回归分析在数学建模中的应用

合集下载

数学建模——线性回归分析实用精品教案

数学建模——线性回归分析实用精品教案

数学建模——线性回归分析实用精品教案一、教学内容本节课选自高中数学教材《数学建模》第四章“数据的拟合与回归”第二节“线性回归分析”。

详细内容包括:线性回归模型的建立,最小二乘法求解线性回归方程,线性回归方程的显著性检验,以及利用线性回归方程进行预测。

二、教学目标1. 理解线性回归分析的基本概念,掌握线性回归方程的建立方法。

2. 学会运用最小二乘法求解线性回归方程,并能解释线性回归方程的参数意义。

3. 能够对线性回归方程进行显著性检验,利用线性回归方程进行预测。

三、教学难点与重点教学难点:最小二乘法的推导和应用,线性回归方程的显著性检验。

教学重点:线性回归模型的建立,线性回归方程的求解及其应用。

四、教具与学具准备教具:多媒体课件,黑板,粉笔。

学具:计算器,草稿纸,直尺,铅笔。

五、教学过程1. 实践情景引入:展示一组关于身高和体重的数据,引导学生思考身高和体重之间的关系。

2. 例题讲解:(1)建立线性回归模型,引导学生根据散点图判断变量间的线性关系。

(2)利用最小二乘法求解线性回归方程,解释方程参数的意义。

(3)对线性回归方程进行显著性检验,判断方程的有效性。

3. 随堂练习:(1)给出另一组数据,让学生尝试建立线性回归模型并求解。

(2)对所求线性回归方程进行显著性检验,并利用方程进行预测。

六、板书设计1. 线性回归模型2. 最小二乘法3. 线性回归方程的显著性检验4. 线性回归方程的应用七、作业设计1. 作业题目:(1)根据给定的数据,建立线性回归模型,求解线性回归方程。

(2)对所求线性回归方程进行显著性检验,并利用方程预测某学生的体重。

2. 答案:(1)线性回归方程为:y = 0.8x + 50(2)显著性检验:F = 40.23,P < 0.01,说明线性回归方程具有显著性。

八、课后反思及拓展延伸1. 课后反思:本节课学生对线性回归分析的理解和应用能力得到了提升,但仍有个别学生对最小二乘法的推导和应用感到困难,需要在课后加强辅导。

回归分析在数学建模中的应用

回归分析在数学建模中的应用

Keywords: Multiple linear regression analysis; parameter estimation;inspection
II
咸阳师范学院 2013 届本科毕业论文
目 录
摘 要.............................................................................................................................. I Abstract...................................................................................................................... II 目 录.......................................................................................................................... III 引言................................................................................................................................ 1 1 回归分析的背景来源及其概念................................................................................ 1 1.1 回归分析的背景............................................................................................. 1 1.2 回归分析的基本概念..................................................................................... 1 2 线性回归分析模型.................................................................................................... 2 2.1 一元线性回归的模型..................................................................................... 2 2.1.1 回归参数 0 , 1 和 2 的估计.............................................................. 3 2.1.2 一元线性回归方程的显著性检验.................................................... 3

数学建模:子女身高对父母身高的 回归分析

数学建模:子女身高对父母身高的 回归分析

广东财经大学华商学院HUASHANG COLLEGEGUANGDONG UNIVERSITY OF FINANCE&ECONOMICS论文题目:子女身高对父母身高的再回归分析姓名:李涛学号:413240126班级: 13市场营销5班姓名:赖伟成学号:413060219 班级: 13市场营销5班姓名:黄超学号:413060212 班级:13市场营销5班目录一、摘要 (1)二、问题的提出 (1)三、问题的重述 (2)四、问题的假设....................................................................五、定义与符号说明......................................................六、模型的建立与求解....................................................................七、模型的检验......................................................八、模型的评价与改进........................................................九、参考文献..................................................................子女身高对父母身高的再回归分析摘要在现实生活中, 人们都知道父母身高对子女身高是有影响的, 但是以分析为背景提出了三个问题,本文运用几何知识、非线再回归分析模型等方法成功解决了这三个问题,通过这个方程分析出, 子女身高有回归平均身高的倾向, 人们利用“回归”的思想和方法在自然科学和社会科学的许多领域通过建立回归模型, 揭示了一个又一个问题的内在规律, 并使其得到了深入广泛的应用, 从而也推动了科学和社会的进步。

数学建模——线性回归分析82页PPT

数学建模——线性回归分析82页PPT

2019/11/15
zhaoswallow
2
表1 各机组出力方案 (单位:兆瓦,记作MW)
方案\机组 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1
2
3
4
5
6
7
8
120
73
180
80
125
125
81.1
90
133.02 73
180
80
125
125
81.1
90
3 -144.25 -145.14 -144.92 -146.91 -145.92 -143.84 -144.07 -143.16 -143.49 -152.26 -147.08 -149.33 -145.82 -144.18 -144.03 -144.32
4 119.09 118.63 118.7 117.72 118.13 118.43 118.82 117.24 117.96 129.58 122.85 125.75 121.16 119.12 119.31 118.84
5 135.44 135.37 135.33 135.41 135.41 136.72 136.02 139.66 137.98 132.04 134.21 133.28 134.75 135.57 135.97 135.06
6 157.69 160.76 159.98 166.81 163.64 157.22 157.5 156.59 156.96 153.6 156.23 155.09 156.77 157.2 156.31 158.26
ˆ0

ˆ1 xi )2

min
0 ,1

数学建模之回归分析法

数学建模之回归分析法

什么就是回归分析回归分析(regression analysis)就是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。

运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析与多元回归分析;按照自变量与因变量之间的关系类型,可分为线性回归分析与非线性回归分析。

如果在回归分析中,只包括一个自变量与一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。

如果回归分析中包括两个或两个以上的自变量,且因变量与自变量之间就是线性关系,则称为多元线性回归分析。

回归分析之一多元线性回归模型案例解析多元线性回归,主要就是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为:毫无疑问,多元线性回归方程应该为:上图中的x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示:那么,多元线性回归方程矩阵形式为:其中:代表随机误差, 其中随机误差分为:可解释的误差与不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样)1:服成正太分布,即指:随机误差必须就是服成正太分别的随机变量。

2:无偏性假设,即指:期望值为03:同共方差性假设,即指,所有的随机误差变量方差都相等4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。

今天跟大家一起讨论一下,SPSS---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。

通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。

数据如下图所示:(数据可以先用excel建立再通过spss打开)点击“分析”——回归——线性——进入如下图所示的界面:将“销售量”作为“因变量”拖入因变量框内, 将“车长,车宽,耗油率,车净重等10个自变量拖入自变量框内,如上图所示,在“方法”旁边,选择“逐步”,当然,您也可以选择其它的方式,如果您选择“进入”默认的方式,在分析结果中,将会得到如下图所示的结果:(所有的自变量,都会强行进入)如果您选择“逐步”这个方法,将会得到如下图所示的结果:(将会根据预先设定的“F统计量的概率值进行筛选,最先进入回归方程的“自变量”应该就是跟“因变量”关系最为密切,贡献最大的,如下图可以瞧出,车的价格与车轴跟因变量关系最为密切,符合判断条件的概率值必须小于0、05,当概率值大于等于0、1时将会被剔除)“选择变量(E)" 框内,我并没有输入数据,如果您需要对某个“自变量”进行条件筛选,可以将那个自变量,移入“选择变量框”内,有一个前提就就是:该变量从未在另一个目标列表中出现!,再点击“规则”设定相应的“筛选条件”即可,如下图所示:点击“统计量”弹出如下所示的框,如下所示:在“回归系数”下面勾选“估计,在右侧勾选”模型拟合度“与”共线性诊断“两个选项,再勾选“个案诊断”再点击“离群值”一般默认值为“3”,(设定异常值的依据,只有当残差超过3倍标准差的观测才会被当做异常值) 点击继续。

数学建模-回归分析

数学建模-回归分析
回归分析
一、变量之间的两种关系 1、函数关系:y = f (x) 。
2、相关关系:X ,Y 之间有联系,但由 其中一个不能唯一的确定另一个的值。 如: 年龄 X ,血压 Y ; 单位成本 X ,产量 Y ; 高考成绩 X ,大学成绩 Y ; 身高 X ,体重 Y 等等。
二、研究相关关系的内容有
1、相关分析——相关方向及程度(第九章)。 增大而增大——正相关; 增大而减小——负相关。 2、回归分析——模拟相关变量之间的内在 联系,建立相关变量间的近似表达式 (经验 公式)(第八章)。 相关程度强,经验公式的有效性就强, 反之就弱。
三、一般曲线性模型 1、一般一元曲线模型
y = f ( x) + ε
对于此类模型的转换,可用泰勒展开 公式,把 在零点展开,再做简单的变 f ( x) 换可以得到多元线性回归模型。 2、一般多元曲线模型
y = f ( x1 , x2源自,⋯ , xm ) + ε
对于此类模型也要尽量转化为线性模 型,具体可参考其他统计软件书,这里不 做介绍。
ˆ ˆ ˆ ˆ y = b0 + b1 x1 + ⋯ + bm x m
2、利用平方和分解得到 ST , S回 , S剩。 3、计算模型拟合度 S ,R ,R 。 (1)标准误差(或标准残差)
S =
S剩 ( n − m − 1)
当 S 越大,拟合越差,反之,S 越小, 拟合越好。 (2)复相关函数
R =
2
仍是 R 越大拟合越好。 注: a、修正的原因:R 的大小与变量的个数以及样本 个数有关; 比 R 要常用。 R b、S 和 R 是对拟合程度进行评价,但S与 R 的分 布没有给出,故不能用于检验。 用处:在多种回归模型(线性,非线性)时, 用来比较那种最好;如:通过回归方程显著性检验 得到:

回归分析在数学建模中的应用

回归分析在数学建模中的应用

回归分析在数学建模中的应用回归分析是一种统计分析方法,用于研究自变量和因变量之间的关系。

它可以用于在数学建模中预测和解释变量之间的关系。

在本文中,我将讨论回归分析在数学建模中的应用以及其在解决实际问题中的重要性。

回归分析有两种主要类型:简单线性回归和多元线性回归。

简单线性回归是指只有一个自变量和一个因变量之间的关系,而多元线性回归是指有多个自变量和一个因变量之间的关系。

无论是简单线性回归还是多元线性回归,都可以用于预测和解释变量之间的关系。

在数学建模中,回归分析可以用于预测未知值。

通过分析一组已知的自变量和因变量之间的关系,可以建立一个数学模型,以便预测因变量的值。

这种预测能力可以在许多领域中得到应用,例如经济学、金融学、社会科学等。

举一个简单的例子,假设我们要建立一个模型来预测一个人的身高。

我们可以收集一组数据,包括自变量(例如年龄、性别、父母身高等)和因变量(身高)。

然后,我们可以使用回归分析来建立一个模型,以便根据给定的自变量来预测一个人的身高。

此外,回归分析还可以用来解释变量之间的关系。

通过分析已知的自变量和因变量之间的关系,可以得出结论,了解自变量对因变量的影响程度。

这对于解决实际问题非常重要。

例如,在经济学中,回归分析可以用来解释消费者支出与收入之间的关系。

通过分析已知的收入和消费者支出数据,可以得出结论,了解收入对消费者支出的影响程度。

这有助于制定经济政策和预测市场需求。

回归分析还可以用来评估自变量之间的相互作用。

在多元线性回归中,我们可以引入交互项,以考虑自变量之间的相互影响。

通过分析已知的自变量和因变量之间的关系,可以确定自变量之间的相互作用,并加以解释。

总的来说,回归分析在数学建模中有广泛的应用。

它可以用于预测和解释变量之间的关系,评估自变量之间的相互作用,解释因变量的变化程度,并评估模型的拟合程度。

回归分析在解决实际问题中起着重要的作用,帮助我们从数据中提取有价值的信息,并进行合理的预测和解释。

数学建模方法详解三种最常用算法

数学建模方法详解三种最常用算法

数学建模方法详解三种最常用算法在数学建模中,常使用的三种最常用算法是回归分析法、最优化算法和机器学习算法。

这三种算法在预测、优化和模式识别等问题上有着广泛的应用。

下面将对这三种算法进行详细介绍。

1.回归分析法回归分析是一种用来建立因果关系的统计方法,它通过分析自变量和因变量之间的关系来预测未知的因变量。

回归分析可以通过构建一个数学模型来描述变量之间的关系,并利用已知的自变量值来预测未知的因变量值。

常用的回归分析方法有线性回归、非线性回归和多元回归等。

在回归分析中,我们需要首先收集自变量和因变量的样本数据,并通过数学统计方法来拟合一个最优的回归函数。

然后利用这个回归函数来预测未知的因变量值或者对已知数据进行拟合分析。

回归分析在实际问题中有着广泛的应用。

例如,我们可以利用回归分析来预测商品销售量、股票价格等。

此外,回归分析还可以用于风险评估、财务分析和市场调研等。

2.最优化算法最优化算法是一种用来寻找函数极值或最优解的方法。

最优化算法可以用来解决各种优化问题,例如线性规划、非线性规划和整数规划等。

最优化算法通常分为无约束优化和有约束优化两种。

无约束优化是指在目标函数没有约束条件的情况下寻找函数的最优解。

常用的无约束优化算法有梯度下降法、共轭梯度法和牛顿法等。

这些算法通过迭代计算来逐步优化目标函数,直到找到最优解。

有约束优化是指在目标函数存在约束条件的情况下寻找满足约束条件的最优解。

常用的有约束优化算法有线性规划、非线性规划和混合整数规划等。

这些算法通过引入拉格朗日乘子、KKT条件等来处理约束条件,从而求解最优解。

最优化算法在现实问题中有着广泛的应用。

例如,在生产计划中,可以使用最优化算法来确定最优的生产数量和生产计划。

此外,最优化算法还可以应用于金融风险管理、制造工程和运输物流等领域。

3.机器学习算法机器学习算法是一种通过对数据进行学习和模式识别来进行决策和预测的方法。

机器学习算法可以根据已有的数据集合自动构建一个模型,并利用这个模型来预测未知的数据。

数学建模之回归分析法

数学建模之回归分析法
0
28 400
32
225
W8 1
70 3
192 9
14 114
18 225
0
32
225
1069
70 6
192 0
S甌
29 725
0
42 000
35
210
1146
7U
196 6
20.397
22 25?
0
23 990
1.8
150
1026
632
17S.0
18780
23.555
0
33 950
2.8
200
108.7
0
19.390
3.4
1BD
110.6
72.7
197.9
点击“分析”一一回归一一线性一一进入如下图所示的界面:
将“销售量”作为“因变量”拖入因变量框内,将“车长,车宽,耗油率,车净重等10个
自变量 拖入自变量框内,如上图所示,在“方法”旁边,选择“逐步”,当然,你也可以 选择其它的方式,如果你选择“进入”默认的方式,在分析结果中,将会得到如下图所示的
毫无疑问, 多元线性回归方程应该为
—/?
上图中的x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样 本,那么这个多元线性回归,将会组成一个矩阵,如下图所示:
代表随机误差, 其中随机误差分为: 可解释的误差 和 不可解释的误差, 随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样)
“选择变量(E)"框内,我并没有输入数据,如果你需要对某个“自变量”进行条件筛选, 可以将那个自变量,移入“选择变量框”内, 有一个前提就是:该变量从未在另一个目标列 表中出现!,再点击“规则”设定相应的“筛选条件”即可,如下图所示:

数学建模——线性回归分析实用教案

数学建模——线性回归分析实用教案

数学建模——线性回归分析实用教案一、教学内容本节课选自《数学建模与数学实验》教材第十章“回归分析”中的第一节“线性回归分析”。

具体内容包括线性回归模型的建立、参数估计、模型的检验及运用,重点探讨变量间线性关系的量化表达和预测分析。

二、教学目标1. 理解线性回归模型的基本概念,掌握线性回归方程的建立和求解方法。

2. 学会运用最小二乘法进行线性回归参数的估计,并能解释其实际意义。

3. 能够对线性回归模型进行显著性检验,评估模型的可靠性。

三、教学难点与重点难点:线性回归方程的求解方法,最小二乘法的原理及运用,模型的显著性检验。

重点:线性回归模型的建立,参数估计,模型的运用。

四、教具与学具准备1. 教具:多媒体教学设备,投影仪,黑板。

2. 学具:计算器,教材,《数学建模与数学实验》。

五、教学过程1. 实践情景引入(5分钟)展示一组数据,如某商品的需求量与价格之间的关系,引导学生思考如何量化这种关系。

2. 理论讲解(15分钟)介绍线性回归模型的基本概念,引导学生了解线性关系的量化表达。

讲解线性回归方程的建立,参数估计方法,强调最小二乘法的作用。

3. 例题讲解(15分钟)选取一个实际例子,演示如何建立线性回归模型,求解参数,并进行模型检验。

4. 随堂练习(10分钟)学生分组讨论,根据给出的数据,建立线性回归模型,求解参数,进行模型检验。

六、板书设计1. 黑板左侧:线性回归模型的基本概念,参数估计方法。

2. 黑板右侧:例题解答过程,模型检验步骤。

七、作业设计1. 作业题目:给出一组数据,要求学生建立线性回归模型,求解参数,进行模型检验。

讨论线性回归分析在实际问题中的应用。

2. 答案:线性回归模型参数的求解过程及结果。

模型检验的统计量及结论。

八、课后反思及拓展延伸1. 反思:本节课学生掌握线性回归分析的基本方法,但部分学生对最小二乘法的理解仍需加强。

2. 拓展延伸:探讨非线性回归模型的建立和应用。

引导学生了解其他数学建模方法,如时间序列分析、主成分分析等。

数学建模——回归分析

数学建模——回归分析
编号 1 2 3 4 5 6 7 8 身高/cm 165 165 157 170 175 165 155 170
体重/kg 48 57 50 54 64 61 43 59
求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为 172cm的女大学生的体重。
解:1、选取身高为自变量x,体重为因变量y,作散点图:
由于解释变量和随机误差的总效应(总偏差平方和)为354,而随机误差的效应为 128.361,所以解析变量的效应为
354-128.361=225.639 这个值称为回归平方和。
解析变量和随机误差的总效应(总偏差平方和) =解析变量的效应(回归平方和)+随机误差的效应(残差平方和)
我们可以用相关指数R2来刻画回归的效果,其计算公式是
R2越接近1,表示回归的效果越好(因为R2越接近1,表示解释变量和预报变量的 线性相关性越强)。
如果某组数据可能采取几种不同回归方程进行回归分析,则可以通过比较R2的值 来做出选择,即选取R2较大的模型作为这组数据的模型。
总的来说:
相关指数R2是度量模型拟合效果的一种指标。
在线性模型中,它代表自变量刻画预报变量的能力。
虽然这种向中心回归的现象只是特定领域里的结论,并不具有普遍性,但从它 所描述的关于X为自变量,Y为不确定的因变量这种变量间的关系看,和我们现在的 回归含义是相同的。
不过,现代回归分析虽然沿用了“回归”一词,但内容已有很大变化,它是一种应用 于许多领域的广泛的分析研究方法,在经济理论研究和实证研究中也发挥着重要作用。
回归分析:研究一个随机变量Y对另一个(X)或一组(X1, X2,…,Xk)变量的相依关系的统计分析方法
回归分析(regression analysis)是确定两种或两种以上变数 间相互依赖的定量关系的一种统计分析方法。运用十分广泛, 回归分析按照涉及的自变量的多少,可分为一元回归分析和 多元回归分析;按照自变量和因变量之间的关系类型,可分 为线性回归分析和非线性回归分析。如果在回归分析中,只 包括一个自变量和一个因变量,且二者的关系可用一条直线 近似表示,这种回归分析称为一元线性回归分析。如果回归 分析中包括两个或两个以上的自变量,且因变量和自变量之 间是线性关系,则称为多元线性回归分析。

数学建模回归分析

数学建模回归分析

数学建模回归分析回归分析是一种用于研究变量之间关系的统计方法,广泛应用于数学建模领域。

它通过建立数学模型来描述和预测变量之间的关系,并根据实际数据进行参数估计和模型检验。

本文将介绍回归分析的基本概念、主要方法以及在数学建模中的应用。

一、回归分析的基本概念回归分析是一种统计分析方法,通过对自变量和因变量之间的关系建立数学模型,利用统计学方法进行参数估计和推断,从而揭示变量之间的关系。

常见的回归分析方法有简单线性回归、多元线性回归、非线性回归等。

简单线性回归是回归分析中最基础的方法之一,它用于研究一个自变量和一个因变量之间的关系。

简单线性回归模型可以用以下公式表示:Y=β0+β1X+ε其中,Y表示因变量,X表示自变量,β0和β1是回归系数,ε表示随机误差。

回归系数β0和β1的估计值可以通过最小二乘法进行求解。

多元线性回归是回归分析中常用的方法,它用于研究多个自变量和一个因变量之间的关系。

多元线性回归模型可以用以下公式表示:Y=β0+β1X1+β2X2+...+βkXk+ε其中,Y表示因变量,X1、X2、..、Xk表示自变量,β0、β1、β2、..、βk表示回归系数,ε表示随机误差。

回归系数的估计值可以通过最小二乘法进行求解。

非线性回归是回归分析中考虑自变量和因变量之间非线性关系的方法。

非线性回归模型的形式多种多样,常见的有指数函数、对数函数、幂函数等。

通过选择合适的数学模型,可以更准确地描述和预测变量之间的关系。

二、回归分析的主要方法1.最小二乘法最小二乘法是回归分析中常用的估计回归系数的方法。

它的基本思想是通过最小化观测值与模型预测值之间的差异,从而得到最优的回归系数估计值。

最小二乘法可以保证估计值具有最小方差的良好性质。

2.模型的选择和检验在回归分析中,合适的模型选择对结果的准确性至关重要。

常用的模型选择方法有前向选择法、后向选择法、逐步回归法等。

此外,还需要对建立的回归模型进行检验,常用的检验方法有参数估计的显著性检验、回归模型的整体拟合优度检验等。

数学建模-回归分析例题

数学建模-回归分析例题
数学建模-回归分析例题
目录
引言 线性回归模型 非线性回归模型 多元回归模型 回归分析在实践中的应用
01
CHAPTER
引言
01
02
主题背景
在许多领域,如经济学、生物学、医学和社会学等,都需要用到回归分析来探索变量之间的因果关系或预测未来的发展趋势。
回归分析是数学建模中常用的统计方法,用于研究变量之间的关系。
残差分析
R方值
AIC和BIC值
预测能力
多元回归模型的评估
01
02
03
04
分析残差与拟合值之间的关系,检验模型的假设条件。
计算模型的决定系数,评估模型对数据的拟合程度。
使用信息准则评估模型的复杂度和拟合优度。
使用模型进行预测,评估预测结果的准确性和可靠性。
05
CHAPTER
回归分析在实践中的应用
线性回归模型
它基于最小二乘法原理,通过最小化预测值与实际值之间的平方误差来拟合数据。
线性回归模型适用于因变量与自变量之间存在线性关系的情况,且自变量对因变量的影响是线性的。
线性回归模型是一种预测模型,通过找到最佳拟合直线来描述因变量和自变量之间的关系。
线性回归模型介绍
首先需要明确研究的问题和目标,并确定因变量和自变量。
结果解释
数据分析
THANKS
感谢您的观看。
非线性回归模型
非线性回归模型适用于因变量和自变量之间存在幂函数、对数函数、多项式函数等非线性关系的场景。
适用场景
非线性回归模非线性函数。
数学表达式
非线性回归模型介绍
非线性回归模型的建立
数据准备
收集包含自变量 (x) 和因变量 (y) 的数据集,确保数据具有足够的数量和代表性。

数学建模模型常用的四大模型及对应算法原理总结

数学建模模型常用的四大模型及对应算法原理总结

数学建模模型常用的四大模型及对应算法原理总结四大模型对应算法原理及案例使用教程:一、优化模型线性规划线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在线性回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。

如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。

案例实操非线性规划如果目标函数或者约束条件中至少有一个是非线性函数时的最优化问题叫非线性规划问题,是求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。

建立非线性规划模型首先要选定适当的目标变量和决策变量,并建立起目标变量与决策变量之间的函数关系,即目标函数。

然后将各种限制条件加以抽象,得出决策变量应满足的一些等式或不等式,即约束条件。

整数规划整数规划分为两类:一类为纯整数规划,记为PIP,它要求问题中的全部变量都取整数;另一类是混合整数规划,记之为MIP,它的某些变量只能取整数,而其他变量则为连续变量。

整数规划的特殊情况是0-1规划,其变量只取0或者1。

多目标规划求解多目标规划的方法大体上有以下几种:一种是化多为少的方法,即把多目标化为比较容易求解的单目标,如主要目标法、线性加权法、理想点法等;另一种叫分层序列法,即把目标按其重要性给出一个序列,每次都在前一目标最优解集内求下一个目标最优解,直到求出共同的最优解。

目标规划目标规划是一种用来进行含有单目标和多目标的决策分析的数学规划方法,是线性规划的特殊类型。

目标规划的一般模型如下:设xj是目标规划的决策变量,共有m个约束条件是刚性约束,可能是等式约束,也可能是不等式约束。

设有l个柔性目标约束条件,其目标规划约束的偏差为d+, d-。

设有q个优先级别,分别为P1, P2, …, Pq。

在同一个优先级Pk中,有不同的权重,分别记为[插图], [插图](j=1,2, …, l)。

数学建模——回归分析模型 ppt课件

数学建模——回归分析模型  ppt课件

有最小值:
n n i 1 i 1
i
2 2 ( y a bx ) i i i
ppt课件
ˆx ˆi a ˆ b y i
6
数学建模——回归分析模型
一元线性回归模型—— a, b, 2估计
n ( xi x )( yi y ) ˆ i 1 b n ( xi x )2 i 1 ˆ ˆ y bx a
数学建模——回归分析模型
Keep focused Follow me —Jiang
ppt课件
1
数学建模——回归分析模型
• • • • • 回归分析概述 几类回归分析模型比较 一元线性回归模型 多元线性回归模型 注意点
ppt课件
2
数学建模——回归分析模型
回归分析 名词解释:回归分析是确定两种或两种以上变数 间相互赖的定量关系的一种统计分析方法。 解决问题:用于趋势预测、因果分析、优化问题 等。 几类常用的回归模型:
可决系数(判定系数) R 2 为:
可决系数越靠近1,模型对数据的拟合程度越好。 ppt课件 通常可决 系数大于0.80即判定通过检验。 模型检验还有很多方法,以后会逐步接触
15
2 e ESS RSS i R2 1 1 TSS TSS (Yi Y )2
数学建模——回归分析模型
2 i i 1
残差平 方和
13
数学建模——回归分析模型
多元线性回归模型—— 估计 j 令上式 Q 对 j 的偏导数为零,得到正规方程组,
用线性代数的方法求解,求得值为:
ˆ ( X T X )1 X TY
ˆ 为矩阵形式,具体如下: 其中 X , Y ,

数学建模案例分析第十章统计回归模型

数学建模案例分析第十章统计回归模型

岭回归原理及步骤
• 原理:岭回归是一种专用于共线性数据分析的有偏估计回归方 法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘 法的无偏性,以损失部分信息、降低精度为代价获得回归系数 更为符合实际、更可靠的回归方法,对病态数据的拟合要强于 最小二乘法。
岭回归原理及步骤
• 原理:岭回归是一种专用于共线性数据分析的有偏估计回归方 法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘 法的无偏性,以损失部分信息、降低精度为代价获得回归系数 更为符合实际、更可靠的回归方法,对病态数据的拟合要强于 最小二乘法。
一元线性回归
01
02
03
模型建立
一元线性回归模型用于描 述两个变量之间的线性关 系,通常形式为y=ax+b, 其中a和b为待估参数。
参数估计
通过最小二乘法等方法对 参数a和b进行估计,使得 预测值与实际观测值之间 的误差平方和最小。
假设检验
对模型进行假设检验,包 括检验模型的显著性、参 数的显著性等,以判断模 型是否有效。
线性回归模型检验
拟合优度检验
通过计算决定系数R^2等指标, 评估模型对数据的拟合程度。
残差分析
对模型的残差进行分析,包括残 差的分布、异方差性检验等,以
判断模型的合理性。
预测能力评估
通过计算预测误差、均方误差等 指标,评估模型的预测能力。同 时可以使用交叉验证等方法对模
型进行进一步的验证和评估。
线性回归模型检验
逐步回归原理及步骤
01
3. 对模型中已有的自变量进行检 验,如果不显著则将其从模型中 剔除。
02
4. 重复步骤2和3,直到没有新的 自变量可以进入模型,也没有不显 著的自变量可以从模型中剔除。

数学建模——线性回归分析

数学建模——线性回归分析

30
120
73
180
80
125
125
81.1
111.22
31
120
73
180
80
125
125
81.1
98.092
32
120
73
Байду номын сангаас180
80
125
125
81.1
120.44
2020/8/2
zhaoswallow
4
表2 各线路的潮流值(各方案与表1相对应,单位:MW)
方案\线路 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2020/8/2
zhaoswallow
2
表1 各机组出力方案 (单位:兆瓦,记作MW)
方案\机组 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1
2
3
4
5
6
7
8
120
73
180
80
125
125
81.1
90
133.02 73
180
80
125
125
81.1
90
129.63 73
20
2、多元线性回归
模型为:
y 0 1 x1
n xn
(5)
其中 N (0, 2 ), 0 , 1, , n , 2是未知参数。
设(xi1, xi2, , xip , yi)(i 1, , n)是( x1, x2 , , x p , y) 的n个观察值,满足
2020/8/2
zhaoswallow

数学建模——线性回归分析实用教案

数学建模——线性回归分析实用教案

数学建模——线性回归分析实用教案一、教学内容本节课选自高中数学教材《数学建模与数学探究》第四章“数据的分析与处理”中的第二节“线性回归分析”。

具体内容包括:线性回归模型的建立与求解,残差分析,线性回归方程的应用。

二、教学目标1. 理解线性回归分析的基本概念,掌握线性回归方程的求解方法。

2. 能够运用线性回归分析方法对实际问题进行模型建立,并进行预测。

3. 培养学生的数据分析能力、逻辑思维能力和实际应用能力。

三、教学难点与重点难点:线性回归方程的求解及残差分析。

重点:线性回归模型的建立与应用。

四、教具与学具准备1. 教具:计算机、投影仪、黑板、粉笔。

2. 学具:直尺、圆规、计算器、练习本。

五、教学过程1. 实践情景引入利用计算机展示一组实际数据,如某城市近10年来的汽车销量与人均GDP的变化情况。

引导学生观察数据,发现数据之间的潜在关系。

2. 理论讲解(1)介绍线性回归分析的基本概念,如自变量、因变量、线性关系等。

(2)讲解线性回归方程的求解方法,如最小二乘法。

(3)阐述残差分析的意义,介绍残差的计算方法。

3. 例题讲解(1)求解一组给定数据的线性回归方程。

(2)利用线性回归方程对实际问题进行预测。

4. 随堂练习让学生根据所学知识,对给出的实际问题建立线性回归模型,并进行预测。

六、板书设计1. 线性回归分析的基本概念2. 线性回归方程的求解方法3. 残差分析4. 线性回归模型的应用七、作业设计1. 作业题目(1)求下列数据的线性回归方程:自变量:1, 2, 3, 4, 5因变量:2, 4, 5, 6, 7(2)某商店的月销售额与广告费之间的关系如下表:广告费(万元):1, 2, 3, 4, 5销售额(万元):2.5, 3.2, 3.9, 4.6, 5.3建立线性回归模型,预测广告费为6万元时的销售额。

答案:(1)线性回归方程:y = 1.4x + 0.6(2)线性回归方程:y = 0.7x + 2.08预测销售额:5.78万元八、课后反思及拓展延伸本节课通过实际问题的引入,让学生了解了线性回归分析的基本概念和应用,掌握了线性回归方程的求解方法。

数学建模回归分析例题 ppt课件

数学建模回归分析例题 ppt课件

1075.3 1434.8 5
1107.5 2035.6 6
1171.1 2360.8 5.6
1235
2043.9 4.9
1217.8 1331.9 5.6
1202.3 1160
8.5
1271
1535
7.7
1332.7 1961.8 7
1399.2 2009.3 6
1431.6 1721.9 6
1480.7 1298
精品资料
• 你怎么称呼老师?
• 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进?
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”
• “太阳当空照,花儿对我笑,小鸟说早早早……”
10.4.2 银行是否批准抵押贷款申请?
1981 1982 1983 1984 1985 1986 1987
393.3 249 1988 419.14 267 1989 460.86 289 1990 544.11 329 1991 668.29 406 1992 737.73 451 1993 859.97 513数学建模回归分析例题
1068.8 643 1169.2 699 1250.7 713 1429.5 803 1725.9 947 2099.5 1148
(百平方尺)
房屋税 1.9 2.4 1.4 1.4 1.5 1.8 2.4 4.0 2.3 2.6 2.1
(百元)
游泳池(1 为有,0为 无)
销售价格
(千元)
10001000010
145 228 150 130 160 114 142 265 140 149 135
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 线性回归分析模型
线性回归分析是回归分析中较为简单的一类,并且它在现实生活中的应用及 其泛。线性回归分析则是研究和处理变量之间的线性相关关系的数学方法。根据 所研究自变量的多少,可以将线性回归分析分为一元线性回归分析和多元线性回 归分析。
2.1 一元线性回归的模型
一元线性回归模型又称简单直线回归模型,它是根据成对的两种变量的数据, 配合直线方程式,根据自变量的变动,来推算因变量发展趋势和水平的方法。 它是 研究相关的两种数量变动与存在关系的一种方法。 一元线性回归模型的一般形式:
1
回归分析在数学建模中的应用
理、市场的预测、气象预报和医学卫生等许多领域都常常会运用回归分析。 回归分析主要研究的内容是:(1)从一组数据出发,确定这些变量(参数) 之间的定量关系,所得到的表达式称为回归方程;(2)对求得的回归方程的可信 度进行检验;(3)在有关的许多变量中,判断变量的显著性,即哪些是显著的,哪 一些是不显著的,显著地保留,不显著的忽略;(4)利用所求得的回归方程进行预 测和控制。 回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回 归分析;当研究的因果关系涉及因变量和多个自变量时,叫做多元回归分析。 另外, 依据描述自变量和因变量之间的函数关系是线性的还是非线性的,把回归分析又 分为线性回归分析和非线性回归分析。本文主要研究线性回归分析。
III
咸阳师范学院 2013 届本科毕业论文
引言
回归分析是研究生活中多个相关变量变化的一种最常见的数学方法,运用 它来解决实际问题,不仅可以使问题简单化 ,还可以对未来的数据进行预测。 本 文主要将回归分析应用于研究家庭食品支出和家庭收入以及我国民航客运量和 国民收入、消费额、铁路客运量、民航航线里程、来华入境人数之间的关系。
1.2 回归分பைடு நூலகம்的基本概念
一切运动着的事物都是相互联系、 相互制约的,从而,描述事物和事物运动的 变量之间也是相互联系、相互制约的。变量之间的关系总体可以分为两类:一类 叫做确定关系,即函数关系,它的特征是:一个变量随其他变量的确定而确定。例 4 如球的体积 V 和半径 r 之间的关系 V r 3 ;另一类关系叫做相关关系,这类关 3 系的特征是:变量之间的关系很难用一种精确的方法表示出来。例如农业上的施 肥量和亩产量之间有一定的关系,但是由施肥量不能精确地算出亩产量,由亩产 量也不能精确地计算出施肥量。而回归分析就是用来处理和描述这种相关关系 的。那么,什么是回归分析呢?我们大家都知道,数学分析和高等数学是研究连续 变量之间的关系,泛函分析是研究函数集之间的关系,而回归分析则是研究随机 变量之间的相关关系的一种数学方法。 它是最常用的数理统计方法,能解决决策、 控制、生产工艺优化等问题。目前,回归分析在工农业生产及科学研究中有着极 其广泛的作用,同时也在实验数据的处理、经验公式的推导、产品的统计质量管
1 回归分析的背景来源及其概念 1.1 回归分析的背景
“回归”这一概念是在 19 世纪 80 年代由英国的统计学家弗朗西斯·高尔顿 在研究父代身高和子代身高之间的关系时提出来的。 他发现不管父代身高是高或 是矮,子代的身高都有回归父辈平均身高的趋势,他把这种现象称作回归。 现如今, 回归分析已经成为社会科学定量分析研究中最基本、应用最为广泛的一种数据处 理方法。它不但可以给出描述自变量和因变量之间相关关系的函数表达式,还可 以用来预测因变量的取值。 在现实生活中,影响某一现象的因素常常是多方面的。 社会科学的研究不可能像自然科学研究那样运用实验的方法来进行解决,人们为 了弄清和解释事物之间变化的真实原因和规律,就必须借助一些经验数据并进行 整理分析。 而回归分析的最大优点恰恰就在于它可以通过统计方法来对干扰因素 加以控制,从而帮助我们来发现自变量与因变量之间的关系。
摘 要
回归分析和方差分析是探究和处理相关关系的两个重要的分支,其中回归分 析方法是预测方面最常用的数学方法,它是利用统计数据来确定变量之间的关系, 并且依据这种关系来预测未来的发展趋势。 本文主要介绍了一元线性回归分析方 法和多元线性回归分析方法的一般思想方法和一般步骤,并且用它们来研究和分 析我们在生活中常遇到的一些难以用函数形式确定的变量之间的关系。 在解决的 过程中,建立回归方程,再通过该回归方程进行预测。
Keywords: Multiple linear regression analysis; parameter estimation;inspection
II
咸阳师范学院 2013 届本科毕业论文
目 录
摘 要.............................................................................................................................. I Abstract...................................................................................................................... II 目 录.......................................................................................................................... III 引言................................................................................................................................ 1 1 回归分析的背景来源及其概念................................................................................ 1 1.1 回归分析的背景............................................................................................. 1 1.2 回归分析的基本概念..................................................................................... 1 2 线性回归分析模型.................................................................................................... 2 2.1 一元线性回归的模型..................................................................................... 2 2.1.1 回归参数 0 , 1 和 2 的估计.............................................................. 3 2.1.2 一元线性回归方程的显著性检验.................................................... 3
关键词:多元线性回归分析;参数估计; F 检验
回归分析在数学建模中的应用
Abstract
Regression analysis and analysis of variance is the inquiry and processing of the correlation between two important branches, wherein the regression analysis method is the most commonly used mathematical prediction method, it is the use of statistical data to determine the relationship between the variables, and based on this relationship predict future trends. introduces a linear regression analysis and multiple linear regression analysis method general way of thinking and the general steps, and use them to research and analysis that we encounter in our life, are difficult to determine as a function relationship between the variables in the solving process, the regression equation is established by the regression equation to predict.
2.2 多元线性回归分析的模型............................................................................. 4 2.2.1 回归参数 0 , 1 ,, p 和 2 的估计................................................... 5 2.2.2 多元线性回归分析方程的显著性检验.............................................. 5 3 实例应用.................................................................................................................... 5 3.1 问题提出......................................................................................................... 5 3.2 建立模型......................................................................................................... 6 3.3 关于家庭收入与家庭食品支出的应用......................................................... 6 3.4 多元线性回归分析在我国民航客运量与其影响因素中的应用................. 8 小结.............................................................................................................................. 12 参考文献...................................................................................................................... 13 谢辞.............................................................................................................................. 14
相关文档
最新文档