立体几何的解题技巧

合集下载

数学立体几何解题技巧必看

数学立体几何解题技巧必看

数学立体几何解题技巧必看各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,运用,数学作为最烧脑的科目之一,也是一样的。

下面是小编给大家整理的一些数学立体几何解题技巧的学习资料,希望对大家有所帮助。

高考数学答题技巧:立体几何解答立体几何篇高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。

选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。

随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。

从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。

知识整合1、有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。

2、判定两个平面平行的方法:(1)根据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。

3、两个平面平行的主要性质:(1)由定义知:“两平行平面没有公共点”。

(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。

(3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那么它们的交线平行“。

(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

(5)夹在两个平行平面间的平行线段相等。

立体几何题型及解题方法

立体几何题型及解题方法

立体几何题型及解题方法
立体几何是数学中研究三维空间几何图形的学科。

以下是一些常见的立体几何题型及其解题方法:
1. 计算体积和表面积:这类题目通常涉及到三维空间中的几何形状,如长方体、圆柱体、圆锥体等。

解题方法包括使用体积和表面积的公式,以及根据题目描述建立数学模型。

2. 证明定理和性质:这类题目通常涉及到几何图形的性质和定理,如平行线性质、勾股定理等。

解题方法包括使用已知定理和性质进行推导,以及通过构造辅助线或辅助图形来证明。

3. 求解最值问题:这类题目通常涉及到求几何图形中的最值,如最短路径、最大面积等。

解题方法包括使用不等式、极值定理和优化方法等。

4. 判定和性质应用:这类题目通常涉及到判定几何图形是否满足某个性质,或应用某个性质到实际场景中。

解题方法包括根据性质进行推导和判断,以及根据实际场景建立数学模型。

以上是一些常见的立体几何题型及其解题方法,当然还有其他的题型和解题方法。

在解决立体几何问题时,需要灵活运用几何知识和方法,多做练习,提高自己的解题能力。

高中数学立体几何曲面解题技巧

高中数学立体几何曲面解题技巧

高中数学立体几何曲面解题技巧高中数学的立体几何是一个重要的考点,其中曲面是一个比较复杂的概念。

在解题过程中,我们需要掌握一些技巧和方法,以便更好地应对各种曲面题型。

本文将介绍一些解题技巧,并通过具体的例子来说明这些技巧的应用。

一、球面的解题技巧球面是立体几何中常见的曲面,解题时需要注意以下几个方面:1. 利用球的性质:球的表面上任意两点之间的最短距离是球的直径,球的表面上的点到球心的距离都相等。

在解题过程中,我们可以利用这些性质来求解问题。

例题:已知球心为O,P为球面上的一点,OP的长度为r,球面上的点Q到OP的距离为d。

求证:OP ⊥ QP。

解析:根据题目条件可知,点Q到球心的距离等于r,点P到球心的距离等于r,点Q到点P的距离等于d。

根据球的性质可知,点Q到点P的距离应该等于点P到球心的距离减去点Q到球心的距离,即d = r - r = 0。

由此可得,点Q和点P重合,即OP ⊥ QP。

2. 利用球面上的切线:球面上的切线与球面的切点处于同一平面上。

在解题过程中,我们可以利用球面上的切线与球面的切点的关系来求解问题。

例题:已知球心为O,球面上的点A、B、C在同一平面上,且OA ⊥ AB,OB ⊥ BC,OC ⊥ CA。

求证:AB ⊥ BC。

解析:根据题目条件可知,点A、B、C在球面上,并且OA ⊥ AB,OB ⊥BC,OC ⊥ CA。

由于OA ⊥ AB,所以OA是球面上过点A的切线。

同理,OB是球面上过点B的切线,OC是球面上过点C的切线。

根据球面上切线与切点的关系可知,切线OA、OB、OC在同一平面上,且与球面的切点A、B、C重合。

由此可得,AB ⊥ BC。

二、圆柱的解题技巧圆柱是另一个常见的立体几何曲面,解题时需要注意以下几个方面:1. 利用圆柱的性质:圆柱的底面是一个圆,圆柱的侧面是由平行于底面的直线和底面上的圆所组成的。

在解题过程中,我们可以利用这些性质来求解问题。

例题:已知圆柱的底面半径为r,高度为h。

高中立体几何最佳解题方法及考题详细解答 精选范文

高中立体几何最佳解题方法及考题详细解答 精选范文

高中立体几何最佳解题方法总结一、线线平行的证明方法1、利用平行四边形;2、利用三角形或梯形的中位线;3、如果一条直线和一个平面平行,经过这条直线的平面与这个相交,那么这条直线和交线平行。

(线面平行的性质定理)4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

(面面平行的性质定理)5、如果两条直线垂直于同一个平面,那么这两条直线平行。

(线面垂直的性质定理)6、平行于同一条直线的两个直线平行。

7、夹在两个平行平面之间的平行线段相等。

二、线面平行的证明方法1、定义法:直线和平面没有公共点。

2、如果平面外的一条直线和这个平面内的一条直线平行,那么这条直线就和这个平面平行。

(线面平行的判定定理)3、两个平面平行,其中一个平面内的任意一条直线必平行于另一个平面。

4、反证法。

三、面面平行的证明方法1、定义法:两个平面没有公共点。

2、如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行。

(面面平行的判定定理)3、平行于同一个平面的两个平面平行。

4、经过平面外一点,有且只有一个平面与已知平面平行。

5、垂直于同一条直线的两个平面平行。

四、线线垂直的证明方法1、勾股定理;2、等腰三角形;3、菱形对角线;4、圆所对的圆周角是直角;5、点在线上的射影;6、如果一条直线和这个平面垂直,那么这条直线和这个平面内的任意直线都垂直。

7、在平面内的一条直线,如果和这个平面一条斜线垂直,那么它也和这条斜线的射影垂直。

(三垂线定理)8、在平面内的一条直线,如果和这个平面一条斜线的射影垂直,那么它也和这条斜线垂直。

9、如果两条平行线中的一条垂直于一条直线,那么另一条也垂直于这条直线。

五、线面垂直的证明方法:1、定义法:直线与平面内的任意直线都垂直;2、点在面内的射影;3、如果一条直线和一个平面内的两条相交直线垂直,那么这条直线就和这个平面垂直。

(线面垂直的判定定理)4、如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线必垂直于另一个平面。

立体几何解答题注意事项

立体几何解答题注意事项

立体几何解答题注意事项《立体几何解答题注意事项:那些你不可不知的“几何小秘密”立体几何解答题,就像是一场在三维空间里的探险,充满了刺激,也处处是陷阱呢!且听我一一道来那些要注意的事儿。

一、读题要细,切莫想当然读题的时候一定要瞪大眼睛,像侦探寻找线索一样。

有时候出题老师就爱给咱们挖坑,那些看似不起眼的小条件,可能就是解题的关键。

比如说一个小小的字眼“正三棱柱”,这里面包含的信息可多了:侧面是矩形,底面是正三角形呢。

可别只看一眼,心里就想着“哦,棱柱嘛,我知道”,然后就按照自己想的去做,最后得出个南辕北辙的答案,那可就只能对着卷子干瞪眼啦。

二、空间想象,动起来的“脑内小剧场”立体几何,关键就在这个“立体”上。

这就需要我们发挥超强的空间想象力。

你可以把那些几何图形想象成是生活中的东西,正方体像个魔方,三棱锥像个金字塔。

要是空间感不太好咋办呢?那就动手画呀!多画几个不同角度的视图,从正面看、侧面看、俯视,就像给这个几何图形来了一场360度无死角的写真拍摄。

慢慢地,你就会发现这个图形在你脑袋里越来越清晰了。

而且,要能把平面图形和空间图形自由切换,比如展开图和立体图形之间的关系,看那展开图的时候就能想象到它折起来之后的模样。

三、定理不能错用、乱用各种立体几何的定理就像我们的武器库里的兵器,一定要熟得不能再熟,而且得清楚什么时候用哪一个。

比如说线面平行的判定定理是如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

可别张冠李戴,把别的定理的条件凑在一起就说线面平行了。

也不要在证明的时候瞎编定理,“自创”定理可是不会得分的哦。

这时候就像是一个厨师做菜,各种调料(定理)得按正确的配方(条件)来,不然做出来的就是黑暗料理(错误答案)了。

四、计算别怕烦,细致最关键立体几何中的计算,特别是涉及到一些角度、长度的计算,那可是容不得一点马虎。

有时候一个符号错了,那整个结果就完蛋了。

比如说求异面直线所成角的时候,利用余弦定理计算,首先要准确找出三角形的三边长度,这个过程中坐标向量都要算准确。

解题技巧大揭秘掌握初中数学中的立体几何计算

解题技巧大揭秘掌握初中数学中的立体几何计算

解题技巧大揭秘掌握初中数学中的立体几何计算解题技巧大揭秘——掌握初中数学中的立体几何计算数学是一门需要掌握解题技巧的学科,而初中数学中的立体几何计算更是需要一定的方法和技巧。

本文将以解题技巧为重点,帮助读者更好地掌握初中数学中的立体几何计算。

一、理解立体几何概念在掌握立体几何计算的技巧之前,首先需要对立体几何的基本概念有所了解。

常见的立体几何包括长方体、正方体、圆柱体、圆锥体和球体等形状。

对于每种形状,需要了解其特点、性质以及相关公式。

二、计算表面积在立体几何中,计算表面积是一个重要的计算方式。

对于不同的形状,表面积的计算方式也不尽相同。

1. 长方体:长方体的表面积计算公式为 S = 2(lw + lh + wh),其中 l、w、h 分别表示长方体的长、宽和高。

2. 正方体:正方体的表面积计算公式为 S = 6a²,其中 a 表示正方体的边长。

3. 圆柱体:圆柱体的表面积计算公式为S = 2πrh + 2πr²,其中 r 表示底面半径,h 表示高。

4. 圆锥体:圆锥体的表面积计算公式为S = πrl + πr²,其中 l 表示斜高,r 表示底面半径。

5. 球体:球体的表面积计算公式为S = 4πr²,其中 r 表示球体的半径。

三、计算体积除了表面积,计算体积也是立体几何中常见的计算方式。

对于不同形状的立体体积,也有各自的计算公式。

1. 长方体:长方体的体积计算公式为 V = lwh,其中 l、w、h 分别表示长方体的长、宽和高。

2. 正方体:正方体的体积计算公式为 V = a³,其中 a 表示正方体的边长。

3. 圆柱体:圆柱体的体积计算公式为V = πr²h,其中 r 表示底面半径,h 表示高。

4. 圆锥体:圆锥体的体积计算公式为V = (1/3)πr²h,其中 r 表示底面半径,h 表示高。

5. 球体:球体的体积计算公式为V = (4/3)πr³,其中 r 表示球体的半径。

立体几何解题技巧

立体几何解题技巧

立体几何解题技巧
解决立体几何问题的技巧包括:
1. 图像想象:将问题中的立体图形在脑海中想象成实体,转动和观察以理解其性质和构成。

2. 图形拆解:将复杂的立体图形分解成简单的几何图形,比如将一个立方体分解成正方形和矩形等。

3. 寻找关系:掌握各个几何图形之间的关系,例如,正方体的对角线、平行四边形的性质等。

4. 利用公式和定理:熟悉与立体几何相关的公式和定理,比如体积、表面积的计算公式,勾股定理在空间几何中的应用等。

5. 画图辅助:在纸上画出问题描述的图形,以便更好地理解和分析。

6. 掌握投影:了解平面和立体图形的投影关系,理解投影变化对立体图形造成的影响。

7. 多维转化:对于三维图形,有时将其转化为二维问题来求解可以更简单,比如在平面上绘制图形的投影。

8. 几何判断:通过几何图形的特性和性质进行逻辑推理,找到可能的角度和方法解决问题。

这些技巧并非唯一,解决立体几何问题的关键在于熟练掌握基本概念、公式和定理,并且通过实践不断积累经验,提高自己的解题能力。

高一数学立体几何解题技巧

高一数学立体几何解题技巧

高一数学立体几何解题技巧
1. 嘿,同学们!对于高一数学立体几何,要学会想象啊!比如看到一个正方体,你得在脑子里把它转起来呀!就像你玩魔方一样。

为啥要这么做?你想想,不把它立体地想清楚,咋能解出那些难题呢?
2. 还有呀,一定要多画图!千万别懒。

你看那复杂的立体图形,你不画出来,光靠脑子想能行吗?就好比走夜路没手电筒,多吓人呀!像三棱锥,画出来仔细瞅瞅,很多线索不就出来了嘛。

3. 咱得善于找特殊点和线呀!这可太关键了。

比如说长方体的顶点、棱,那可都是宝呀!这就好像在一堆杂草里找宝贝,找到了不就好办啦?
4. 别小瞧那些基本定理呀,同学们!它们就像是你的秘密武器。

比如线面平行定理,那可是解题的利器呀!这不就跟武侠小说里的绝世武功一样吗,学会了就能打遍天下无敌手啦!
5. 多做练习题那是必须的!别偷懒。

一道题一道题刷过去,就跟升级打怪一样。

你做的越多,遇到难题就越不慌,难道不是吗?
6. 学会和同学讨论呀!一个人想不出来,说不定别人一句话你就恍然大悟啦。

这就像几个人一起划船,肯定比你一个人划得快呀!
7. 要保持耐心和信心呀!遇到难题别着急上火,慢慢来。

就像爬山,一步步总能到山顶。

相信自己能把高一数学立体几何搞定!
我的观点结论:总之,只要掌握这些技巧,多下功夫,高一数学立体几何就没那么难啦!。

数学中的立体几何解题技巧如何判断两个立体形是否相似

数学中的立体几何解题技巧如何判断两个立体形是否相似

数学中的立体几何解题技巧如何判断两个立体形是否相似立体几何是数学中的一个重要分支,研究涉及到空间中的各种几何体以及它们的性质和关系。

在解决立体几何题目时,判断两个立体形是否相似是一个常见的问题。

本文将介绍一些数学中的立体几何解题技巧,并探讨如何准确判断两个立体形是否相似。

一、体积比较法:在解决立体几何题目中,判断两个立体形是否相似的一种方法是比较它们的体积。

对于两个立体形,如果它们的体积之比等于一个常数,那么可以判断它们相似。

比如,对于两个长方体A和B,如果它们的体积比为x,即V(A)/V(B) = x,则可以判断A与B相似。

二、比例关系法:在进行立体几何的相似判断时,可以考虑各个尺寸之间的比例关系。

对于两个立体形,如果它们的相似比例具有一定关系,则可以判断它们相似。

常见的比例关系有边长的比例关系、角度的比例关系、面积的比例关系等。

三、形状对比法:在解决立体几何题目中,可以通过对比两个立体形的形状来判断它们是否相似。

常见的判断方法是通过对比它们的各个面、各个边以及顶点之间的对应关系,如果它们具有相似的形状,则可以判断它们相似。

四、比较位似形状与字形状:在解决立体几何题目中,可以通过比较两个立体形的位似形状与字形状来判断它们是否相似。

位似形状是指两个立体形状经过平移、旋转或缩放后的相似形状,字形状是指在相似比例下将一个立体形状沿某条边分割出来的形状。

如果两个立体形状的位似形状和字形状相似,则可以判断它们相似。

五、运用比例关系定理:在解决立体几何题目中,可以运用比例关系定理来判断两个立体形是否相似。

比例关系定理是指两个相似多边形的相似比例关系成立定理。

对于两个相似的立体形,如果它们的各个面是相似多边形,则可以运用比例关系定理来判断它们相似。

通过以上几种立体几何解题技巧,我们可以准确判断两个立体形是否相似。

在实际应用中,我们应该根据题目的要求来选取合适的判断方法,并运用相关的定理和性质来解决问题。

需要注意的是,判断两个立体形是否相似并不等同于判断它们是否全等。

立体几何动点解题技巧

立体几何动点解题技巧

立体几何动点解题技巧
在立体几何中,动点解题是一种常见的解题方法。

通过引入
动点,可以将原问题转化为几何关系和代数关系之间的等价问题,从而简化解题过程。

下面是一些立体几何动点解题的技巧:
1.选择合适的动点:选择一个合适的动点是解题的关键。


点可以是一个普通的点,也可以是一个特殊的点,如重心、垂
心等。

选择动点时要考虑到问题的特点,找到一个能够引入所
需关系的点。

2.构造代数关系:在引入动点后,需要通过几何关系构造代
数关系。

这可以通过使用相似三角形、比例等几何性质得出。

根据动点的移动,几何关系会转化为代数关系,从而可以得到
所需的方程。

3.求解代数方程:得到代数方程后,可以通过解方程求解问题。

根据问题的要求,可以得到方程中未知量的值,进而确定
几何问题的解。

4.注意特殊情况:在使用动点解题时,需要考虑到一些特殊
情况。

例如,当动点的位置使得几何关系不成立时,应该排除
这种情况。

此外,还需要注意动点的位置是否能够涵盖所有可
能的情况。

5.利用易于计算的性质:在解题过程中,可以利用一些易于
计算的几何性质。

例如,平行线、垂直线等性质可以简化计算
过程,减少出错的可能性。

通过灵活运用动点解题技巧,可以更加简化和系统化地解决立体几何问题。

当然,在实际解题过程中,还需要结合具体问题进行灵活运用,并多加练习掌握动点解题的技巧。

掌握中考数学解题技巧如何应对立体几何中的相交和投影问题

掌握中考数学解题技巧如何应对立体几何中的相交和投影问题

掌握中考数学解题技巧如何应对立体几何中的相交和投影问题相交和投影问题是中考数学中一个重要的考点,掌握解题技巧对于顺利解决这类问题至关重要。

本文将为大家介绍如何应对立体几何中的相交和投影问题,并分享一些解题技巧。

一、相交问题的解题技巧在解决立体几何中的相交问题时,我们需要注意以下几个解题技巧。

1. 确定平面相交问题首先需要确定相交的平面,因为只有确定了相交的平面,才能进一步讨论交线等内容。

在确定平面时,可以利用已知条件,如平行关系、垂直关系等。

2. 确定交线确定了相交的平面后,我们需要找出相交的线段或线。

这时候可以利用相交直线的性质,如相交线互不平行、相交角相等等。

3. 分析相交关系在确定了相交线后,我们需要分析相交的方式。

相交可以分为两种情况,即平面内相交和平面外相交。

对于平面内相交,我们可以利用平行线与横截线间的关系来解题;对于平面外相交,我们可以利用相似三角形等性质来解题。

二、投影问题的解题技巧解决立体几何中的投影问题时,我们需要掌握以下几个解题技巧。

1. 熟悉视角关系投影问题需要考虑物体在不同视角下的投影效果。

对于正投影和斜投影,我们需要根据给定的条件,确定物体在不同视角下的形状和位置。

2. 利用相似三角形在解决投影问题时,相似三角形是一个重要的工具。

通过利用相似三角形的性质,我们可以求解出物体在不同视角下的大小和位置。

3. 分析平行线关系在投影问题中,平行线关系也是一个常见的解题思路。

通过观察平行线的关系,我们可以确定物体在不同视角下的投影位置。

三、综合运用解题技巧在实际解题过程中,相交和投影问题往往是相互结合的。

因此,我们需要综合运用上述技巧,灵活应用到解题过程中。

1. 先分析相交问题首先,我们应该先分析相交问题,确定相交的平面和交线,利用已知条件寻找出相交点等信息。

2. 再考虑投影问题在确定了相交关系后,我们可以从不同视角下观察物体的投影情况。

利用视角关系、相似三角形等技巧,求解出物体在不同视角下的投影位置和形状。

高中数学立体几何解题技巧

高中数学立体几何解题技巧

高中数学立体几何解题技巧在高中数学中,立体几何是一个重要的考点,也是学生们普遍认为较为困难的部分。

本文将介绍一些解题技巧,帮助学生更好地应对立体几何题目。

一、空间几何体的性质在解决立体几何问题时,首先要熟悉各种空间几何体的性质。

例如,正方体的六个面都是正方形,每个面上的对角线相交于立方体的中心点。

了解这些性质可以帮助我们更好地理解题目,从而更快地找到解题思路。

例如,考虑以下题目:已知正方体ABCD-EFGH,点M,N分别为AE和BF的中点,连接MN并延长交于点P,求证:AP⊥MN。

解题思路:首先,我们要了解正方体的性质。

正方体的六个面都是正方形,对角线相交于中心点。

根据题目中的条件,我们可以画出正方体,并连接MN。

然后,我们观察到点P是MN的延长线上的一个点,可以猜测点P可能与正方体的某个顶点相关。

通过观察,我们可以发现点A与MN的延长线相交于点P。

由于正方体的性质,我们可以得出结论:AP⊥MN。

二、平行关系的运用在解决立体几何问题时,平行关系是一个重要的解题技巧。

通过观察题目中给出的平行线段或平行面,我们可以利用平行关系得到一些有用的信息。

例如,考虑以下题目:已知四棱锥ABCD-A1B1C1D1,AB∥A1B1,CD∥C1D1,E为AB的中点,F为CD的中点,连接EF并延长交于点P,求证:AP⊥EF。

解题思路:首先,我们要注意到题目中给出了平行关系。

根据题目中的条件,我们可以画出四棱锥,并连接EF。

然后,我们观察到点P是EF的延长线上的一个点,可以猜测点P可能与四棱锥的某个顶点相关。

通过观察,我们可以发现点A 与EF的延长线相交于点P。

由于平行关系的性质,我们可以得出结论:AP⊥EF。

三、相似关系的运用在解决立体几何问题时,相似关系也是一个常用的解题技巧。

通过观察题目中给出的相似三角形或相似几何体,我们可以利用相似关系得到一些有用的信息。

例如,考虑以下题目:已知正方体ABCD-EFGH,点M,N分别为AE和BF的中点,连接MN并延长交于点P,求证:BP:PM=2:1。

高中数学立体几何的相关题型及解题思路

高中数学立体几何的相关题型及解题思路

高中数学立体几何的相关题型及解题思路在高中数学中,立体几何是一个重要的考点,也是许多学生感到困惑和头疼的地方。

本文将介绍一些常见的立体几何题型,并给出相应的解题思路和技巧,希望能够帮助高中学生和他们的父母更好地应对这一考点。

一、体积计算题体积计算题是立体几何中最基础的题型之一,常见的题目有计算立方体、长方体、圆柱体、圆锥体、球体等的体积。

解决这类题目的关键在于熟练掌握各种几何体的体积公式,并能够根据题目给出的条件灵活运用。

例如,某题给出一个长方体的底面积为12平方厘米,高为5厘米,要求计算其体积。

我们可以直接应用长方体的体积公式V=底面积×高,代入已知数据计算得出答案为60立方厘米。

二、表面积计算题表面积计算题也是立体几何中常见的题型之一,常见的题目有计算立方体、长方体、圆柱体、圆锥体、球体等的表面积。

解决这类题目的关键在于熟练掌握各种几何体的表面积公式,并能够根据题目给出的条件灵活运用。

例如,某题给出一个正方体的边长为3厘米,要求计算其表面积。

我们可以直接应用正方体的表面积公式S=6a^2,其中a为边长,代入已知数据计算得出答案为54平方厘米。

三、立体图形的相似题立体图形的相似题是立体几何中较为复杂的题型之一,常见的题目有判断两个立体图形是否相似、计算相似立体图形的比例等。

解决这类题目的关键在于观察立体图形的形状和比例关系,并能够利用相似三角形的性质进行推理。

例如,某题给出一个正方体ABCDA'B'C'D',另一个正方体EFGHE'F'G'与之相似,要求计算两个正方体的体积比。

我们可以观察到两个正方体的边长比为AE/AA'=EF/EE'=FG/FF'=...=1/2,而体积与边长的关系为V=k^3,其中k为边长的比值。

因此,两个正方体的体积比为(1/2)^3=1/8。

四、立体图形的投影题立体图形的投影题是立体几何中较为抽象的题型之一,常见的题目有计算某个立体图形在某个平面上的投影面积或投影长度等。

数学立体几何解题技巧

数学立体几何解题技巧

数学立体几何解题技巧数学立体几何解题技巧我们把不同于一般解法的巧妙解题方法称为解题技巧,它来源于对数学问题中矛盾特殊性的认识。

下面是店铺精心整理的数学立体几何解题技巧,欢迎阅读与收藏。

数学立体几何解题技巧篇11平行、垂直位置关系的论证的策略:(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。

(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。

2空间角的计算方法与技巧:主要步骤:一作、二证、三算;若用向量,那就是一证、二算。

(1)两条异面直线所成的角:①平移法:②补形法:③向量法:(2)直线和平面所成的角①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。

②用公式计算.(3)二面角:①平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。

②平面角的计算法:(i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法;(iii)向量夹角公式.3空间距离的计算方法与技巧:(1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。

(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。

在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。

(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。

求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。

4熟记一些常用的小结论诸如:正四面体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。

立体几何的解题技巧

立体几何的解题技巧

△ BCD LE H ^S A 州BD_d , . d 二"△BCD 二-23S A A BD 2立体几何新题型的解题技巧【命题趋向】 在高考中立体几何命题有如下特点: 1. 线面位置关系突出平行和垂直,将侧重于垂直关系2. 多面体中线面关系论证,空间“角”与“距离”的计算常在解答题中综合出现.3. 多面体及简单多面体的概念、性质多在选择题,填空题出现4. 有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点 此类题目分值一般在 17---22分之间,题型一般为 1个选择题,1个填空题,1个解答题. 【考点透视】 掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离掌握 斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念 •掌握二面角、二面角的平面角、两个平行平面 间的距离的概念. 空间距离和角是高考考查的重点 :特别是以两点间距离,点到平面的距离,两异面直线的距离,直线与平面的距 离以及两异面直线所成的角,直线与平面所成的角,二面角等作为命题的重点内容,高考试题中常将上述内容综合在 一起放在解答题中进行考查,分为多个小问题,也可能作为客观题进行单独考查 .考查空间距离和角的试题一般作为整 套试卷的中档题,但也可能在最后一问中设置有难度的问题 不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,正是本专 题的一大特色. 求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。

考点1点到平面的距离 求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等 体积法的应用. 例1如图,正三棱柱 ABC _AB i C i 的所有棱长都为2 , D 为cC i 中点. (【)求证:AB 1丄平面A 1BD ;(n)求二面角 A-AD-B 的大小;(川)求点C 到平面ABD 的距离. 考查目的:本小题主要考查直线与平面的位置关系,二面角的 大小,点到平面的距离等知识,考查空间想象能力、逻辑思维 能力和运算能力. 解答过程:解法一:(I )取BC 中点0,连结A0. ABC 为正三角形,.AO 丄BC . B iC1DT 正三棱柱ABC _ABG 中,平面 ABC 丄平面BCC 1B 1,二AO 丄平面BCC 1 B . 连结B 10,在正方形BB 1C 1C 中,0, D 分别为BC , CC 1的中点,• BQ 丄BD , . AB 1丄BD . 在正方形 ABB 1A 中,AB 1丄AB , . AB 1丄平面 ABD • (n )设AB 1与A B 交于点G ,在平面A BD 中,作GF 丄A D 于F ,连结AF ,由(I )得AB AB 1C1.AF 丄AD , ■ / AFG 为二面角A-AD-B 的平面角.在 △ AA D 中,由等面积法可求得 'AG *AB 1川,曲AFGdAIA-AD -B 的大小为AF B 45AF = 5arcsin 一4(川)△ ABD 中,BD=AD=、5, AB =2 2, S A A 1BD 「6 ,BCD=1 •在正三棱柱中, A 到平面BCC 1B 1的距离为 3 .设点C 到平面ABD 的距离为d •由V A 』CD =V c 」BD ,得1 Sz △ A 1BD.点C 到平面ABD 的距离为_2 .2•点C 到平面ABD 的距离d = B 0A Bi =丄-2 =・2 . |A B ;| 2^2小结:本例中(川)采用了两种方法求点到平面的距离•解法二采用了平面向量的计算方法,把不易直接求的面AMB 1的距离转化为容易求的点 K 到平面AMB 1的距离的计算方法,这是数学解题中常用的方法;解法一采用了等 体积法,这种方法可以避免复杂的几何作图,显得更简单些,因此可优先考虑使用这一种方法 .考点2异面直线的距离此类题目主要考查异面直线的距离的概念及其求法,考纲只要求掌握已给出公垂线段的异面直线的距离 例2已知三棱锥S-ABC ,底面是边长为4.、2的正三角形,棱SC 的长为2,且垂直于底面.E 、D 分别为BC 、AB 的 中点,求CD 与SE 间的距离. 思路启迪:由于异面直线 CD 与SE 的公垂线不易寻找,所以设法将所求异面直线的 距离,转化成求直线与平面的距离,再进一步转化成求点到平面的距离 解答过程:如图所示,取 BD 的中点F ,连结EF , SF , CF ,-EF 为 BCD 的中位线,.EF // CD,. CD //面 SEF ,解法二:(I )取BC 中点0 ,连结A0 • ':△ ABC 为正三角形,.A0丄BC .V 在正三棱柱 ABC _ABG 中,平面ABC 丄平面 BCC 1B 1 , . AD 丄平面 BCGB . 取BG 中点。

立体几何题型及解题方法总结

立体几何题型及解题方法总结

立体几何题型及解题方法总结1. 立体几何题型啊,那可是个神奇的领域!有求各种立体图形体积的题型,就像求一个装满水的古怪形状瓶子能装多少水一样。

比如说正方体,正方体的体积公式就是边长的立方。

要是有个正方体边长是3厘米,那它的体积就是3×3×3 = 27立方厘米,简单吧!这类型的题就像是数糖果,一个一个数清楚就行。

2. 还有求立体图形表面积的题型呢。

这就好比给一个形状奇怪的礼物包装纸,得算出需要多少纸才能把它包起来。

像长方体,表面积就是六个面的面积之和。

假如一个长方体长4厘米、宽3厘米、高2厘米,那表面积就是2×(4×3 + 4×2 + 3×2) = 52平方厘米。

哎呀,可别小瞧这表面积,有时候算错一点就像给礼物包了个破纸一样难看。

3. 立体几何里关于线面关系的题型也不少。

这就像在一个迷宫里找路,线和面的关系复杂得很。

比如说直线和平面平行的判定,就像在一个方方正正的房间里,一根直直的杆子和地面平行,只要杆子和地面内的一条直线平行就行。

像有个三棱柱,一条棱和底面的一条棱平行,那这条棱就和底面平行啦,是不是很有趣呢?4. 线面垂直的题型也很重要哦。

这就像是建房子时的柱子和地面的关系,必须垂直才稳当。

判断一条直线和一个平面垂直,就看这条直线是不是和平面内两条相交直线都垂直。

就像搭帐篷,中间那根杆子要和地面上交叉的两根绳子都垂直,帐篷才能稳稳地立起来。

比如一个正四棱锥,它的高就和底面垂直,因为高和底面两条相交的对角线都垂直呢。

5. 面面平行的题型有点像照镜子。

两个平面就像两面镜子,要想平行,得看一个平面内的两条相交直线和另一个平面内的两条相交直线分别平行。

就像有两个一样的盒子,一个盒子里面两条交叉的边和另一个盒子里面对应的两条交叉边平行,那这两个盒子的面就是平行的关系。

想象一下,如果两个平行的黑板,是不是很有画面感?6. 面面垂直的题型就像是打开的书页。

高中数学立体几何解题技巧及常见题型详解

高中数学立体几何解题技巧及常见题型详解

高中数学立体几何解题技巧及常见题型详解立体几何是数学中的一个重要分支,它研究的是空间中的图形和体积。

在高中数学中,立体几何是一个重要的考点,也是考试中难度较大的部分之一。

本文将介绍一些高中数学立体几何解题技巧,并详细解析几种常见的立体几何题型,帮助读者更好地应对这一考点。

一、平行六面体的体积计算平行六面体是高中数学中常见的立体几何题型之一。

解决这类题目的关键是确定底面积和高,进而计算体积。

例如,有一平行六面体的底面积为A,高为h,求其体积。

解题技巧:首先,我们需要明确平行六面体的定义,即六个面都是平行的。

其次,根据平行六面体的性质,我们可以将其看作一个长方体,因为长方体是一种特殊的平行六面体。

因此,平行六面体的体积可以通过底面积乘以高来计算,即V = Ah。

举例说明:假设有一个平行六面体,其底面积为5平方厘米,高为10厘米。

那么,它的体积可以通过计算5乘以10得到,即V = 5 × 10 = 50立方厘米。

二、正方体的表面积计算正方体是高中数学中常见的立体几何题型之一。

解决这类题目的关键是确定正方体的边长,进而计算表面积。

例如,有一个正方体的边长为a,求其表面积。

解题技巧:首先,我们需要明确正方体的定义,即六个面都是正方形。

其次,根据正方体的性质,我们可以将其看作一个立方体,因为立方体是一种特殊的正方体。

因此,正方体的表面积可以通过边长的平方乘以6来计算,即S = 6a²。

举例说明:假设有一个正方体,其边长为3厘米。

那么,它的表面积可以通过计算6乘以3的平方得到,即S = 6 × 3² = 54平方厘米。

三、棱柱的体积计算棱柱是高中数学中常见的立体几何题型之一。

解决这类题目的关键是确定底面积和高,进而计算体积。

例如,有一个棱柱的底面积为A,高为h,求其体积。

解题技巧:首先,我们需要明确棱柱的定义,即底面是一个多边形,顶面与底面的对应点通过直线相连。

其次,根据棱柱的性质,我们可以将其看作一个长方体,因为长方体是一种特殊的棱柱。

立体几何解题技巧汇总

立体几何解题技巧汇总

立体几何解题技巧汇总1.平行、垂直位置关系的论证的策略(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

(2)利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。

(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。

2.空间角的计算方法与技巧主要步骤:一作、二证、三算;若用向量,那就是一证、二算。

(1)两条异面直线所成的角:①平移法;②补形法;③向量法。

(2)直线和平面所成的角:①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。

②用公式计算。

(3)二面角:①平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。

②平面角的计算法:(i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法;(iii)向量夹角公式。

3.空间距离的计算方法与技巧(1)求点到直线的距离:经常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。

(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。

在不能直接作出公垂线的情况下,可转化为线面距离求解(这种情况高考不做要求)。

(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。

求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。

4.熟记一些常用的小结论诸如:正四面体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。

弄清楚棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。

5.翻折、展开关注不变因素平面图形的翻折、立体图形的展开等一类问题,要注意翻折前、展开前后有关几何元素的“不变性”与“不变量”。

例谈立体几何最值问题的几种解法

例谈立体几何最值问题的几种解法

思路探寻立体几何最值问题侧重于考查同学们的空间想象、逻辑推理和数学运算等能力.常见的立体几何最值问题是求立体几何图形中某条线段、某个角、体积、表面积的最值,那么如何求解呢?一、利用函数思想在大多数情况下,我们可以把与动点有关的立体几何问题看作函数问题来求解.以其中某一个量,如动点的坐标、线段的长、角的大小为变量,建立关于该变量的关系式,并将其视为函数式,即可利用一次函数、二次函数、三角函数的性质和图象求得最值.例1.如图1,正方体ABCD-A1B1C1D1的棱长为1,P为AA1的中点,M在侧面AA1B1B上,若D1M⊥CP,则ΔBCM).C.5D.2图1图2解:过M作MG⊥平面ABCD,垂足为G,作GH⊥BC于点H,连接MH,以D为坐标原点,建立如图2所示的空间直角坐标系,可得D()0,0,0,C()0,1,0,A()1,0,0,P()1,0,12,D1(0,0,1),B()1,1,0.设M()1,a,b,则D1M=()1,a,b-1,CP=()1,-1,12,∵D1M⊥CP,∴ D1M⋅ CP=12b-a+12=0,∴b=2a-1,∴CH=1-a,MG=2a-1,∴MH=()1-a2+()2a-12=5a2-6a+2,∴SΔBCM=12BC⋅MH=1=可知当a=35时,ΔBCM面积取最小值,为SΔBCM=12×=故选B.在建立空间直角坐标系后,设出点M的坐标,以a、b为变量,构建关于a的函数式SΔBCM=然后将5a2-6a+2看作二次函数式,对其配方,根据二次函数的性质即可知函数在a=35时取最小值.二、运用基本不等式在解答立体几何最值问题时,我们往往可以先根据立体几何中的性质、定义、定理求得目标式;然后将其进行合理的变形,采用拆项、凑系数、补一次项,去掉常数项等方式,配凑出两式的和或积,就可以直接运用基本不等式来求得最值.在运用基本不等式求最值时,要把握三个条件:一正、二定、三相等.例2.已知三棱锥P-ABC的4个顶点均在球心为O、直径为23的球面上,PA=2,且PA,PB,PC两两垂直.当PC+AB取最大值时,三棱锥O-PAB的体积为().A. C.6解:∵PA,PB,PC两两互相垂直,∴三棱锥P-ABC可补全为如图3所示的长方体.则长方体的外接球即为三棱锥P-ABC的外接球,∴PA2+PB2+PC2=()232=12,又PA=2,∴PB2+PC2=10,∵AB2=PA2+PB2=2+PB2,∴PC2+AB2=2+PB2+PC2=12,∴()PC+AB2-2PC⋅AB=12,又PC⋅AB≤()PC+AB22,∴12=()PC+AB2-2PC⋅AB≥()PC+AB2-2()PC+AB22=12()PC+AB2,当且仅当PC=AB时取等号,∴()PC+AB max=26,此时PC=AB=6,PB=图347思路探寻AB 2-PA 2=2,∴V O -PAB =12V C -PAB =16S △PAB ⋅PC =112PA ⋅PB⋅PC =112×2×2×6故选B.根据长方体的性质得到()PC +AB 2-2PC ⋅AB =10后,可发现该式中含有PC 、AB 的和与积,根据基本不等式a +b ≥2ab 求解,即可得到三棱锥O -PAB 的体积.三、转化法运用转化法求解立体几何最值问题有两种思路.一是将问题转化为平面几何问题.先将几何体的表面展开,或将几何体内部满足条件的某些面展开成平面;再在平面内利用平面几何知识,如正余弦定理、两点间的距离最短、三角形的两边之和大于第三边等求解,这样问题就变得十分直观,容易求解了.另一种思路是根据题意和几何图形中的点、线、面的位置关系,明确其中改变的量和不变的量及其关系,根据简单几何体的性质、表面积公式、体积公式,将问题转化为求某些线段或角的最值.再结合简单几何体的性质,几何图形中点、线、面的位置关系求得最值例3.如图4,在正三棱柱ABC -A 1B 1C 1中,AA 1=AB =2,D 在A 1C 上,E 是A 1B 的中点,则()AD +DE 2的最小值是().A.6-7 B.27 C.3+7 D.5+7图4图5解:将平面A 1BC 与平面A 1AC 翻折到同一平面上,连接AE ,如图5所示,设AE ⋂A 1C =F .由题意可知A 1A =AC =BC =2,A 1C =A 1B =22,所以AA 21+AC 2=A 1C 2,所以AA 1⊥AC ,则∠AA 1C =45°,由余弦定理可得cos∠BA 1C =A 1B 2+A 1C 2-BC 22A 1B ⋅A 1C=8+8-42×22×22=34,则sin∠BA 1C =1-cos 2∠BA 1C =故cos∠AA 1B =cos ()∠AA 1C +∠BA 1C =cos ∠AA 1C cos ∠BA 1C -sin ∠AA 1C sin ∠BA 1C =32-148.因为E 是A 1B 的中点,所以A 1E =2,由余弦定理可得AE 2=AA 21+A 1E 2-2AA 1⋅A 1E cos∠BA 1A=4+2-2×2×2×32-148=3+7.因为D 在A 1C 上,所以AD +DE ≥AE ,当A 、E 、D 三点共线时,等号成立,则()AD +DE 2≥3+7.故选C .将平面A 1BC 与平面A 1AC 翻折到同一平面上,就可以把立体几何问题转化为平面几何问题,即可根据勾股定理和余弦定理求得A 1E 以及AE 的值.分析图形可知当A 、E 、D 三点共线时,AD +DE 取得最大值,再结合余弦定理求解即可.例4.已知球O 的表面积为60π,四面体P -ABC 内接于球O ,ΔABC 是边长为6的正三角形,平面PBC ⊥平面ABC ,则四面体P -ABC 体积的最大值为().A.18B.27C.32D.81解:因为球O 的表面积为60π,所以球的半径R ==15,由题意知四面体P -ABC 底面三角形的面积为定值,要使四面体的体积最大,只须使顶点P 到底面的距离最大,又因为平面PBC ⊥平面ABC ,所以当PB =PC 时,点P 到底面的距离最大,而ΔABC 外接圆的半径r =62sin60°=23,则O 到面ABC 的距离为d =R 2-r 2=3,且O 到面PBC 的距离为h =12r =3,设点P 到平面ABC 的距离为H ,则R 2=()H -d 2+h 2,解得H =33,此时体积最大值为V max =13×12×6×6×sin60°×33=27.故选B.解答本题,首先根据球的表面积求得球的半径;再根据题意和几何体的特征明确当PB =PC 时,点P 到底面的距离最大;最后根据外接圆的性质、勾股定理求出点P 到底面的距离,即可求出最大值.除了上述三种方法外,有时还可采用定义法、构造法来求立体几何最值问题的答案.总之,同学们在解题时,要先根据题意和几何体的结构特征寻找取得最值的情形,求得目标式;然后根据目标式的特征,选用合适的方法求最值.(作者单位:贵州省江口中学)48。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何大题的解题技巧——综合提升【命题分析】高考中立体几何命题特点:1.线面位置关系突出平行和垂直,将侧重于垂直关系.2.空间“角”与“距离”的计算常在解答题中综合出现.3.多面体及简单多面体的概念、性质多在选择题,填空题出现.4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点. 此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考点分析】掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念.【高考考查的重难点*状元总结】空间距离和角:“六个距离”:1两点间距离 221221221)()()(d z z y y x x -+-+-= 2点P 到线l的距离d = (Q 是直线l 上任意一点,u 为过点P 的直线l 法向量)3两异面直线的距离d =(P 、Q 分别是两直线上任意两点u 为两直线公共法向量) 4点P 到平面的距离d =(Q 是平面上任意一点,u 为平面法向量)5直线与平面的距离【同上】 6平行平面间的距离【同上】“三个角度”:1异面直线角【0,2π】cos θ=2121v v v v 【辨】直线倾斜角围【0,π) 2线面角 【0,2π】sin θ=nv vn n v =,cos 或者解三角形3二面角 【0,π】cos 2121n n n n ±=θ 或者找垂直线,解三角形不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,正是本专题的一大特色.求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。

其中,利用空间向量求空间距离和角的套路与格式固定,是解决立体几何问题这套强有力的工具时,使得高考题具有很强的套路性。

【例题解析】考点1 点到平面的距离求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面的垂足,当然别忘了转化法与等体积法的应用. 典型例题例1(卷)如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离.考查目的:本小题主要考查直线与平面的位置关系,二面角的 大小,点到平面的距离等知识,考查空间想象能力、逻辑思维 能力和运算能力. 解:解法一:(Ⅰ)取BC 中点O ,连结AO . ABC △为正三角形,AO BC ∴⊥.正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,AO ∴⊥平面11BCC B .连结1B O ,在正方形11BB C C 中,O D ,分别为1BC CC ,的中点, 1B O BD ∴⊥, 1AB BD ∴⊥.在正方形11ABB A 中,11AB A B ⊥, 1AB ∴⊥平面1A BD .(Ⅱ)设1AB 与1A B 交于点G ,在平面1A BD 中,作1GF A D ⊥于F ,连结AF ,由(Ⅰ)得1AB ⊥AB CD1A1C1BA BCD1A1C1BO F平面1A BD .1AF A D ∴⊥, AFG ∴∠为二面角1A A D B --的平面角.在1AA D △中,由等面积法可求得AF =又112AG AB ==sin AG AFG AF ∴==∠.所以二面角1A A D B--的大小为(Ⅲ)1A BD △中,111A BD BD A D A B S ==∴△1BCD S =△.在正三棱柱中,1A 到平面11BCC B 设点C 到平面1A BD 的距离为d . 由11A BCD C A BD V V --=,得111333BCDA BD S S d=△△,1A BD d ∴=△∴点C 到平面1A BD 2.解法二:(Ⅰ)取BC 中点O ,连结AO .ABC △为正三角形,AO BC ∴⊥.在正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,AD ∴⊥平面11BCC B .取11B C 中点1O ,以O 为原点,OB ,1OO ,OA 的方向为x y z ,,轴的正方向建立空间直角坐标系,则(100)B ,,,(110)D -,,,1(02A ,(0A ,1(120)B ,,, 1(12AB ∴=,,(210)BD =-,,,1(12BA =-. 12200AB BD =-++=,111430AB BA =-+-=,1AB BD ∴⊥,11AB BA ⊥.1AB ∴⊥平面1A BD .(Ⅱ)设平面1A AD 的法向量为()x y z =,,n .(113)AD =--,,,1(020)AA =,,. AD ⊥n ,1AA ⊥n ,100AD AA ⎧=⎪∴⎨=⎪⎩,,n n 3020x y z y ⎧-+-=⎪∴⎨=⎪⎩,,03y x z =⎧⎪∴⎨=-⎪⎩,. 令1z =得(301)=-,,n 为平面1A AD 的一个法向量. 由(Ⅰ)知1AB ⊥平面1A BD , 1AB ∴为平面1A BD 的法向量.cos <n ,1113364222AB AB AB -->===-n n .∴二面角1A A D B --的大小为6arccos 4.(Ⅲ)由(Ⅱ),1AB 为平面1A BD 法向量, 1(200)(123)BC AB =-=-,,,,,.∴点C 到平面1A BD 的距离1122222BC AB d AB -===.小结:本例中(Ⅲ)采用了两种方法求点到平面的距离.解法二采用了平面向量的计算方法,把不易直接求的B 点到平面1AMB 的距离转化为容易求的点K 到平面1AMB 的距离的计算方法,这是数学解题中常用的方法;解法一采用了等体积法,这种方法可以避免复杂的几何作图,显得更简单些,因此可优先考虑使用这一种方法. 考点2 异面直线的距离考查异目主面直线的距离的概念及其求法考纲只要求掌握已给出公垂线段的异面直线的距离.例2 已知三棱锥ABC S -,底面是边长为24的正三角形,棱SC 的长为2,且垂直于底面.D E 、分别为AB BC 、的中点,求CD 与SE 间的距离.思路启迪:由于异面直线CD 与SE 的公垂线不易寻找,所以设法将所求异面直线的距离,转化成求直线与平面的距离,再进一步转化成求点到平面的距离. 解:如图所示,取BD 的中点F ,连结EF ,SF ,CF ,EF ∴为BCD ∆的中位线,EF ∴∥CD CD ∴,∥面SEF ,CD ∴到平面SEF 的距离即为两异面直线间的距离.又 线面之间的距离可转化为线CD 上一点C 到平面SEF的距离,设其为h ,由题意知,24=BC ,D 、E 、F 分别是AB 、BC 、BD 的中点,2,2,621,62=====∴SC DF CD EF CD 33222621312131=⋅⋅⋅⋅=⋅⋅⋅⋅=∴-SC DF EF V CEF S 在Rt SCE ∆中,3222=+=CE SC SE在Rt SCF ∆中,30224422=++=+=CF SC SF又3,6=∴=∆SEF S EF由于h S V V SEF CEF S SEF C ⋅⋅==∆--31,即332331=⋅⋅h ,解得332=h 故CD 与SE 间的距离为332. 小结:通过本例我们可以看到求空间距离的过程,就是一个不断转化的过程. 考点3 直线到平面的距离偶尔会再加上平行平面间的距离,主要考查点面、线面、面面距离间的转化.例3. 如图,在棱长为2的正方体1AC 中,G 是1AA 的中点,求BD 到平面11D GB 的距离. 思路启迪:把线面距离转化为点面距离,再用点到平面距离 的方法求解. 解:解法一 BD ∥平面11D GB ,BD ∴上任意一点到平面11D GB 的距离皆为所求,以下求点O 平面11D GB 的距离,1111C A D B ⊥ ,A A D B 111⊥,⊥∴11D B 平面11ACC A ,又⊂11D B 平面11D GB∴平面1111D GB ACC A ⊥,两个平面的交线是G O 1,作G O OH 1⊥于H ,则有⊥OH 平面11D GB ,即OH 是O 点到平面11D GB 的距离. 在OG O 1∆中,222212111=⋅⋅=⋅⋅=∆AO O O S OG O . BACDOGH 1A 1C 1D1B 1O又362,23212111=∴=⋅⋅=⋅⋅=∆OH OH G O OH S OG O . 即BD 到平面11D GB 的距离等于362. 解法二 BD ∥平面11D GB ,BD ∴上任意一点到平面11D GB 的距离皆为所求,以下求点B 平面11D GB 的距离.设点B 到平面11D GB 的距离为h ,将它视为三棱锥11D GB B -的高,则,由于632221,111111=⨯⨯==∆--D GB GBB D D GB B S V V34222213111=⨯⨯⨯⨯=-GBB D V , ,36264==∴h即BD 到平面11D GB 的距离等于362. 小结:当直线与平面平行时,直线上的每一点到平面的距离都相等,都是线面距离.所以求线面距离关键是选准恰当的点,转化为点面距离.本例解析一是根据选出的点直接作出距离;解析二是等体积法求出点面距离. 考点4 异面直线所成的角【重难点】此类题目一般是按定义作出异面直线所成的角,然后通过解三角形来求角. 典型例题 例4如图,在Rt AOB △中,π6OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点.(I )求证:平面COD ⊥平面AOB ;(II )求异面直线AO 与CD 所成角的大小. 思路启迪:(II )的关键是通过平移把异面直线转化到一个三角形. 解:解法1:(I )由题意,CO AO ⊥,BO AO ⊥, BOC ∴∠是二面角B AO C --是直二面角, CO BO ∴⊥,又AO BO O =, CO ∴⊥平面AOB , 又CO ⊂平面COD .∴平面COD ⊥平面AOB .(II )作DE OB ⊥,垂足为E ,连结CE (如图),则DE AO ∥, CDE ∴∠是异面直线AO 与CD 所成的角. 在Rt COE △中,2CO BO ==,112OE BO ==,O CADBECE∴又12DE AO==.∴在Rt CDE△中,tan CECDEDE=∴异面直线AO与CD所成角的大小为解法2:(I)同解法1.(II)建立空间直角坐标系O xyz-,如图,则(000)O,,,(00A,,(200)C,,,D,(00OA∴=,,(CD=-,cosOA CDOA CDOA CD∴<>=,664322==∴异面直线AO与CD所成角的大小为小结:求异面直线所成的角常常先作出所成角的平面图形,作法有:①平移法:在异面直线中的一条直线上选择“特殊点”,作另一条直线的平行线,如解析一,或利用中位线,如解析二;②补形法:把空间图形补成熟悉的几何体,其目的在于容易发现两条异面直线间的关系,如解析三.一般来说,平移法是最常用的,应作为求异面直线所成的角的首选方法.同时要特别注意异面直线所成的角的围:⎥⎦⎤⎝⎛2,0π.考点5 直线和平面所成的角此类题主要考查直线与平面所成的角的作法、证明以及计算.线面角在空间角中占有重要地位,是高考的常考容.典型例题例5(全国卷Ⅰ理)四棱锥S ABCD-中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD.已知45ABC=∠,2AB=,BC=SA SB==(Ⅰ)证明SA BC⊥;(Ⅱ)求直线SD与平面SAB所成角的大小.考查目的:本小题主要考查直线与直线,直线与平面的位置关系,二面角的大小,点到平面的距离等知识,考查空间想象能力、逻辑思维能力和运算能力.解:解法一:(Ⅰ)作SO BC⊥,垂足为O,连结AO,由侧面SBC⊥底面ABCD,得SO⊥底面ABCD.因为SA SB=,所以AO BO=,又45ABC=∠,故AOB△为等腰直角三角形,AO BO⊥,由三垂线定理,得SA BC⊥.(Ⅱ)由(Ⅰ)知SA BC⊥,依题设AD BC∥,DBCASS故SA AD ⊥,由AD BC ==,SA =AO =,得1SO =,SD =SAB △的面积211122S ABSA ⎛=- ⎝连结DB ,得DAB △的面积21sin13522S AB AD == 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S =,解得h= 设SD 与平面SAB所成角为α,则sinh SD α===所以,直线SD 与平面SBC 所成的我为解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥.如图,以O 为坐标原点,OA 为x 轴正向,建立直角坐标系O-0)A ,,(0B ,(0C ,(001)S ,,,(2SA =,(0CB =,0SA CB =,所以SA BC ⊥.(Ⅱ)取AB 中点E ,0E ⎫⎪⎪⎝⎭, 连结SE ,取SE 中点G ,连结OG ,12G ⎫⎪⎪⎝⎭,. 12OG ⎫=⎪⎪⎝⎭,,1SE ⎫=⎪⎪⎝⎭,(AB =.0SE OG =,0AB OG =,OG 与平面SAB 两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.yD,()DS =.22cos 11OG DS OG DSα==sin β=,所以,直线SD 与平面SAB 所成的角为小结:求直线与平面所成的角时,应注意的问题是(1)先判断直线和平面的位置关系;(2)当直线和平面斜交时,常用以下步骤:①构造——作出斜线与射影所成的角,②证明——论证作出的角为所求的角,③计算——常用解三角形的方法求角,④结论——点明直线和平面所成的角的值.考点6 二面角【重点】此类题主要是如何确定二面角的平面角,并将二面角的平面角转化为线线角放到一个合适的三角形中进行求解.二面角是高考的热点 典型例题 例6.(卷)如图,已知直角,A PQ ∈,B α∈,C β∈,CA CB =,45BAP ∠=,直线CA 和平面α所成二面的角为30.(I )证明BC PQ ⊥;(II )求二面角B AC P --的大小.命题目的:本题主要考查直线与平面垂直、二面角等基本知识,考查空间想象能力、逻辑思维能力和运算能力.过程指引:(I )在平面β过点C 作CO PQ ⊥于点O ,连结OB . 因为αβ⊥,PQ αβ=,所以CO α⊥,又因为CA CB =,所以OA OB =.而45BAO ∠=,所以45ABO ∠=,90AOB ∠=, 从而BO PQ ⊥,又CO PQ ⊥,所以PQ ⊥平面OBC .因为BC ⊂平面OBC ,故PQ BC ⊥. (II )解法一:由(I )知,BO PQ ⊥,又αβ⊥,PQ αβ=,ABCQ αβ P AB CQαβ PO HBO α⊂,所以BO β⊥.过点O 作OH AC ⊥于点H ,连结BH ,由三垂线定理知,BH AC ⊥. 故BHO ∠是二面角B AC P --的平面角.由(I )知,CO α⊥,所以CAO ∠是CA 和平面α所成的角,则30CAO ∠=,不妨设2AC =,则AO =3sin 302OH AO ==. 在Rt OAB △中,45ABO BAO∠=∠=,所以BO AO == 于是在Rt BOH △中,tan 2BOBHO OH∠===. 故二面角B AC P --的大小为arctan 2.解法二:由(I )知,OC OA ⊥,OC OB ⊥,OA OB ⊥,故可以O 为原点,分别以直线OB OA OC ,,为x 轴,y 轴,z 轴建立空间直角坐标系(如图). 因为CO a ⊥,所以CAO ∠是CA 和平面α所成的角,则30CAO ∠=.不妨设2AC =,则AO =1CO =. 在Rt OAB △中,45ABO BAO ∠=∠=, 所以BO AO ==. 则相关各点的坐标分别是(000)O ,,,0)B ,,(0A ,(001)C ,,.所以(3AB =,,(0AC =.设1n {}x y z =,,是平面ABC 的一个法向量,由1100n AB n AC ⎧=⎪⎨=⎪⎩,得00z =+=⎪⎩,取1x =,得1(11n =,,.易知2(100)n =,,是平面β的一个法向量.设二面角B AC P --的平面角为θ,由图可知,12n n θ=<>,.所以12121cos ||||5n n n n θ===.Q故二面角B AC P --的大小为5arccos5. 小结:本题是一个无棱二面角的求解问题.解法一是确定二面角的棱,进而找出二面角的平面角.无棱二面角棱的确定有以下三种途径:①由二面角两个面的两条相交直线确定棱,②由二面角两个平面的两条平行直线找出棱,③补形构造几何体发现棱;解法二则是利用平面向量计算的方法,这也是解决无棱二面角的一种常用方法,即当二面角的平面角不易作出时,可由平面向量计算的方法求出二面角的大小.【课后练习】如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,∠DAB 为直角,AB ‖CD ,AD =CD =2AB , E 、F 分别为PC 、CD 的中点.(Ⅰ)试证:CD ⊥平面BEF ;(Ⅱ)设PA =k ·AB ,且二面角E -BD -C 的平面角大于︒30,求k 的取值围.过程指引:方法一关键是用恰当的方法找到所求的空间距离和角; 方法二关键是掌握利用空间向量求空间距离和角的一般方法.【高考热点】空间几何体的表面积与体积(一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和 2 圆柱的表面积3 圆锥的表面积:2S rl r ππ=+4 圆台的表面积22S rl r Rl R ππππ=+++ 5 球的表面积24S R π=6扇形的面积213602n R S lr π==扇形(其中l 表示弧长,r 表示半径)注:圆锥的侧面展开图的弧长等于地面圆的周长 (二)空间几何体的体积 1柱体的体积V S h =⨯底 2锥体的体积 13V S h =⨯底3台体的体积 1)3V S S S S h =++⨯下下上上( 4球体的体积343V R π=【例题解析】222rrl S ππ+=考点8 简单多面体的有关概念及应用,主要考查多面体的概念、性质,主要以填空、选择题为主,通常结合多面体的定义、性质进行判断. 典型例题例12 . 如图(1),将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器,当这个正六棱柱容器的底面边长为 时容积最大.[思路启迪]设四边形一边AD ,然后写出六棱柱体积,利用均值不等式,求出体积取最值时AD 长度即可.解答过程:如图(2)设AD =a ,易知∠ABC =60°,且∠ABD =30°⇒AB =3a .BD =2a ⇒正六棱柱体积为V .V =a a 360sin 212162⋅︒⋅⋅⋅)-(=a a ⋅22129)-(=a a a 4)21)(21(89--≤33289)(⋅ . 当且仅当 1-2a =4a ⇒ a =61时,体积最大,此时底面边长为1-2a =1-2×61=32.∴ 答案为61.考点9.简单多面体的侧面积及体积和球的计算棱柱侧面积转化成求矩形或平行四边形面积,棱柱侧面积转化成求三角形的面积. 直棱柱体积V 等于底面积与高的乘积. 棱锥体积V 等于31Sh 其中S 是底面积,h 是棱锥的高.例15. 如图,在三棱柱ABC -A 1B 1C 1中,AB =2a ,BC =CA =AA 1=a ,A 1在底面△ABC 上的射影O 在AC 上① 求AB 与侧面AC 1所成角;② 若O 恰好是AC 的中点,求此三棱柱的侧面积. [思路启迪] ①找出AB 与侧面AC 1所成角即是∠CAB ; ②三棱锥侧面积转化成三个侧面面积之和,侧面BCC 1B 1是正方形,侧面ACC 1A 1和侧面ABB 1A 1是平行四边形,分别求其面积即可.解答过程:①点A 1在底面ABC 的射影在AC 上, ∴ 平面ACC 1A 1⊥平面ABC .A 1B 1C 1ABCDO在△ABC 中,由BC =AC =a ,AB =2a . ∴ ∠ACB =90°,∴ BC ⊥AC . ∴ BC ⊥平面ACC 1A 1.即 ∠CAB 为AB 与侧面AC 1所成的角在Rt △ABC 中,∠CAB =45°. ∴ AB 与侧面AC 1所成角是45°.② ∵ O 是AC 中点,在Rt △AA 1O 中,AA 1=a ,AO =21a . ∴ AO 1=23a . ∴ 侧面ACC 1A 1面积S 1=2123a =AO AC ⋅. 又BC ⊥平面ACC 1A 1 , ∴ BC ⊥CC 1.又BB 1=BC =a ,∴ 侧面BCC 1B 1是正方形,面积S 2=a 2. 过O 作OD ⊥AB 于D ,∵ A 1O ⊥平面ABC , ∴A 1D ⊥AB . 在Rt △AOD 中,AO =21a ,∠CAD =45° ∴ OD =42a 在Rt △A 1OD 中,A 1D =222122342)+()(=a a O +A OD =a 87. ∴ 侧面ABB 1A 1面积S 3=a a D =A AB 8721⋅⋅=227a .∴ 三棱柱侧面积 S =S 1+S 2+S 3=273221a )++(. 例16. 等边三角形ABC 的边长为4,M 、N 分别为AB 、AC 的中点,沿MN 将△AMN 折起,使得面AMN 与面MNCB 所成的二面角为30°,则四棱锥A —MNCB 的体积为 ( )ABCMNKLANA 、23 B 、23 C 、3 D 、3 [思路启迪]先找出二面角平面角,即∠AKL ,再在△AKL 中求出棱锥的高h ,再利用V =31Sh 即可. 解答过程:在平面图中,过A 作AL ⊥BC ,交MN 于K ,交BC 于L . 则AK ⊥MN ,KL ⊥MN . ∴ ∠AKL =30°.则四棱锥A —MNCB 的高h =︒⋅30sin AK =23. KL ⋅242S MNCB +==33⋅. ∴ 233331V MNCB A ⋅⋅=-=23. ∴ 答案 A【专题综合训练】 一、选择题1.如图,在正三棱柱ABC -A 1B 1C 1中,已知AB =1,D 在BB 1上,且BD =1,若AD 与侧面AA 1CC 1所成的角为α,则α的值为 ( ) A.3π B. 4π1A1B 1C DC. 410arctanD. 46arcsin 2.直线a 与平面α成θ角,a 是平面α的斜线,b 是平面α与a 异面的任意直线,则a 与b 所成的角( )A. 最小值θ,最大值θπ-B. 最小值θ,最大值2πC. 最小值θ,无最大值D. 无最小值,最大值4π3.在一个︒45的二面角的一平面有一条直线与二面角的棱成︒45角,则此直线与二面角的另一平面所成的角为( )A. ︒30B. ︒45C. ︒60D. ︒904.如图,直平行六面体ABCD -A 1B 1C 1D 1的棱长均为2,︒=∠60BAD ,则对角线A 1C 与侧面DCC 1D 1所成 的角的正弦值为( )A.21 B. 23C. 22 D. 435.已知在ABC ∆中,AB =9,AC =15,︒=∠120BAC ,它所在平面外一点P 到ABC ∆三顶点的距离都是14,那么点P 到平面ABC ∆的距离为( )A. 13B. 11C. 9D. 7 6.如图,在棱长为3的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱A 1B 1、A 1D 1的中点,则点B 到平面AMN 的距离是( )A. 29B.3C. 556 D. 27.将︒=∠60QMN ,边长MN =a 的菱形MNPQ 沿对角线NQ 折成︒60的二面角,则MP 与NQ 间的距离等于( )A.a 23 B. a 43 C. a 46 D.a 438.二面角βα--l 的平面角为︒120,在α,l AB ⊥于B ,AB =2,在β,l CD ⊥于D ,CD =3,BD =1, M 是棱l 上的一个动点,则AM +CM 的最小值为( )A. 52B. 22C.26 D. 629.空间四点A 、B 、C 、D 中,每两点所连线段的长都等于a , 动点P 在线段AB 上, 动点QBACDD 1C 1B 1 A 1ADB AD 1C 1B 1A 1M N在线段CD 上,则P 与Q 的最短距离为( )A.a 21 B. a 22 C. a 23 D.a 10.在一个正四棱锥,它的底面边长与侧棱长均为a ,现有一正方形包装纸将其完全包住(不能裁剪纸,但可以折叠),那么包装纸的最小边长应为( )A. a )62(+B.a 262+ C. a )31(+ D. a 231+ 11.已知长方体ABCD -A 1B 1C 1D 1中,A 1A =AB =2,若棱AB 上存在点P ,使PC P D ⊥1,则棱AD 的长的取值围是 ( )A. (]1,0B. (]2,0C. (]2,0D. (]2,112.将正方形ABCD 沿对角线AC 折起,使点D 在平面ABC 外,则DB 与平面ABC 所成的角一定不等于( )A. ︒30B. ︒45C. ︒60D. ︒90二、填空题1.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 是A 1B 1的中点,则下列四个命题:① E 到平面ABC 1D 1的距离是21; ② 直线BC 与平面ABC 1D 1所成角等于︒45; ③ 空间四边形ABCD 1在正方体六个面的射影围成面积最小值为21; ④ BE 与CD 1所成的角为1010arcsin2.如图,在四棱柱ABCD ---A 1B 1C 1D 1中,P 是A 1C 1上的动点,E 为CD 上的动点,四边形ABCD 满 足___________时,体积AEB P V -恒为定值(写上 你认为正确的一个答案即可)3.边长为1的等边三角形ABC 中,沿BC 边高线AD折起,使得折后二面角B -AD -C 为60°,则点A 到BC 的距离为_________,点D 到平面ABC 的距离为__________.4.在水平横梁上A 、B 两点处各挂长为50cm 的细绳,AM 、BN 、AB 的长度为60cm ,在MN 处挂长为60cm 的木条,MN 平行于横梁,木条的中点为O ,若木条 绕过O 的铅垂线旋转60°,则木条比原来升高了DCBAED 1A 1C 1B 1ABDCPEA 1D 1C 1B 1_________.5.多面体上,位于同一条棱两端的顶点称为相邻的.如图正方体的一个顶点A 在α平面.其余顶点在α的同侧,正方体上与顶点A 相邻的三个顶点到α的距离分别是1、2和4. P 是正方体其余四个顶点中的一个,则P 到平面α的距离可能是: ①3;②4;③5;④6;⑤7. 以上结论正确的为 .(写出所有正确结论的编号..) 6. 如图,棱长为1m 的正方体密封容器的三个面上有三个锈蚀的小孔(不计小孔直径)O 1、O 2、O 3它们分别是所在面的中心.如果恰当放置容器,容器存水的最大容积是_______m 3. 三、解答题1. 在正三棱柱ABC —A 1B 1C 1中,底面边长为a,D 为BC 为中点,M 在BB 1上,且BM=13B 1M ,又CM ⊥AC 1; (1) 求证:CM ⊥C 1D; (2) 求AA 1的长.2. 如图,在四棱锥P-ABCD 中,底面是矩形且AD=2,AB=PA=2,PA ⊥底面ABCD ,E 是AD 的中点,F 在PC 上. (1) 求F 在何处时,EF ⊥平面PBC ;(2) 在(1)的条件下,EF 是不是PC 与AD 的公垂线段.若是,求出公垂线段的长度;若不是,说明理由;(3) 在(1)的条件下,求直线BD 与平面BEF 所成的角.3.如图,四棱锥S —ABCD 的底面是边长为1的正方形,SD 垂直于底面ABCD ,SB=3. (1)求证BC ⊥SC ;(2)求面ASD 与面BSC 所成二面角的大小;(3)设棱SA 的中点为M ,求异面直线DM 与SB 所成角的大小.•O 1 •O 2•O 34.在直角梯形ABCD 中,∠D=∠BAD=90︒,AD=DC=21AB=a,(如图一)将△ADC 沿AC 折起,使D 到D '.记面AC D '为α,面ABC 为β.面BC D '为γ. (1)若二面角α-AC -β为直二面角(如图二),求二面角β-BC -γ的大小; (2)若二面角α-AC -β为60︒(如图三),求三棱锥D '-ABC 的体积.5.如图,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB =2,AF =1,M 是线段EF 的中点.(1)求证AM //平面BDE ; (2)求二面角A -DF -B 的大小;(3)试在线段AC 上确定一点P ,使得PF 与BC 所成的角是60︒.【参考答案】 一.选择题1.D 提示:AD 在面ACC 1A 1上的射影应在AC 与A 1C 1中点的连线上,令射影为E ,则∠EAD为所求的角.在Rt △EAD 中,.46223sin .2,23===∠∴==AD DE EAD AD DE .46arcsin=∠∴EAD 2.B 提示:由最小角定理知,最小角为θ,又异面直线所成角的围为⎥⎦⎤⎝⎛2,0π,∴最大角为2π. 3.A 提示:由最小角定理知,此直线与另一面所成的角应小于等于它与交线所成的角,故排除C 、D ,又此二面角为45°,则此直线与另一平面所成的角只能小于它与交线所成的角,故选A.4.D 提示:由题意,A 1在面DCC 1D 1上的射影应在C 1D 1延长线E 上,且D 1E =1,则∠A 1CE 为所求角,在Rt△AA 1C 中,.43sin ,3,411112211==∠∴==+=C A E A CE A E A AC AA C A 5.D 提示:由P 到△ABC 三个顶点的距离都是14,知P 在底面ABC 的射影是△ABC 的外心,所以PO 为所求.由余弦定理得:BC =21.由3142321120sin 2==︒=BC R 得外接圆半径为37,即37=OB ,在Rt △POB 中,.722=-=BO PB PO6.D 提示:由题图得AMB AMN AMB N AMN B S S h V V ∆∆--⋅⋅=⋅⋅∴=233131. 212333 2.22AMB AMN AMNS h S S ∆∆∆⨯⨯∴===⋅7.B 提示:连结MP 、NQ 交于O ,由四边形MNPQ 是菱形得MP ⊥NQ 于O ,将MNQ 折起后易得MO ⊥QN ,OP ⊥QN ,所以∠MOP =60°,且QN ⊥面MOP ,过O 作OH ⊥MP ,所以OH ⊥QN ,从而OH 为异面直线MP 、QN 的公垂线,经计算得.43a OH =8.C 提示:把α半平面展到半平面β,此时,连结AC 与棱的交点为M ,这时AM +CM 取最小值等于AC . (AM +CM )min =.26)32(12=++9.B 提示:P 、Q 的最短距离即为异面直线AB 与CD 间的距离,当P 为AB 的中点,Q 为CD 的中点时符合题意.10.B 提示:将正棱锥展开,设正方形边长为m ,则262,32+=∴+=m a a m 11.A 提示:∴⊥∴⊥,,1PC DP PC P D 在长方形ABCD 中AB 边存在P ,作PC DP ⊥,又因为AB =2,由对称性可知,P 为AB 的中点时,AD 最大为1,(]1,0∈∴AD 故选A. 12.D 提示:若BD 与平面ABC 所成的角为︒90,则ABC ABD 平面平面⊥,取AC 的中点O ,则AC DO AC BD ⊥⊥,且BO =DO ,BO BD 与∴不垂直,故BD 与平面ABC 所成的角一定不等于︒90.二.填空题1.②③④ 提示:对于①,由ABE C ABC E V V --=11得ABE ABC S S h ∆∆⨯⨯=⋅⋅131311,221==∴∆∆ABC ABE S S h ,①错.对于②连CB 1交BC 1于O ,则O 为C 在面ABC 1D 1上的射影,︒=∠∴45CBO 为所成的线面角,②正确.作图易知③正确,对于④连A 1B ,则BE A 1∠为所成的角,解BE A 1∆得1010sin 1=∠BE A ,④正确. 2.AB ∥CD 提示:ABE P AEB P S h V ∆-⋅⋅=31,要使体积为定值,则ABE S ∆为定值,与E 点位置无关,则AB ∥CD 3.1015,415 提示:作BC DE ⊥与E ,易知BCD AD 平面⊥,从而BC AE ⊥,︒=∠60BDC 又由21==DC BD ,得,,又2343==AD DE 41522=+=∴AD DE AE ,由可解的点到平面的距离为1015. 4.10cm 提示:MO =NO =30cm ,过O 作''M N 与旋转前的MN 平行且相等,所以旋转后AB 与平面N O M ''的距离为40305022=-,故升高了50-40=10cm. 5.①③④⑤. 6.65. 三、解答题1.(1)证明:在正三棱柱ABC —A 1B 1C 1中,D 为BC 中点,则AD ⊥面BCC 1B 1,从而AD ⊥MC又∵CM ⊥AC 1,则MC 和平面ADC 1两相交直线AD ,AC 1均垂直∴MC ⊥面ADC 1,于是MC ⊥DC 1. (2)解:在矩形BB 1C 1C 中,由CM ⊥DC 1知△DCC 1∽△BMC ,设BB 1=h,则BM=14h ∴14h:a=,22ah h a =:求得 从而所求AA 1=2a2.解:(Ⅰ)以A 为坐标原点,以射线AD 、AB 、AP 分别为x 轴、y 轴、z 轴建立空间直角坐标系,则p (0,0,2),A (0,0,0),B (0,2,0),C (2,2,0),D (2,0,0),E (1,0,0)∵F 在PC 上,∴可令,PC PF λ=设F (x ,y ,z )()()()z ,y ,x EF ,,,PC ,,,BC 1222002-=-==∵EF ⊥平面PBC ,∴0=•PC EF 且0=•BC EF ,又PC PF λ=,可得22121====z y ,x ,λ故F 为PC 的中点.(Ⅱ)由(Ⅰ)可知:EF ⊥PC ,且EF ⊥BC 即EF ⊥AD ∴EF 是PC 与AD 的公垂线段,其长为|EF |=1(Ⅲ)由(Ⅰ)可知()222-=,PC 即为平面BEF 的一个法向量而()022,,BD -=设BD 与平面BEF 所成角θ,则:sin θ=cos 63=••=•PC BD PC BD PC BD ∴θ=arc sin 63.故BD 与平面BEF 所成角为arc sin 63 3.(1)证法一:如图,∵底面ABCD 是正方形, ∴BC ⊥DC .∵SD ⊥底面ABCD ,∴DC 是SC 在平面ABCD 上的射影,由三垂线定理得BC ⊥SC .证法二:如图1,∵底面ABCD 是正方形, ∴BC ⊥DC .∵SD ⊥底面ABCD ,∴SD ⊥BC ,又DC ∩SD=D ,∴BC ⊥平面SDC ,∴BC ⊥SC . (2)解:如图2,过点S 作直线,//AD l l ∴在面ASD 上,∵底面ABCD 为正方形,l BC AD l ∴∴,////在面BSC 上,l ∴为面ASD 与面BSC 的交线.l ∴,,,,SC l SD l SC BC AD SD ⊥⊥∴⊥⊥∴∠CSD 为面ASD 与面BSC 所成二面角的平面角.∵BD=2,SB=3,SAD=1.∴045.CSD ∠=(3)解1:如图2,∵SD=AD=1,∠SDA=90°,∴△SDA 是等腰直角三角形.又M 是斜边SA 的中点,∴DM ⊥SA .∵BA ⊥AD ,BA ⊥SD ,AD ∩SD=D ,∴BA ⊥面ASD ,SA 是SB 在面ASD 上的射影.由三垂线定理得DM ⊥SB .∴异面直线DM 与SB 所成的角为90°.解2:如图3,取AB 中点P ,连结MP ,DP .在△ABS 中,由中位线定理得 MP//SB ,DMP ∠∴是异面直线DM 与SB 所成的角.2321==SB MP ,又,25)21(1,222=+==DP DM ∴在△DMP 中,有DP 2=MP 2+DM 2,︒=∠∴90DMP∴异面直线DM 与SB 所成的角为90°.4. 解:(1)在直角梯形ABCD 中, 由已知∆DAC 为等腰直角三角形,图1图2 图3∴ 45,2=∠=CAB a AC , 过C 作CH ⊥AB ,由AB=2a ,可推得 AC=BC=.2a ∴ AC ⊥BC .取 AC 的中点E ,连结E D ',则 E D '⊥AC 又 ∵ 二面角β--AC a 为直二面角,∴ E D '⊥β 又 ∵ ⊂BC 平面β ∴ BC ⊥E D ' ∴ BC ⊥a ,而a C D ⊂', ∴ BC ⊥C D ' ∴ CA D '∠为二面角γβ--BC 的平面角.由于 45='∠CA D , ∴二面角γβ--BC 为 45.(2)取AC 的中点E ,连结E D ',再过D '作β⊥'O D ,垂足为O ,连结OE .∵ AC ⊥E D ', ∴ AC ⊥OE ∴ EO D '∠为二面角β--AC a 的平面角, ∴ EO D '∠ 60=. 在OE D Rt '∆中,a AC E D 2221==', ∴O D S V ABC ABC D '⋅=∆-'31O D BC AC '⋅⋅⨯=2131a a a 462261⨯⨯⨯=.1263a = 5.解法一: (1)记AC 与BD 的交点为O,连接OE, ∵O 、M 分别是AC 、EF 的中点,ACEF是矩形,∴四边形AOEM 是平行四边形,∴AM ∥OE .∵⊂OE 平面BDE , ⊄AM 平面BDE ,∴AM ∥平面BDE .(2)在平面AFD 中过A 作AS ⊥DF 于S ,连结BS ,∵AB ⊥AF , AB⊥AD , ,A AF AD = ∴AB ⊥平面ADF ,∴AS 是BS 在平面ADF上的射影,由三垂线定理得BS ⊥DF .∴∠BSA 是二面角A —DF —B 的平面角.在Rt ΔASB 中,,2,36==AB AS ∴,60,3tan ︒=∠=∠ASB ASB ∴二面角A —DF —B 的大小为60º.(3)设CP=t (0≤t ≤2),作PQ ⊥AB 于Q ,则PQ ∥AD ,∵PQ ⊥AB ,PQ ⊥AF ,A AF AB = ,∴PQ ⊥平面ABF ,QF ⊂平面ABF ,∴PQ ⊥QF .在Rt ΔPQF 中,∠FPQ=60º,PF=2PQ .∵ΔPAQ 为等腰直角三角形,∴).2(22t PQ -=又∵ΔPAF 为直角三角形,∴1)2(2+-=t PF ,∴).2(2221)2(2t t -⋅=+-所以t=1或t=3(舍去),即点P 是AC 的中点.解法二: (1)建立如图所示的空间直角坐标系.设N BD AC = ,连接NE , 则点N 、E 的坐标分别是()0,22,22、(0,0,1), ∴)1,22,22(--=NE , 又点A 、M 的坐标分别是)0,2,2(,()1,22,22 ∴AM =()1,22,22--∴AM NE =且NE 与AM 不共线,∴NE ∥AM .又∵⊂NE 平面BDE ,⊄AM 平面BDE ,∴AM ∥平面BDF .(2)∵AF ⊥AB ,AB ⊥AD ,AF ,A AD = ∴AB ⊥平面ADF .∴AB )0,0,2(-=为平面DAF 的法向量.∵DB NE ⋅=()1,22,22--·)0,2,2(-=0,∴NF NE ⋅=()1,22,22--·)0,2,2(=0得DB NE ⊥,NF NE ⋅,∴NE 为平面BDF 的法向量.∴cos<>⋅NE AB =21∴AB 与NE 的夹角是60º.即所求二面角A —DF —B 的大小是60º.(3)设P(t,t,0)(0≤t ≤2)得PF ),1,2,2(t t --=∴BC =(2,0,0) 又∵PF 和BC 所成的角是60º.∴21)2()2(2)2(60cos 22⋅+-+-⋅-=︒t t t解得22=t 或223=t (舍去),即点P 是AC 的中点.。

相关文档
最新文档