ⎝⎛++++++=222222222,,C B A C C B A B CB A A e n ,),,(01010101z z y y x x P P ---=, 于是))()()((Pr 10101022201z zC y y B x x A C B A AP P j n -+-+-++=,又点),,(1111z y x P 在平面∏上,故有0111=+++D Cz By Ax ,从而222000||C B A D Cz By Ax d +++++=.例5. 求两平面062=-+-z y x 和052=-++z y x 的夹角. 解:由两平面夹角余弦公式211122)1(1|121)1(21|cos 222222=++⋅+-+⨯+⨯-+⨯=θ,故所求夹角为3πθ=. 例6. 一平面通过两点)1,1,1(1M 和)1,1,0(2-M 且垂直于平面0=++z y x ,求它的方程. 解:设所求平面∏的一个法线向量为),,(C B A n =,由题可知向量)2,0,1(21--=M M 在平面∏上,已知平面0:1=++z y x ∏的一个法线向量为)1,1,1(1=n ,由题意有21M M ⊥,有02=--C A ;1n n ⊥,有0=++C B A ;由以上两方程可得C A 2-=,C B =,故所求平面∏的法线向量为),,2(C C C n -=,于是所求平面∏的方程为0)1()1()1(2=-+-+--z C y C x C ,整理得02=--z y x . 另解:由题可知所求平面上一向量)2,0,1(21--=M M ,又已知平面0=++z y x 的一个法线向量为)1,1,1(1=n ,易知1n 不平行于21M M ,故可取所求平面的一个法线向量为M M ++-=--=⨯=2201111211,于是所求平面方程为:0)1()1()1(2=-+-+--z y x ,整理得02=--z y x .第六节 空间直线及其方程一、空间直线:称空间两平面1∏、2∏的交线为空间直线.二、空间直线的方程1. 一般(面交式) 方程:⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A . 2. 对称式(点向式)方程(1). 直线的方向向量:称平行于已知直线的非零向量为该直线的方向向量.(2). 直线的点向式方程:过点),,(0000z y x M 以向量),,(p n m S =为方向向量的直线L 的方程为:pz z n y y m x x 000-=-=-. 推导:在直线L 上任取一点),,(z y x M ,有向量),,(0000z z y y x x M M ---=,由于S M M //0,故有 pz z n y y m x x 000-=-=-, (*) 即直线L 上点的坐标都满足方程(*).反之,若点),,(z y x M 不在直线L 上,则由于M M 0不平行S ,所以这两向量的对应坐标就不成比例,因此方程(*)就是直线L 的方程,称为直线的对称式或点向式方程. 注:1°. m 、n 、p 不同时为零.2°. 若0,,0≠=p n m ,则直线L 的方程为⎪⎩⎪⎨⎧-=-=-p z z n y y x x 0000,即平面00=-x x 上的直线.3°. 若0,0≠==p n m ,则直线L 的方程为⎩⎨⎧=-=-0000y y x x ,即平面00=-x x 与00=-y y 上的交线,过点),,(000z y x 且平行z 轴.3. 参数方程:⎪⎩⎪⎨⎧+=+=+=pt z z nt y y m t x x 000.注:一般式⇒对称式⇔参数式.例1. 用对称式方程以及参数方程表示直线⎩⎨⎧=++-=+++043201z y x z y x .解:先找出该直线上一点),,(000z y x :不妨取10=x ,代入原方程组得⎩⎨⎧=--=+632z y y x ,解得00=y ,20-=z ,即)2,0,1(-为该直线上一点. 再找该直线的方向向量:由题可知交成该直线的两平面的法线向量分别为)1,1,1(1=n ,)3,1,2(1-=n,故可取k j i kj n n S 341121--=-=⨯=,故所给直线的对称式方程为:32141-+=-=-z y x . 令t z y x =-+=-=-32141,得到所给直线的参数方程:⎪⎩⎪⎨⎧--=-=+=t z t y t x 3241. 三、两直线的夹角1. 两直线的夹角:称两直线的方向向量的夹角(锐角)为两直线的夹角.2. 两直线夹角的余弦:直线1L 的方向向量为),,(1111p n m S =,直线2L 的方向向量为),,(2222p n m S =,两直线的夹角为ϕ,则22222221212121212121|||),cos(|cos p n m p n m p p n n m m ++⋅++++==∧ϕ. 注:1°. 021********=++⇔⊥⇔⊥p p n n m m S S L L .2°. 2121212121////p p n n m m S S L L ==⇔⇔. 例2. 求直线13411:1+=-=-z y x L 和1222:2-=-+=z y x L 的夹角. 解:由题可知直线1L 的方向向量为)1,4,1(1-=S ,直线2L 的方向向量为)1,2,2(2--=S ,设1L 与2L 的夹角为ϕ,则由两直线夹角余弦公式得21)1()2(21)4(1|)1(1)2()4(21|cos 222222=-+-+⋅+-+-⨯+-⨯-+⨯=ϕ, 故4πϕ=. 四、直线与平面的夹角 1. 直线与平面的夹角:称直线与不垂直该直线的平面上的投影 直线的夹角)2/0(πϕϕ<≤为直线与平面的夹角. 规定:直线与平面垂直时夹角为2π. 2. 直线与平面夹角的正弦:若直线L 的方向向量为),,(p n m S =,平面∏的而一个法线向量为),,(C B A n =.L 与∏的夹角为ϕ,则222222||sin p n m C B A Cp Bn Am ++⋅++++=ϕ. 注:1°. p C n B m A n S L ==⇔⇔⊥//∏. 2°. 0//2121=++⇔⊥⇔Cp Bn Am L L .例3. 求过点)4,2,1(-且与平面0432=-+-z y x 垂直的直线的方程. 解:由题意,可取)1,3,2(-=S 为所求直线的一个方向向量,故所求直线的方程为143221-=-+=-z y x . 五、平面束及其方程1. 平面束:称通过定直线的所有平面的全体为平面束.2. 平面束的方程:设有直线⎩⎨⎧=+++=+++00:22221111D z C y B x A D z C y B x A L ,其中111,,C B A 与222,,C B A 不成比例,则通过直线L 的平面束的方程为:0)(22221111=+++++++D z C y B x A D z C y B x A λ. 注:该平面束不包含平面02222=+++D z C y B x A .例4. 求直线⎩⎨⎧=++-=--+0101z y x z y x 在平面0=++z y x 上的投影直线的方程. 解:过直线⎩⎨⎧=++-=--+0101z y x z y x 的平面束的方程为0)1(1=++-+--+z y x z y x λ,即 01)1()1()1(=-+-+-++λλλλz y x ,其中λ为待定常数.由题可知,该平面与已知平面0=++z y x 垂直,故有01)1(1)1(1)1(=⋅-+⋅-+⋅+λλλ,即01=+λ,解得1-=λ.由此可得所给直线关于所给平面 的投影平面的方程为0222=--z y ,整理得01=--z y ,故所求投影直线的方程为⎩⎨⎧=++=--001z y x z y . 六、点到直线的距离:直线pz z n y y m x x L 111:-=-=-外一点),,(0000z y x M 到直线L 的距离为: ||0S S MM d =),,(z y x M 为直线L 上的一点.推导:在直线L 上任取一点),,(z y x M ,有向量0,设点0M 到直线L 的距离为d ,由于||||0S MM S d ⨯=⋅,故||0S S MM d =. 例5. 求点)3,2,1(到直线412111-=-=-z y x 的距离. 解:由题可知,所给直线的方向向量为)4,2,1(=S ,点)1,1,1(是该直线上一点,从而有向量)2,1,0(--=a ,由平面外一点到直线的距离公式得:2154214221222=++--==d . 七、杂例: 例6. 求与两平面34=-z x 和152=--z y x 的交线平行且过点)5,2,3(-的直线的方程. 解法一 (点向式) 由题可知两已知平面的法向量分别为)4,0,1(1-=和)5,1,2(2--=,故可取21n n ⨯为所求直线的一个方向向量,即)34(514021++-=---=⨯=,于是所求直线方程为153243-=-=+z y x . 解法二 (一般式)过点)5,2,3(-且与平面34=-z x 平行的平面方程为234-=-z x ,过点)5,2,3(-且与平面152=--z y x 平行的平面方程为3352-=--z y x ,易知所求直线为上述两个平面的交线,所以所求直线方程为⎩⎨⎧-=---=-3352234z y x z x .例7.求直线241312-=-=-z y x 与平面062=-++z y x 的交点. 解:易知所给直线的参数方程为t x +=2,t y +=3,t z 24+=,代入平面方程中,得06)24()3()2(2=-+++++t t t ,解得1-=t ,代入直线的参数方程得所求交点的坐标2,2,1===z y x .例8.求过点)3,1,2(且与直线12131-=-=+z y x 垂直相交的直线方程.解:先求过点)3,1,2(且垂直于已知直线12131-=-=+z y x 的平面: 由题可知该平面的方程为 0)3()1(2)2(3=---+-z y x .再求该平面与已知直线的交点:已知直线的参数方程为t x 31+-=,t y 21+=,t z -=,代入上述平面方程解得73=t ,于是得到交点坐标⎪⎭⎫ ⎝⎛-73,713,72. 以点)3,1,2(为起点,点⎪⎭⎫ ⎝⎛-73,713,72为终点的向量为)4,1,2(76373,1713,272--=⎪⎭⎫ ⎝⎛----,于是所求直线方程为431122-=--=-z y x .。

高数第八章第8节

高数第八章第8节
12 2 x x cos 0 化简得 2 (24 2 x x cos )cos x sin 0
12 2 x x cos 0 12cos x sin2 0
(1) (2)
17
12cos 由(2)式得x = 代入(1)式, 得12 24cos 2 sin 1 于是 cos , 2 3 1 将 cos 代入(1)式, 得x 8 2 即方程组的解为 60 , x 8(cm)
于是求z f ( x , y )的条件极值就转化为一元函数 z f ( x , ( x )) 的无条件极值问题.
方法1-代入法:转化
20
由一元函数极值存在的必要条件 : dz x x0 0 dx dz d dy 而 = ( f ( x , y )) f x f y dx dx dx
所以函数在(3,2) 处有极大值 f( 3,2) 31 .
11
注 : 在求函数极值时, 如果函数在个别点处偏导数 不存在,函数也可能在这些点取得极值.
例如,圆锥面z x 2 y 2 在(0, 0)处有极大值, 然而函数在(0, 0)处偏导数不存在.
因此,在讨论函数的极值时, 除了考虑函数的 驻点外, 还应考虑偏导数不存在的点.
故当水箱的长为 2 m, 宽为 2 m, 高为 3
3 3 3
2 23 2

2 m时, 水箱所用材料最省.
15
例7 有一宽为24cm的长方形铁板, 把它两边折 起来做成一个断面为等腰梯形的水槽. 问怎样折法 才能使断面的面积最大 ?
解 设折起来的边长 为xcm, 倾角为 , 则断面 的下底长为24 2 x , 上底 长为24 2 x 2 x cos , 高 为x sin . 于是断面面积为

高等数学第九章第八节多元函数的极值及其求法课件.ppt

高等数学第九章第八节多元函数的极值及其求法课件.ppt

A
在点(1,0) 处
AC B2 12 6 0, A 0,
为极小值;
在点(1,2) 处
AC B2 12 (6) 0,
不是极值;
在点(3,0) 处
AC B2 12 6 0,
不是极值;
在点(3,2) 处
AC B2 12 (6) 0, A 0,
为极大值.
f xx (x, y) 6x 6, f xy (x, y) 0, f yy (x, y) 6 y 6
x 1 y 3 0 2
1 x 3y 10 2
设拉格朗日函数 F (x 3y 10)2 (1 x2 y2 )
94
2(x 3y 10) 2 x 0
9
解方程组
6(x 3y 10) 2 y 0
4 1 x2 y2 0
94
得驻点 x
3 ,y 5
4 , 对应面积 5
S 1.646
二、最值应用问题
依据
函数 f 在闭域上连续
函数 f 在闭域上可达到最值
最值可疑点
驻点 边界上的最值点
特别, 当区域内部最值存在, 且只有一个极值点P 时,
f (P)为极小(大) 值
f (P)为最小(大) 值
例3. 某厂要用铁板做一个体积为2 的有盖长方体水
问当长、宽、高各取怎样的尺寸时, 才能使用料最省?
而 SD 2, SE 3.5, 比较可知, 点 C 与 E 重合时, 三角形 面积最大.
Ex: 1. 求半径为R 的圆的内接三角形中面积最大者.
解: 设内接三角形各边所对的圆心角为 x , y , z ,则 x y z 2 , x 0 , y 0 , z 0
它们所对应的三个三角形面积分别为
存在

高等数学第六版(同济版)第八章复习资料汇总

高等数学第六版(同济版)第八章复习资料汇总

高等数学第六版(同济版)第八章复习资料汇总第一篇:高等数学第六版(同济版)第八章复习资料汇总第八章空间解析几何与向量代数§8.1向量及其线性运算一、向量的相关概念1.向量的定义:称既有大小又有方向的量为向量(或矢量).2.向量的数学表示法:用一条有方向的线段表示,记为或.3.向量的模:称向量的大小为向量的模,记为.4.自由向量:称与起点无关的向量为自由向量.(如位移)5.单位向量:称模为1的向量为单位向量,记作.6.零向量:称模为0的向量为零向量,记作7.两向量相等:若向量与同模同方向,则称的与相等,记作.(即两个向量平移后重合 8.两向量的夹角:,9.两向量平行:若非零向量与所成的角或,则称的与平行,记作.规定: 零向量与任何向量平行10.两向量垂直:若非零向量与所成的角,则称的与垂直,记作注: 零向量可认为与任何向量平行或垂直 11.向量共线:平行的向量可移动到同一条直线上,也称之为向量共线 12.向量共面:将个向量的起点放到同一点时,若个终点与公共起点在一个平面上,则称这个向量共面.二、向量的线性运算1.向量的加减法(1).向量的加法①.运算法则:设有向量与,求与的和.I.三角形法则: II.平行四边形法则:.②.运算规律:1°.交换律:2°.结合律:注:,再以第一个向量的起点为起点,最后一个向量的终点为终点作一向量,这个向量即为所求向量的和,即.(2).向量的减法①.负向量:称与向量同模反向的向量为它的负向量,记作②.两向量的差:称向量与向量的负向量的和为与的差向量,记作.注:特别地,当时,.③.运算法则:设有向量与,求与的差.I.平行四边形法则:.II.三角形法则:.(3).运算定理:.2.向量与数的乘法(1).定义:称向量与实数的乘积为向量的数乘.注:1°.规定是一个向量2°.3°.若,则与同向;若,则与反向;若,则.(2).运算规律:①.结合律:.②.分配律:.(3).性质①.向量的同向单位向量:,.②.向量平行的充要条件(定理):若向量,则向量平行于唯一的实数,使③.数轴上的点的坐标为的充要条件为:,其中向量为数轴的单位向量,实数称为有向线段的值.例1.如图,用、表示、、以及,进而.又,故,进而三、空间直角坐标系解:由于,故1.空间直角坐标系:坐标系或坐标系2.坐标面:面;面;面.3.卦限:;;;;;;;4.空间点的坐标:(向径).(1).向量的坐标分解式:.(2).向量的分向量:.(3).向量的坐标:.(4).点的坐标:注:1°.面上点的坐标:;2°.轴上点的坐标:;面上点的坐标:;轴上点的坐标:;面上点的坐标:.z轴上点的坐标:四、利用坐标作向量的线性运算:设,.1.向量线性运算的坐标表示:(1).加减法:.(2).数乘:(3).两向量平行:注:1°.若,则2.若,则例2.已知,求线性方程组的解向量解:方程①乘2减去方程②乘3得:,方程①乘3减去方程②乘5得:例3.已知两点、在直线AB上求一点M,使.及实数,解:因为,因此有,整理得,代入坐标得,从而得到点M的坐标注:线段AB中点坐标公式五、向量的模、方向角、投影1.向量的模与两点间距离公式:(1).向量的模:,.(2).两点间距离公式:点与之间的距离:推导:因为,所以例4.求证以三点、、为顶点的三角形是一个等腰三角形.解:由两点间距离公式,有;;,由于,故为等腰三角形.例5.在z轴上求与两点、等距离的点.解:由题可设所求点为,有,即,整理得,故所求点为.例6.已知两点、,求与同向的单位向量解:因为,所以,于是 2.方向角与方向余弦(1).向量的方向角:称非零向量与三条坐标轴的夹角为向量的方向角(2).向量的方向余弦:方向角的余弦 , , 注:1°.;2°..例7.已知两点、,计算向量的模、方向余弦和方向角.解:由于,从而有于是,,由此可得例8.设点A位于第I卦限,向径与x轴、y轴的夹角依次为的坐标、,且,求点A,解:由于,并且,有由题可知,故,于是,故点A的坐标为.3.向量在轴上的投影(1).向量在轴上的投影:设向量与u轴正向的夹角为,称数为向量在u轴上的投影,记作或注:向量在三个坐标轴上的投影即为对应的坐标,即,(2).投影的性质:①..②.例9.设立方体的一条对角线为OM,一条棱为OA,且|OA|= a,求在解:记,有,于是.§8.2数量积、向量积一、两向量的数量积1.常力沿直线所作的功:2.两向量的数量积(1).定义:称向量与的模及其夹角余弦的乘积为与的数量积,内积或点积,记作注:1°.2°..3°..(2).运算规律①.交换律:.(由定义可知)②.分配律:③.结合律:; 3.两向量数量积的坐标表示式:若,则4.两非零向量夹角余弦的坐标公式:例1.试用向量证明三角形的余弦定理:.解:在中,记,,,有,从而,即例2.已知三点、和,求解:由题可得,于是,故例3.设液体流过平面S上面积为A的一个区域,液体在这区域上各点处的流速均为(常向量)v.设为垂直于S的单位向量,计算单位时间内经过这区域流向所指一侧的液体的质量m(液体的密度为解:单位时间内经过该区域的液体的体积为,所求质量为.二、两向量的向量积1.力对支点的力矩:模:;方向:与及的方向成右手规则.2.两向量的向量积(1).定义:设有向量与,夹角为,称为与的向量积(叉积、外积),其中,方向与和的方向符合右手规则,记作.注:1°.2°.3°.的几何意义:以与为邻边的平行四边形的面积.(2).运算规律①.反交换律:.②.分配律:.③.结合律:(3).两向量的向量积的坐标表示式:设,则.例4..证明:在三角形中,记,,由于,即,整理得.例5.设,计算解:.例6.已知三角形ABC 的顶点分别是、和,求三角形ABC的面积解:由于,有,于是.例7.设刚体一角速度绕轴旋转,计算刚体上一点M的线速度.解:在轴l上引进一个角速度向量,使,其方向与旋转方向符合右手法则,在l上任取一点O,作向径,它与的夹角为,则点M离开转轴的距离,由物理学中线速度和角速度的关系可知,且、、符合右手规则,于是.§8.3曲面及其方程一、曲面方程的相关概念1.曲面方程:若曲面S上任一点的坐标都满足方程,且不在曲面S上的点的坐标都不满足方程(*),则称方程(*)为曲面S的方程,而称曲面S为称方程(*)的图形.2.关于曲面的两个基本问题(1).已知一曲面作为空间点的几何轨迹,建立该曲面的方程.(2).已知关于点的坐标、、之间的一个方程,研究该方程所表示曲面的形状例1.建立球心在点、半径为R的球面方程解:设为所求球面上任一点,有,即,整理得例2.设有点和,求线段AB的垂直平分面的方程.解:设为所求平面上任一点,由题意,有,即,整理得例3.方程表示怎样的曲面?解:原方程变形为,表示以为球心,以5为半径的球面.二、旋转曲面1.定义:称由一条平面曲线绕其平面上一条定直线旋转一周所成的曲面为旋转曲面,称旋转曲线为旋转曲面的母线,定直线为旋转曲面的轴.2.旋转曲面的方程:曲线C:绕z轴旋转一周所成的旋转曲面方程为:.(绕y轴旋转一周所成的旋转曲面方程为:.)(巧记:绕谁谁不动,缺谁补上谁推导:在曲线C上任取一点,有,且点到z轴的距离.当曲线C绕z轴旋转时,点绕z轴旋转到点,其中,点到z轴的距离,由于,有,即,代入曲线方程有注:1°.曲线C:绕x 轴旋转一周所成的旋转曲面方程为:;绕y轴旋转一周所成的旋转曲面方程为:2°.曲线C:绕z轴旋转一周所成的旋转曲面方程为:;绕x轴旋转一周所成的旋转曲面方程为:3.常见旋转曲面及其方程(1).圆锥面及其方程①.圆锥面:称由直线L绕与其相交的直线旋转一周所成的曲面为圆锥面,称两直线的交点为圆锥面的顶点,称两直线的夹角为圆锥面的半顶角②.圆锥面的方程:以坐标原点o为顶点,以为半顶角,以z轴为旋转轴的圆锥面的方程为:,其中推导:在坐标面上,过原点且与z轴夹角为的直线方程为,于是,直线L绕z轴旋转而成的圆锥面的方程为,整理得注:1°.以坐标原点O为顶点,以为半顶角,以x,其中2°.以坐标原点O为顶点,以为半顶角,以y,其中(2).旋转双曲面及其方程①.旋转双曲面:称由双曲线绕其对称轴旋转一周所成的曲面为旋转双曲面,分为单叶和双叶双曲面②.旋转双曲面的方程:(双曲线:.旋转单叶双曲面的方程:(绕z轴旋转.旋转双叶双曲面的方程:(绕x轴旋转)三、柱面1.柱面的定义:称由直线L沿定曲线C平行于定直线l 移动所成的轨迹为柱面,称定曲线C为柱面的准线,动直线L为柱面的母线.2.几种常见柱面及其方程(缺谁母线平行谁(1).圆柱面:.(准线为坐标面上的圆:,母线平行z轴.(准线为坐标面上的圆:,母线平行x 轴.(准线为坐标面上的圆:,母线平行y轴(2).过坐标轴的平面:,过z 轴,准线为坐标面上的直线,过x轴,准线为坐标面上的直线.,过y 轴,准线为坐标面上的直线四、二次曲面 1.椭球面:.2.椭圆锥面: 3.单叶双曲面:.4.双叶双曲面:5.椭圆抛物面:.6.双曲抛物面:7.椭圆柱面:.8.双曲柱面: 9.抛物柱面:§8.4空间曲线及其方程一、空间曲线:称空间两曲面的交线为空间曲线,记为C.二、空间曲线的方程1.一般式(面交式)方程:例如:表示圆柱面与平面的交线.表示上半球面又如:与圆柱面的交线 2.参数方程:,其中点随着参数t的变化遍历曲线C 例1.称由点在圆柱面上以角速度绕z轴旋转,又同时以线速度v沿平行z轴的正向上升所成的图形为螺旋线,求其参数方程解:取时间t为参数,对应点,对应点,作M在xoy面上的投影,有,且,于是,又,于是,螺旋线的参数方程为,令,则螺旋线的参数方程为三、空间曲线在坐标面上的投影 1.投影柱面:称以空间曲线C为准线,母线平行于z轴的柱面为曲线C关于坐标面的投影柱面2.空间曲线的投影:称空间曲线C关于坐标面的投影柱面与坐标面的交线为空间曲线C在坐标面上的投影曲线,也称为投影3.空间曲线的投影方程:空间曲线C:在坐标面上的投影方程,其中为方程组消去z所得的投影柱面方程.注:1.空间曲线曲线C:在坐标面上的投影方程为2°.空间曲线曲线C:在坐标面上的投影方程为例2.求曲线在坐标面上的投影方程.解:现求曲线C在关于坐标面上的投影方程,将方程组消去z 得投影柱面方程:,于是所求投影方程为例3.求由上半球面和锥面所围成的立体在坐标面上的投影解:先求曲线关于坐标面的投影方程,消去z 在坐标面上的投影方程为,从而所求投,故曲线影为圆域:§8.5平间及其方程一、平面的点法式方程1.平面的法向量:称垂直于一平面的非零向量为该平面的法线向量2.平面的点法式方程:过点,以向量为一法向量的平面推导:在平面上任取一点,有向量,由于,有,即有(1),即平面上的点的坐标都满足方程(1).反之,若点不在平面上,则向量不垂直法向量,从而,即不在平面上的点的坐标都不满足方程(1).于是得到平面的点法式方程.例1.求过点且以为法向量的平面的方程解:由平面的点法式方程得,整理得.例2.求过三点、和的平面的方程解:先求所求平面的一个法向量,由题可得向量,可取,于是所求平面的方程为,整理得.二、平面的一般方程1.平面的一般方程:(*)推导:若点满足方程(*),则有,(**)两方程相减得,(*** 方程(***)为过点,以向量为一法向量的平面的点法式方程.由于方程(*)与(***)同解,可知任何一个三元一次方程(*)为平面的一般方程,其一法线向量为2.几种特殊平面的一般方程:(缺谁平行谁(1).过原点的平面方程:,法向量为.(2).平行x轴的平面方程:,法向量为(3).垂直于x轴(平行坐标面)的平面方程:,法向量为.例3.求通过x轴和点的平面的方程解:由题意,可设所求平面的方程为:,(*)又点在该平面上,有,得,代入方程(*)得.例4.设一平面与x、y、z轴的交点依次为、,求该平面的方程解:设所求平面的方程为,(*)将PQR三点坐标代入得,,代入方程(*),从而有所求平面方程为,称之为平面的截距式方程三、两平面的夹角及点到平面的距离得1.两平面的夹角:称两平面的法线向量的夹角(锐角)为两平面的夹角 2.两平面夹角的余弦:设平面1的法线向量为,平面,两平面的夹角为,则注:1°..2°.3.点到平面的距离:平面外一点到平面的距离为推导:在平面上任取一点,过点作平面的一法向量,有,由于,,由于于是,又点在平面上,故有,从而例5.求两平面和的夹角.解:由两平面夹角余弦公式,故所求夹角为例6.一平面通过两点和且垂直于平面,求它的方程.解:设所求平面的一个法线向量为,由题可知向量在平面上,已知平面的一个法线向量为,由题意有,有;,有;由以上两方程可得,故所求平面的法线向量为,于是所求平面的方程为,整理得另解:由题可知所求平面上一向量,又已知平面的一个法线向量为,易知不平行于,故可取所求平面的一个法线向量为,于是所求平面方程为:,整理得第六节空间直线及其方程一、空间直线:称空间两平面1、的交线为空间直线.二、空间直线的方程1.一般(面交式)方程:2.对称式(点向式)方程(1).直线的方向向量:称平行于已知直线的非零向量为该直线的方向向量(2).直线的点向式方程:过点以向量为方向向量的直线L.推导:在直线L上任取一点,有向量,由于,故有,(*)即直线L上点的坐标都满足方程(*)反之,若点不在直线L上,则由于不平行,所以这两向量的对应坐标就不成比例,因此方程(*)就是直线L 的方程,称为直线的对称式或点向式方程.注:1°.mnp不同时为零2°.若,则直线L的方程为,即平面上的直线3°.若,则直线L的方程为,即平面与交线,过点且平行z轴 3.参数方程:注:一般式对称式参数式例1.用对称式方程以及参数方程表示直线解:先找出该直线上一点:不妨取,代入原方程组得,解得,即为该直线上一点再找该直线的方向向量:由题可知交成该直线的两平面的法线向量分别为,故可取.,得到所给直线的参数方程:令.三、两直线的夹角 1.两直线的夹角:称两直线的方向向量的夹角(锐角)为两直线的夹角 2.两直线夹角的余弦:直线的方向向量为,直线的方向向量 ,两直线的夹角为,则注:1°.2°.例2.求直线.和的夹角.解:由题可知直线的方向向量为,直线的方向向量为,设的夹角为,则由两直线夹角余弦公式得故四、直线与平面的夹角 , 1.直线与平面的夹角:称直线与不垂直该直线的平面上的投影直线的夹角为直线与平面的夹角..2.直线与平面夹角的正弦:若直线的方向向量为,平面为.与的夹角为,则.注:1°.2°..例3.求过点且与平面垂直的直线的方程解:由题意,可取为所求直线的一个方向向量,故所求直线的方程为.五、平面束及其方程1.平面束:称通过定直线的所有平面的全体为平面束2.平面束的方程:设有直线,其中与不成比例则通过直线的平面束的方程为:.注:该平面束不包含平面例4.求直线在平面上的投影直线的方程解:过直线的平面束的方程为,即,其中为待定常数.由题可知,该平面与已知平面垂直,故,即,解得.由此可得所给直线关于所给平面的投影平面的方程为,整理得,故所求投影直线的方程为.六、点到直线的距离:直线外一点到直线的距离为:为直线上的一点推导:在直线上任取一点,有向量,设点到直线的距离为,由于,故例5.求点的距离.解:由题可知,所给直线的方向向量为,点,由平面外一点到直线的距离公式得:.七、杂例:例6.求与两平面和的交线平行且过点的直线的方程.解法一(点向式由题可知两已知平面的法向量分别为和,故可取线的一个方向向量,即,于是所求直线方程为.解法二(一般式过点且与平面平行的平面方程为,过点平行的平面方程为以所求直线方程为例7.与平面的交点.解:易知所给直线的参数方程为,,解得,代入直线的参数方程得所求交点的坐标例8.求过点垂直相交的直线方程.第二篇:高等数学第六版(同济版)第九章复习资料[模版]第九章多元函数微分法及其应用引入:在上册书中,我们学习了一元函数微积分学,所讨论的对象都只有一个自变量的函数,而在实际应用中,研究的问题往往要涉及多方面的因素,反映在数量上就是一个变量要依赖几个自变量,即数学上的多元函数,从这节课开始,我们进入多元函数微积分学的学习阶段.先来学习多元函数微分学由于从一元函数到二元函数,单与多的差异已能充分体现,我们由二元函数入手来研究多元函数微分学,然后把相关概念及性质推广到三元、四元直至元函数上去第一节多元函数的基本概念一、平面点集的相关概念 1.平面点集:具有性质P} 例如:,其中点表示点2.邻域:(1).邻域:(2).去心邻域:3.坐标面上的点与平面点集的关系:(1).内点:若,使,则称为的内点.(2).外点:若,使,则称为的外点(3).边界点:若,且,则称为的边界点边界:的边界点的全体称为它的边界,记作.(4).聚点:若,则称为的聚点导集:的聚点的全体称为它的导集注:1°.若为的聚点,则可以属于,也可以不属于2°.内点一定是聚点;外点一定不是聚点;边界点也不总是聚点,如孤立的边界点.例如:;.4.一些常用的平面点集:(1).开集:若点集的点都是其内点,则称为开集(2).闭集:若点集的边界,则称为闭集.(开集加边界(3).连通集:若中任何两点都可用属于的折线连接,则称为连通集.(4).开区域:连通的开集称为开区域,也称为区域.(5).闭区域:开区域加上其边界称为闭区域例如:为区域.为闭区域.(6).有界集:若,使,则称为有界集.(7).无界集:若,使,则称为无界集二、维空间:对取定的自然数,称元数组的全体为维空间,记为.注:前述的邻域、区域等相关概念可推广到维空间.三、多元函数的概念 1.,或,其中因映自变变量射量定义域:D 值域:注:可推广:元函数:,.例: 1.,2.,2.几何表示:函数对应空间直角坐标系中的一张曲面:.四、二元函数的极限1.定义:设函数的定义域为,点若,,为,满足,则称为当,称之为的二重极限例1.设证明:,要使不等式,求证成立,只须取,于是,,总有,即例2.不存在,其中证明:当沿直线趋于时,总有,随着的不同而趋于不同的值,故极限不存在例3.求极限五、二元函数的连续性 1.二元函数的连续性:设函数的定义域为D,点为D的聚点,且,则称在点连续 2.二元函数的间断点: 设函数的定义域为D,点为D的聚点,若在点不连续,则称为的间断点.注:间断点可能是函数有定义的孤立点或无定义的点.3.性质:设D为有界闭区域(1).有界性:,有(2).最值性:,使得,有(3).介值性:,使得.4.二元连续函数的运算性质(1).和、差、积仍连续;(2).商(分母不为零)连续;(3).复合函数连续.5.二元初等函数及其连续性(1).二元初等函数:由二元多项式和基本初等函数经过有限次四则运算和有限次复合所构成的、并用一个式子表示的二元函数称为二元初等函数.(2)..例4.,则解:令例5...(分子有理化)第二节偏导数引入:在一元函数微分学中,我们研究了一元函数的变化率—导数,并利用导数研究了函数的性态.对于多元函数,我们也要讨论它的变化率,但由于多元函数的自变量不止一个,所以多元函数的变化率要比一元函数的变化率复杂得多.我们还是以二元函数为例来研究多元函数的变化率,先把二元函数中某一自变量暂时固定,再讨论二元函数关于另一个自变量的变化率,这就是数学上的偏导数.一、偏导数的相关概念1.偏导数:设函数在点的某邻域内有定义,把暂时固定在,而处有增量时,相应地有增量.若极存在,则称此极限值为函数在点处对的;或注: 1°..2°..2.偏导函数:若函数在区域D内每一点处对或偏导数存在,则该偏导数称为偏导函数, 或;或.注:可推广:三元函数在点处对的偏导数定义为例1.求在处的偏导数.,.例2.求的偏导数.,.例3.求的偏导数.,..3.偏导数的几何意义(1).偏导数是曲线在点处的切线关于轴的斜率(2).偏导数是曲线在点处的切线关于轴的斜率.4.函数偏导数存在与函数连续的关系:函数偏导数存在与函数连续之间无必然的蕴含关系.(1).函数在点处偏导数存在,但它在点却未必连续例如:函数在点的两个偏导数都存在,即,.不存在,故在点不连续(2).函数在点连续,但它在点处却未必存在偏导数例如:函数在点连续,但它在点对及的偏导数都不存在,这是因为:,即在点对及的偏导数都不存在.二、高阶导数1.二阶偏导数:若函数对及的偏导数及对及的偏导数也存在,则称它们是函数的二阶偏导数记作:;;(二阶纯偏导数);.(二阶混合偏导数)(二阶纯偏导数注:1°.一般地,二元函数的阶偏导数的偏导数称为它的阶偏导数2°.二阶以及二阶以上的偏导数统称为高阶导数.3°.二元函数的阶偏导数至多有个.例4.设,求它的二阶偏导数.;;;;;.总结:从这一例题,我们看到:,即两个二阶混合偏导数相等,与求导顺序无关.那是不是每个二元函数都有这样的相等的二阶混合偏导数呢?我们说不是的,例如:,在点,有,事实上,;而,,于是,,即那么满足什么条件得二元函数的两个二阶混合偏导数与求导顺序无关呢?有下面的定理:2.二阶混合偏导数的性质定理:若函数的两个二阶混合偏导数与在区域内连续,则它们在D内必相等,即注:1°.可推广:高阶混合偏导数在连续的条件下与求导顺序无关.2°.一般地,若二元函数的高阶混合偏导数都连续,则的阶偏导数只有个第三节全微分一、全微分的相关概念1.偏增量:称为函数对的偏增量称为函数对的偏增量2.偏微分:称与为对及的偏微分.注:,但在实际应用中,往往要知道函数的全面的变化情况,即当自变量有微小增量、时,相应的函数增量与自变量的增量、之间的依赖关系,这涉及到函数的全增量.3.全增量:称为函数在点、的全增量一般来讲,计算全增量是比较困难的,我们总希望像一元函数那样,利用、的线性函数来近似代替函数的全增量,为此,引入了全微分4.全微分:若函数在点的某领域内有定义,且在的全增不依赖于、,可表示为,其中而仅与、有关,则称在点可微分,而称为在点的全微分,记作,即若在区域D内每一点都可微分,则称在D内可微分.注:我们知道,当一元函数在点的微分存在时,那么,当二元函数在点的全微分存在时,、又为何值呢?下面讨论二元函数可微分与连续、可微分与偏导数存在的关系,从中得到、的值.二、二元函数可微分与偏导数存在、可微分与连续的关系1.函数可微分的必要条件定理1.若函数在点可微分,则它在点的两个偏导数必定存在,且在点的全微分证明:由于在点可微分,则有,。

考研高数讲义 新高等数学下册辅导讲义——第八章上课资料

考研高数讲义 新高等数学下册辅导讲义——第八章上课资料

第八章空间解析几何和向量代数第一节 向量及其线性运算一、向量的概念与向量的表示法 1、向量的概念向量:既有大小又有方向的量. 向量表示:a 或12M M以1M 为起点,2M 为终点的有向线段 向量的模:向量的大小. ||a 或12||M M 单位向量:模长为1的向量。

零向量:模长为0的向量,0。

自由向量:不考虑起点位置的向量。

相等向量:大小相等且方向相同的向量。

负向量:大小相等但方向相反的向量:a向径:空间直角坐标系中任一点M 与原点构成的向量OM。

2、向量的坐标表示以原点O 为起点,以点M 为终点的向量(,,)OM x y z =。

若向量a 的起点不是坐标原点,则可以将向量a 的起点移至坐标原点。

设点M 的坐标为向量a 的坐标,记(,,)a x y z =。

设(,,)x y z a a a a =,(,,)x y z b b b b =,则,,x x y y z z a b a b a b a b =⇔===。

设给定点(,,)(1,2)i i i i M x y z i ==,则以1M 为起点,以2M 为终点的向量为12212121(,,)M M x x y y z z =---。

3、向量的长度与方向余弦设(,,)a x y z =,则a 的长度为2||a x =+ 设沿三个坐标轴方向的单位向量分别记为,,i j k 。

向量a 与,,i j k 的夹角分别记作,,,,,a i a j a k <><><>,若令,,,,,a i a j a k αβγ<>=<>=<>=,则称,,αβγ为a 的方向角,称cos ,cos ,cos αβγ为a 的方向余弦,且有cos ,cos ,cos ||||||x y za a a αβγ===222cos cos cos 1αβγ++=。

二、向量的加减法与数乘运算1、运算及运算律 加法:a b c +=特殊地:若//a b ,分为同向和反向同向时||||||c a b =+,方向与a 相同(b 的方向); 反向时||||||c a b =-,方向与模长大的相同。

高等数学ch1_8_11.8.2 电子教案

高等数学ch1_8_11.8.2 电子教案
x2 x3

2 lim x0
2x2 3x2 x2
10
1 u 1~ 1u 2
ln1 2x ~ 2x
x2 x3 ~ x2 tan 3x2 ~ 3x2
例8 求 解: 原式
3
( lim(1 2x) x ) x0
3 sin
x
ln(1

2x)
3 2x
x
说明: 若 lim u(x) 0, lim v(x) ,
定义.
设 , 是自变量同一变化过程中的无穷小,
若 lim 0,则称 是比 高阶的无穷小,
记作 o( )
若 lim , 则称 是比 低阶的无穷小;
若 lim C 0,则称 是 的同阶无穷小;
若 lim 1, 则称 是 的等价无穷小,
f (x) g(x)
ea lim e f ( x)g ( x) 1 ea f (x) g(x)
例10
I
lim x3 ax2 b 8试确定
x2 x 2
a,b.
解:当 x 2 时
此题分母的极限为0,
可见分子的极限一定为0,则有
lim(x3 ax2 b) 8 4a b 0
是 的高阶无穷小 是 的低阶无穷小 是 的同阶无穷小 是 的等价无穷小
常用等价无穷小 :
~ ~
~ ~
~ ax 1
ex 1 ln(1 x)
2. 等价无穷小替换定理*
记作 ~ 或 ~
例如 , 当 x 0 时 x3 o( 6x2)
sin x ~ x ; tan x ~ x arcsin x~ x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 无穷级数(数学一和数学三)引言:所谓无穷级数就是无穷多项相加,它与有限项相加有本质不同,历史上曾经对一个无穷级数问题引起争论。

例如:历史上曾有三种不同看法,得出三种不同的“和” 第一种 0)11()11()11(=+-++-+-ΛΛ 第二种 1)11()11()11(1=-------ΛΛ 第三种 设S n =+-++-+-+ΛΛ1)1(1111则[]S =+-+--Λ11111这种争论说明对无穷多项相加,缺乏一种正确的认识。

1) 什么是无穷多项相加?如何考虑? 2) 无穷多项相加,是否一定有“和”?3) 无穷多项相加,什么情形有结合律,什么情形有交换律等性质。

因此对无穷级数的基本概念和性质需要作详细的讨论。

§ 8.1 常数项级数(甲) 内容要点 一、基本概念与性质 1. 基本概念无穷多个数ΛΛ,,,,,321n u u u u 依次相加所得到的表达式ΛΛ+++++=∑∞=n n nu u u u u3211称为数项级数(简称级数)。

∑===nk k n u S 1123n u u u u ++++L (Λ,3,2,1=n )称为级数的前n 项的部分和,{}),3,2,1(Λ=n S n 称为部分和数列。

n n S ∞→lim 若不存在,则称级数∑∞=1n n u 是发散的,发散级数没有和的概念。

(注:在某些特殊含义下可以考虑发散级数的和,但在基础课和考研的考试大纲中不作这种要求。

) 2. 基本性质 (1) 如果(2) 在级数中增加或减少或变更有限项则级数的收敛性不变。

(3) 收敛级数具有结合律,也即对级数的项任意加括号所得到的新级数仍收敛,而且其和不变。

发散级数不具有结合律,引言中的级数可见是发散的,所以不同加括号后得到级数的情形就不同。

(4) 级数∑∞=1n n u 收敛的必要条件是0lim =∞→n n u(注:引言中提到的级数∑∞=+-11,)1(n n 具有∞→n lim ()不存在11+-n ,因此收敛级数的必要条件不满足,∑∞=1n ()11+-n 发散。

调和级数∑∞=1n n 1满足∞→n lim 但,01=n ∑∞=1n n 1却是发散的,所以满足收敛级数的必要条件∞→n lim 0=n u ,而∑∞=1n n u 收敛性尚不能确定。

)3.两类重要的级数(1)等比级数(几何级数) 当1<r 时,∑∞=0n n ar ra-=1收敛 当1≥r 时,∑∞=0n nar发散(2)p 一级数当p>1时,∑∞=11n p n 收敛, 当p ≤1时∑∞=11n p n发散(注:p>1时,∑∞=11n p n 的和一般不作要求,但后面用特殊的方法可知∑∞=1n 6122π=n ) 二、正项级数敛散性的判别法()Λ,3,2,10=≥n u n 若则∑∞=1n n u 称为正项级数,这时(){}n n n S n S S 所以Λ,3,2,11=≥+是单调加数列,它是否收敛就只取决于n S 是否有上界,因此∑∞=1n n n S u ⇔收敛有上界,这是正项级数比较判别法的基础,从而也是正项级数其它判别法的基础。

1. 比较判别法如果皆成立时当设,u ,cv N n c n n 0,0>≥≥>∑∞=1n n v 收敛,则∑∞=1n n u 收敛;如果∑∞=1n n u 发散,则∑∞=1n nv发散。

2. 比较判别法的极限形式设),3,2,1(,0,0Λ=≥≥n v u n n 若∞→n limA v u nn= 1) 当0<A<+∞时,∑∞=1n nu与∑∞=1n nv同时收敛或同时发散。

2) 当A=0时,若∑∞=1n nv收敛,则∑∞=1n nu收敛。

3) 当A=+∞时,若∑∞=1n nu收敛,则∑∞=1n nv收敛。

3.比值判别法(达朗倍尔) 设n u >0,而∞→n limρ=+nn u u 11) 当ρ<1时,则∑∞=1n nu收敛2) 当ρ>1时(包括ρ=+∞),则∑∞=1n nu发散3) 当ρ=1时,此判别法无效(注:如果∞→n limnn u u 1+不存在时,此判别法也无法用) 4.根值判别法(柯西) 设n u ≥0,而∞→n limρ=n n u1) 当ρ<1时,则∑∞=1n nu收敛2) 当ρ>1时(包括ρ=+∞),则∑∞=1n nu发散3) 当ρ=1时,此判别法无效事实上,比值判别法和根值判别法都是与等比级数比较得出相应的结论,应用时,根据所给级数的形状有不同的选择,但它们在ρ=1情形下都无能为力。

数学上有更精细一些的判别法,但较复杂,对考研来说不作要求。

三、交错级数及其莱布尼兹判别法 1.交错级数概念 若n u >0,∑∞=1n n n u 1)1(+-称为交错级数。

2.莱布尼兹判别法 设交错级数∑∞=1n n n u 1)1(+-满足:1)≤+1n u n u ),3,2,1(Λ=n 2) ∞→n lim n u =0 ,则∑∞=1n n n u 1)1(+-收敛,且0<∑∞=1n n n u 1)1(+-<1u四、绝对收敛与条件收敛 1.定理 若∑∞=1n n u 收敛,则∑∞=1n n u 一定收敛;反之不然。

2.定义 若∑∞=1n n u 收敛,则称∑∞=1n n u 为绝对收敛;若∑∞=1n n u 收敛,而∑∞=1n n u 发散,则称∑∞=1n n u 为条件收敛。

3.有关性质1)绝对收敛级数具有交换律,也即级数中无穷多项任意交换顺序,得到级数仍是绝对收敛,且其和不变。

2)条件收敛级数的正项或负项构成的级数,即∑∞=1n 21(n u +n u )或∑∞=1n 21(n u —n u )一定是发散的。

4.一类重要的级数 设∑∞=1n ρnn 1)1(+- 1) 当ρ>1时,∑∞=1n ρn n 1)1(+-是绝对收敛的2) 当0<ρ≤1时,∑∞=1n ρn n 1)1(+-是条件收敛的 3) 当ρ≤0时,∑∞=1n ρnn 1)1(+-是发散的 (乙) 典型例题一、主要用部分和数列的极限讨论级数的敛散性例1. 判定下列级数敛散性,若收敛并求级数的和。

1)∑∞=1n )1()1(1+++n n n n2)∑∞=1n nn 212- 1)解:∑∞=1n )1()1(1+++n n n n 的=n S ∑=nk 1)1()1(1+++k k k k=n S ∑=nk 1()()⎥⎦⎤⎢⎣⎡-++-+221)1()1(k k k k k k =∑=nk 1111)111(+-=+-n k k Θ∞→n lim =n S 1∴∑∞=1n 1)1()1(1=+++n n n n ,收敛2)解:=n S n n 21225232132-++++Λ① 21=n S 1432212232252321+-+-++++n n n n Λ ② ①-②得21=n S 132212)212121(221+--++++n n n Λ=11123223212)211(21++-+-=---+n n n n nΘ∞→n lim =n S 3∴∑∞=1n nn 212-=3,收敛 例2设数列{}∑∞=--11)(n n nn ,a an ,na 证明收敛级数收敛∑∞=0n n a 收敛证:由题意可知∞→n lim 存在A na n =而=n S )()(3)(2)(1231201--++-+-+-n n a a n a a a a a a Λ=∑-=-1n k kn ana因此,=∑-=1n k kan n S na -于是级数∑∞=0n na=S A -是收敛的二、主要用判别法讨论级数的敛散性 例1. 设级数∑∞=1n )0(≥n n a a 收敛,则∑∞=1n na n收敛 解:n a n)1(2122n a n a n n +≤=(几何平均值≤算术平均值) 已知∑∞=1n 收敛故收敛收敛)1(2112112n a ,n ,a n n n n +∑∑∞=∞= 再用比较判别法,可知∑∞=1n na n收敛 例2. 正项数列{}n a 单调减少,且∑∞=1n n na )1(-发散,问∑∞=1n nn a )11(+是否收敛?并说明理由。

解:知根据莱布尼兹判别法可如果存在又单调减少,0lim ,0==∴≥∞→a ,a a ,a n n n Θ∑∞=1n (1)0,n n a a -∴>收敛,与假设矛盾,这样,由等比级数∑∞=1n n a )11(+收敛和比较判别法可知∑∞=1n nn a )11(+收敛。

例3. 设⎰=4tan πxdx a n n(1)求∑∞=1n n a a n n 2++的值。

(2)证明:对任意正常数,0>λ∑∞=1n λn a n收敛。

证明:(1)n a a n n 2++n1=⎰+42)tan 1(tan πdx x x n∑∞=1n n a a n n 2++=∑∞=1n )1(1+n n =1(2)⎰=40tan πxdx a nn 1201n tdt t =+⎰ <⎰+≤111n dt t nλn a n<11)1(1+<+λλnn n ∴>+,11λΘ∑∞=1n 11+λn 收敛,由比较判别法可知∑∞=1n λna n收敛。

例4. 设有方程并证明证明方程有唯一正实根正整数其中,,01n nx ,n nx x =-+当α>1时,级数∑∞=1n αn x 收敛。

所以当α>1时,级数∑∞=1n αn x 收敛。

§ 8.2 幂级数(甲)内容要点一、函数项级数及其收敛域与和函数(数学一) 1. 函数项级数的概念设)(x u n ),3,2,1(Λ=n 皆定义在区间I 上,则∑∞=1n )(x u n 称为区间I 上的函数项级数。

2. 收敛域设I ∈0x ,如果常数项级数∑∞=1n )(0x u n 收敛,则称0x 是函数项级数∑∞=1n )(x u n 的收敛点,如果∑∞=1n )(0x u n 发散,则称0x 是∑∞=1n )(x u n 的发散点。

函数项级数∑∞=1n )(x u n 的所有收敛点构成的集合就称为收敛域。

所有发散点构成的集合你为发散域。

3. 和函数 在∑∞=1n )(x u n 的收敛域的每一点都有和,它与x 有关,因此=)(x S ∑∞=1n )(x u n ,∈x 收敛域称)(x S 为函数项级数∑∞=1n )(x u n 的和函数,它的定义域就是函数项级数的收敛域。

二、幂级数及其收敛域 1. 幂级数概念∑∞=0n nan x x )(0-称为)(0x x -的幂级数,),2,1,0(Λ=n a n 称为幂级数的系数,是常数,当00=x 时,∑∞=0n nanx 称为x 的幂级数。

相关文档
最新文档