大学物理第十一章第二节
大学物理第十一章光学第2节 杨氏双缝干涉实验 劳埃德镜
2. 干涉条纹分析
ห้องสมุดไป่ตู้
s1
r1 r2
P
·
I
s
d
0
s2
d’
图中: 相邻实线与 虚线的相位差为
设01、02分别为s1、s2相干光的初相; A1、A2分别为 s1、s2 在P点的振幅。假设A0=A1=A2, 01=02 两光波在P点处的光强:
2 2 I=A2=2 A0 +2 A0 cos(Δ )
第 十一章 光学
13
物理学
第五版
11-2 杨氏双缝干涉实验 劳埃德镜
例2 以单色光照射到相距为0.2 mm的双缝 上,双缝与屏幕的垂直距离为1 m. (1)从第一级明纹到同侧的第四级明纹间的 距离为7.5 mm,求单色光的波长; (2)若入射光的波长为600 nm,中央明纹中 心距离最邻近的暗纹中心的距离是多少?
d'
B
p
x
o
s2
r
x r d d'
k 0,1,2, (2k 1) 减弱 2
第 十一章 光学
5
k
加强
物理学
第五版
11-2 杨氏双缝干涉实验 劳埃德镜
明、暗条纹的位置
d x= k d
k=0, 1, 2, ...明纹中心
d x= ( 2k- 1) d 2
r1
r2
d'
B
p
s
x
o
o
s2
r
d ' d
当 很小时(<5º )
波程差
sin tan x / d ' x r r2 r1 d sin d d'
大一物理十一章知识点总结
大一物理十一章知识点总结第一节:力的平衡力的平衡是物体处于静止状态或匀速直线运动状态的条件之一。
在力的平衡下,物体所受合力为零。
一、力的合成与分解力的合成是指将两个或多个力合成为一个力的过程,根据平行四边形法则和三角形法则可以求得合力的大小和方向。
力的分解是指将一个力分解为两个或多个力的过程,常用的分解方法有正交分解法和平行分解法。
二、平衡条件物体在力的平衡下,满足以下两个条件:1. 合力为零:物体所受合力的矢量和为零;2. 转矩为零:物体所受合外力矩的矢量和为零。
三、静摩擦力与动摩擦力静摩擦力是指物体在受到外力作用时,由于与支持面接触而产生的阻碍物体相对滑动的力。
静摩擦力的最大值由静摩擦系数和垂直于支持面的压力共同决定。
动摩擦力是指物体在相对滑动状态下,与支持面接触而产生的阻碍物体继续滑动的力。
动摩擦力的大小与动摩擦系数和垂直于支持面的压力共同决定。
第二节:运动学方程一、匀加速直线运动1. 位移和位移方向:位移是指物体从初始位置到末位置的矢量差,位移的方向与物体运动方向一致。
2. 平均速度和瞬时速度:平均速度是指物体在某段时间内位移的比值,瞬时速度是指物体在某一时刻的速度,速度的方向与物体位移的方向一致。
3. 加速度和加速度方向:加速度是指物体在单位时间内速度的变化率,加速度的方向与速度变化的方向一致。
二、直线自由落体运动1. 加速度与重力:自由落体运动的加速度大小为重力加速度,方向为竖直向下。
2. 下落时间和下落位移:自由落体运动的时间和位移可以通过运动学方程求得,其中初速度通常为零。
第三节:力学能一、功与功率1. 功是力对物体作用所导致的能量转移或变化的度量,功的大小等于力的大小与物体位移方向的夹角的余弦值乘以位移的大小。
2. 功率是指单位时间内所做功的大小,功率的大小等于做功的大小除以所用时间。
二、势能和动能1. 势能是指物体由于所处的位置或状态而具有的能量,常见的势能有重力势能和弹性势能。
大学物理11-4 薄膜干涉(2)汇总
例 11-8 干涉膨胀仪如图所示,
干涉膨胀仪
一个石英圆柱环B放在平台上,
其热膨胀系数极小,可忽略不计。l
环上放一块平破璃板P,并在环
内放置一上表面磨成稍微倾斜的 柱形待测样品R,石英环和样品
l0
B
的上端面已事先精确磨平,于是
R的上表面与P的下表面之间形
成楔形空气膜,用波长为 的
单色光垂直照明,即可在垂直方 向上看到彼此平行等距的等厚条
dk
2n
n
2
b
n1 n
sin n 2
b
3)条纹间距(明纹或暗纹)
b 2n
tan D L
D n L L
2b 2nb
L
n n / 2 D
n1
b
劈尖干涉
11 - 4 薄膜干涉(2)
4 )干涉条纹的移动
每一条 纹对应劈尖 内的一个厚 度,当此厚 度位置改变 时,对应的 条纹随之移 动.
2
所以对于厚度均匀的平面薄膜来说,光程差是随光线的倾
角(入射角)的改变而改变,倾角相同,光程差相同,干
涉条纹的级数也相同。
11 - 4 薄膜干涉(2)
第十一章 波动光学
1 劈 尖干涉
n
T
L
n1
n1
d
S
劈尖角
M
2nd
D
2
n n1
k, k 1,2, 明纹
b
(2k 1) , k 0,1, 暗纹
B
膨胀值为 l N
2
根据热膨胀系数的定义
l
l0T
得样品的热膨胀系数
l N
l0T 2l0T
11 - 4 薄膜干涉(2) 劈尖干涉的应用
东北大学大学物理总结课件
3.会分析缝宽及波长对衍射条纹分布的影响。
4
11-8 圆孔衍射 光学仪器的分辨本领
1.了解夫琅和费圆孔衍射、艾里斑、瑞利判据、衍射对
光学仪器分辨本领的影响;
2.理解最小分辨角、光学仪器的分辨本领;
3.能够根据已知条件计算出光学仪器所能分辨的最小距
离。
11-9 衍射光栅
1.理解光栅、光栅常数、光栅衍射、缺级等概念;
17
5.理解可逆过程与不可逆过程的概念,能够使用公式:
dS dQ T
2 dQ
S2 S1 1 T
(对可逆过程)
计算基本的可逆与不可逆过程前后熵变。
6.理解玻尔兹曼关系式:
S k lnW
7.理解熵与热力学第二定律的统计意义。
8.了解信息熵。
18
CV
d e dT
V
iR 2
15
8.掌握p-V图中绝热线与等温线的区别及其形成的原因。
9.循环过程:
(1)掌握循环过程的特征;
(2)掌握正循环与热机(包括热机效率公式)间的关系;
(3)掌握逆循环与制冷机(包括制冷系数公式)间的关系。
10.掌握与理想气体循环过程有关的计算:
主要包括:吸热、作功、内能变化和效率、制冷系
明确作功和吸热是与过程有关的物理量。
4.热力学第一定律:掌握热力学第一定律的内容及其数
学表述: Q W E dQ dW d E
14
5.理解内能的概念: 明确内能是状态的单值函数,其增量只与始末状态
有关,而与系统所经历的具体过程无关的结论。 6.热力学第一定律的应用: (1)掌握理想气体等容、等温、等压和绝热过程的特征, 过程方程(其中绝热过程的过程方程要求会推导); (2)掌握上述过程中气体吸热、作功和内能变化的计算。 7.掌握理想气体热容量的计算方法和迈耶公式,能使用 能量均分定理计算各种刚性分子理想气体的热容量。
大学物理第十一章
体积模量 :
p
p 0, V 0; p 0, V 0
返回 退出
§11-4 波的能量 波的强度
一、波的能量
平面简谐波
y( x, t )
Acos[(t
x) u
0 ]
考虑介质中体积元为V质量为m (m=V )的质元。
可以证明
Ek
Ep
1 2
A22 (V
) sin
2[(t
x) u
0 ]
体积元的总机械能
返回 退出
四、介质的形变及其模量
1. 线变
正应力: F/S 线应变: l/l
F E l
FS
F
S
l
l
弹性模量 :E
l+l
2. 切变
F
F G 切变角:
S
S
切变模量: G
返回 退出
3. 体变
p
压强为p时,体积为V;
压强为p+Δp时,体积为V+ΔV。 p V V p 体应变: V/V
p Κ V V
π
0.0021
5
x 10
3
0.1103 sin 5πx (m)
返回 退出
例11-3 一横波沿一弦线传播。设已知t =0时的波形曲 线如图中的虚线所示。波速 u=12 m/s,求:(1)振幅; (2)波长;(3)波的周期;(4)弦上任一质点的最大速率; (5)图中a、b两点的相位差;(6)3T/4时的波形曲线。
纵波:质点的振动方向和波动的传播方向相平行。 波形特征:存在相间的稀疏和稠密区域, 如声波。
返回 退出
弹簧中的纵波
返回 退出
三、波阵面和波(射)线
波阵面:振动相位相同的点所构成的面。 波前:最前面的那个波阵面。 波线:表示波的传播方向的有向线段。
大学物理第11章第二次课11(3-4)
→ε,
1 q0 U 4 r
[例] 点电荷在介质场中:
讨论: D 1、 无物理意义,只是为了简化公式而引入的辅助物理量。 D线从自由正电荷出发,终止于自由负电荷。
E线
D线
2、有介质的高斯定理与真空中的高斯定理都是普遍适用的。
3、闭合面上电位移矢量 D 的通量只与面内自由电荷q 0 有关。 但 D 并不是只由 q0 产生。因为 D的通量和 D是两个 不同的概念。
则此时: P2 n21 P2 n
(4)、极化强度与体电荷密度的关系:
在介质内如取一闭合曲面S,因极化而越过dS面向外移出 闭合面S的电荷为
d q出 P d S
S
于是,通过整个闭合曲面S向外移动的极化电荷总量为:
由电荷守恒定律 :
q出= P d s
三、 电介质的极化规律
1、电介质中的场强: ( E —总场; E0 —外场; E — 极化场)
E E0 E
2、P、 关系: E
实验证明: (
P 0 e E
e — 电介质的极化率)
e r 1
若介质中各点 e 相等,则称为均匀介质 。
P = 常矢,则称为均匀极化 。
导体: 0 P
2) 真空:P 0
2、极化强度与极化电荷的关系: 在外电场作用下,电介质被极化.产生束缚电荷, , .
描述电介质极化程度的物理量是极化强度 P . 所以,束缚电荷 , 与极化强度 P 之间必有一定关系.
pe 0
ⅱ] 在外电场中,分子中的正、负电荷受到 相反方向的电场力,因正、负电荷中心 发生微小相对位移,形成电偶极矩沿外 场方向排列起来。 ⅲ] 沿电场方向的两侧面也将分别呈正、 负束缚电荷,介 质的这种极化称为 位移极化 。 注意
大学物理11-2杨氏双缝干涉实验 劳埃德镜
明暗条纹的位置 明暗条纹的位置
x=
d' λ ± (2k + 1) d 2
d' ±k λ d
明纹 暗纹
k = 0 ,1, 2 , L
3.相邻两条明( 3.相邻两条明(暗)纹间距 相邻两条明 条纹等 1) 条纹等间距分布. 2)条纹间距
d' λ ∆x = d
成正比, 成正比,与
(∆k = 1)
λ ∆x 与 d ′、
s
s1
d o′
r1
r2
∆r
d'
B
p
x
o
s2
x δ =d = d'
± kλ
± ( 2k + 1)
λ
加强
x=
d' λ ± ( 2 k + 1) d 2
d' ±k λ d
2 减弱
明纹 暗纹
k = 0 ,1, 2 , L
k = 0 ,1, 2 , L
明暗条纹的位置 明暗条纹的位置
x=
d' λ ± (2k + 1) d 2
x δ =d = d'
± kλ
± (2k + 1)
λ
加强
2 减弱
k = 0 ,1, 2 , L
2.同一级明纹(暗纹)对称地分布于中央明纹的两侧. 2.同一级明纹(暗纹)对称地分布于中央明纹的两侧. 同一级明纹 地分布于中央明纹的两侧 k=2 k=1
S1 * S* S2 *
k=1 k=2 k= 0
I
δ = AC − BC −
h
λ
2
λ
2
α
2α
A
α
= AC(1 − cos2α ) −
大学物理-第十一章第二课
b0
R d
d 极限宽度 b0
R
D
当光源宽度b b0 时,才能观察到干涉条纹。
为观察到较清晰的干涉条纹通常取 b b0 4
2、相干孔径角
相干孔径角:
S1
b
0
d0
0
d0 R
b
R S2
— d0 对光源中心的张角。
在θ0 范围内的光场中,正对光源的平面上
的任意两点的光振动是相干的。
0 越小空间相干性越好。
普通单色光:
:103 — 101 nm
M :103 — 101 m
激光:
:109 — 106 nm
(理想情况)
M :101 — 102 km
(实际上,一般为10 -1 101m)
2、相干时间 光通过相干长度所需时间叫相干时间。
相干时间 M
c
M
kM
2
M
时间相干性的好坏, 就是用相干长度δM
条纹间隔分布: 内疏外密 条纹级次分布: 内高外低
二 、面光源照明时,干涉条纹的分析
r环
oP
i
f
面光源 ···i
n
n > n
e
n
只要 i 相同,都将汇聚在同一个干涉环上
(非相干叠加),因而明暗对比更鲜明。
屏幕
i
f
S
L
M
n
观察等倾条纹的光路和实验装置
对于观察等倾条纹,没有光源宽度和条纹 对比度的矛盾 !
32
2d
cos
n2 1 sin2
2
2n2d
cos
2
反射光的光程差
r 2d
n22
n12
大学物理第十一章课后答案
第十一章 电流与磁场11-1 电源中的非静电力与静电力有什么不同?答:在电路中,电源中非静电力的作用是,迫使正电荷经过电源内部由低电位的电源负极移动到高电位的电源正极,使两极间维持一电位差。
而静电场的作用是在外电路中把正电荷由高电位的地方移动到低电位的地方,起到推动电流的作用;在电源内部正好相反,静电场起的是抵制电流的作用。
电源中存在的电场有两种:1、非静电起源的场;2、稳恒场。
把这两种场与静电场比较,静电场由静止电荷所激发,它不随时间的变化而变化。
非静电场不由静止电荷产生,它的大小决定于单位正电荷所受的非静电力,q非F E =。
当然电源种类不同,非F 的起因也不同。
11-2静电场与恒定电场相同处和不同处?为什么恒定电场中仍可应用电势概念? 答:稳恒电场与静电场有相同之处,即是它们都不随时间的变化而变化,基本规律相同,并且都是位场。
但稳恒电场由分布不随时间变化的电荷产生,电荷本身却在移动。
正因为建立稳恒电场的电荷分布不随时间变化,因此静电场的两条基本定理,即高斯定理和环路定理仍然适用,所以仍可引入电势的概念。
11-3一根铜导线表面涂以银层,当两端加上电压后,在铜线和银层中,电场强度是否相同?电流密度是否相同?电流强度是否相同?为什么?答:此题涉及知识点:电流强度d sI =⋅⎰j s ,电流密度概念,电场强度概念,欧姆定律的微分形式j E σ=。
设铜线材料横截面均匀,银层的材料和厚度也均匀。
由于加在两者上的电压相同,两者的长度又相等,故铜线和银层的场强E相同。
由于铜线和银层的电导率σ不同,根据j E σ=知,它们中的电流密度j 不相同。
电流强度d sI =⋅⎰j s ,铜线和银层的j 不同但相差不太大,而它们的横截面积一般相差较大,所以通过两者的电流强度,一般说来是不相同的。
11-4一束质子发生侧向偏转,造成这个偏转的原因可否是:(1)电场?(2)磁场?(3)若是电场和磁场在起作用,如何判断是哪一种场?答:造成这个偏转的原因可以是电场或磁场。
大学物理答案第11章
第十一章 恒定磁场11-1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小r R B B 、满足( )(A ) r R B B 2= (B ) r R B B = (C ) r R B B =2 (D )r R B B 4=分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比21==R r n n r R 因而正确答案为(C ).11-2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )(A )B r 2π2 (B ) B r 2π(C )αB r cos π22(D ) αB r cos π2题 11-2 图分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ⋅=m Φ.因而正确答案为(D ).11-3 下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零 分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零.因而正确答案为(B ).11-4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( )(A ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B =(B ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B = (C ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠ (D ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B≠题 11-4 图分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ).11-5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr (μr<1),则磁介质内的磁化强度为( ) (A )()r I μr π2/1-- (B ) ()r I μr π2/1- (C ) r I μr π2/- (D ) r μI r π2/分析与解 利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H 求得磁介质内的磁化强度,因而正确答案为(B ).11-6 北京正负电子对撞机的储存环是周长为240 m 的近似圆形轨道,当环中电子流强度为8 mA 时,在整个环中有多少电子在运行? 已知电子的速率接近光速. 分析 一个电子绕存储环近似以光速运动时,对电流的贡献为c I e I /Δ=,因而由lNec I =,可解出环中的电子数.解 通过分析结果可得环中的电子数10104⨯==ecIlN 11-7 已知铜的摩尔质量M =63.75 g·mol -1,密度ρ =8.9 g · cm -3,在铜导线里,假设每一个铜原子贡献出一个自由电子,(1)为了技术上的安全,铜线内最大电流密度26.0A mm m j -=⋅ ,求此时铜线内电子的漂移速率v d ;(2) 在室温下电子热运动的平均速率是电子漂移速率v d 的多少倍?分析 一个铜原子的质量A N M m /=,其中N A 为阿伏伽德罗常数,由铜的密度ρ 可以推算出铜的原子数密度m ρn /=根据假设,每个铜原子贡献出一个自由电子,其电荷为e ,电流密度d m ne j v = .从而可解得电子的漂移速率v d .将电子气视为理想气体,根据气体动理论,电子热运动的平均速率em kTπ8=v 其中k 为玻耳兹曼常量,m e 为电子质量.从而可解得电子的平均速率与漂移速率的关系.解 (1) 铜导线单位体积的原子数为M ρN n A /=电流密度为j m 时铜线内电子的漂移速率14A s m 1046.4--⋅⨯===eN M j ne j m m d ρv (2) 室温下(T =300 K)电子热运动的平均速率与电子漂移速率之比为81042.2π81⨯≈=edd m kTv v v 室温下电子热运动的平均速率远大于电子在恒定电场中的定向漂移速率.电子实际的运动是无规热运动和沿电场相反方向的漂移运动的叠加.考虑到电子的漂移速率很小,电信号的信息载体显然不会是定向漂移的电子.实验证明电信号是通过电磁波以光速传递的. 11-8 有两个同轴导体圆柱面,它们的长度均为20 m ,内圆柱面的半径为3.0 mm ,外圆柱面的半径为9.0 mm.若两圆柱面之间有10 μA 电流沿径向流过,求通过半径为6.0 mm 的圆柱面上的电流密度.题 11-8 图分析 如图所示是同轴柱面的横截面,电流密度j 对中心轴对称分布.根据恒定电流的连续性,在两个同轴导体之间的任意一个半径为r 的同轴圆柱面上流过的电流I都相等,因此可得rlI j π2=解 由分析可知,在半径r =6.0 mm 的圆柱面上的电流密度2m A μ3.13π2-⋅==rlIj 11-9 如图所示,已知地球北极地磁场磁感强度B 的大小为6.0×10-5T .如设想此地磁场是由地球赤道上一圆电流所激发的,此电流有多大? 流向如何?解 设赤道电流为I ,则由教材第11-4节例2 知,圆电流轴线上北极点的磁感强度()RIRR IR B 24202/32220μμ=+=因此赤道上的等效圆电流为A 1073.12490⨯==μRBI 由于在地球地磁场的N 极在地理南极,根据右手螺旋法则可判断赤道圆电流应该是由东向西流,与地球自转方向相反.题 11-9 图11-10 如图所示,有两根导线沿半径方向接触铁环的a 、b 两点,并与很远处的电源相接.求环心O 的磁感强度.题 11-10 图分析 根据叠加原理,点O 的磁感强度可视作由ef 、be 、fa 三段直线以及acb 、a d b 两段圆弧电流共同激发.由于电源距环较远,0=ef B .而be 、fa 两段直线的延长线通过点O ,由于0Idl r ⨯=,由毕奥-萨伐尔定律知0be fa ==B B .流过圆弧的电流I 1 、I 2的方向如图所示,两圆弧在点O 激发的磁场分别为21101π4r l I μB =,22202π4r l I μB = 其中l 1 、l 2 分别是圆弧acb 、a d b 的弧长,由于导线电阻R 与弧长l 成正比,而圆弧acb 、a d b又构成并联电路,故有2211l I l I =将21B B 、叠加可得点O 的磁感强度B . 解 由上述分析可知,点O 的合磁感强度0π4π42220211021=-=-=r l I μr l I μB B B 11-11 如图所示,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感强度各为多少?题 11-11 图分析 应用磁场叠加原理求解.将不同形状的载流导线分解成长直部分和圆弧部分,它们各自在点O 处所激发的磁感强度较容易求得,则总的磁感强度∑=iB B 0.解 (a) 长直电流对点O 而言,有0d =⨯rl I ,因此它在点O 产生的磁场为零,则点O 处总的磁感强度为1/4 圆弧电流所激发,故有RIμB 800=B 0 的方向垂直纸面向外.(b) 将载流导线看作圆电流和长直电流,由叠加原理可得RIμR I μB π22000-=B 0 的方向垂直纸面向里.(c ) 将载流导线看作1/2 圆电流和两段半无限长直电流,由叠加原理可得RIμR I μR I μR I μR I μB 4π24π4π4000000+=++=B 0 的方向垂直纸面向外.11-12 载流导线形状如图所示(图中直线部分导线延伸到无穷远),求 点O 的磁感强度B .题 11-12 图分析 由教材11-4 节例题2的结果不难导出,圆弧载流导线在圆心激发的磁感强度RαI μB π40=,其中α为圆弧载流导线所张的圆心角,磁感强度的方向依照右手定则确定;半无限长载流导线在圆心点O 激发的磁感强度R IμB π40=,磁感强度的方向依照右手定则确定.点O 的磁感强度O B 可以视为由圆弧载流导线、半无限长载流导线等激发的磁场在空间点O 的叠加. 解 根据磁场的叠加 在图(a)中,k i k k i B RI μR I μR I μR I μR I μπ24π4π44000000--=---= 在图(b)中,k i k i i B RI μR I μR I μR I μR I μπ41π14π44π4000000-⎪⎭⎫ ⎝⎛+-=---= 在图(c )中,k j i B RIμR I μR I μπ4π4830000---= 11-13 如图(a)所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量.题 11-13 图分析 由于矩形平面上各点的磁感强度不同,故磁通量Φ≠BS .为此,可在矩形平面上取一矩形面元d S =l d x ,如图(b)所示,载流长直导线的磁场穿过该面元的磁通量为x l xId π2d d 0μ=⋅=ΦS B矩形平面的总磁通量ΦΦ⎰=d解 由上述分析可得矩形平面的总磁通量⎰==Φ211200lnπ2d π2d dd d Ilx l xIμμ 11-14 已知10 mm 2裸铜线允许通过50 A 电流而不会使导线过热.电流在导线横截面上均匀分布.求导线内、外磁感强度的分布.题 11-14 图分析 可将导线视作长直圆柱体,电流沿轴向均匀流过导体,故其磁场必然呈轴对称分布,即在与导线同轴的圆柱面上的各点,B 大小相等、方向与电流成右手螺旋关系.为此,可利用安培环路定理,求出导线表面的磁感强度.解 围绕轴线取同心圆为环路L ,取其绕向与电流成右手螺旋关系,根据安培环路定理,有∑⎰=⋅=⋅I μB 0πr 2d l B在导线内r <R , 2222ππRIr r R I I ==∑,因而 202πR IrμB =在导线外r >R ,I I =∑,因而rIμB 2π0=磁感强度分布曲线如图所示.11-15 有一同轴电缆,其尺寸如图(a)所示.两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑.试计算以下各处的磁感强度:(1) r <R 1 ;(2) R 1 <r <R 2 ;(3) R 2 <r <R 3 ;(4) r >R 3 .画出B -r 图线.题 11-15 图分析 同轴电缆导体内的电流均匀分布,其磁场呈轴对称,取半径为r 的同心圆为积分路径,πr 2d ⋅=⋅⎰B l B ,利用安培环路定理∑⎰=⋅I μ0d l B ,可解得各区域的磁感强度.解 由上述分析得r <R 122101ππ12πr R μr B =⋅ 21012πR Ir μB =R 1 <r <R 2I μr B 022π=⋅rI μB 2π02=R 2 <r <R 3()()⎥⎦⎤⎢⎣⎡---=⋅I R R R r I μr B 22232203ππ2π 2223223032πR R r R r I μB --= r >R 3()02π04=-=⋅I I μr B04=B磁感强度B (r )的分布曲线如图(b).11-16 如图所示,N 匝线圈均匀密绕在截面为长方形的中空骨架上.求通入电流I 后,环内外磁场的分布.题 11-16 图分析 根据右手螺旋法则,螺线管内磁感强度的方向与螺线管中心轴线构成同心圆,若取半径为r 的圆周为积分环路,由于磁感强度在每一环路上为常量,因而πr 2d ⋅=⋅⎰B l B依照安培环路定理∑⎰=⋅I μ0d l B ,可以解得螺线管内磁感强度的分布.解 依照上述分析,有∑=⋅I μr B 02πr <R 102π1=⋅r B01=BR 2 >r >R 1NI μr B 022π=⋅rNI μB 2π02=r >R 202π3=⋅r B 03=B在螺线管内磁感强度B 沿圆周,与电流成右手螺旋.若112R R R <<- 和R 2 ,则环内的磁场可以近似视作均匀分布,设螺线环的平均半径()1221R R R +=,则环内的磁感强度近似为 RNIμB 2π0≈11-17 电流I 均匀地流过半径为R 的圆形长直导线,试计算单位长度导线内的磁场通过图中所示剖面的磁通量.题 11-17 图分析 由题11-14 可得导线内部距轴线为r 处的磁感强度()202πR Irμr B =在剖面上磁感强度分布不均匀,因此,需从磁通量的定义()S B d ⎰=r Φ来求解.沿轴线方向在剖面上取面元dS =l dr ,考虑到面元上各点B 相同,故穿过面元的磁通量dΦ=B dS ,通过积分,可得单位长度导线内的磁通量⎰=Sr B Φd解 由分析可得单位长度导线内的磁通量4πd 2π0020Iμr R Ir μΦR==⎰11-18 已知地面上空某处地磁场的磁感强度40.410T B -=⨯,方向向北.若宇宙射线中有一速率715.010m s -=⨯v 的质子,垂直地通过该处.求:(1)洛伦兹力的方向;(2) 洛伦兹力的大小,并与该质子受到的万有引力相比较.题 11-18 图解 (1) 依照B F ⋅=v q L 可知洛伦兹力L F 的方向为B ⊥v 的方向,如图所示. (2) 因B ⊥v ,质子所受的洛伦兹力N 102.316-⨯==B F v q L在地球表面质子所受的万有引力N 1064.126p -⨯==g m G因而,有101095.1/⨯=G F L ,即质子所受的洛伦兹力远大于重力.11-19 霍尔效应可用来测量血流的速度,其原理如图所示.在动脉血管两侧分别安装电极并加以磁场.设血管直径为d =2.0 mm ,磁场为B =0.080 T ,毫伏表测出血管上下两端的电压为U H =0.10 mV ,血流的流速为多大?题 11-19 图分析 血流稳定时,有H qE B q =v由上式可以解得血流的速度. 解 依照分析m/s 63.0===dBU B E HH v 11-20 带电粒子在过饱和液体中运动,会留下一串气泡显示出粒子运动的径迹.设在气泡室有一质子垂直于磁场飞过,留下一个半径为3.5 cm 的圆弧径迹,测得磁感强度为0.20 T,求此质子的动量和动能.解 根据带电粒子回转半径与粒子运动速率的关系有m /s kg 1012.121⋅⨯===-ReB m p vkeV 35.222==mp E k11-21 从太阳射来的速度为0.80×108m/s 的电子进入地球赤道上空高层范艾伦辐射带中,该处磁场为4.0 ×10-7T,此电子回转轨道半径为多大? 若电子沿地球磁场的磁感线旋进到地磁北极附近,地磁北极附近磁场为2.0 ×10-5T,其轨道半径又为多少? 解 由带电粒子在磁场中运动的回转半径高层范艾伦辐射带中的回转半径m 101.1311⨯==eB m R v地磁北极附近的回转半径m 2322==eB m R v11-22 如图(a)所示,一根长直导线载有电流I 1 =30 A ,矩形回路载有电流I 2 =20 A .试计算作用在回路上的合力.已知d =1.0 cm ,b =8.0 cm ,l =0.12 m .题 11-22图分析 矩形上、下两段导线受安培力F 1 和F 2 的大小相等,方向相反,对不变形的矩形回路来说,两力的矢量和为零.而矩形的左右两段导线,由于载流导线所在处磁感强度不等,所受安培力F 3 和F 4 大小不同,且方向相反,因此线框所受的力为这两个力的合力.解 由分析可知,线框所受总的安培力F 为左、右两边安培力F 3 和F 4 之矢量和,如图(b)所示,它们的大小分别为d lI I μF π22103=()b d l I I μF +=π22104故合力的大小为()N 1028.1π2π2321021043-⨯=+-=-=b d lI I μd l I I μF F F 合力的方向朝左,指向直导线.11-23 一直流变电站将电压为500kV 的直流电,通过两条截面不计的平行输电线输向远方.已知两输电导线间单位长度的电容为3.0×10-11F ·m -1,若导线间的静电力与安培力正好抵消.求:(1) 通过输电线的电流;(2) 输送的功率.分析 当平行输电线中的电流相反时,它们之间存在相互排斥的安培力,其大小可由安培定律确定.若两导线间距离为d ,一导线在另一导线位置激发的磁感强度dIμB π20=,导线单位长度所受安培力的大小BI F B =.将这两条导线看作带等量异号电荷的导体,因两导线间单位长度电容C 和电压U 已知,则单位长度导线所带电荷λ=CU ,一导线在另一导线位置所激发的电场强度dελE 0π2=,两导线间单位长度所受的静电吸引力λE F E =.依照题意,导线间的静电力和安培力正好抵消,即0=+E B F F从中可解得输电线中的电流.解 (1) 由分析知单位长度导线所受的安培力和静电力分别为d I μBI F B π220==dεU C λE F E 022π2== 由0=+E BF F 可得dεU C d I μ02220π2π2=解得A 105.4300⨯==μεCUI (2) 输出功率W 1025.29⨯==IU N11-24 在氢原子中,设电子以轨道角动量π2/h L =绕质子作圆周运动,其半径为m 1029.5110-⨯=a .求质子所在处的磁感强度.h 为普朗克常量,其值为s J 1063.634⋅⨯-分析 根据电子绕核运动的角动量π20h a m L ==v 可求得电子绕核运动的速率v .如认为电子绕核作圆周运动,其等效圆电流v/π20a e T e i ==在圆心处,即质子所在处的磁感强度为02a i μB =解 由分析可得,电子绕核运动的速率π2ma h=v其等效圆电流2020π4/π2ma he v a e i ==该圆电流在圆心处产生的磁感强度T 5.12π82202000===ma heμa i μB 11-25 如图[a]所示,一根长直同轴电缆,内、外导体之间充满磁介质,磁介质的相对磁导率为μr (μr <1),导体的磁化可以忽略不计.沿轴向有恒定电流I 通过电缆,内、外导体上电流的方向相反.求:(1) 空间各区域内的磁感强度和磁化强度;*(2) 磁介质表面的磁化电流.题 11-25 图分析 电流分布呈轴对称,依照右手定则,磁感线是以电缆对称轴线为中心的一组同心圆.选取任一同心圆为积分路径,应有⎰⋅=⋅r H d π2l H ,利用安培环路定理⎰∑=⋅fI d l H求出环路内的传导电流,并由H μB =,()H μM r 1-=,可求出磁感强度和磁化强度.再由磁化电流的电流面密度与磁化强度的关系求出磁化电流.解 (1) 取与电缆轴同心的圆为积分路径,根据磁介质中的安培环路定理,有∑=fπ2I r H对r <R 1221f ππrR I I =∑ 得2112πR IrH =忽略导体的磁化(即导体相对磁导率μr =1),有01=M ,21012πR IrμB =对R 2 >r >R 1I I=∑f得rI H 2π2=填充的磁介质相对磁导率为μr ,有()r I μM r 2π12-=,rI μμB r 2π02= 对R 3 >r >R 2()()2223223ππR r R R I I I f -⋅--=∑ 得()()222322332πR R r r R I H --= 同样忽略导体的磁化,有03=M ,()()2223223032πR R r r R I μB --= 对r >R 30=-=∑I I If得04=H ,04=M ,04=B(2) 由r M I s 2π⋅=,磁介质内、外表面磁化电流的大小为()()I μR R M I r si 12π112-=⋅= ()()I μR R M I r se 12π222-=⋅=对抗磁质(1r μ<),在磁介质内表面(r =R 1 ),磁化电流与内导体传导电流方向相反;在磁介质外表面(r =R 2 ),磁化电流与外导体传导电流方向相反.顺磁质的情况与抗磁质相反.H (r )和B (r )分布曲线分别如图(b)和(c )所示.。
大学物理第二部分电磁场与电磁学之第11章 电磁感应
vB
v
11-2 动生电动势和感生电动势
方法二 作辅助线,形成闭合回路CDEF
m B dS
S
ab
a
i
0 Ix a b ln 2 a d m
dt
0 I xdr 2r
I
方向
DC
v
X
C
D
0 I a b dx ( ln ) 2 a dt 0 Iv a b ln 2 a
11-2 动生电动势和感生电动势
动生电动势的公式 非静电力 Fm e( v B ) Fm vB 定义 E k 为非静电场强 E k e 由电动势定义 i Ek dl
运动导线ab产生的动生电动势为
i
a Ek dl ( v B ) dl
L
11-2 动生电动势和感生电动势
平动
计 算 动 生 电 动 势 分 类 均匀磁场 转动 非均匀磁场
方 法
i
i
b
d m dt
a
(v B) dl
11-2 动生电动势和感生电动势
均匀磁场
例 已知: v , B , , L 求: 解: d ( v B ) dl
a
f
感应电流
产生
阻碍
导线运动
v
感应电流
b
产生 阻碍
磁通量变化
11-1 电磁感应的基本定律
判断感应电流的方向:
1、判明穿过闭合回路内原磁场 的方向; 2、根据原磁通量的变化 , 按照楞次定律的要求确定感 应电流的磁场的方向; 3、按右手法则由感应电流磁场的 方向来确定感应电流的方向。
大学物理B2_第11章_2
2 垂直入射的光程差: 2dn2 2
2014年10月15日星期三
2dn2 cos
13
第十一章 光学2
2. 干涉条纹特点: 明暗相间等间距的条纹。 相同的厚度是同一条干涉条纹 3.明暗条纹位置 (1)明纹极大:
n
n1 n1
dk
2 (2)暗纹极小: 2d k n (2k 1) k 0,1,2,3... 暗纹 2 2 明纹 4. 条纹的膜厚度差 明纹之间 d d k 1 d k
15
第十一章 光学2
劈尖可测微小的厚度
b
n1 n
n
D
D tan L
D
2
2nb
L
n1
2nb
L
b
干涉条纹的移动
2014年10月15日星期三
16
第十一章 光学2
6. 劈尖干涉应用举例
1)干涉膨胀仪
2)测膜厚
n0
n2
l
n2 n1 n0
l0
si
n1
si o 2
d
b
明纹
暗纹
明暗纹之间的膜厚度差
5.明、暗条纹间距
d dk明 dk暗 4n
d d b tan sin
dk
d
d k 1
说明:对斜面上的间距与平面上的间距 视同相等。
因为 很小,以后在应用中对斜面或平面不加区分。
b 2 n
d
2014年10月15日星期三
2n 2 1.5 5 105 h 2nh ] [250] 250 暗条纹间距 ][ N [ ] [ 6 0.6 10 d N N 1 有251暗条纹。 明条纹有多少? N明 250 解二: 2d k n (2k 1) 2 2 k 250 k 0,1,2,3... N 251
大学物理电磁学 第11章 恒定磁场
四、毕-萨定律的应用
dB
0 4
Idl r r2
方法:
(1)将电流分解为无数个电流元
(2)由电流元求dB (据毕—萨定律)
(3)对dB积分求B = dB 矢量积分须化作分量积分去做
Bx dBx , By dBy , Bz dBz
例题1 直线电流在P点的磁场
2
解:
任取电流元 I dl
所有磁现象可归纳为:
运动电荷
运动电荷
载流导体
磁场
载流导体
磁体
磁体
磁场的宏观性质:对运动电荷(或电流)有力的 作用,磁场有能量
二、磁感应强度
B 1、磁场的描述:磁感应强度
方向: 磁针静止时,N极指向即B的正方向
S
N
2、B的大小:
以磁场对载流导线的作用为例
电流元所受到的磁场力
dF Idl sin
l
r
B
3)说明磁场为非保守场称为涡旋场
静电场是保守场、无旋场
二、简证(用特例说明安培环路定理的正确性)
(1)闭合路径L环绕电流
L在垂直于导线的平面内
B 0I 2 r
L
I d
o
B
r
dl
磁感线
(2)闭合路径L不包围电流
B dl1 dl2 L
P
·
I
d
o
dl2
dl1
L2
L1
磁感线
·
Q
三、运用安培环路定理求磁场 安培环路定理适用于任何形状恒定电流的载流体
P·
Idl r
B
dB
0 4
Idl r r2
B
dB
0 4
Idl r r2
大学物理 第十一章 气体动理论
统计规律有以下两个重要特征 (1)统计规律是大量偶然事件整体所遵从的规律. (2)统计规律和涨落现象是分不开的.
Page‹#›
大学物理学(第三版)电子教案
第十一章 气体动理论
11-2 理想气体压强公式
一、理想气体的分子模型 1. 分子本身的大小比起它们之间的平均距离可忽略
不计,分子可以看做质点. 2. 除碰撞外,分子力可忽略. 3. 分子间的碰撞是完全弹性的.
要表现为斥力;当 r r0 时,
分子力主要表现为引力.
斥 力
o
当 r 109 m 时,分子间作 引
用力可以忽略不计.
力
r0 ~ 1010 m
r0
r
Page‹#›
大学物理学(第三版)电子教案
第十一章 气体动理论
组成宏观物体的大量 分子都在做无规则的永不 停息的运动,分子的这种 运动叫做分子热运动. 如图, 布朗运动是个典型的例子.
vi
相同,则总的分子数密度为:
n ni
vidt
i
Page‹#›
大学物理学(第三版)电子教案
第十一章 气体动理论
考虑器壁上任意面积元dA所受的压强,单个分子遵 循力学规律,其速度为:
vi vixi viy j viz k
碰撞前后,x方向动量增量为: pix 2 vix
由牛顿第三定律知,分子施于器壁的冲量为 2 vix
所有与dA相碰撞的分子施予dA的合力为 dF dI
因此, 气体对容器壁的压强为
dt
p dF dI dA dt dA
i
ni vi2x
由于
vx2
i ni vi2x 1 v2 ,
ni
3
i
代入可得:
西北工业大学《大学物理上》课件-第十一章磁场中的磁介质
Chapter 11. 磁场中的磁介质 §11. 3 铁磁质及其磁化特性
例 试判断下列起始磁化曲线所对应的磁介质类型。
a :铁磁质; b :顺磁质 ( μ >μ0 ); c :抗磁质 ( μ <μ0 );
·27 ·
Chapter 11. 磁场中的磁介质 §11. 3 铁磁质及其磁化特性
一、物质的分子磁矩
1. 电子的轨道磁矩: 等效成圆电流:
§11. 1 磁介质 磁化强度
2. 电子自旋磁矩: 3. 核自旋磁矩: 分子磁矩 =电子轨道磁矩+电子自旋磁矩+核自旋磁矩
·3 ·
Chapter 11. 磁场中的磁介质
二、顺磁质与抗磁质
§11. 1 磁介质 磁化强度
1. 顺磁质: 分子磁矩≠0 (亦称分子的固有磁矩)
·12 ·
Chapter 11. 磁场中的磁介质
§11. 1 磁介质 磁化强度
1. 磁介质: 顺磁质:介质内B > B0 ; 抗磁质:介质内B < B0 ;
2. 磁化强度:
3. M与磁化电流的关系:
( The end )·13 ·
Chapter 11. 磁场中的磁介质
§11. 2 磁介质中的安培环路定理
§11. 1 磁介质 磁化强度
js : 面磁化电流的线密度。 一般地有如下关系:
: 磁介质表面外法线单位 矢量。
·11 ·
Chapter 11. 磁场中的磁介质
§11. 1 磁介质 磁化强度
试判断 : 顺磁质中的磁化电流方向。
分析: 顺磁质
与 同向。
即:磁化电流 内侧:向上 外侧:向下
( 俯视图 )
抗磁质
氢 铜 铋 汞×10 - 5 -3.2×10 - 5
大学物理下第十一章
电场力充当非静电力
b
感生电动势 i a EV dl
EV 是感生电场
闭合回路中
i
L EV d
dl
dΦ
dt
B dS
dt S
• 感生电场与变化磁场之间的关系
L EV
dl
S
B t
dS
讨论
(1) 感生电场是无源有旋场
感生电 场与静 电场的 比较
场源 环流 通量
静电荷 变化的磁场 (磁生电) 静电场为保守场 感生电场为非保守场 静电场为有源场 感生电场为无源场(闭合电场线)
有旋电场力(加速电子) 洛伦兹力(向心力)
电子加速圆周运动
洛仑兹力
evBR
mv 2 R
有旋电场力
eEV
d(mv) dt
Fm
EV
Fe
有旋电场
EV
1 2πR
dΦm dt
令 Φm πR2B
电子感应加速器
B 是面积S内的平均磁感应强度
得
dBR 1 dB
dt 2 dt
BR
1 2
B
电子维持在不变的圆形轨道上加速时磁场必须满足的条件
r
dS l
Φ R2 0r I ldr 0r Il ln R2
R1 2π r
2π R1
r
L Φ 0r ln R2
Il 2π R1
二. 互感现象 互感系数 互感电动势
线圈 1 中的电流变化
B1
引起线圈 2 的磁通变化
线圈 2 中产生感应电动势
I
根据毕 — 萨定律,穿过线 圈 2 的磁通量正比于线圈1
dq
电源
• 表征了电源非静电力作功本领的大小 uAB uA uB
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20
2 r2
)
P点的振动: y y1 y2 Acos( t )
振幅:
A
A12
A22
2 A1 A2
cos[20
10
2
(r2
r1 )]
结论:振幅的大小取决于P点两个振动的相位差
D
20
10
2
(
r2
r1
)
2k
(2k 1)
振动始终加强 振动始终减弱
若波源的初相位相同?
D
20
10
2
(
r2
续上
续上
驻波是两列振幅相同的相干波在同一条直 线上沿相反方向传播时叠加而成的。
驻波的演示
振幅、频率、传播速度都相同的两列相干波,在 同一直线上沿相反方向传播时叠加而形成的一种 特殊的干涉现象。
y1
Acos 2 ( t
T
x)
y2
Acos 2 ( t
T
x)
y
y1
y2
Acos 2 ( t
T
x)
Acos 2 ( t x ) T
的振动。设它们激起的波为平面简谐波,振幅相同,且 A
波源为波峰时,B 波源恰为波谷。求 AB 两点连线上因干涉
而静止的各点的位置(波速为 200 m s1 )。
A峰 C B谷
O
20m
x
解:由题意得
B
A
,
u
200 100
2m
(1)AB 之间干涉静止的点:
D
B
A
2
rB
rA
2
20
x
x
2 20 2x 2k 1
波在窄缝的衍射效应
§11-8 波的叠加原理 波的干涉
一 波的叠加原理
一 波的叠加原理
在相遇区域内任一点的振动,为各列波单独存在
时在该点所引起的振动位移的矢量和.
几列波相遇之后, 仍然保持它们各自原有的特征
(频率、波长、振幅、振动方向等)不变,并按照原来 的方向继续前进,好象没有遇到过其他波一样.
r1
)
2k
(2k 1)
振动始终加强 振动始终减弱
若10 20 , D 2 ( r1 r2 )
定义: r1 r2 波程差
r1 r2
k
(k 1)
2
振动始终加强 振动始终减弱
干涉现象的强度分布
例1 如图,在同一媒质中,相距为20(m)的两点(A,
B)处各有一个波源,它们作同频率(ν=100Hz) ,同方向
S1 : y1 A1 cos( t 10 )
S2 : y2 A2 cos( t 20 )
y1
A1
cos( t
10
2 r1
)
y2
A2
cos( t
20
2 r2
)
P点的振动: y y1 y2 Acos( t )
点P 的两个分振动
y1
A1
cos( t
10
2 r1
)
y2
A2
cos( t
驻波方程:
y 2Acos 2 x cos 2 t
T
合成波的振幅 2Acos与2位x 置x 有关。
各质点做频率相同,振幅不同的简谐振动
cos 2 π x
0 Amin 0 1 Amax 2 A
波节 波腹
波节位置
cos 2 π x 0
2 π x (2k 1) π
所以 x k 10
当k 9, 8, , 8, 9时,
x 1,2,3, ,18,19m
A峰 C B谷
O
20m
x
(2)A 的左侧各点:
DBLeabharlann A2 rB
rA
2 20 19
上述各点均静止不动
(3)B 的右侧各点:
D
B
A
2
rB
rA
2 20 21
上述各点均静止不动
例2 如图所示,S1,S2 为两相干波源,
D
1
2
2
r1
4
r1
2
2
4
所以
A A1 A2
r2 4
P S1 S2
Q
r1
r2
2对S2外侧一点 Q:有
r2
D
1
2
2
r2
r2
4
2
2
4
0
所以
A A1 A2
三、驻波
驻波是两列振幅相同的相干波在同一条直 线上沿相反方向传播时叠加而成的。
实验——弦线上的驻波:
弦驻波演示实验
I 1 uA2 2
2
I A2
§11-7 惠更斯原理
1. 惠更斯原理
波在弹性介质中运动时,任一点P 的振动,将会引 起邻近质点的振动。就此特征而言,振动着的 P 点 与波源相比,除了在时间上有延迟外,并无其他区 别。因此,P 可视为一个新的波源。1678年,惠更 斯总结出了以其名字命名的惠更斯原理:
§11-4 波的能量 波的强度
弹性波传播到介质中的某处,该处将具有动能和势 能。在波的传播过程中,能量从波源向外传播。
一、平面简谐波传播时媒质中体积元的能量
绳波 y
x
波动表达式:
y
A cos (t
x) u
0
1、动能:
y
dV
dm dV
x
体元的振动动能:
dWk
1 v2dm 2
v
y t
A sin
介质中任一波面上的各点,都可 看成是产生球面子波的波源;在其后 的任一时刻,这些子波的包络面构成 新的波面。
惠更斯
S2 S1
新波阵面
原波阵面
t+Dt 时刻
障碍物的小孔成为新的波源
uDt
t 时刻
·
a·
·
·
2、波的衍射
当波在传播过程中遇到障碍物时,其传播方向 绕过障碍物发生偏折的现象,称为波的衍射。
w
dW dV
A2
2
sin
2
(t
x u
)
0
平均能量密度?
w 1 A22 2
结论:机械波的能量与振幅的 平方、频率的平方以及媒质的 密度成正比。
2.能流:单位时间内通过媒质中 某面积的能量。
u
S
3.能流密度(波的强度):
u
单位时间流过垂直于传播方向单位面积的平均能量
波的强度大小:
在给定均匀媒质 (ρ、u 一定)中,从 给定波源(ω一定)发 出的波的强度:
二 波的干涉
频率相同、 振动方向平行、 相位相同或相位 差恒定的两列波 相遇时,使某些 地方振动始终加 强,而使另一些 地方振动始终减 弱的现象,称为 波的干涉现象.
干涉现象
s1 r1 *P
s2
r2
➢ 波的相干条件
1)频率相同; 2)振动方向平行; 3)相位相同或相位差恒定.
波源振动方程: 点P 的两个分振动
(t
x) u
0
dm dV
dWk
1 2
(
dV ) A2 2
sin
2 (t
x u
)
0
2、势能: 可证明 dWp dWk
体元的总能量:
dW
dWk
dWp
dVA2 2
sin
2 (t
x u
)
0
结论:
在波动过程中,任一小体元的动能
和势能相等,且同相位。
二、波的能量密度 能流密度
1.能量密度:单位体积中的能量
相距 (4 λ为波长)。 S1 较 S2 的相位超
前 2。问在 S1,S2 的连线上,S1 外侧各点
的合振幅如何?又在 S2 外侧各点的合振幅如 何?
S1
S2
4
解:两波源在任一点引起振动的相位差为
D
(1
2
r1 )
(2
2
r2
)
r1 4
r1
P S1 S2
Q
r1
r2
1对S1外侧一点 P:有