人教版七年级上册数学第三章综合
人教版七年级上册数学第三章一元一次方程单元综合训练
人教版七年级上册数学第三章 一元一次方程单元综合训练一、单选题1.若a b =,下列等式不一定成立的是( )2.已知关于x 的方程()34k x --=-的解为3x =-,则k 等于( )4.下列方程是一元一次方程的是( ) A .215x x -=B .213x x +=C .20y y +=D .231x y -=5.牧羊人正在放牧,一个人牵着一只羊问他.“你的羊群有多少只?”牧羊人答道:“这群羊加上一倍,再加上原来羊群的一半.又加上原来羊群的四分之一,算上你牵来的羊,正好满一百只.”请问,牧羊人的羊群有多少只?( ) A .32只B .34只C .36只D .38只6.在2000多年前的《九章算术》一书中记载:今有人买鸡,人出九,盈十一:人出六,不足十六.问人数、物价各几何?意思是∶有若干人一起买鸡,如果每人出9文钱,就多出11文钱;如果每人出6文钱,就相差16文钱.买鸡的人数、鸡的总价各是多少?161169x x 7.牛奶是家家户户早餐的选择,现某奶站每天需要配送若干瓶牛奶,若每个送奶员配送10瓶,还剩6瓶;若每个送奶员配送12瓶,还差6瓶.那么设该奶站现有送奶员x 人,根据题意列方程为( )二、填空题三、解答题53(1)该商场购进甲、乙两种矿泉水各多少箱?(2)为了促销,该商场将甲种矿泉水打九折,乙种矿泉水打八五折出售.这样,500箱矿泉水在“十一”黄金周结束时全部售完,该商场可获得利润多少元?参考答案:(2)11x=-23.(1)明年每辆无人驾驶出租车的预计改装费用是25万元;(2)明年改装的无人驾驶出租车是120辆24.(1)该商场购进甲、乙两种矿泉水分别为300箱、200箱(2)该商场可获得利润4080元。
〖数学〗第三章 代数式综合检测卷 2024-2025学年人教版数学(2024)七年级上册
七年级上册数学第三章综合检测卷时间:90分钟满分:120分一、选择题(本大题共10小题,每小题3分,共30分.每小题给出的选项中,只有一个选项符合题意)1.下列各式符合代数式书写规则的是( )A.a×5B.a7C.312x D.−78x2.代数式-7x的意义可以是( )A.-7与x的和B.-7与x的差C.-7与x的积D.-7与x的商3.某班共有m个学生,其中男生人数占55%,那么女生人数是( )A.55%mB.(1-55%)mC.m55%D.m1−55%4.如果a与b互为相反数,那么代数式(a+b)2024的值是( )A. 0B. 1C. -1D.±15.如图是同一时刻北京时间和莫斯科时间.已知北京时间比莫斯科时间要早,若现在北京时间是x,则同一时刻莫斯科的时间可以表示为( )A.x+6B.x-6C.x+5D.x-5(第5题图) (第6题图)6.下面四个代数式中,不能表示图中阴影部分面积的是( )A.x2+5xB.x(x+3)+6C.3(x+2)+x2D. (x+3)(x+2)-2x 7.如图是一张日历表,省去了数字,将位置①的数表示为a,则位置②上的数可表示为( )A.a+3B.a+5C.a+7D.a+98.某商店出售一种商品,其原价为m元,现有两种调价方案:第一种是先提价10%,在此基础上又降价10%;第二种是先降价10%,在此基础上又提价10%.问这两种方案调价的结果是否一样?调价后是否都恢复了原价?( )A.结果一样,都恢复了原价B.结果不一样,第一种方案恢复了原价C.结果一样,都没有恢复原价D.结果不一样,第二种方案恢复了原价9.如图,已知圆环的内直径为α厘米,外直径为b厘米,将9个这样的圆环按图中的方式一个接一个地连成一条锁链,那么这条锁链拉直后的长度为( )A.(8a+b)厘米B.(8b+a)厘米C.(9a-b)厘米D.(9b-a)厘米10.如图,把一个周长为定值的长方形分割为五个四边形,其中A是正方形,B,C,D,E 都是长方形,这五个四边形的周长分别用l A,l B,l C,l D,l E表示,则下列各式的值为定值的是( )A.l AB.l B+l DC.l A+l B+l DD.l A+l C+l E二、填空题(本大题共8小题,每小题3分,共24分)11.水池内有水40m3,小流经过排水管的时间y(h)与水池每小时流出的水量x(m3)之间的关系是比例关系.(填“正”或“反”)12.2023长春马拉松于5月21日在南岭体育场鸣枪开跑,某同学参加了7.5公里健康跑项目,他从起点开始以平均每分钟x公里的速度跑了10分钟,此时他离健康跑终点的路程为公里.(用含x的代数式表示)13.对代数式“5x”,我们可以这样来解释:某人以5千米/时的速度走了x小时,他一共走的路程是5x千米.请你对“5x”给出一个生活实际方面的解释:。
人教版七年级数学上册第3章一元一次方程 期末综合复习题 (1)
人教版七年级数学上册《第3章一元一次方程》期末综合复习题(附答案)一、选择题1.下列方程是一元一次方程的是()A.x﹣2=3B.1+5=6C.x2+x=1D.x﹣3y=02.x=﹣2是下列哪个方程的解()A.x+1=2B.2﹣x=0C.x=1D.+3=13.下列等式变形正确的是()A.若a=b,则a﹣3=3﹣b B.若x=y,则=C.若a=b,则ac=bc D.若=,则b=d4.下列方程变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x+2x=1﹣2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣5C.方程3t=2,未知数系数化为1,得t=D.方程﹣2x﹣4x=5﹣9,合并同类项,得﹣6x=﹣45.解方程﹣=1时,去分母后,正确的结果是()A.15x+3﹣2x﹣1=1B.15x+3﹣2x+1=1C.15x+3﹣2x+1=6D.15x+3﹣2x﹣1=66.小马虎做作业,不小心将方程中一个常数污染了,被污染方程是2(x﹣3)﹣•=x+1,怎么办呢?他想了想便翻看书后答案,方程的解是x=9,请问这个被污染的常数是()A.1B.2C.3D.47.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为()A.518=2(106+x)B.518﹣x=2×106C.518﹣x=2(106+x)D.518+x=2(106﹣x)8.两地相距600千米,甲乙两车分别从两地同时出发相向而行,甲车比乙车每小时多走10千米,4小时后两车相遇,则乙车的速度是()A.70千米/小时B.75千米/小时C.80千米/小时D.85千米/小时9.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元10.当x=﹣1时,式子ax3+bx+1=0,则关于x方程+=的解是()A.x=B.x=﹣C.x=1D.x=﹣1二、填空题11.若方程x|a|+3=0是关于x的一元一次方程,则a=.12.已知2a﹣3和4a+6互为相反数,则a=.13.若方程x+2m=8与方程的解相同,则m=.14.方程|x﹣3|=6的解是x=.15.足球比赛的规则为胜一场得3分,平一场得1分,负一场得0分,一个队踢了16场比赛,负了5场,共得27分,那么这个队平了场.16.一个两位数,个位上的数字与十位上数字之和是7,将十位和个位对调后的新数比原数的2倍还大2,则原两位数是.17.学校开设兴趣班,建模组有16人,本学期新来的学生小丽加入了已有x人的航模组,这样建模组的人数比航模组的人数的一半多5人,根据题意,可列方程.18.若关于x的方程2x﹣(3x﹣a)=1的解为负数,则a的取值范围是.三、解答题19.解下列方程:(1)3x﹣5x﹣2x=0(2)3(5x﹣6)=3﹣20x(3)2x+3[x﹣2(x﹣1)+4]=8(4)﹣=120.方程2﹣3(x+1)=0的解与关于x的方程﹣3k﹣2=2x的解互为倒数,求k的值.21.某瓷器厂共有120个工人,每个工人一天能生产200个茶杯或50个茶壶,如果8个茶杯和一个茶壶为一套,问如何安排生产工人可使每天生产的产品配套?22.某件商品的进价为800元,标价为1150元,因库存积压需降价出售,若每件商品仍想获得15%的利润,需几折出售?23.一项工程,甲工程队单独做要10天完成,乙工程队单独做要15天完成,甲乙两工程队先合作若干天后,再由乙工程队单独做了5天,此时还有三分之一的工程没有完成,求甲乙两工程队先合作了几天?24.数学课上,小华把一张白卡纸画出如图①所示的8个一样大小的长方形,再把这8个长方形纸片剪开,无重叠的拼成如图②的正方形ABCD,若中间小正方形的边长为1,求正方形ABCD的边长.25.某市剧院举办大型文艺演出,其门票价格为:一等票300元/人,二等票200元/人,三等票150元/人,某公司组织员工36人去观看,计划用5850元购买其中两种门票,请你帮该公司设计可能的购票方案.26.“水是生命之源”,我国是一个严重缺水的国家.为倡导节约用水,某市自来水公司对水费实行分段收费,具体标准如下表:每月用水量第一档(不超过10立方米)第二档(超过10立方米但不超过15立方米部分)第三档(超过15立方米部分)收费标准(元/立方米)2.5元?元比第二档高20%已知某月市民甲交水费17.5元,市民乙用水13立方米,交费34元,市民丙交水费61.6元,求:①市民甲该月用水多少立方米?②第二档水费每立方米多少元?③市民丙该月用水多少立方米?27.数轴上,点A、点B所表示的数分别是a和b,点A在原点左边,点B在原点右边,它们相距24个单位长度,且点A到原点的距离比点B到原点的距离大6,点P从点A以每秒3个单位长度的速度沿数轴正方向运动,点Q从点B以每秒1个单位长度的速度沿数轴负方向运动,两点同时出发.①求a、b的值.②设x秒后点P、点Q相遇,求x的值.③数轴上点C到点A和到点B的距离之和是30,求点C所表示的数.④设t秒后点P、Q相距6个单位长度,求t的值.参考答案一、选择题1.解:A、x﹣2=3是一元一次方程,故此选项正确;B、1+5=6不是方程,故此选项错误;C、x2+x=1是一元二次方程,故此选项错误;D、x﹣3y=0是二元一次方程,故此选项错误;故选:A.2.解:A、解方程x+1=2得:x=1,所以x=﹣2不是方程x+1=2的解,故本选项不符合题意;B、解方程1﹣x=0得:x=2,所以x=﹣2不是方程2﹣x=0的解,故本选项不符合题意;C、解方程x=1得:x=2,所以x=﹣2不是方程x=1的解,故本选项不符合题意;D、当x=﹣2时,左边=+3=1,右边=1,即左边=右边,所以x=﹣2是方程的解,故本选项符合题意;故选:D.3.解:A.若a=b,则a﹣3=b﹣3,A项错误,B.若x=y,当a=0时,和无意义,B项错误,C.若a=b,则ac=bc,C项正确,D.若=,如果a≠c,则b≠d,D项错误,故选:C.4.解:A、方程3x﹣2=2x+1,移项,得3x﹣2x=1+2,不符合题意;B、方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+5,不符合题意;C、方程3t=2,未知数系数化为1,得t=,不符合题意;D、方程﹣2x﹣4x=5﹣9,合并同类项,得﹣6x=﹣4,符合题意,故选:D.5.解:﹣=1,去分母得:3(5x+1)﹣(2x﹣1)=6,去括号得:15x+3﹣2x+1=6.故选:C.6.解:设被污染的数字为y.将x=9代入得:2×6﹣y=10.解得:y=2.故选:B.7.解:设从甲煤场运煤x吨到乙煤场,可得:518﹣x=2(106+x),故选:C.8.解:设乙车的速度为x千米/小时,则甲车的速度为(x+10)千米/小时,根据题意得:4(x+x+10)=600,解得:x=70.故选:A.9.解:设这种商品每件的进价为x元,由题意得:330×0.8﹣x=10%x,解得:x=240,即这种商品每件的进价为240元.故选:A.10.解:把x=﹣1代入得:﹣a﹣b+1=0,即a+b=1,方程去分母得:2ax+2+2bx﹣3=x,整理得:(2a+2b﹣1)x=1,即[2(a+b)﹣1]x=1,解得:x=1,故选:C.二、填空题11.解:∵方程x|a|+3=0是关于x的一元一次方程,∴|a|=1,解得:a=±1,故答案为:±112.解:∵2a﹣3和4a+6互为相反数,∴(2a﹣3)+(4a+6)=0,∴6a+3=0,解得a=﹣0.5.故答案为:﹣0.5.13.解:由解得x=1,将x=1代入方程x+2m=8,解得m=,故答案为:.14.解:由题意得:x﹣3=6或x﹣3=﹣6,x=9或﹣3,故答案为:9或﹣3.15.解:设该队共平x场,则该队胜了16﹣x﹣5=11﹣x,胜场得分是3(11﹣x)分,平场得分是x分.根据等量关系列方程得:3(11﹣x)+x=27,解得:x=3,故平了3场,故答案为:3.16.解:设原来个位数字是x,十位数字是(7﹣x),2[10(7﹣x)+x]+2=10x+7﹣x,x=2.7﹣x=7﹣2=5.原数为25.故答案是:25.17.解:设航模组已有x人,则学生小丽加入后航模组共有(x+1)人,∵建模组有16人且建模组的人数比航模组的人数的一半多5人,∴(x+1)+5=16,故答案为:(x+1)+5=16.18.解:解方程2x﹣(3x﹣a)=1得,x=a﹣1,∵x为负数,∴a﹣1<0,解得a<1.故答案为a<1.三、解答题19.解:(1)3x﹣5x﹣2x=0合并同类项,可得:﹣4x=0,系数互为1,可得:x=0;(2)3(5x﹣6)=3﹣20x去括号,可得:15x﹣18=3﹣20x,移项,可得:15x+20x=3+18,合并同类项,可得:35x=21,系数互为1,可得:x=0.6;(3)2x+3[x﹣2(x﹣1)+4]=8,去括号,可得:2x+3x﹣6x+6+12=8移项,可得:2x+3x﹣6x=﹣6﹣12+8,合并同类项,可得:﹣x=﹣10,系数互为1,可得:x=10;(4)﹣=1,去分母,可得,4(2x﹣1)﹣3(2x﹣3)=12,去括号,可得:8x﹣4﹣6x+9=12,移项,可得:8x﹣6x=4﹣9+12,合并同类项,可得:2x=7,系数互为1,可得:x=.20.解:解方程2﹣3(x+1)=0得:x=﹣,﹣的倒数为x=﹣3,把x=﹣3代入方程﹣3k﹣2=2x得:﹣3k﹣2=﹣6,解得:k=1.21.解:设x人生产茶杯,则(120﹣x)人生产茶壶.50(120﹣x)×8=200x解得:x=80.所以120﹣80=40(人)答:80人生产茶杯,40人生产茶壶.22.解:由题意可知:设需要按x元出售才能获得15%的利润则:=15%解得:x=920,按n折出售,则n=×10=8故每件商品仍想获得10%的利润需八折出售.23.解:设甲乙两工程队先合作了x天,由题意,得+=1﹣.解得x=2.答:甲乙两工程队先合作了2天.24.解:设小长方形的长为xcm,则宽为x,由题意,得:2×x﹣x=1,解得:x=5,则x=3,所以正方形ABCD的边长是:x+2×x=×5=11.答:正方形ABCD的边长是11.25.解:∵200×36=7200>5850,∴该公司不可能购买一等门票和二等门票,设该公司购买一等门票a张,三等门票(36﹣a)张,300a+150(36﹣a)=5850,解得,a=3,∴36﹣a=33,即该公司购买一等门票3张,三等门票33张;设该公司购买二等门票b张,三等门票(36﹣b)张,200b+150(36﹣b)=5850,解得,b=9,∴36﹣b=27,即该公司购买二等门票9张,三等门票27张;由上可得,有两种购买方案,方案一:该公司购买一等门票3张,三等门票33张;方案二:该公司购买二等门票9张,三等门票27张.26.解:①∵2.5×10=25>17.5,∴甲用水量不超过10立方米,∴17.5÷2.5=7立方米,答:甲市民该月用水7立方米.②设超出的部分x元/立方米,由题意得,2.5×10+(13﹣10)x=34,解得,x=3,答:第二档水费每立方米3元.③∵2.5×10+3×(15﹣10)=40<61.6,∴丙的用水量超过15立方米,设丙用水y立方米,由题意得,2.5×10+3×5+3×(1+20%)(y﹣15)=61.6,解得,y=21,答:市民丙该月用水21立方米.27.解:①∵点A在原点左边,点B在原点右边,它们相距24个单位长度,且点A到原点的距离比点B到原点的距离大6,∴a=﹣(24+6)÷2=﹣15,b=(24﹣6)÷2=9;②依题意有3x+x=24,解得x=6.故x的值为6;③(30﹣24)÷2=3,点C在点A的左边,点C所表示的数为﹣15﹣3=﹣18;点C在点A的右边,点C所表示的数为9+3=12.故点C所表示的数为﹣18或12;④相遇前,依题意有:3t+t=24﹣6,解得t=;相遇后,依题意有:3t+t=24+6,解得t=.故t的值为或.。
七年级-人教版(2024新版)-数学-上册-[综合训练]初中数学-七年级上册-第三章--3
3.2代数式的值(第1课时)1.已知x-2y=3,则代数式6-2x+4y的值为().A.0B.-1C.-3D.32.若a、b互为相反数,x、y互为倒数,则式子2(a+b)+5xy的值为().A.2B.5C.7D.33.如果m-n=15,那么-3(n-m)=().A.15B.35C.-15D.-354.若a+b=1,则代数式5-a-b的值为().A.2B.3 C.4D.5 5.当ab=1,a-b=3时,求ab+2a-2b的值.6.若xy=23,求代数式2x+yy的值.参考答案1.【答案】A【解析】因为x-2y=3,所以6-2x+4y=6-2(x-2y)=6-2×3=0.2.【答案】B【解析】因为a,b互为相反数,所以a+b=0.因为x,y互为倒数,所以xy=1.则式子2(a+b)+5xy=2×0+5×1=5.3.【答案】B【解析】如果m-n=15,那么n-m=-15,-3(n-m)=-3×(-15)=35.4.【答案】C【解析】因为a+b=1,代数式5-a-b=5-(a+b)=5-1=4.5.【答案】ab+2a-2b=ab+2(a-b)=1+2×3=7.【解析】因为已知条件是ab与a-b的值,所以先将代数式整理成含有项ab与a-b的形式,ab+2a-2b=ab+2(a-b).再把ab=1,a-b=3代入计算.6.【答案】2x+yy=2xy+1=2xy+1=2×23+1=73.【解析】因为已知条件是xy=23,所以先将代数式整理成含有项xy的形式,2x+yy=2xy+1=2xy+1.再把xy=23代入计算即可得到2x+yy的值.。
人教版 七年级数学上册 第3章 一元一次方程 综合复习题(含答案)
人教版 七年级数学上册 第3章 一元一次方程综合复习题一、选择题1. 某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这批服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装的标价是( ) A .350元 B .400元 C .450元D .500元2. 解方程4x -2=3-x 的正确顺序是( )①合并同类项,得5x =5;②移项,得4x +x =3+2;③系数化为1,得x =1. A .①②③ B .③②① C .②①③D .③①②3. 下列方程是一元一次方程的是()A .2237x x x +=+B .3435322x x -+=+C .22(2)3y y y y +=--D .3813x y -=4. 下列变形中,不正确的是()A .若25x x =,则5x =.B .若77,x -=则1x =-.C .若10.2x x -=,则1012x x -=. D .若x y aa=,则ax ay =.5. 2019·阜新某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;如果按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( ) A .160元 B .180元 C .200元 D .220元6. 如图,在长为a 厘米的木条上钻4个圆孔,每个圆孔的直径为2厘米,则x等于( )A.a -85厘米 B.a +85厘米 C.a -45厘米D.a -165厘米7. 《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少.设合伙人数为x 人,所列方程正确的是( ) A .5x -45=7x -3 B .5x +45=7x +3 C.x +455=x +37D.x -455=x -378. 某中学去年中学生共有4200人,今年初中生增加了8%,高中生增加了11%,使得中学生总数增加了10%.如果设去年初中生有x 人,那么下面所列方程正确的是( )A .(1+8%)x +(1+11%)(4200-x )=4200×10%B .8%x +11%(4200-x )=4200×(1+10%)C .8%x +(1+11%)(4200-x )=4200×10%D .8%x +11%(4200-x )=4200×10%9. 2019·荆门欣欣服装店某天用相同的价格a (a >0)元卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是( ) A .盈利 B .亏损C .不盈不亏D .与售价a 有关10. 程大位是我国明朝商人,珠算发明家.他60岁时完成的《算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?下列求解结果正确的是( ) A .大和尚25人,小和尚75人B .大和尚75人,小和尚25人C .大和尚50人,小和尚50人D .大、小和尚各100人二、填空题11. 甲、乙两架飞机同时从相距750 km 的两个机场相向飞行,飞了12 h 到达中途同一机场,如果甲飞机的速度是乙飞机速度的 1.5倍,则乙飞机的速度是________.12. 已知方程1(2)40a a x--+=是一元一次方程,则a = ;x = .13. 在“地球停电一小时”活动的某地区烛光晚餐中,设座位有x 排,若每排坐30人,则有8人无座位;若每排坐31人,则空26个座位,依题意可列方程为__________________.14. 某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A ,B 两个贫困地区,其中发往A 地区的物资比发往B 地区的物资的1.5倍少1000件,则发往A 地区的生活物资为________件.15. 甲骑自行车从A 地到B 地,乙骑自行车从B 地到A 地,两人都沿同一公路匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距35 km ,到中午12时,两人又相距35 km ,则A ,B 两地的距离为________km.16. 2018·呼和浩特文具店销售某种笔袋,每个18元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打九折,价钱比现在便宜36元.”小华说:“那就多买一个吧,谢谢!”根据两人的对话可知,小华结账时实际付款________元.17. 在有理数范围内定义运算“☆”,其规则是a ☆b =a3-b .若x ☆2与4☆x 的值相等,则x 的值是________.18. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之.”其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走________步才能追到速度慢的人.三、解答题19. 解方程:0.130.4120 0.20.5x x+--=20. 甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润率定价,乙服装按40%的利润率定价.在实际出售时,应顾客要求,两件服装均按九折出售,这样商店共获利157元.求甲、乙两件服装的成本各是多少元.21. 有某种三色冰激凌50克,咖啡色、红色和白色配料的比是2∶3∶5,这种三色冰激凌中咖啡色、红色和白色配料分别是多少克?22. 求解题为“李白沽酒”的诗:李白无事街上走,提壶去打酒.遇店加一倍,见花喝一斗.三遇店与花,喝光壶中酒.试问壶中原有多少酒.诗的大意是李白提着没装满酒的酒壶在街上走,遇见酒店就把壶中的酒增加一倍,遇见桃花就喝一斗酒.这样三次先后遇见酒店和桃花,恰好把壶中的酒喝完.则壶中原有多少斗酒?人教版七年级数学上册第3章一元一次方程综合复习题-答案一、选择题1. 【答案】B2. 【答案】C3. 【答案】C4. 【答案】A5. 【答案】C6. 【答案】A7. 【答案】B8. 【答案】D9. 【答案】B 10. 【答案】A二、填空题11. 【答案】600 km/h 12. 【答案】2a =-,1x =13. 【答案】30x +8=31x -26 14. 【答案】320015. 【答案】105 则x -352=x +354, 解得x =105.故A ,B 两地的距离为105 km. 解法二:设两人的速度之和为x km/h , 则2x +35=4x -35,解得x =35.所以A ,B 两地的距离为2x +35=105(km).16. 【答案】486设小华购买了x 个笔袋,根据题意,得18(x -1)-18×0.9x =36, 解得x =30.则18×0.9x =18×0.9×30=486. 故小华结账时实际付款486元.17. 【答案】5218. 【答案】250 三、解答题19. 【答案】-1020. 【答案】解:设甲服装的成本是x元,则乙服装的成本是(500-x)元,依题意可列方程0.9[(1+50%)x+(1+40%)(500-x)]=500+157.解得x=300,于是500-x=200.答:甲、乙两件服装的成本分别是300元和200元.21. 【答案】解:设这种三色冰激凌中咖啡色配料为2x克,那么红色和白色配料分别为3x 克和5x克.根据题意,得2x+3x+5x=50,解这个方程,得x=5.于是2x=10,3x=15,5x=25.答:这种三色冰激凌中咖啡色、红色和白色配料分别是10克,15克,25克.22. 【答案】解:设李白壶中原有x斗酒,依题意可得下表:由此可列方程2[2(2x-1)-1]-1=0.解得x=0.875.答:壶中原有0.875斗酒.。
第三章 代数式全章综合训练 2024—2025学年人教版数学七年级上册
第三章代数式全章综合训练一、选择题(每小题5分,共40分)1[2024湖南湘潭期末]下列代数式中,书写规范的是 ( )A.112a B.a÷b C. a;3 D.-lab2[2024四川泸州龙马潭区质检]苹果原价是每千克x元,按八折优惠出售,下列代数式中表示现价正确的是 ( )A.8x元/千克B.0.8x元/千克C.2x元/千克D.0.2x元/千克3[2024河南郑州金水区校级调研]x,y是两种相关联的量,下面能表示x,y成正比例关系的是( )A.y=611x B.x12=1yC. x+y=10D.5x=y4[2024甘肃张掖校级期末]一次知识竞赛共有24道选择题,规定:答对一道得3分,不答或答错一道扣1分,如果某位学生答对了x道题,则用式子表示他的成绩(单位:分)为 ( )A.3x-(24+x)B.100-(24-x)C.3xD.3x-(24-x)5[2024江苏徐州期末]下列代数式,满足表中条件的是 ( )x 0 1 2 3代数式的值-3 -1 1 3A.-x-3.B.x²+2x−3C.2x-3D.x²−2x−36[2024辽宁抚顺期末]下列能用2a+4表示的是( )7[2024安徽合肥期末]如图是计算机程序的一个流程图,现定义:“x←x+2”表示把x+2的值作为x的值输入程序再次计算.比如:当输入x=2时,依次计算作为第一次“传输”,可得2×2=4,4-1= 3,3²=9,,9 不大于 2 024,所以2+2=4,把x=4输入程序,再次计算作为第二次“传输”,可得4×2=8,8-1=7,…,直到计算结果大于2 024时输出结果y.若输入x=1,则经过几次“传输”后可以输出结果,结束程序 ( )A.11B.12C.21D.235[2024 重庆万州区期末]下列图形都是由相同的小正方形按照一定规律摆放而成的,第1 个图形中小正方形的个数是3,第2个图形中小正方形的个数是8,第3个图形中小正方形的个数是15,…,照此规律排列下去,则第6个图形中小正方形的个数是 ( )A.24B.30C.35D.48二、填空题(每小题5分,共10分)[2024江苏扬州期中]体育委员带了100元钱去买体育用品,已知一个足球a元,一个篮球b元,则代数式100–3a–2b 表示的意义为10[2024河北承德期末]如图,某花园护栏是用直径为80厘米的半圆形条钢组制而成,且每增加一个半圆形条钢,护栏长度就增加a厘米(相邻两个条钢之间都有交叉,a为正整数).设半圆形条钢的总个数为x(x为正整数).(1)当a=50,x=2时,护栏总长度为厘米;(2)当a=60时,护栏总长度为厘米(用含x的代数式表示,结果要求化简);(3)若护栏的总长度为15米,为尽量减少条钢用量,a的值应为 .三、解答题(共50分)的值.11[2024四川成都调研]当a取下列值时,求代数式a2−3a+15.1)a=4;(2)a=−1312[2024河北石家庄期末]现有甲、丙两种正方形和乙一种长方形卡片各若干张,如图(1)所示(a>1).小明分别用6张卡片拼出了如图(2)和图(3)的两个长方形(不重叠且无缝隙),其面积分别为S₁,S₂.(1)请用含a的式子分别表示 S₁,S₂;(2)当a=3 时,通过计算比较 S₁与 S₂的大小.13[2024山东青岛调研]如图是某居民小区的一块长为a米、宽为2b米的长方形空地.为了美化环境,准备在这个长方形空地的四个顶点处修建一个半径为b米的扇形花台,然后在花台内种花,其余地方种草.如果建造花台及种花的费用为每平方米100元,种草的费用为每平方米50元.(1)填空:种花的面积为平方米,种草的面积为平方米.(用含有a,b,π的式子表示)(2)当a=6,b=2,π取3.14时,美化这块空地共需多少元?14[2024河南周口期末]某餐厅中,一张桌子可坐6人,有以下两种摆放方式:(1)有4张桌子,用第一种摆放方式,可坐多少人?用第二种摆放方式,可坐多少人?(2)用含有n的代数式表示:有n张桌子,用第一种摆放方式可坐多少人?用第二种摆放方式可坐多少人?(3)一天中午,餐厅要接待80位顾客共同就餐,但餐厅只有20张这样的桌子可用,且每4张拼成一张大桌子.若你是这家餐厅的经理,你打算选择哪种方式来摆放餐桌?并说明理由.1. C 【解析】A 选项, 112a 应该写为 32a,故A 错误,不符合题意;B 选项,( a ÷b 应该写为 a b ,故B 错误,不符合题意;C 选项, a 3书写规范,故C 正确,符合题意;D 选项, −1ab 应该写为 −ab,,故D 错误,不符合题意.故选C.2.B 【解析】苹果原价是每千克x 元,按八折优惠出售,现价是0.8x 元/千克,故选B.3. A 【解析】A 选项, y =611x,x ,y 成正比例关系,故此选项符合题意;B 选项, x 12=1y ,则 xy =12,x 和γ成反比例关系,故不符合题意;C 选项, x +y =10,x 和y 不成正比例关系,故此选项不符合题意;D 选项, y =5x ,x 和y 成反比例关系,故此选项不符合题意.故选 A.4.D 【解析】由题意可得他的成绩是[ [3x −(24−x)]分.故选 D.5. C 【解析】因为: x =0时,代数式的值为 −3; x =1时,代数式的值为 −1;x =2时,代数式的值为1,所以只有: 2x −3满足条件.故选C.6. C 【解析】A 选项,线段AB 的长为 2+3+4=9,则A 不符合题意;B 选项,组合图形的面积为 2×(3+4)=14,则B 不符合题意;C 选项,长方形的周长为 2(a +2)=2a +4,则 C 符合题意;D 选项,圆柱的体积为4a ,则D 不符合题意.故选 C.7.B 【解析】由题可知每次输入的数应该是1,3,5,7,9,…,所以第n 次输入的数应该是 2n −1.每次算出的数为|[2(2n −1)−1]².因为 45²=2025>2024,程序结束,所以 2(2n −1)− 1=45,解得 n =12..故选 B.8.D 【解析】由所给图形可知,第1个图形中小正方形的个数为 3=1²+1×2;第2个图形中小正方形的个数为 8=2²+2×2;第3 个图形中小正方形的个数为 15=32+3×2;⋯,依次类推,第n 个图形中小正方形的个数为 n²+2n.所以第6个图形中小正方形的个数是 6²+2×6=48,故选 D.9.买了3个足球,2个篮球,还剩多少元【解析】因为一个足球a 元,一个篮球b 元,所以100-3a-2b 表示的意义为体育委员买了3个足球,2个篮球后所剩下的钱,故答案为买了3个足球,2个篮球,还剩多少元.10.(1)130 (2)(60x+20) (3)71【解析】(1)由题意得护栏的总长度为[80+(x-1)a]厘米,所以当a=50,x=2时,80+(x-1)a=80+(2-1)×50=130,故答案为 130.(2)当a=60时,80+(x-1)a=80+60x-60=60x+20,所以当a=60时,护栏总长度为(60x+20)厘米,故答案为(60x+20).(3)15 米=1 500 厘米.令 80+(x-1)a=1 500,所以(x-1)a=1 420=71×20.因为a 为正整数且a<80,x 为正整数,所以为尽量减少条钢用量,a=71,x=21时符合题意. 故答案为 71.11.【解】(1)当( a =4时,原式 =16−12+15=1.=19+1+15=1945.(2)当 a =−13时,原式 12.【解】(1)根据题意得, S₁=a²+3a +2,S₂= 5a +1.(2)当( a =3时, S₁=3²+3×3+2=20,S₂=5×3+ 1=16..因为 20>16,所以 S₁>S₂.13.【解】(1)因为一个花台为 14圆,所以四个花台的面积为一个圆的面积,即种花的面积为 πb²平方米,所以种草的面积为 (2ab −πb²)平方米,故答案为 πb²,(2ab −πb²). (2)依题意,得美化这块空地共需的费用为 100×πb²+50×(2ab −πb²)=(100ab +50πb²)元.当 a =6,b =2,π=3.14时, 100ab + 50πb²=100×6×2+50×3.14×2²=1828(元),所以美化这块空地共需 1 828 元.14.【解】(1)有 4 张桌子,用第一种摆放方式,。
第3章 代数式 综合训练人教版(2024)数学七年级上册
人教版(2024)数学七年级上册第三章综合训练一、选择题(在每小题给出的四个选项中,只有一项是符合要求的)1.下列是代数式的是()A.0<2B.x2-1≠0C.-3D.x+y=12.已知语句“b比a的3倍多1”,下列关于甲、乙的判断正确的是()甲:用a表示b的代数式是3a+1;乙:用b表示a的代数式是b+13.A.甲、乙都对B.甲、乙都错C.甲对,乙错D.甲错,乙对3.一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为()A.abcB.a+b+cC.100a+10b+cD.100abc4.已知甲、乙两数的和为30,若甲数为x,则甲数的3倍与乙数的23的和用含有x的式子表示正确的是()A.3(30-x)+23B.23(3x+30-x)C.3x+23(30-x) D.3(30-x)+235.代数式a2+b2可以表示不同实际问题中的数量关系,下列举例恰当的是()A.长是a,宽是b的长方形的周长B.购买(a+b)本单价为(a+b)元的笔记本的总价钱C.买a支单价为a元的钢笔和b支单价为b元的铅笔的总价钱D.边长是a+b的正方形的面积6.下列四个说法:①书的总页数一定,未读的页数与已读的页数成正比例;②如果圆的半径不变,圆的周长与圆周率成正比例;③小麦的总产量一定,每公顷产量与公顷数成反比例;④圆柱的体积一定,圆柱的底面积与高成反比例.其中正确说法的个数是()A.1B.2C.3D.47.规定新运算:x◎y=xy-y2,则12◎(-2)=()A.-5B.3C.-3D.18.若2 024×7=x,则下列代数式可以表示2 024×5的是()A.x+4 048B.x-2 024C.x-2D.57x9.某商场针对一款服装给出两个调价方案:①先提价10%,再降价10%;②先降价20%,再提价20%.下列说法正确的是()A.①②两种方案的调价结果相同B.方案①的售价比方案②的售价低C.方案①的售价比方案②的售价高D.无法比较,调整后的售价高低取决于服装原售价10.某窗户的形状如图所示,其上部是半圆形,下部是由两个相同的长方形和一个正方形构成.已知半圆的半径为a cm,长方形的长和宽分别为b cm和c cm.给出下面四个结论: ①窗户外围的周长是(πa+3b+2c)cm;②窗户的面积是(πa2+2bc+b2)cm2;③b+2c=2a;④b=3c.上述结论中,所有正确结论的序号是()A.①②B.①③C.②④D.③④二、填空题(将结果填在题中横线上)11.一支铅笔的价格是a元,一块橡皮的价格是b元,买3支铅笔和7块橡皮应付元.12.一个长方体容器的底面是长为a,宽为b的长方形,将体积为V的水倒入这个长方体容器,则水面的高度为.(用含a,b,V的式子表示)13.若比-2大3的数为x,-5的绝对值为y,-1的4倍为z,则x+y+z=.414.已知甲、乙两种书的售价分别为12元/本、20元/本,现购买a本甲书和b本乙书,共付款W元.(1)W=;(用含a,b的式子表示)(2)若|a-2|+(b-1)2=0,则W的值为.15.一组数-2,5,-8,11,-14,17……按这样的规律排列下去,则第10个数为.16.某超市以m元/袋的价格购进了200袋相同的酱料,加价50%卖出了180袋,剩余每袋比进价增加n元后全部卖出,卖完这批酱料该超市可获得利润元.(用含m,n 的代数式表示)三、解答题(解答应写出文字说明、证明过程或演算步骤)17.用代数式表示:(1)长为x,宽为y的长方形的面积;(2)棱长为a的正方体的表面积;,该班男生人数;(3)某班总人数为m,女生人数是男生人数的35(4)a的相反数与b的倒数的和(b≠0);(5)x,y两数的平方和减去它们积的2倍;(6)底面半径为r,体积为V的圆锥的高.18.下图是一个“数值转换机”的示意图.(1)输出的结果用含x的代数式表示为;(2)当输入x=1时,求输出的值.319.已知m是6的相反数,n比-m的相反数大3.(1)直接写出m=,n=.(2)求-n-m+7的值.20.某服装厂生产一种西装和领带,西装每套定价300元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案.方案一:买一套西装送一条领带;方案二:西装和领带的定价打九折付款.现有某客户要到该服装厂购买西装50套,领带x条(x>50).(1)若该客户按方案一购买,需付款元.(用含x的代数式表示)若该客户按方案二购买,需付款元.(用含x的代数式表示)(2)若该客户购买西装50套,领带60条,请通过计算说明按哪种方案购买较为合算.(3)若该客户购买西装50套,领带200条,请通过计算说明按哪种方案购买较为合算.21.观察、探究、应用(1)在下列横线上用含有a,b的代数式表示相应图形的面积.①②③④(2)通过拼图,你发现前3个图形的面积与第4个图形的面积之间有什么关系?请用数学式子表示:(用含字母a,b的等式表示).(3)利用(2)的结论计算:①172+2×17×3+32;②1992+398+1的值.第三章综合训练1.C2.C3.C4.C5.C6.B7.A 解析:因为x ◎y=xy-y 2,所以12◎(-2)=12×(-2)-(-2)2=-1-4=-5.8.D 9.C10.B 解析:根据题干图形,可知窗户的周长是12×2π×a+b+c+b+c+b=(πa+3b+2c )cm,故①正确; 窗户的面积是12πa 2+2bc+b 2,故②错误;由题干图形可知b+2c=2a ,故③正确;由b+2c=2a ,得不出b 和c 之间的关系,故④错误.故选B .11.(3a+7b )12.V ab13.514.(1)(12a+20b ) (2)4415.2916.(90m+20n )17.解:(1)xy ;(2)6a 2;(3)58m ;(4)-a+1b ;(5)x 2+y 2-2xy ;(6)3Vπr 2.18.解:(1)2x-3(2)当x=13时,2×13-3=-73,即当输入x=13时,输出的值为-73.19.解:(1)-6 -3 因为m 是6的相反数,所以m=-6,-m=6,所以-m 的相反数是-6.因为n 比-m 的相反数大3,所以n=-6+3=-3.(2)由(1)知m=-6,n=-3,-n-m+7=-(-3)-(-6)+7=3+6+7=16.20.解:(1)13 000+40x 13 500+36x方案一:[300×50+40(x-50)]=13 000+40x ;方案二:90%(300×50+40x )=13 500+36x.(2)当x=60时,方案一应付:13 000+40×60=15 400(元),方案二应付:13 500+36×60=15 660(元),15 400<15 660.答:方案一较合算.(3)当x=200时,方案一应付:13 000+40×200=21 000(元).方案二应付:13 500+36×200=20 700(元).20 700<21 000.答:方案二较合算.21.解:(1)①a2;②2ab;③b2;④(a+b)2.(2)(a+b)2=a2+2ab+b2根据拼图可知第4个图形是由前3个图形拼成的,即第4个图形的面积等于前3个图形面积的和.(3)①172+2×17×3+32=(17+3)2=202=400.②1992+398+1=1992+2×1×199+1=(199+1)2=2002=40 000.。
人教版七年级数学上册 第三章 综合素质测评卷及答案
人教版七年级数学上册 第三章 综合素质测评卷及答案(时间:120分钟 满分:120分)一、选择题(本大题共10小题,每小题3分,共30分)1.根据“x 的3倍与5的和比x 的13多2”可列方程( A )A .3x +5=x 3+2B .3x +5=x 3-2C .3(x +5)=x 3-2D .3(x +5)=x 3+2 2.已知x =1是关于x 的方程x +2a =-1的解,则a 的值是( A )A .-1B .0C .1D .23.下列等式的变形中,正确的有( B )①由5x =3,得x =53; ②由a =b ,得-a =-b ;③由-x -3=0,得-x =3; ④由m =n ,得n m =1.A .1个B .2个C .3个D .4个4.在解方程x -13+x =3x +12时,方程两边乘6,去分母后,正确的是( B )A .2x -1+6x =3(3x +1)B .2(x -1)+6x =3(3x +1)C .2(x -1)+x =3(3x +1)D .(x -1)+x =3(3x +1)5.书架上,第一层书的数量是第二层数的数量的2倍,从第一层抽8本书到第二层,这时第一层剩下的书的数量恰好比第二层的一半多3本.设第二层原有x 本书,则可列方程( D )A .2x =12x +3B .2x =12(x +8)+3C .2x -8=12x +3D .2x -8=12(x +8)+3 6.a ,b ,c ,m 都是有理数,且a +2b +3c =m ,a +b +2c =m ,那么b 与c 的关系是( A )A .互为相反数B .互为倒数C .相等D .无法确定7.若式子3x +12比2x -23小1,则x 的值为( C )A.135 B .-513 C .-135 D.5138.若关于x 的方程x m -1+2m +1=0是一元一次方程,则这个方程的解是( A )A .x =-5B .x =-3C .x =-1D .x =59.已知关于x 的方程x -4-ax 6=x +43-1的解是正整数,则符合条件的所有整数a 的积是( D )A .12B .36C .-4D .-1210.图①为一正面白色、反面灰色的长方形纸片,今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图②所示.若图②中白色与灰色区域的面积比为8∶3,图②纸片的面积为33,则图①纸片的面积为( C )A.2314B.3638 C .42 D .44二、填空题(本大题共8小题,每小题3分,共24分)11.若2a -3与-3a -8的值相等,则a 2 019的值为 -1 .12.若关于x 的方程6x +3=0与关于y 的方程3y +m =1的解互为倒数,则m 的值为 7 .13.如图所示是一个数值计算程序,在某次计算时输入一个数x 后,输出的结果为38,那么是输入的数x 的值是 27 . 输入x →×5→-21→÷3→输出14.一艘船从甲码头到乙码头顺流行驶,用了2 h ,从乙码头返回甲码头逆流行驶,用了2.5 h ,已知水流的速度是3 km/h ,则船在静水中的速度是 27 km/h15.已知|x +3|+(x +2y -1)2=0,则2x -y =__-8__.16.若干本书分给若干学生,每人5本缺2本,每人4本余3本,则共有__5__个同学.17.甲、乙二人在400 m 环形跑道上练习长跑,同时从同一起点出发,甲的速度是6 m/s ,乙的速度是 4 m/s ,乙跑__2__圈后,甲可超过乙1圈.18.一列方程如下排列:x 4+x -12的解是x =2;x 6+x -22=1的解是x =3;x 8+x -32=1的解是x =4;…根据观察得到的规律,写出解是x =7的方程是 x 14+x -62=1 .三、解答题(本大题共7小题,共66分)19.(8分)解方程:(1)2(3y -1)-3(2-4y )=9y +10;解:6y -2-6+12y =9y +10,18y -9y =10+8,y =2.(2)3y +14=2-2y -13.解:3(3y +1)=24-4(2y -1),9y +3=24-8y +4,9y +8y =24+4-3,17y =25,y =2517.20.(8分)已知当x =-3时,代数式2x 2+(2t -1)x -5t +1的值是0,求当x =3时,该代数式的值.解:由题意可知,当x =-3时,2x 2+(2t -1)x -5t +1=2×(-3)2-3(2t -1)-5t +1=0,解得t =2.即代数式为2x 2+3x -9.当x =3时,代数式2x 2+3x -9=2×32+3×3-9=18.21.(8分)a 为何值时,方程3(5x -6)=3-20x 的解也是方程a -103x =2a +10x 的解?解:解方程3(5x -6)=3-20x ,得x =35. 将x =35代入a -103x =2a +10x , 得a -103×35=2a +10×35, 解得a =-8.22.(10分)有一些依次标有3,6,9,12,…的卡片,小明拿了3张卡片,他们的数码相邻,且数码之和为117.(1)小明拿到了哪3张卡片?(2)你能拿到数码相邻的4张卡片,使其数码之和是179吗?若能,请指出这4张卡片中数码最大的卡片;若不能,请说明理由.解:(1)设中间的卡片为x,根据题意,得(x-3)+x+(x+3)=117,解得x=39.故小明拿的卡片为36,39,42;(2)不能,理由:设这四张卡片为x-3,x,x+3,x+6,根据题意,得(x-3)+x+(x+3)+(x+6)=179.解得x=1734,不合题意,故不能拿出相邻的4张卡片使其和为179.23.(10分)情景:试根据图中的信息,解答下列问题:(1)购买6根跳绳需150元,购买12根跳绳需240元;(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.解:有这种可能.设小红买了x根跳绳,则25×0.8·x=25(x-2)-5,解得x=11.所以小红买了11根跳绳.24.(10分)如图,点A,B在数轴上表示的数分别为-12和8,两只小蚂蚁M,N分别从A,B同时出发,相向而行,M的速度为2个单位长度/秒,N的速度为3个单位长度/秒.(1)运动几秒时,两只蚂蚁在点P相遇?点P在数轴上表示的数是多少?(2)若运动t秒时,两只蚂蚁的距离为10个单位长度,求出t的值.解:(1)设运动x秒时,两只蚂蚁在点P相遇,根据题意,得2x +3x=8-(-12),解得x=4.8-3×4=-4,所以运动4秒时,两只蚂蚁在点P相遇,点P在数轴上表示的数为-4.(2)运动t秒时,蚂蚁M向右移动了2t个单位长度,蚂蚁N向左移动了3t个单位长度.若在相遇之前距离为10个单位长度,则有2t +3t+10=20,解得t=2;若在相遇之后距离为10个单位长度,则有2t+3t-10=20,解得t=6.综上所述,t的值为2或6.25.(12分)为庆祝“六一”儿童节,某市中小学统一组织文艺会演,甲、乙两所学校共92名学生(其中甲校学生多于乙校学生,且甲校学生不够90名)准备统一购买服装参加演出,下面是某服装厂给出的演出服装价格表:如果两所学校单独购买服装,一共应付5 000元.(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少元钱?(2)甲、乙两校各有多少名学生准备参加演出?(3)如果甲校有10名学生被调去参加书法绘画比赛不能参加演出,请你为两校设计一种最省钱的购买服装方案.解:(1)5 000-92×40=1 320(元).答:甲、乙两校联合起来购买服装比各自购买服装共可以节省1 320元.(2)设甲校有x名学生准备参加演出,则乙校有(92-x)名学生准备参加演出.根据题意得50x+60(92-x)=5 000,解得x=52.所以92-x=92-52=40(名).答:甲校有52名学生准备参加演出,乙校有40名学生准备参加演出.(3)因为甲校有10名学生不能参加演出,所以甲校有42名学生参加演出.①若两校联合购买服装,则需要(42+40)×50=4 100(元).②若两校各自购买服装,则需要(42+40)×60=4 920(元).③若两校联合购买91套服装,则需要40×91=3 640(元).综上所述,最省钱的购买服装方案是两校联合购买91套服装.。
人教版七年级上册数学 第3章 一元一次方程 期末复习综合练习题
人教版七年级上册数学第3章一元一次方程期末复习综合练习题一.单选题1.已知关于x的方程2x−3=5x−2a的解为x=1,则a的值是()A.3 B.−3C.6 D.−6 2.下列各式中,是一元一次方程的是()A.x3=2B.x2−1=0C.3x−2=y D.3x=23.下列变形中,正确的是()A.若a=b,则a−5=b+5B.若a=b,则ac=bcC.若a=b,则a3=−b3D.若ac=bc,则a=b4.如果方程2−x+13=x+76的解也是方程2−a−x3=0的解,那么a的值是()A.7 B.5 C.3 D.以上都不对5.下列方程变形正确的是()A.若x+2=3,则x=3+2B.若23x=4,则x=4×23C.若2x=5,则x=5−2D.若x−5=1,则x=1+56.一次科普知识竞赛中,共有25道选择题,其中答对一题得4分,答错一题倒扣1分,不答不得分也不倒扣分.琪琪这次比赛有5道题没做,总得分70分,他答对的题数是()A.20 B.19 C.18 D.177.如图,表中给出的是某月的日历,任意选取“Z”型框中的7个数(如阴影部分所示),请你运用所学的数学知识来研究,发现此月这7个数的和可能的是()A.49 B.60 C.84 D.1058.我国古代数学名著《孙子算经》中有这样一道题:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺?设木长x尺,根据题意可列方程为()A.12(x−4.5)=x−1B.12(x+4.5)=x+1C.12(x+4.5)=x−1D.2x−1=x+4.5二.填空题9.当x=时,式子3x+7的值与式子32−2x的值相等.10.若关于x的方程(a−1)x2+x+a2−8=0是一元一次方程,则这个方程的解为.11.数轴上有三个点表示的数分别是−1,3,x且每相邻两点间的距离相等则x=.12.已知方程92x+6=5+4x的解比关于x的方程7x−3a=0的解小1,则a的值为.13.已知x=4是关于x的方程ax−5=9x−a的解,那么关于y的方程a(y−1)−5=9(y−1)−a的解是y=.14.某商店把一种商品按标价的九折出售,获得的利润是进价的20%,该商品的标价为每件288元,则该商品的进价为每件元.15.某中学学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4.5千米.一列火车以每小时120千米的速度迎面开来,测得从火车头与队首学生相遇,到车尾与队末学生相遇,共经过12秒.如果队伍长150米,那么火车长米16.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3h,若静水时船速为26km/h,水速为2km/h,则A港和B港相距km.三.解答题17.解方程(1)0.5y−0.7=6.5−1.3y (2)3(x−7)+5(x−4)=1518.解方程(1)32x=12x+13(2)5y+16=9y+18−1−y319.定义:如果两个一元一次方程的解之和为1,我们就称这两个方程为“美好方程”.例如:方程4x=8和x+1=0为“美好方程”.(1)若关于x的方程3x+m=0与方程4x−2=x+10是“美好方程”,求m的值;(2)若“美好方程”的两个解的差为8,其中一个解为n,求n的值;(3)若关于x的一元一次方程12023x+3=2x+k和12023x+1=0是“美好方程”,求关于y的一元一次方(y+1)=2y+k−1的解.程1202320.下列每一幅图都是由单位长度均为1的小正方形(包含白色小正方形和灰色小正方形)按某种规律组成的.(1)根据规律,第4个图中共有______个小正方形,其中灰色..小正方形共有______个;(2)第n个图形中,白色..小正方形共有______个(用含n的式子表示,n为正整..小正方形共有______个,灰色数);(3)白色..小正方形正好多64个吗?如果可能,求出n的值;如果不可能,请说明理由...小正方形可能比灰色21.在某日的清冰雪工作中,某驻哈武警部队出动兵力480人参加三条街路的清冰雪劳动.其中A街路清冰雪的人数占此次出动兵力总人数的40%,余下的人参加B街路和C街路的清冰雪劳动,并且参加B街路.清冰雪的人数是参加C街路清冰雪人数的27(1)求参加B街路和C街路的清冰雪劳动共有多少人?(2)求参加B街路和C街路的清冰雪劳动各有多少人?(3)B街路清冰雪进展较慢,A街路和C街路的武警官兵各出一部分赞助B街路,B街路后来的人数与原来.求A街路和C街路分别赞助B街路的武警的人数比为5:2,A街路剩余的人数比C街路剩余的人数少13官兵各有多少人?22.实验学校举办体育文化艺术节活动,准备单色圆珠笔,双色圆珠笔、三色圆珠笔三种圆珠笔共1000支作奖励(每种圆珠笔都要有),其中双色圆珠笔的单价比单色圆珠笔的单价贵0.2元,买5支双色圆珠笔和8支单色圆珠笔共需要6.2元.(1)问双色圆珠笔和单色圆珠笔的单价分别是多少元?(2)若三色圆珠笔市场上根据球珠直径有三个级别,学校只能从中选择一个级别.价格如下表:三色圆珠笔级别球珠直径1mm球珠直径0.7mm球珠直径0.5mm单价2元5元8元现在学校用3480元去购买这三种圆珠笔,且单色圆珠笔和三色圆珠笔的数量是相同的,应该选择哪种级别的三色圆珠笔比较合适?购买方案是什么?请说明理由.(3)若要求购买三色圆珠笔的数量是单色圆珠笔的一半,单色圆珠笔和双色圆珠笔单价不变,其中三色圆珠笔单价为a元,在总数量不变的前提之下,无论这三种圆珠笔的数量如何分配,总费用始终不变.求此时a的值和总费用.。
第三章代数式综合练习2024-2025学年人教版数学七年级上册
第三章代数式综合练习一、选择题1. 下列代数式符合书写格式的是 ( ).(A) y÷x (B) 2×m (C)212a(D)5x42. “比a的32大1的数”用代数式表示是 ( )(A)32a+1(B)23a+1(C)52a(D)32a−13. 在x,1, x²-2, πr², S=12ab, n,V=πr²中,代数式的个数为 ( ).(A) 5个 (B)4个 (C)3个 (D)2个4.若a是最大的负整数,b是最小的正整数,c的相反数等于它本身,则a+b+c的值是 ( ).(A) -2 (B) -1 (C)1 (D) 05. 已知x²+3x+5的值等于7,则代数式3x²+9x−2的值为 ( ).(A) 0 (B) -5 (C) 4 (D) 66. 2024年苹果的价格比2023年上涨了10%,若2024年每千克苹果的价格是a元,则2023年每千克苹果的价格为 ( ).(A) (1+10%)a元 (B)(1-10%)a元(C)a1+10%元(D)a1−10%元7. 如图,为了做一个试管架,在长为a cm (a>6)的木板上钻3个小孔,且每个小孔的直径为2cm,则x等于 ( ).(A)a−34cm(B)a+34cm(C)a−64cm(D)a+64cm8. 当a=8, b=4时, 代数式ab2−b2a的值为 ( ).(A) 62 (B) 63 (C) 126 (D)10229. 若变量y与x成反比例,变量x又与z成反比例,则y与z的关系是 ( ).(A) 成反比例 (B) 成正比例(C)y与z²成正比例 (D) y与z²成反比例10. 如图,小明设计了一个计算程序,并按此程序进行了两次计算. 在计算中输入了不同的x 值,但一次没有结果,另一次输出的结果是 42,则这两次输入的x值不可能是 ( ).(A)0, 2 (B) -1, -2(C) 0, 1 (D)6, -3二、填空题11. 对单项式“5x”,我们可以这样解释:香蕉每千克5元,某人买了xkg,共付款5x元. 请你对“5x”再给出另一个实际生活方面的合理解释:12. 如果正方体的棱长是a,那么正方体的体积是,表面积是 .13. 某理财产品的年化收益率为p%,收益个人所得税的税率为 20%.某人购买的本金为a元,则到期实得本金与收益的和为元.14. 如果用c表示摄氏温度,f表示华氏温度,那么c和f之间的关系是:c= 59(f−32).当f =68时,c= ; 当f=98.6时, c= .15. 观察下列代数式:-x, 3x², -5x³, 7x⁴, -9x⁵,…按此规律,可以得到第100个代数式是,第n个代数式是 (用含n的式子表示).16. 如图,半圆的半径为r,则图中阴影部分的面积为 .17. 若当x=-2时, 代数式ax⁵+bx³+cx+2的值为6,则当. x=2时,代数式ax⁵+bx³+cx+2的值是 .18. 若(x−1)⁵=a⁵x⁵+a⁵x⁵+a⁵x³+a⁵x²+a⁵x+a⁵,则( a⁵+a⁵+a⁵+ a⁵+a⁵+a⁵=; −a⁵+a⁵−a⁵+a⁵−a⁵+a⁵=.三、解答题19. 当x分别取下列值时,求代数式x 2−2x−1x+1的值.(1) x=-3; (2)x 1220. 用代数式表示图中阴影部分的面积,并计算当x=10,y=14时,阴影部分的面积..21. 暑假期间两名教师带8名学生外出旅游,旅游费用教师每人a元,学生每人b元. 因是团体,旅游费有优惠,教师打八折,学生打六五折,共需旅游费用多少元? 并计算当( a=30,b =20)时,旅游费用的总金额.22. 某地出租车收费标准是: 起步价为6元,可乘3 km; 3 km~5 km之间,超过3km的部分每千米为1.8元;超过5k m的部分每千米为2.7元. 若小王乘坐了 x km(x>5) 的路程(不足1km 按1km计), 则他应付多少车费? 若他支付的车费为20.4元,则小王乘车的路程最多为多少千米?23. 数学课上,王老师和同学们玩游戏. 王老师说:“你们任意想一个数,把这个数除以5后加1,然后乘以15,再减去你们原来所想的那个数的3倍,我可以猜出你们计算的结果.”同学们不相信,接连试了几个数,发现王老师都正确. 你能说说其中的理由吗?24. 利用计算器,按如图流程图操作:(1) 若首次输入的正奇数为11,则按流程图操作的变化过程,可表示为:11→17→13→5→1.请用类似的方法分别表示首次输入的正奇数为9,19时,按流程图操作的变化过程;(2) 自己选几个正奇数按流程图操作,并写出变化过程,看看是否会有同样的结果;(3) 根据你的操作结果,给出一个猜想,并清楚地叙述你的猜想.。
【新教材】人教版(2024)七年级上册数学第三章 代数式 综合素质评价试卷(Word版,含答案)
【新教材】人教版(2024)七年级上册数学第三章代数式 综合素质评价试卷时间:90分钟 满分:120分一、选择题(每题3分,共30分)1.下列数与式子:①2x -y +1;②1a +1b ;③2x +1=3;④ 3>2;⑤ a ;⑥ 0,其中是代数式的有( ) A .2个B .3个C .4个D .6个2.如果a ÷b =c ,那么当a 一定时,b 与c ( ) A .成正比例 B .成反比例 C .不成比例 D .无法确定比例关系 3.代数式x -y 2的意义是( )A . x 与y 的一半的差B . x 的一半与y 的差C . x 与y 的差的一半D .以上答案均不对4.如果某种药降价40%后的价格是a 元,那么此药的原价是( ) A .(1+40%)a 元B .(1-40%)a 元C .a1+40%元 D .a1-40%元5.下列表示图中阴影部分面积的代数式是( )(第5题)A . ad +bcB . c (b -d )+d (a -c )C . ad +c (b -d )D . ab -cd6.[情境题 生活应用]某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( ) A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )7.[2024烟台莱州市期末]有长为l 的篱笆,利用它和房屋的一面墙围成如图所示的长方形园子,园子的宽为t ,则所围成的园子面积为( )(第7题)A .(l -2t )tB .(l -t )tC . (l2-t)tD . (l -t2)t8.[新考法 整体代入法]若代数式2x 2+3x 的值是5,则代数式4x 2+6x -9的值是( )A .10B .1C .-4D .-89.如果|5-a |+(b +3)2=0,那么代数式1a(1-2b )的值为( ) A .57B .58C .75D .8510.[新视角 规律探究题 2024 北京西城区月考]如图为手的示意图,在各个手指间标记字母A ,B ,C ,D ,请你按图中箭头所指方向(即A ⇒B ⇒C ⇒D ⇒C ⇒B ⇒A ⇒B ⇒C ⇒…)从A 开始数连续的正整数1,2,3,4,…,当字母C 第2 024次出现时,恰好数到的数是( )(第10题)A .6 072B .6 071C .6 065D .6 066二、填空题(每题4分,共24分) 11.[2024锦州凌海市期中]下列书写:①1y ;②123x 2y ;③7m 2n 3;④n 23;⑤2 024×a ×b ;⑥m+3千克,其中正确的是 (填序号). 12.写出7(a -3)的意义: .13.一台电脑原价为a 元,降价20%后,又降低m 元,现售价为 元.14.[2024佛山顺德区期中]某地海拔高度h (km)与温度T (℃)的关系可用T =20-6h 来表示,则该地某海拔高度为2 000 m 的山顶上的温度为 .15.[教材P7习题T10变式 2024泰州兴化市期中]一个两位数x ,还有一个两位数y ,若把x 放在y 前面,组成一个四位数,则这个四位数为 (用含x ,y 的代数式表示). 16.[新视角 程序计算题]按如图所示的程序流程计算,若开始输入的值为x =3,则最后输出的结果是 .三、解答题(共66分)17.(6分)表中的两个量是否成比例关系,成什么比例关系? (1)每支圆珠笔的价钱/元 3 2 1.5 1.2 购买圆珠笔的支数10152025(2)每天的运货量/吨 100 120 150 200 需要的天数60504030(3)。
人教版(2023)七年级上册数学同步练:第三章综合训练(含答案)【可编辑可打印】
第三章综合训练一、选择题1.若2(a+3)的值与4互为相反数,则a 的值为( )A.1B.-72C.-5D.122.下列说法错误的是( ) A.如果ax=bx ,那么a=b B.如果a=b ,那么a c 2+1=bc 2+1C.如果a=b ,那么ac-d=bc-dD.如果x=3,那么x 2=3x3.下列方程变形正确的是( )A.方程3x-2=2x+1,移项,得3x-2x=-1+2B.方程3-x=2-5(x-1),去括号,得3-x=2-5x-1C.方程23t=32,未知数系数化为1,得t=1 D.方程x -10.2−x0.5=1化成3x=64.儿童节期间,某商店将单价标为130元的书包按8折出售可获利30%,该书包每个的进价是( ) A.65元 B.80元 C.100元 D.104元5.方程2x+32-x=9x -53+1去分母得( ) A.3(2x+3)-x=2(9x-5)+6 B.3(2x+3)-6x=2(9x-5)+1 C.3(2x+3)-x=2(9x-5)+1 D.3(2x+3)-6x=2(9x-5)+66.如图①,天平呈平衡状态,其中左侧盘中有一袋玻璃球,右侧盘中也有一袋玻璃球,还有2个各20 g 的砝码.现将左侧袋中一颗玻璃球移至右侧盘,并拿走右侧盘中的1个砝码,天平仍呈平衡状态,如图②.则移动的玻璃球的质量为( )A .10 gB .15 gC .20 gD .25 g7.为确保信息安全,信息需要加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密).已知加密规则为:明文a ,b ,c 对应密文a+1,2b+4,3c+9.例如明文1,2,3对应密文2,8,18.如果接收方收到密文7,18,15,那么解密得到的明文为 ( ) A.4,5,6 B.6,7,2 C.7,2,6 D.2,6,78.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A.5x-45=7x-3B.5x+45=7x+3C.x+455=x+37D.x -455=x -37二、填空题9.已知x=2是关于x 的方程ax-5x-6=0的解,则a= .10.对于有理数a ,b ,c ,d ,现规定一种新的运算|a b c d|=ad-bc.则满足等式|x 2x+132 1|=1的x 的值为 .11.当m= 时,单项式15x 2m-1y 2与-8x m+3y 2是同类项. 12.(1)若一个队胜m 场,则该队的总积分为 ;(2)某队的胜场总积分能否等于它的负场总积分?你的观点是: .三、解答题 13.解下列方程: (1)2x -13−10x -16=2x+14-1; (2)x 0.7−0.17-0.2x 0.03=1.14.当m 为何值时,式子2m-5m -13的值与式子7-m2的值的和等于5?15.一架飞机在两个城市之间飞行,风速为24千米/时,顺风飞行要2小时50分,逆风飞行要3小时,求飞机在静风中的速度.16.某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?17.二十大报告指出“中国式现代化是人与自然和谐共生的现代化”.某市为促进节约用水,提高用水效率,建设节水型城市,将自来水划分为“家居用水”和“非家居用水”.根据新规定,“家居用水”用水量不超过6 t,按每吨2.2元收费;如果超过6 t,那么未超过部分仍按每吨2.2元收费,而超过部分则按每吨3元收费.如果某用户5月份水费平均为每吨2.4元,那么该用户5月份应交水费多少元?答案一、选择题 1.C 2.A 3.D4.B 设该书包每个的进价为x 元,根据题意列方程,得130×80%-x=30%x ,解得x=80.5.D6.A7.B 由题意,得a+1=7,2b+4=18,3c+9=15,解得a=6,b=7,c=2. 8.B二、填空题 9.810.-10 根据题意,得x 2−2(x+1)3=1, 解得x=-10.11.4 根据同类项的定义,相同字母的指数相同,得2m-1=m+3,解得m=4. 12.(1)m+11 (2)不能 (1)胜一场得分:2211=2(分),负一场得分:21-10×2=1(分).若一个队胜m 场,则总积分为2m+(11-m )=2m+11-m=m+11.(2)设一个队胜了x 场,则负了(11-x )场.若这个队的胜场总积分等于负场总积分,则有方程2x-(11-x )=0,解得x=113.其中x (胜场)的值必须是整数,故x=113不符合实际,由此可以判定没有哪个队的胜场总积分等于负场总积分. 三、解答题13.解 (1)去分母,得4(2x-1)-2(10x-1)=3(2x+1)-12. 去括号,得8x-4-20x+2=6x+3-12. 移项、合并同类项,得-18x=-7. 系数化为1,得x=718.(2)原方程可转化为10x 7−17-20x3=1.去分母,得30x-7(17-20x )=21. 去括号,得30x-119+140x=21. 移项、合并同类项,得170x=140. 系数化为1,得x=1417.14.解 根据题意,得2m-5m -13+7-m2=5.解这个方程,得m=-7.因此当m=-7时,式子2m-5m -13的值与式子7-m2的值的和等于5.15.解 设飞机在静风中的速度为x 千米/时,则(x+24)×256=(x-24)×3,解得x=840.答:飞机在静风中的速度是840千米/时.16.解 (1)设甲种奖品购买了x 件,乙种奖品购买了(30-x )件,根据题意,得30x+20(30-x )=800,解得x=20,则30-x=10.答:甲种奖品购买了20件,乙种奖品购买了10件.(2)设甲种奖品购买了x 件,乙种奖品购买了(30-x )件,设购买两种奖品的总费用为w 元,根据题意,得30-x ≤3x ,解得x ≥7.5,w=30x+20(30-x )=10x+600.∵10>0,∴w 随x 的增大而增大,∴x=8时,w 有最小值,为w=10×8+600=680.答:当购买甲种奖品8件、乙种奖品22件时,总花费最小,最小费用为680元.17.解 设该用户5月份用水x t,根据题意,得2.4x=6×2.2+3(x-6).解这个方程,得x=8. 所以8×2.4=19.2(元).答:该用户5月份应交水费19.2元.。
人教版七年级数学上册第三章综合测试卷含答案
人教版七年级数学上册第三章综合测试卷一、选择题(每题3分,共30分)1.下列代数式书写规范的是()A. b×12B.4÷(a+b) C.225x D.3n2.[母题教材P71例2] 用语言叙述式子“a-12b”所表示的数量关系,下列说法正确的是()A. a与b的差的12B. a与b的一半的积C. a与b的12的差D. a比b大123.[2024·成都武侯区期末]某商店举办促销活动.促销的方法是将原价为x元/件的衣服以(45x-7)元/件出售,则下列关于代数式(45x-7)的含义的描述正确的是()A.原价打8折后再减去7元B.原价减去7元后再打8折C.原价减去7元后再打2折D.原价打2折后再减去7元4.当a=-1,b=3时,式子2a2+ab+b的值是()A.-5B.-2C.2D.65.[母题教材P75练习T2] 下列各说法中的两个量之间的关系属于反比例关系的有()①当路程一定时,汽车行驶的平均速度与行驶时间之间的关系;②当商品的进价一定时,利润与售价之间的关系;③当长方形的面积一定时,长方形的长与宽之间的关系;④计划从A地到B地铺设一段2 400米长的铁轨,每日铺设长度与铺设天数之间的关系.A.1个B.2个C.3个D.4个6.某商品原来的价格为a 元,前期在销售时连续两次降价10%.后期由于成本价格上涨,商店决定在两次降价的基础上提价20%,提价后商品的价格为( ) A. a 元B.0.918a 元C.0.972a 元D.0.96a 元7.[2023·雅安]若m 2+2m -1=0,则2m 2+4m -3的值是( ) A.-1B.-5C.5D.-38.学校礼堂的房间窗户装饰物如图所示,该装饰物由两个四分之一圆组成(半径相同),则窗户中能射进阳光的部分的面积为( )A. ab -π16b 2B. ab -π8b 2C. ab -π4b 2D. ab -π2b 29.[新视角·2023·济宁改编·规律探究题]已知一列均不为1的数a 1,a 2,a 3,…,a n 满足如下关系:a 2=1+a 11-a 1,a 3=1+a 21-a 2,a 4=1+a 31-a 3,…,a n +1=1+a n1-a n,若a 1=2,则a 2 025的值是( ) A.-12B.13C.-3D.210.如图,下面图形是用棋子按照一定规律摆成的,按照这种摆法,第n 个图形中共有棋子( )A.2n 枚B.(n 2+1)枚C. n (n -1)枚D. n (n +1)枚二、填空题(每题3分,共18分)11.下列各式中,是代数式的是 .(填序号) ①2x -1;②a =1;③S =πR 2;④π;⑤72m ;⑥12>13.12.[新视角·2024·北京丰台区期末·结论开放题]对于式子“m +n ”可以赋予其实际意义:一个篮球的价格是m 元,一个足球的价格是n 元,体育老师购买一个篮球和一个足球共需要付款(m +n )元,请你给式子“2a ”赋予一个实际意义: .13.[情境题 生活应用]房间面积一定时,每块砖的面积和铺砖的块数 (填“满足”或“不满足”)反比例关系.14.把一个两位数m 放在一个三位数n 的前面,组成一个五位数,这个五位数可表示为 .15.[2024·南京期末]如果|m |=2,那么代数式1-m +2m 2的值为 .16.将长为30 cm 的长方形白纸,按如图所示的方法黏合起来,黏合部分的宽为2 cm.(1)3张白纸黏合后的总长度为 cm ;(2)x 张白纸黏合后的总长度为 cm.(用含x 的代数式表示) 三、解答题(共72分) 17.(6分)用代数式表示: (1)m 的3倍与n 的一半的和; (2)比a 与b 的积的2倍小5的数;(3)x,y两数的平方和减去它们积的2倍.18.(8分)已知a,b互为相反数,c,d互为倒数,m的绝对值等于3,求a+bm2+cd-m的值.19.(10分)列式表示并求值.(1)超市购进一批上衣,标价为a元/件,后降价20%进行销售,小明购买了2件该上衣,一共花费了多少元?当a=120时,小明一共花费了多少元?(2)甲、乙两地相距b km,一辆汽车以v km/h的速度从甲地向乙地行驶,行驶t h后,汽车与乙地之间的距离为多少千米?当b=200,v=80,t=1.5时,汽车与乙地之间的距离为多少千米?20.(10分)一个水池内原有水500升,现在以20升/分钟的速度向水池内注水,35分钟可注满水池.(1)水池的容积是多少升?(2)若水池为空的,用Q(单位:升/分钟)表示注水的速度,用T表示注满水池需要的时间,用式子表示T与Q的关系,T与Q成什么比例关系?21.(12分)[2024·扬州江都区期中]如图,在一块长为3x,宽为y(3x>y)的长方形铁皮的四个角上,分别截去半径都为y2的圆的14.(1)试计算剩余铁皮的面积(阴影部分面积).(2)当x=4,y=8时,剩余铁皮的面积是多少?(π取3)22.(12分)某种杯子的高度是15 cm,两个以及三个这样的杯子叠放时的高度如图所示.(1)n个这样的杯子叠放在一起的高度是cm.(用含n的式子表示)(2)20个这样的杯子叠放在一起的高度是多少?23.(14分)[立德树人节约资源]为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的.该市自来水收费的价目表如下(注:水费按月份结算):每月用水量单价不超出6 m3的部分2元/m3超出6 m3不超出10 m3的部分4元/m3超出10 m3的部分8元/m3已知李老师家某月用水量为x m3.(1)若6<x≤10,则李老师当月应交水费多少元?(用含x的式子表示,并化简)(2)若x>10,则李老师当月应交水费多少元?(用含x的式子表示,并化简)答案一、1. D 2. C 3. A4. C 【点拨】因为a =-1,b =3,所以2a 2+ab +b =2×(-1)2+(-1)×3+3=2. 5. C6. C 【点拨】由题意得提价后商品的价格为a (1-10%)×(1-10%)(1+20%)=a ×0.9×0.9×1.2=0.972a (元).7. A 【点拨】因为m 2+2m -1=0, 所以m 2+2m =1.所以2m 2+4m =2. 所以2m 2+4m -3=2-3=-1.8. B 【点拨】由题意得窗户中能射进阳光的部分的面积为ab -2×14π×(b 2)2=ab -π8b 2. 9. D 【点拨】因为a 1=2, 所以a 2=1+21-2=-3,所以a 3=1-31+3=-12,所以a 4=1-121+12=13,所以a 5=1+131-13=2,…,由此可得这列数按2,-3,-12,13循环出现. 因为2 025÷4=506……1,所以a 2 025=a 1=2.10. D 【点拨】第1个图形中有2枚棋子,2=1×2;第2个图形中有6枚棋子,6=2×3;第3个图形中有12枚棋子,12=3×4;第4个图形中有20枚棋子,20=4×5;…,所以第n 个图形中有n (n +1)枚棋子. 二、11.①④⑤12.一个篮球的价格是a 元,购买2个篮球共需付款2a 元(答案不唯一)13.满足14.1 000m+n15.7或11 【点拨】因为|m|=2,所以m=±2.当m=2时,1-m+2m2=1-2+2×22=7;当m=-2时,1-m+2m2=1-(-2)+2×(-2)2=11.综上所述,代数式1-m+2m2的值为7或11.16.(1)86(2)(28x+2)三、17.【解】(1)3m+12n.(2)2ab-5.(3)x2+y2-2xy.18.【解】根据题意,得a+b=0,cd=1,m=±3,当m=3时,a+bm2+cd-m=032+1-3=-2,当m=-3时,a+bm2+cd-m=0(−3)2+1-(-3)=4.综上,a+bm2+cd-m的值为-2或4.19.【解】(1)一共花费了2a(1-20%)=1.6a(元).当a=120时,1.6a=1.6×120=192.故当a=120时,小明一共花费了192元.(2)汽车与乙地之间的距离为(b-vt)km.当b=200,v=80,t=1.5时,b-vt=200-80×1.5=80.故当b=200,v=80,t=1.5时,汽车与乙地之间的距离为80 km.20.【解】(1)水池的容积是500+20×35=1 200(升).(2)依题意得TQ=1 200或T=1200Q,T与Q成反比例关系.21.【解】(1)由题意可知S阴影=3xy-π·(y2)2=3xy-π4y2,所以剩余铁皮的面积是3xy-π4y2.(2)当x=4,y=8时,S阴影=3×4×8-3×82=48.4答:当x=4,y=8时,剩余铁皮的面积是48.22.【解】(1)(3n+12)(2)当n=20时,3n+12=3×20+12=72.答:20个这样的杯子叠放在一起的高度是72 cm.23.【解】(1)若6<x≤10,则李老师当月应交水费2×6+(x-6)×4=12+4(x-6)=4x-12(元).(2)若x>10,则李老师当月应交水费2×6+4×(10-6)+(x-10)×8=12+16+8(x-10)=28+8(x-10)=8x-52(元).。
重难点解析人教版七年级数学上册第三章一元一次方程综合测评练习题(含答案详解版)
人教版七年级数学上册第三章一元一次方程综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知等式324a b =-,则下列等式中不成立的是( )A .324a b -=-B .3125a b -=-C .324ac bc =-D .3(1)(24)(1)a c b c +=-+2、下列解方程的变形过程正确的是( )A .由321x x =-移项得:321x x +=-B .由4321x x +=-移项得:3214x x -=-C .由3121123x x -+=+去分母得:3(31)12(21)x x -=++ D .由()42311x --=去括号得:4621x -+=3、一个三角形三条边长的比是2:4:5,最长的边比最短的边长6cm ,这个三角形的周长为( ).A .20cmB .21cmC .22cmD .20cm 或22cm4、下列方程变形正确的是( )A .由3+x=5,得x=5+3B .由3=x ﹣2,得x=3+2C .由12y=0,得y=2D .由7x=﹣4,得x=﹣745、如果关于x 的方程ax =b 无解,那么a 、b 满足的条件( )A .a =0,b =0B .a ≠0,b ≠0C .a ≠0,b =0D .a =0,b ≠06、下列运用等式的性质对等式进行的变形中,错误的是( )A .若()()2211a x b x +=+,则a b =B .若a b =,则ac bc =C .若a b =,则22a b c c =D .若x y =,则33x y -=-7、下列运用等式的性质对等式进行的变形中,错误的是( )A .若 a =b ,则 ac =bcB .若 a (x 2+1)=b (x 2+1),则 a =bC .若 a =b ,则ab c c = D .若 x =y ,则 x -3=y -38、一货轮往返于上、下游两个码头,逆流而上38个小时,顺流而下需用32个小时,若水流速度为8千米/时,则下列求两码头距离x 的方程正确的是( )A .883238x x -+=B .883238x x -=+C .832382x x -=D .21323823238x x x ⎛⎫=+ ⎪+⎝⎭9、解方程()()41111433x x --=-+的最佳方法是( ) A .去括号B .去分母C .移项合并()1x -项D .以上方法都可以10、10名学生的平均成绩是x ,如果另外5名学生每人得84分,那么整个组的平均成绩是( )A .842x +B .1042015x +C .108415x +D .1042015+ 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x 首,根据题意,可列方程为______.2、当=a __________时,方程1132ax x a -++=解是1x =? 3、如将()x y -看成一个整体,则化简多项式22()5()4()3()x y x y x y x y -----+-=__.4、某动物园利用杠杆原理称象:如图,在点P 处挂一根质地均匀且足够长的钢梁(呈水平状态),将装有大象的铁笼和弹簧秤(秤的重力忽略不计)分别悬挂在钢梁的点A ,B 处,当钢梁保持水平时,弹簧秤读数为k (N ).若铁笼固定不动,移动弹簧秤使BP 扩大到原来的n (1n >)倍,且钢梁保持水平,则弹簧秤读数为_______(N )(用含n ,k 的代数式表示).5、元代朱世杰所著的《算学启蒙》里有这样一道题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”请你回答:良马_______天可以追上驽马.三、解答题(5小题,每小题10分,共计50分)1、据统计,我国入网的智能手机,已有20%以上使用北斗服务,完成主网的中国北斗也将更加“吸引世界”;卫星燃料常用的液体氧化剂有液态氧,四氧化二氨等,燃烧剂有液氢,偏二甲肼,煤油等,某化工有限公司一直为其提供部分液氢,液氧材料,液氢的单价为每吨0.4万元,液氧的单价为每吨0.1万元.(1)某一次研发过程中根据需要液氧的量是液氢数量的8倍,此次总费用为1200万元,那么本次研发从该化工有限公司购进液氧多少吨?(2)总结上一次的经验,实验室开始第二次研发,液氢的量在第一次的基础上增加5%,液氧的量在第一次的基础上减少10%,受行情影响,原料成本有所上涨,该化工厂将液氢的单价在原价的基础上上涨20%,液氧的单价比原价多300元,则第二次总费用为多少万元?2、一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时.已知水流的速度是3千米/时,求船在静水中的平均速度.3、某糕点厂中秋节前要制作一批盒装月饼,每盒中装2块大月饼和4块小月饼.制作1块大月饼要用0.05kg 面粉,1块小月饼要用0.02kg 面粉.现共有面粉4500kg ,制作两种月饼应各用多少面粉,才能生产最多的盒装月饼?4、已知方程4231x m x +=+的解与方程3161x x +=+的解相同.(1)求m 的值;(2)求代数式20197(2)25m m ⎡⎤⎛⎫+⋅- ⎪⎢⎥⎝⎭⎣⎦的值.5、解方程2(1)x x -=-参考答案-一、单选题1、C【解析】【分析】由324a b =-,再利用等式的基本性质逐一分析各选项,即可得到答案.【详解】解:324a b =-,324,a b ∴-=- 故A 不符合题意;324a b =-,3125,a b ∴-=- 故B 不符合题意;324a b =-,324,ac bc c ∴=- 故C 符合题意;324a b =-,∴ 3(1)(24)(1)a c b c +=-+,故D 不符合题意;故选:.C【考点】本题考查的是等式的基本性质,掌握等式的基本性质是解题的关键.2、D【解析】【分析】对于本题,我们可以根据解方程式的变形过程逐项去检查,必须符合变形规则,移项要变号.【详解】解析:A .由321x x =-移项得:321x x -=-,故A 错误;B .由4321x x +=-移项得:3214x x -=--,故B 错误;C.由3121123x x -+=+去分母得:()()3316221x x -=++,故C 错误; D.由()42311x --=去括号得:4621x -+= 故D 正确.故选:D .【考点】本题主要考查了解一元一次方程变形化简求值,解题关键是:必须熟练运用移项法则.3、C【解析】设三角形三边分别为2xcm、4xcm、5xcm,由最长边比最短边长6cm,列方程即可求解.【详解】解:设三角形三边分别为2xcm、4xcm、5xcm.则:5x-2x=6,解得:x=2,∴三角形三边分别为4cm、8cm、10cm,∴这个三角形的周长为22cm.故选:C.【考点】本题考查了一元一次方程的应用及三角形的知识,解题的关键是根据三角形的三边的比设出三边的长,难度不大.4、B【解析】【分析】各项中方程变形得到结果,即可做出判断.【详解】A选项:由3+x=5,得x=5-3,错误;B选项:由3=x-2,得x=3+2,正确;C选项:由12y=0,得y=0,错误;D选项:由7x=-4,得x=-47,错误,故选B.考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.5、D【解析】【分析】根据方程无解,可知含x的系数为0,常数不为0,据此求解.【详解】解:∵关于x的方程ax=b无解,∴a=0,b≠0,故选:D.【考点】本题考查一元一次方程的解,理解方程无解时含x的系数为0,常数项不为0是解题关键.6、C【解析】【分析】根据等式的性质,逐项判断即可.【详解】解:A、根据等式性质2,a(x2+1)=b(x2+1)两边同时除以(x2+1)得a=b,原变形正确,故这个选项不符合题意;B、根据等式性质2,a=b两边都乘c,即可得到ac=bc,原变形正确,故这个选项不符合题意;C、根据等式性质2,c可能为0,等式两边同时除以c2,原变形错误,故这个选项符合题意;D、根据等式性质1,x=y两边同时减去3应得x-3=y-3,原变形正确,故这个选项不符合题意.故选:C.此题主要考查了等式的性质和应用,要熟练掌握,解答此题的关键是要明确:(1)等式两边加同一个数(或式子),结果仍得等式.(2)等式两边乘同一个数或除以一个不为零的数,结果仍得等式.7、C【解析】【分析】利用等式的性质对每个式子进行变形即可找出答案.【详解】解:A、a=b,等式两边都乘以c,得到ac=bc,正确;B、a(x2+1)=b (x2+1),等式两边同时除以(x2+1),得到a=b,正确;C、a=b,等式两边同时除以c,c为零时不成立,故错误;D、x=y,等式两边都减3,得到x-3=y-3,正确.故选:C.【考点】本题主要考查等式的性质.运用等式性质1必须注意等式两边所加上的(或减去的)必须是同一个数或整式;运用等式性质2必须注意等式两边所乘的(或除的)数或式子不为0,才能保证所得的结果仍是等式.8、B【解析】【分析】根据题意分别表示出顺流和逆流时船的速度,然后列方程即可.【详解】解:∵逆流而上38个小时,∴逆流时船本身的速度可以表示为38x 千米/时, ∵顺流而下需用32个小时, ∴顺流时船本身的速度可以表示为32x 千米/时, ∵静水的速度是不变的, ∴可列方程为883238x x -=+. 故选:B .【考点】 此题考查了一元一次方程中的航行问题,解题的关键是根据题意分析出顺流和逆流时船的速度.9、C【解析】【分析】由于x-1的系数分母相同,所以可以把(x-1)看作一个整体,先移项,再合并(x-1)项.【详解】 解:移项得,43(x-1)-13(x-1)=4+1, 合并同类项得,x-1=5,解得x=6.故选C .【考点】本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解答此题的关键.10、B【解析】【分析】先求出15人的总成绩,再用15个人的总成绩除以15即可得整个组的平均成绩. 【详解】15个人的总成绩10x+5×84=10x+420,所以整个组的平均成绩为:再除以15可求得平均值为10x42015,故选B.【考点】本题考查了加权平均数的知识,解题的关键是求的15名学生的总成绩.二、填空题1、28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x首,根据题意,可列方程为: 28x-20(x+13)=20,故答案为: 28x-20(x+13)=20.【考点】本题主要考查一元一次方程应用,关键在于找出五言绝句与七言绝句总字数之间的关系.2、1【解析】【分析】将1x =代入方程,再解一元一次方程即可.【详解】由题意,将1x =代入得:11132a a -++= 两边同乘以6得2(1)3(1)6a a -++=去括号得22336a a -++=移项、合并同类项得55a =系数化为1得1a =故答案为:1.【考点】本题考查了方程的解、解一元一次方程,掌握方程的解法是解题关键.3、23()2()x y x y ----【解析】【分析】把x -y 看作整体,根据合并同类项的法则,系数相加作为系数,字母和字母的指数不变,计算即可.【详解】(x -y )2-5(x -y )-4(x -y )2+3(x -y )=(1-4)(x -y )2+(-5+3)(x -y )=-3(x -y )2-2(x -y )故答案为:-3(x -y )2-2(x -y )【考点】本题考查了合并同类项的法则,系数相加作为系数,字母和字母的指数不变,是基础知识比较简单.4、k n【解析】【分析】根据杠杆的平衡条件是:动力×动力臂=阻力×阻力臂,计算即可.【详解】设弹簧秤新读数为x根据杠杆的平衡条件可得:k PB x nPB⋅=⋅解得k xn =故答案为:kn.【考点】本题是一个跨学科的题目,熟记物理公式动力×动力臂=阻力×阻力臂是解题的关键.5、20【解析】【详解】解:设良马x日追及之,根据题意得:240x=150(x+12),解得x=20.故答案为:20.三、解答题1、 (1)8000;(2)1440.【解析】【分析】(1)设液氢数量为x 吨,液氧数量为8x 吨,利用液氧的费用+液氢的费用=总费用1200万元,列一元一次方程,求解即可;(2)将第二次研发液氢和液氧数量以及变化后的单价表示出来,根据单价×数量=总费用,即可求出第二次的总费用.(1)解:设液氢数量为x 吨,液氧数量为8x 吨,则0.40.181200x x +⨯=解得1000x =8x =8×1000=8000答:本次研发从该化工有限公司购进液氧8000吨.(2)解:由题意得液氢数量为:1000×(1+5%)=1050(吨)液氧数量为:8000×(1-10%)7200(吨)液氢单价为:0.4×(1+20%)=0.48(万元)液氧单价为:0.1+0.03=0.13(万元)则第二次总费用为:1050×0.48+7200×0.13=1440(万元)答:第二次总费用为1440万元.【考点】本题考查了一元一次方程的应用,有理数混合计算的实际应用,解题的关键是根据数量关系,正确列出一元一次方程.2、27千米/时【解析】【分析】设船在静水中的平均速度为x 千米/时,根据题意列出方程并解答即可.【详解】解:设船在静水中的平均速度为x 千米/时.根据题意,得2(3) 2.5(3)x x +=-.解这个方程,得27x =.答:船在静水中的平均速度为27千米/时.【考点】本题考查一元一次方程的应用,熟练掌握计算法则是解题关键.3、制作大月饼要用2500kg 面粉,小月饼要用2000kg 面粉【解析】【分析】方法1 设大月饼要用kg x 面粉,根据大月饼数量:小月饼数量2:4=得等量关系式:2倍大月饼数量=1倍小月饼数量,根据等量关系列出方程,解方程即可;方法2 设大月饼做了x 块,则小月饼做了2x 块,根据等量关系:大月饼所需的面粉质量+小月饼所需的面粉质量=现共有面粉4500kg ,列出方程并解方程即可;方法3 用算术方法解决.先计算出一盒月饼的面粉用量:一盒月饼面粉用量=2块大月饼面粉用量+4块小月饼面粉用量,则4500kg 面粉可制作月饼盒数可求出,根据:每盒月饼中大月饼的数量×总盒数×每块大月饼的面粉用量,可求得用于制作大月饼的面粉质量,从而也可求得用于制作小月饼的面粉质量;方法4 用比来解.先求得每盒月饼中,大月饼和小月饼的面粉用量比为5:4,然后按比分配即可解决;方法5 设一共制作x 盒月饼,则可分别表示出制作大月饼和小月饼所需的面粉用量,根据等量关系:制作大月饼所需的面粉用量+小月饼所需的面粉用量=4500,列出方程,解方程即可.【详解】【方法1】设大月饼要用kg x 面粉,小月饼要用()4500kg x -面粉 大月饼的数量为x 0.05块;小月饼的数量为()45000.02x -块. 依题意列方程:()450020.050.02x x -=,解得:2500x =. 45002000x -=.∴制作大月饼要用2500kg 面粉,小月饼要用2000kg 面粉.【方法2】设大月饼做了x 块,则小月饼做了2x 块.大月饼用了0.05kg x 面粉,小月饼用了0.04kg x 面粉.依题意列方程:0.050.044500x x +=;解得:50000x =;0.052500x =;0.042000x =.∴制作大月饼要用2500kg 面粉,小月饼要用2000kg 面粉.【方法3】一盒月饼面粉用量=2块大月饼面粉用量+4块小月饼面粉用量()20054002018kg =⨯+⨯=...4500kg 面粉可制作月饼:45000.1825000÷=(盒)其中用于制作大月饼的面粉有:每盒月饼中大月饼的数量×总盒数×每块大月饼的面粉用量()2250000052500kg =⨯⨯=.其中用于制作小月饼的面有:每盒月饼中小月饼的数量×总盒数×每块小月饼的面粉用量()4250000022000kg =⨯⨯=.【方法4】每盒月饼中,大月饼和小月饼的面粉用量比为:()()20.05:40.025:4⨯⨯= ∴用于制作大月饼的面粉有:()545002500kg 54⨯=+; 用于制作小月饼的面粉有:()445002000kg 54⨯=+. 【方法5】设一共制作x 盒月饼,面粉用量为:大月饼0.0520.1kg x x ⨯=;小月饼0.0240.8kg x x ⨯= 依题意列方程:0.10.84500x x +=;解得25000x =;0.12500x =;0.82000x =,∴制作大月饼要用2500kg 面粉,小月饼要用2000kg 面粉.4、(1)12m =;(2)1- 【解析】【分析】(1)根据同解方程,可得关于m 的方程,根据解方程,可得答案;(2)根据m 的值代入,由乘方的运算法则可得答案.【详解】(1)由3x +1=6x +1解得x =0.由4x +2m =3x +1的解与方程3x +1=6x +1的解相同,得2m =1, 解得12m =; (2)当12m =时,20197(2)25m m ⎡⎤⎛⎫+⋅- ⎪⎢⎥⎝⎭⎣⎦=()20192019201917(2)125511252⎡⎤⎛⎫=⨯⎡-⎤⎛⎫+⋅- ⎪=-⎢=- ⎪⎢⎥⎝⎭⎣⎦⎥⎝⎭⎣⎦.【考点】本题考查了同解方程,利用同解方程得出关于m 的方程是解(1)题关键,利用乘方的运算是解(2)的关键.5、2x =【解析】【分析】先去括号,再移项、合并同类项即可求出x 的值.【详解】解:去括号得:22x x -=,移项得:22x x -=,合并得:2x =.【考点】本题考查了一元一次方程的解法,比较简单,注意移项要变号.。
(新)人教版七年级数学上册第三章《一元一次方程》应用题分类:相遇与追击类问题综合练习(附解析)
《一元一次方程》应用题分类:相遇与追击类问题综合练习1.根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间将由现在的2小时18分缩短为36分钟,其速度每小时将提高260km.求提速后的火车速度.(精确到1km/h)2.一架飞机往返于两城之间,顺风需要5小时30分,逆风时需6小时,已知风速是每小时24千米,求两城之间的距离.3.小张和父亲预定搭家门口的公共汽车赶往火车站,去家乡看望爷爷.在行驶了一半路程时,小张向司机询问到达火车站的时间,司机估计继续乘公共汽车到火车站时火车将正好开出.根据司机的建议,小张和父亲随即下车改乘出租车,车速提高了一倍,结果赶在火车开出前15分钟到达火车站.已知公共汽车的平均速度是30千米/小时,问小张家到火车站有多远?4.李伟从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟,若每小时行18千米,则比火车开出时间迟到15分钟.若李伟打算在火车开出前10分钟到达火车站,求李伟此时骑摩托车的速度该是多少?5.一条环行跑道长400米,甲每分钟行550米,乙每分钟行250米.(1)甲、乙两人同时同地反向出发,问多少分钟后他们首次相遇?(2)甲、乙两人同时同地同向出发,问多少分钟后他们首次相遇?6.运动场跑道周长400m,爷爷跑步的速度是小红的.(1)他们从同一起点沿跑道的相反方向同时出发,min后两人第一次相遇,求他们的跑步速度;(2)如果他们第一次相遇后小红立即转身也沿爷爷的方向跑,那么几分钟后他们再次相遇?7.某学校的一名学生从家到校去上课,他先以每小时4千米的速度步行了全程的一半后,再搭上速度为20千米/时的顺路班车,所以比原来需要的时间早到了一小时,问他家到学校的距离是多少千米?8.从甲地到乙地的路有一段平路与一段上坡路.如果骑自行车保持平路每小时行15km,上坡路每小时行10km,下坡路每小时行18km,那么从甲地到乙地需29min,从乙地到甲地需25min.从甲地到乙地的路程是多少?9.列方程解应用题:成都到雅安的高速公路全长147千米,上午八时一辆货车由雅安到成都,车速是每小时60千米,半小时后,一辆小轿车从雅安出发去追赶货车,车速是每小时80千米.问:小轿车从雅安出发到追到货车用了多少小时?10.某中学租用两辆小汽车(速度相同)同时送1名带队老师和7名七年级学生到市区参加数学竞赛.每辆车限坐4人(不包括司机),其中一辆小汽车在距离考场15千米的地方出现故障,此时离截止进考场时刻还有42分钟,这时唯一可利用的只有另一辆小汽车,且这辆车的平均速度是60千米/时,人步行速是5千米/时.(人上下车的时间不记)(1)若小汽车送4人到达考场后再返回到出故障处接其他4人.请你通过计算说明能否在截止进考场的时刻前到达考场?(2)带队老师提出一种方案:先将4人用车送到考场,另外4人同时步行前往考场,小汽车到达考场后返回再接步行的4人到达考场.请你通过计算说明方案的可行性.(3)所有学生、老师都到达考场,最少需要多少时间?参考答案1.解:设连云港至徐州客运专线的铁路全长为xkm,列方程得:﹣=260,1.7x=358.8,解得x=,≈352km/h.答:提速后的火车速度约是352km/h.2.解:设两城之间的距离为x千米,由题意得:﹣=24×2解得:x=3168答:两城之间的距离为3168千米.3.解:由题目分析,根据时间差可列一元一次方程:x﹣x=,即:x=,解得:x=30千米.答:小张家到火车站有30km.4.解:设火车开出时间为x小时,由题意得:30(x﹣)=18(x+),解得x=1.设李伟骑车速度为每小时y千米,y==27.故李伟骑车速度为每小时27千米.5.解:(1)设甲、乙两人同时同地反向出发,x分钟后他们首次相遇.则(550+250)x=400,解得x=.故甲、乙两人同时同地反向出发,分钟后他们首次相遇.(2)设甲、乙两人同时同地同向出发,y分钟后他们首次相遇.则(550﹣250)y=400,解得y=.故甲、乙两人同时同地同向出发,分钟后他们首次相遇.6.解:(1)设小红的跑步速度是xm/min,则爷爷跑步的速度是xm/min,由题意得:x+×x=400,解得:x=200.x=120.答:小红的跑步速度是200m/min,则爷爷跑步的速度是120m/min.(2)设y分钟后他们再次相遇.由题意得:200y﹣120y=400,解得:y=5.答:5分钟后两人首次相遇.7.解:设他家到学校的距离是x千米,﹣1=,5x﹣40=x,x=10,故他家到学校的距离是10千米.8.解:设平路所用时间为x小时,29分=小时,25分=小时,则依据题意得:10(﹣x)=18(),解得:x=,则甲地到乙地的路程是15×+10×()=6.5km,答:从甲地到乙地的路程是6.5km.9.解:设轿车从出发到追上货车用了x小时,由题意得:60×+60x=80x解得:x=1.5;答:轿车从出发到追上货车用了1.5小时.10.解:(1)所需要的时间是:15×3÷60×60=45分钟,∵45>42,∴不能在截至进考场的时刻前到达考场;(2)先将4人用车送到考场,另外4人同时步行前往考场,汽车到考场后返回到与另外4人的相遇处再载他们到考场.先将4人用车送到考场所需时间为=0.25(h)=15(分钟).0.25小时另外4人步行了1.25km,此时他们与考场的距离为15﹣1.25=13.75(km),设汽车返回t(h)后与先步行的4人相遇,5t+60t=13.75,解得t=.汽车由相遇点再去考场所需时间也是h.所以用这一方案送这8人到考场共需15+2××60≈40.4<42.所以这8个人能在截止进考场的时刻前赶到;(3)8人同时出发,4人步行,先将4人用车送到离出发点xkm的A处,然后这4个人步行前往考场,车回去接应后面的4人,使他们跟前面4人同时到达考场,由A处步行前考场需(h),汽车从出发点到A处需(h)先步行的4人走了5×(km),设汽车返回t(h)后与先步行的4人相遇,则有60t+5t=x﹣5×,解得t=,所以相遇点与考场的距离为:15﹣x+60×=15﹣(km).由相遇点坐车到考场需:(﹣)(h).所以先步行的4人到考场的总时间为:(++﹣)(h),先坐车的4人到考场的总时间为:(+)(h),他们同时到达则有:++﹣=+,解得x=13.将x=13代入上式,可得他们赶到考场所需时间为:(+)×60=37(分钟).∵37<42,∴他们能在截止进考场的时刻前到达考场.。
人教版七年级数学上册第三章 一元一次方程 单元综合测试【含答案】
21.(本小题满分 6 分)试根据图 6 中的信息,解答下列问题: (1)购买 5 根跳绳需 元,购买 15 根跳绳需 元; (2)小红比小明多买了 2 根跳绳,付款时小红反而比小明少付 5 元,则小红买了多少根跳绳?
图6
22.(本小题满分 7 分)列方程解应用题: 亲近科学,感受科技魅力.学校组织七年级学生走进科技馆,来到科技馆大厅,同学们就被大厅 里会“跳舞”的“小球矩阵”吸引住了(如图 7(1)).白色小球全部由计算机精准控制,每一 只小球可以“悬浮”在大厅上空的不同位置,演绎着曲线、曲面、平面、文字和三维图案等 各种动态造型.已知每个小球分别由独立的电机控制.图(2),图(3)分别是 9 个小球可构成的 两个造型,在每个造型中,相邻小球的高度差均为 a.为了使小球从造型一(如图(2))变到造型 二(如图(3)),控制电机使造型一中的②③④⑥⑦⑧号小球同时运动,②③④号小球向下运动, 运动速度均为 3 米/秒;⑥⑦⑧号小球向上运动,运动速度均为 2 米/秒,当每个小球到达造型 二的相应位置时就停止运动.已知⑦号小球比②号小球晚秒到达相应位置,则②号小球运动了 多少米?
方案二:乙工程队每天的工作量为 7×150+70=1120(m2),粉刷完成所用时间为 6720÷1120=6(天),所需支付人工费用为 6×4×90=2160(元). 因为 2100<2160, 所以若要使总人工费用最少,该中学应选择方案一.
(1)求每个办公室需要粉刷的墙面面积.
(2)已知学校每天需要支付给每名一级技工 100 元,每名二级技工 90 元.该中学有 40 个办公 室的墙面和 720 m2 的展览墙需要粉刷.现有甲、乙两支工程队供选择,甲工程队有 3 名一级 技工,乙工程队有 4 名二级技工.该中学有两个选择方案,方案一:全部由甲工程队粉刷;方案 二:全部由乙工程队粉刷.若要使总人工费用最少,该中学应如何选择?请通过计算说明.
人教版七年级数学上册第三章《一元一次方程》综合测试卷(含答案)
人教版七年级数学上册第三章《一元一次方程》综合测试卷(含答案)题号 一 二三总分 1920 21 22 23 24分数一.选择题(共10小题,每题3分,满分30分) 1.下列等式中,是一元一次方程的有( )①2013+4x=2014;3x -2x=100;③2x+6y=15;④3x 2-5x+26=0 A.1个 B.2个 C.3个 D.4个 2.如果某数的3倍比这个数的2倍小2,那么这个数是( ) A.2 B.-1 C.-2 D.0.5 3. 若代数式2x ﹣3与32x +的值相等,则x 的值为( ) A .3B .1C .﹣3D .44.三个正整数的比是,它们的和是,那么这三个数中最大的数是( )A.56B.48C.36D.12 5.若方程2152x kx x -+=-的解为,则的值为( )A.B.C.D.6.已知|m -2|+(n -1)2=0,则关于x 的方程2m +x =n 的解是( ) A .x =-4B .x =-3C .x =-2D .x =-17.下列说法中,正确的是( )A.在等式2x =2a -b 的两边都除以2,得到x =a -bB.等式两边都除以同一个数,等式一定成立C.等式两边都加上同一个整式,所得结果仍是等式D.在等式4x =8的两边都减去4,得到x =48.小虎在解关于x 的一元一次方程2x-m=x 时,由于粗心大意,移项时忘记了改变符号,变形为2x+x=-m.求得方程的解为x=1,则原方程的解为( )A.x=-1 B.x=1 C.x=2 D.x=39.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是().A.95元B.90元C.85元D.80元10.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/小时,乙车速度为80千米/小时,经过t小时两车相距50千米.则t的值是()A.2 B.2或2.25 C.2.5 D.2或2.5二、填空题(每题3分,共24分)11.若关于x的方程(a﹣3)x|a|﹣2+8=0是一元一次方程,则a=12.一般情况下不成立,但也有数可以使得它成立,例如:m=n=0.使得成立的一对数m、n我们称为“相伴数对”,记为(m,n).若(x,1)是“相伴数对”,则x的值为.13.一元一次方程x﹣2=4的解是.14.若代数式的值与代数式的值互为相反数,则a=.15.阅读理解:a,b,c,d是有理数,我们把符号称为2×2阶行列式,并且规定:=ad﹣bc,则满足等式=1的x的值是.16.20个工人生产螺栓和螺母,已知一个工人一天生产3个螺栓或4个螺母,且一个螺栓配2个螺母,如何分配工人生产螺栓和螺母?如果设生产螺栓的工人数为x个,根据题意可列方程为:.17.日历中同一行中相邻三个数的和为63,则这三个数分别为 . (用逗号隔开)18. 一项工程,甲单独完成需要20天,乙单独完成需要25天,由甲先做2天,然后甲、乙一起做,余下的部分还要做________天才能完成.三.解答题(共46分,19题6分,20 ---24题8分)19.解下列方程:(1)10(1)5x -=; (2)7151322324x x x -++-=-;(3)2(2)3(41)9(1)y y y +--=-; (4)0.89 1.33511.20.20.3x x x --+-=.20.当m 为何值时,关于x 的方程x x m +=+135的解比关于x 的方程的解大2?21.当n 为何值时,关于x 的方程的解为0?22. 已知,x =2是方程2﹣(m ﹣x )=2x 的解,求代数式m 2﹣(6m +2)的值.23.有一火车要以每分钟600米的速度过完第一、第二两座铁桥,过第二座铁桥比过第一座铁桥多5秒时间,又知第二座铁桥的长度比第一座铁桥长度的2倍短50米,试求两座铁桥的长分别为多少.24.某班将买一些乒乓球和乒乓球拍.了解信息如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元;经洽谈:甲店每买一副球拍赠一盒乒乓球;乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问: (1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)如果要购买15盒或30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?参考答案一.选择题题号 1 2 3 4 5 6 7 8 9 10 答案 B C D B D D C B C C二.填空题11.﹣3.12.﹣.13. x=9.14.﹣.15.﹣10.16. 2×3x=4(20﹣x).17. 20 , 21 , 2218. 10三.解答题19.解:(1),去括号,得移项,得,系数化为1,得(2) 7151322324x x x-++-=-,去分母,得,去括号,得,移项,得,合并同类项,得系数化为1,得(3), 去括号,得, 移项,得,合并同类项,得, 系数化为1,得 (4),去分母,得, 去括号,得, 移项,得,合并同类项,得, 系数化为1,得20.解:方程x x m +=+135的解是251mx -=, 方程的解是.由题意可知251m -,解关于m 的方程得73-. 故当73-时,关于x 的方程x x m +=+135的解比关于x 的方程的解大2.21.解:把x =0代入方程得,+1=+n ,去分母得, 2n +6=3+6n ,所以n =,即当n = 时,关于x 的方程的解为0.22. 解:把x =2代入方程得:2﹣(m ﹣2)=4, 解得:m =﹣4,则m 2﹣(6m +2) =16﹣(﹣24+2) =38.23.解:设第一座铁桥的长为米,那么第二座铁桥的长为米,•过完第一座铁桥所需要的时间为600x 分,过完第二座铁桥所需要的时间为250600x -分. 依题意,可列出方程600x +560=250,600x -解方程得所以答:第一座铁桥长100米,第二座铁桥长150米.24.(1) 购买乒乓球20盒时,两种优惠办法付款一样;(2)买30盒乒乓球时,在甲店买5副乒乓球拍,在乙店买25盒乒乓球省钱。
人教版七年级上册数学-第三章综合检测试卷
第三章综合检测试卷(满分:120分)一、选择题(每小题3分,共30分)1.下列方程中,是一元一次方程的是( D ) A .9x +2B .1x=2C .(1-x )(1+x )=3D .13x -15x =12(x -3)2.若方程35x 2n -7-17=1是关于x 的一元一次方程,则n 的值为( A )A .4B .3C .2D .13.下列方程中,存在解x =3的有( C )①-2x -6=0;②||x +2=5;③(x -3)(x -1)=0;④13x =x -2.A .1个B .2个C .3个D .4个 4.下列变形正确的是( D ) A .由5=x -2,得x =-5-2 B .由5y =0,得y =15C .由3x =-2,得x =-32D .由2x =3x +5,得-5=3x -2x5.关于x 的方程2x -m3=1的解为2,则m 的值是( B )A .2.5B .1C .-1D .3 6.对有理数a ,b ,规定运算“☆”是a ☆b =a ×b +a +b ,则方程12x ☆3=5的解是( B )A .x =0B .x =1C .x =2D .x =37.足球比赛记分规则为:胜一场得3分,平一场得1分,负一场得0分.一个队进行了14场比赛,其中负5场,共得分19分,若设胜场次数为x 场,则可列方程为( B )A .3x +(14-x )=19B .3x +(14-5-x )=19C .x +(14-5-x )=19D .3x +x =198.三个数的比是5∶12∶13,这三个数的和为180,则最大数比最小数大( D ) A .30 B .36 C .42D .489.小华在解一道方程题时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是y -13=13y -■,怎么办呢?小华想了想,便翻看了书后的答案,此方程的解是y =-6,小华很快补好了这个常数,并迅速完成了这道题,这个常数是( D )A .-423B .323C .-413D .41310.某市出租车的收费标准为:乘车不超过2千米收费8元,多于2千米不超过10千米,每千米收费1.9元,10千米以上每千米收费2.85元.张某从住处乘坐出租车送同学去车站,到车站时计费表显示40.3元,如果张某立即沿原路返回住处,那么他乘坐原车与换乘另外出租车相比( C )A .换车坐更省钱,省0.53元B .坐原车更省钱,省0.53元C .换车坐更省钱,省5.3元D .坐原车更省钱,省5.3元二、填空题(每小题3分,共18分)11.已知方程x -25=2-x +32的解也是方程||7x -2=b 的解,则b =__7__.12.如果2(x +3)的值与3(1-x )的值互为相反数,那么x 等于__9__.13.把方程5y -0.20.3=1.6-3y 1.2-1中的小数化为整数,得__50y -23=16-30y12-1__.14.如图,小红将一个正方形纸片剪去一个宽为4 cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5 cm 的长条,且剪下的两个长条的面积相等.问这个正方形的边长为多少厘米?设正方形边长为x cm ,则可列方程为__4x =5(x -4)__.15.从甲地到乙地,汽车原需行驶7小时,开通高速公路后,车速每小时增加了20千米,只需5小时即可到达.甲、乙两地的路程是__350__千米.16.在10点和11点之间的某时刻,这个时刻再过6分钟的分针和这个时刻3分钟前的时针正好方向相反且在同一直线上,那么这个时刻为__10点15分__.三、解答题(一)(每小题6分,共18分)17.解下列方程: (1)4x -3(20-2x )=10; 解:x =7.(2)x -x -12=2-x +25;解:x =117.(3)||5x -1=9; 解:x =2或x =-85.(4)x 0.7-0.12-0.2x 0.03=1. 解:x =2134.18.已知||a -3+(b +1)2=0,代数式2b -a +m 2的值比12b -a +m 多1,求m 的值.解:根据题意,得a =3,b =-1.因为2b -a +m 2-⎝⎛⎭⎫12b -a +m =1,所以将a =3,b =-1代入,得m =0.19.已知关于x 的方程2x -a =1与方程2x -a 2-x -13=x 6+2a 的解相同,求x 和a 的值.解:由2x -a =1解得x =a +12;由2x -a 2-x -13=x 6+2a 解得x =15a -23.因为关于x 的方程2x -a =1与方程2x -a 2-x -13=x 6+2a 的解相同,所以a +12=15a -23,解得a =727.将a =727代入x =a +12,得x =1727.四、解答题(二)(每小题7分,共21分)20.小江今天出差回来,发现日历好几天没翻,就一次撕了6张,这6天的日期数字之和是123,今天的日期是多少?(不考虑跨月份)解:设这6天的最后一天的日期数字为a .根据题意,得a +(a -1)+(a -2)+(a -3)+(a -4)+(a -5)=123.即6a -15=123.解得a =23.故今天的日期是24号.21.某架飞机最多能在空中连续飞行6 h ,它在飞出和返回时的速度分别是900 km /h 和850 km/h ,求这架飞机最远飞出多少千米就应返回?(精确到1 km)解:设这架飞机最远飞出x 千米就应返回.由题意,得x 900+x850=6,解得x ≈2623.故这架飞机最远飞出2623千米就应返回.22.某件商品的价格是按获得25%的利润计算出的,后因库存积压和急需资金,决定降价出售,如果每件商品仍能获得10%的利润,试问应按现售价的几折出售?解:设应按现售价的x 折出售.根据题意,得1×(1+25%)×x10=1×(1+10%),化简,得12.5x =110,解得x =8.8,故应按现售价的8.8折出售.五、解答题(三)(每小题9分,共27分)23.某地区居民生活用电基本价格为0.4元/千瓦时,若每月的用电量超过a 千瓦时,则超出部分按基本电价的120%收费.(1)某用户8月份用电86千瓦时,共交电费34.48元,求a 的值;(2)若该用户9月份的平均电费为0.42元/千瓦时,则9月份该用户共用电多少千瓦时?应交电费多少元?解:(1)由题意,得0.4a +(86-a )×0.4×120%=34.48,解得a =85. (2)设该户9月份共用电x 千瓦时.因为0.42>0.4,所以x >85,所以0.4×85+(x -85)×0.4×120%=0.42x ,解得x =3403,故9月份共用电3403千瓦时,应交电费0.42×3403=47.6(元).24.李红为班级购买笔记本作晚会上的奖品,回来时向生活委员刘磊交账时说:“共买了36本,有两种规格,单价分别为1.8元和2.6元,去时我领了100元,现在找回27.6元”.刘磊算了一下说:“你一定搞错了”.李红一想,发觉的确不对,因为她把自己口袋里原有的2元钱一起当作找回的钱款交给了刘磊,请你算一算两种笔记本各买了多少?想一想有没有可能找回27.6元,试用方程的知识给予解释.解:设购买单价为1.8元的笔记本x 本.依题意,有1.8x +2.6(36-x )=100-27.6+2,解得x =24,则36-x =12,故购买单价为1.8元的笔记本24本,单价为2.6元的笔记本12本.如果按李红原来报的价格,那么设购买单价为1.8元的笔记本x 本,列方程得1.8x +2.6(36-x )=100-27.6,解得x =26.5,不符合实际问题的意义,所以没有可能找回27.6元.25.数轴上点A 对应的数为-5,点B 在点A 右边,电子蚂蚁甲、乙在点B 分别以2个单位/秒、1个单位/秒的速度向左运动,电子蚂蚁丙在点A 以3个单位/秒的速度向右运动.(1)若电子蚂蚁丙经过5秒运动到点C ,求点C 表示的数;(2)若它们同时出发,若丙在遇到甲后1秒遇到乙,求点B 表示的数;(3)在(2)的条件下,设它们同时出发的时间为t 秒,是否存在t 的值,使丙到乙的距离是丙到甲的距离的2倍?若存在,求出t 值;若不存在,说明理由.解:(1)由题意可知,点C 表示的数为-5+3×5=10.(2)设B 表示的数为x ,则B 到A 的距离为|x +5|,点B 在点A 的右边,故|x +5|=x +5.由题意,得x +53+1- x +53+2=1,解得x =15.即点B 表示的数是15.(3)①在电子蚂蚁丙与甲相遇前,2(20-3t -2t )=20-3t -t ,此时t =103;②在电子蚂蚁丙与甲相遇后,2×5(t -4)=20-3t -t ,此时t =307.综上所述,当t =103 s 或t = 307 s 时,丙到乙的距离是丙到甲的距离的2倍.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 一元一次方程
一、选择题
1.一家商店将某种商品按进货价提高100%后,又以6折优惠售出,售价为60元,则这种商品的 进货价是( )
A .120元
B .100元
C .72元
D .50元
2.一条船在一条河上的 顺流航速是逆流航速的 3倍,这条船在静水中的 航速与河水的 流速之比是( )
A .3∶1
B .2∶1
C .1∶1
D .5∶2
3.设有x 个人共种m 棵树苗,如果每人种8棵,则剩下2棵树苗未种,如果每人种10棵,则缺6棵树苗.根据题意,列方程正确的 是()
A .61028+=
-x x B .610
28-=+x x C .10682+=-m m D .10682-=+m m 4.如果a=b ,那么下列结论中不一定成立的 是()
A .1=b
a B .a ﹣b=0 C .2a=a+
b D .a 2=ab
5.下列方程中,是一元一次方程的 是()
A .x+y=1
B .x 2﹣x=1
C .2x +1=3x
D .x 2+1=3
6.(3分)一元一次方程410x +=的 解是( )
A .1
4 B .14- C .4 D .4-
7.已知2x =是关于x 的 方程21x m -=的 解,则m 的 值是 ( ).
A .3-
B . 3
C .2
D .7
8.若代数式4x ﹣5与
212
x -的 值相等,则x 的 值是( ) A .1 B .32 C .23 D .2 9.若关于x 的 方程mx m ﹣2﹣m+3=0是一元一次方程,则这个方程的 解是( )
A .x=0
B .x=3
C .x=﹣3
D .x=2
10.若代数式x+3的 值为2,则x 等于( )
A 、1
B 、-1
C 、5
D 、-5
二、填空题
11.在方程2x+y=3中,用含x 的 代数式表示y 为_________________.
12.在方程3x+4y=6中,如果2y=6,那么x= .
13.若关于x 的 方程2x+a=5的 解为x=-1,则a= .
14.已知x=6是关于x 的 方程13
5=-
m x 的 解,则m 的 值是 .
15.当x= 时,式子5x+2与3x ﹣4的 值相等.
16.刘俊问王老师的 年龄时,王老师说:“我像你这么大时,你才
3岁;等你到了我这么大时,我就45岁了.”问王老师今年 岁.
17.设一列数1a 、2a 、3a 、…、n a 中任意三个相邻数之和都是33,已
知32a x =,2215a =,3838a x =+,那么2015a = .
18.把一些图书分给某班学生阅读,如果每人3本,则剩余20本,
如果每人4本,则还缺25本,那么这个班有 学生.
三、计算题
19.计算题:
(1)解方程:4(2-x )-3(x+1)=6
(2)解方程:332164
x x +-=- (3)解方程组:32147x y x y +=-⎧⎨
+=-⎩ (4)解方程组4(2)153(2)32x y y x
+=-⎧⎨
+=-⎩
四、解答题 20.(10分)欧拉是一位著名的 数学家,他把他的 一生都献给了人类的 数学事业,在他一生岁数的 41那年,他发表了第一篇数学论文,并且获得了巴黎科学院奖金,此后过了7年,他成为彼得堡科学院的 数学教授,在欧拉去世的 前17年,他不幸双目失明了,但他继续在黑暗的 世界里凭着他的 记忆和心算进行数学研究,在这17年里,他写出了数学论文400篇,正好是他一生的 岁数与他成为彼得堡学院数学教授时岁数之差的 8倍.根据以上信息,请你算出数学家欧拉一生活了多少岁?
21.在做解方程练习时,学习卷中有一个方程“11228
y y -=+■”中的 ■没印清晰,小聪问老师,老师只是说:“■是一个有理数,该方程的 解.
与当3x =时代数式5(1)2(2)4x x ----的 值相同.”聪明的 小聪
很快补上了这个常数.同学们,请你们也来补一补这个常数.
22.某顾客在商场看中了甲、乙两种冰箱,其中甲冰箱的价格为2100元,日均耗电量为1度;乙冰箱是新节能产品,价格为2220元,日均耗电量为0.5度.若这两种冰箱的效果相同且甲冰箱可以打折但乙冰箱不打折,请你就价格方面计算说明,甲冰箱至少打几折时购买比较合算?(假设:每度电0.5元,两种冰箱的使用寿命均为10年,平均每年使用300天.)
23.情景:
试根据图中信息,解答下列问题:
(1)购买8根跳绳需元,购买14根跳绳需元;
(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.
参考答案
1.D.
2.B
3.C.
4.A.
5.C.
6.B.
7.B.
8.B
9.A
10.B.
11.y=-2x+3.
12.﹣2. 13.7. 14.53
.
15.-3. 16.31. 17.14. 18.45名.
19.(1)1
7-
(2)34 (3)12x y =⎧⎨=-⎩ (4)31x y =-⎧⎨=⎩ 20.76岁. 21.7. 22.7折
23.(1) 200;280.(2) 有, 11根.。