反比例函数定义与性质
反比例函数与反比例关系
![反比例函数与反比例关系](https://img.taocdn.com/s3/m/72f6f79851e2524de518964bcf84b9d529ea2c7b.png)
反比例函数与反比例关系反比例函数是数学中的重要概念,它描述了两个量之间的关系,其中一个量的增加导致另一个量的减少,同时满足一定的比例关系。
本文将介绍反比例函数的定义、性质以及反比例关系的实际应用。
一、反比例函数的定义与性质反比例函数是一种特殊的函数形式,其定义如下:y = k/x其中,y和x分别表示函数的因变量和自变量,k称为常数,表示函数的比例系数。
反比例函数的性质如下:1. 零点:当x等于0时,由于分母为0,函数的值无定义。
2. 定义域:除了零点,反比例函数的定义域包含所有非零实数。
3. 值域:函数的值域也为非零实数集。
4. 图像特征:反比例函数的图像在原点处存在一个渐近线,即x轴和y轴分别为函数的渐近线。
二、反比例关系的实际应用反比例关系在实际问题中有着广泛的应用,下面将以几个具体的例子来说明:1. 速度与时间当我们考虑一个物体的速度与经过的时间之间的关系时,常常会遇到反比例关系。
根据定义可以得出,速度与时间的乘积为常数。
例如,汽车在行驶过程中,当速度增加时,所需要的行驶时间就会减少,反之亦然。
2. 工人数量与工作完成时间在一项任务中,如果增加工人的数量,工作完成所需要的时间就会减少。
这是因为工人数量与工作完成时间之间存在反比例关系,更多的工人能够同时进行工作,因此完成时间就会相应减少。
3. 管道的宽度与液体流速当液体通过一个管道流动时,管道的宽度和液体的流速之间存在反比例关系。
增加管道的宽度会减少液体的流速,而减小管道的宽度会增加液体的流速。
这一关系在管道工程设计中非常重要。
4. 投资与收益率在金融领域中,投资与收益率之间往往存在反比例关系。
投资越多,收益率就越低;而投资越少,收益率相应增加。
这是因为投资金额的增加会稀释资金的利润。
通过以上几个实际应用的例子,我们可以看到反比例关系在许多领域中都有重要的意义。
了解并应用反比例函数与反比例关系,可以帮助我们更好地理解与解决实际问题。
结论反比例函数是一种重要的数学概念,用于描述两个量之间的反比例关系。
反比例函数知识点知识点总结
![反比例函数知识点知识点总结](https://img.taocdn.com/s3/m/49f256a3900ef12d2af90242a8956bec0975a59f.png)
反比例函数知识点知识点总结反比例函数知识点总结一、反比例函数的定义一般地,如果两个变量 x、y 之间的关系可以表示成 y = k/x(k 为常数,k≠0)的形式,那么称 y 是 x 的反比例函数。
其中,x 是自变量,y 是因变量,k 叫做比例系数。
需要注意的是,反比例函数中自变量 x 的取值范围是x≠0,因为在分母中,分母不能为 0。
二、反比例函数的表达式反比例函数常见的表达式有以下三种形式:1、 y = k/x(k 为常数,k≠0),这是最基本的形式。
2、 xy = k(k 为常数,k≠0),通过对 y = k/x 两边同时乘以 x 得到。
3、 y = kx^(-1)(k 为常数,k≠0),这是用幂的形式表示。
三、反比例函数的图像反比例函数的图像属于双曲线。
当 k>0 时,双曲线的两支分别位于第一、第三象限,在每一象限内 y 随 x 的增大而减小。
当 k<0 时,双曲线的两支分别位于第二、第四象限,在每一象限内 y 随 x 的增大而增大。
反比例函数的图像是以原点为对称中心的中心对称的两条曲线。
四、反比例函数的性质1、单调性当 k>0 时,函数在区间(∞,0)和(0,+∞)上分别单调递减;当 k<0 时,函数在区间(∞,0)和(0,+∞)上分别单调递增。
2、对称性反比例函数的图像既是轴对称图形,又是中心对称图形。
它有两条对称轴,分别是直线 y = x 和 y = x;对称中心是原点(0,0)。
3、渐近线当 x 趋近于正无穷或负无穷时,曲线无限接近坐标轴,但永远不会与坐标轴相交。
4、取值范围当 k>0 时,y>0 或 y<0;当 k<0 时,y<0 或 y>0。
五、反比例函数中 k 的几何意义1、过反比例函数 y = k/x(k≠0)图像上任意一点 P 作 x 轴、y 轴的垂线 PM、PN,垂足分别为 M、N,则矩形 PMON 的面积 S =PM×PN =|y|×|x| =|xy| =|k|。
反比例函数及其性质
![反比例函数及其性质](https://img.taocdn.com/s3/m/f7cd80e2172ded630b1cb616.png)
反比例函数的定义: 函数k y x=(k 为常数,0k ≠)叫做反比例函数,其中k 叫做比例系数,x 是自变量,y 是函数,自变量x 的取值范围是不等于0的一切实数. 反比例函数的图像: 反比例函数k y x =(k 为常数,0k ≠)的图像由两条曲线组成,每条曲线随着x 的不断增大(或减小)越来越接近坐标轴,反比例函数的图像属于双曲线. 反比例函数k y x =与k y x=-(0k ≠)的图像关于x 轴对称,也关于y 轴对称.反比例函数图像的性质:反比例函数k y x=(k 为常数,0k ≠)的图像是双曲线;当0k >时,函数图像的两个分支分别位于第一、三象限内,它们关于原点对称,在每一个象限内,y 随x 的增大而减小;当0k <时,函数图像的两个分支分别位于第二、四象限内,它们关于原点对称,在每一个象限内,y 随x 的增大而增大. 注意: ⑴反比例函数k y x=(0k ≠)的取值范围是0x ≠.因此,①图象是断开的两条曲线,画图象时,不要把两个分支连接起来. ②叙述反比例函数的性质时,一定要加上“在每一个象限内”, 如当0k >时,双曲线k y x=的两支分别在一、三象限,在每一个象限内,y 随x 的增大而减小.这是由于0x ≠,即0x >或0x <的缘故.如果笼统地叙述为0k <时,y 随x 的增大而增大就是错误的.⑵由于反比例函数中自变量x 和函数y 的值都不能为零,所以图象和x 轴、y 轴都没有交点,但画图时要体现出图象和坐标轴无限贴近的趋势.⑶在画出的图象上要注明函数的解析式.知识点睛反比例函数及其性质板块一 反比例函数基本概念及图象1.反比例函数概念【例1】 下列关于x 的函数中:①2y x=;②43y x-=;③k y x=;④22m y x+=中,一定是反比例函数的有( )A .1个B. 2个C. 3个D. 4个【例2】 已知()2212m m y m m x +-=+是关于x 的反比例函数,求m 的值及函数的解析式。
反比例函数的定义图象及性质
![反比例函数的定义图象及性质](https://img.taocdn.com/s3/m/6d3601c6284ac850ac02425d.png)
【本讲教育信息】一. 教学内容:1. 反比例函数的定义.2. 反比例函数的图象和性质.二. 知识要点: 1. 反比例函数(1)一般地,形如y =kx (k 为常数,k ≠0)的函数称为反比例函数,其中x 是自变量,y 是函数.其表达式也可以写成y =kx -1,有时利用变形式子xy =k .(2)确定解析式的方法仍是待定系数法,由于在反比例函数y =kx 中,只有一个待定系数,因此只需一对对应值或图象上一个点的坐标,即可求出k 的值,从而确定解析式. 2. “反比例关系”与“反比例函数”的异同 如果xy =k (k 是常数,k ≠0),那么x 与y 这两个量成反比例关系,这里x 、y 既可代表单独的一个字母,也可代表多项式或单项式,成反比例的关系式,不一定是反比例函数,如y -3=k z +2中,y -3与z +2成反比例,但y 与z 不是反比例函数;又如y =2x 2中,y 与x 2成反比例,但y ,x 不是反比例函数,但反比例函数y =kx (k ≠0)中的两个变量必成反比例关系.3. 反比例函数的性质和图象(1)反比例函数的图象的形状是双曲线,它不是连续的整体图形,而是断开的两个独立的分支,它无限接近两坐标轴但永远也不能到达坐标轴.(2)反比例函数的图象的位置与增减性,当k >0时,反比例函数的图象的两个分支位于一、三象限.在每个象限内y 随x 的增大而减小;当k <0时,反比例函数的两个分支分别位于第二、四象限,在每个象限内y 值随x 的增大而增大.(3 4. 反比例函数y =kx (k ≠0)中的比例系数k 的几何意义过双曲线y =kx上任一点P 作x 轴、y 轴的垂线PM 、PN ,所得的矩形PMON 的面积为S=PM ·PN =︱y ︱·︱x ︱=︱xy ︱,∵y =kx ,∴xy =k ,∴S =︱k ︱.即①过双曲线上任意一点作x 轴、y 轴的垂线,所得的矩形的面积为︱k ︱.②过双曲线上任意一点作x 轴(y 轴)的垂线,由该点、垂足和原点所构成的三角形的面积都是12︱k ︱.三. 重点难点:本节的重点是反比例函数的图象和性质,难点是在学习过程中要全面理解其性质及图象的特征,结合图象来理解,采用数形结合的思想方法.【典型例题】例1. 判断下列函数式,y 与x 是反比例函数关系的有哪些?①y =2x +1;②y =πx ;③y =a x ;④y =4x 2+x -x 2;⑤xy =3;⑥y =13x ;⑦x (y +1)=3;⑧2x ·3y =7.分析:按照反比例函数关系式的特征判断.①中,y 与x +1成反比例,不是y 与x 成反比例.③中没有说明a 的条件.⑦化简后为y =3x-1不符合反比例函数的形式,所以①③⑦不是反比例函数.对于②中,π为常数.④中化简得y =4x .⑤可变形为y =3x.⑥可变形为y =13x .⑧可变形为y =76x .都符合反比例函数的一般形式,所以②④⑤⑥⑧是反比例函数. 解:②④⑤⑥⑧是反比例函数. 评析:(1)判断两种量是否成反比例关系时,通常写出这两种量的关系式.然后化简,再对照反比例函数式的特征进行解答.(2)反比例函数式y =kx (k 为常数,k ≠0)还可以写成y =kx -1或xy =k (k 为常数,k ≠0).例2. 已知y 是x 的反比例函数,且当x =3时,y 的值是-5.(1)求y 与x 的关系式.(2)求当x =-5时,y 的值.分析:y 是x 的反比例函数,即x 与y 满足y =kx 这个关系式,且当x =3时,y 的值是-5,将这两个数值代入即可求出k 的值.解:(1)设y =k x (k ≠0),把x =3,y =-5代入得,-5=k3.解之得,k =-15,所以,解析式为y =-15x.(2)把x =-5代入,得y =-15-5=3.所以,当x =-5时,y 的值是3.评析:待定系数法求反比例函数解析式的步骤是:(1)设出函数解析式的一般形式为y =kx(k ≠0).(2)把对应的x 与y 的值代入,得到一个关于k 的方程.(3)解方程,求出待定系数k 的值.(4)代入解析式即可得到要求的解析式.例3. (1)已知反比例函数y =(a -2)52-a x ,当x >0时,y 随x 的增大而增大,则该函数关系式是__________.(2)已知反比例函数y =1-3mx 的图象上有两点A (x 1,y 1)、B (x 2,y 2),当x 1<0<x 2时,有y 1<y 2,则m 的取值范围是__________.分析:(1)因为反比例函数y =(a -2)52-a x ,当x >0时,y 随x 的增大而增大,所以有⎩⎪⎨⎪⎧a -2<0a 2-5=-1 解得⎩⎪⎨⎪⎧a <2a 2=4 即⎩⎪⎨⎪⎧a <2a =±2 .所以a =-2,当a =-2时,函数关系式为y =-4x.(2)反比例函数的图象有两种情况:当1-3m >0时,如图(1)所示,此时y 1<y 2;当1-3m <0时,如图(2)所示,此时y 1>y 2;故可得1-3m >0,即m <13.(1)(2)解:(1)y =-4x (2)m <13评析:(1)对于y =kx (k 为常数,k ≠0)来说,当k >0时,反比例函数的图象的两个分支位于一、三象限.在每个象限内y 随x 的增大而减小;当k <0时,反比例函数的两个分支分别位于第二、四象限,在每个象限内y 值随x 的增大而增大.所以在此题中,应该有a -2<0.(2)反比例函数y =kx ,当k <0时,在每个象限内,y 随x 的增大而增大,但并不是说反比例函数的整个图象是从左往右上升的,因此一定注意,“在每个象限内”这个条件.例4. (1)(2008年上海)若反比例函数y =k x (k <0)的函数图像过点P (2,m )、Q (1,n ),则m 与n 的大小关系是:m __________n (选择填“>”、“=”、“<”).(2)函数y =-ax +a 与y =-ax(a ≠0)在同一坐标系中的图象可能是( )分析:(1)由k <0知函数图象在二、四象限,且y 随x 的增大而增大,又图象过点P (2,m )、Q (1,n ),2>1,则m >n .(2)由函数图象判断-a 的正负,看是否一致,可以发现函数y =-ax +a 中,当x =1时,y =0,即直线过定点(1,0),所以可排除B 和D .在A 中,根据直线的图象可知-a <0,根据双曲线的图象可知-a <0,它们是一致的.在C中,根据直线的图象可知-a >0,根据双曲线的图象可知-a <0,它们是不一致的,应排除.解:(1)>(2)A例5. 点P 是x 轴正半轴上的一个动点,过点P 作x 轴的垂线PA 交双曲线y =1x 于点A ,连接OA .(1)如图(1)所示,当点P 在x 轴的正方向上运动时,R t △AOP 的面积大小是否变化?若不变,请求出R t △AOP 的面积;若改变,试说明理由.(2)如图(2)所示,在x 轴上的点P 的右侧有一点D ,过点D 作x 轴的垂线DB 交双曲线y =1x 于点B ,连接BO 交AP 于C ,设△AOP 的面积为S 1,梯形BCPD 的面积为S 2,则S 1与S 2的大小关系是S 1__________S 2.(选填“>”“<”或“=”)解:(1)设A 点坐标为(x ,y ),则x >0,y >0.S △AOP =12·OP ·AP =12·x ·y =12×1=12.所以当点P 在x 轴的正方向移动时,R t △AOP 的面积不发生变化.(2)由(1)的结果可知S △AOP =S △BOD ,而梯形BCPD 的面积小于S △BOD ,所以有S △AOP >S 梯形BCPD ,即S 1>S 2.评析:从双曲线y =kx (k ≠0)上任一点向x 轴作垂线.则该点垂足及坐标原点构成的三角形面积都相等,其值为12︱k ︱.【方法总结】1. 反比例函数的图象是双曲线,双曲线所在的象限由比例系数k 来决定,当k >0时,双曲线在第一、三象限;当k <0时,双曲线在第二、四象限.2. 若两个变量的积是一个不为零的常数,则这两个变量成反比例.3. 求函数关系式时,一般用待定系数法.4. 在记忆反比例函数图象的性质时,要与正比例函数的性质相对照,不要混淆.5. 在反比例函数y =kx(k ≠0)的图象上任取一点向x 轴作垂线,则由垂足、原点及该点构成的三角形的面积不变,其值为12︱k ︱.【模拟试题】(答题时间:45分钟)一. 选择题1. 下列函数表达式中,是反比例函数的是( )A .y =x -1B .y =1x -1C .y =x2D .xy =-22. 一个长方形的面积为10,则这个长方形的长与宽之间的函数关系是( )A .正比例函数关系B .反比例函数关系C .一次函数关系D .不能确定3. 下列函数中,图象经过点(1,-1)的反比例函数解析式是( )A .y =1xB .y =-1xC .y =2xD .y =-2x4. 已知(3,-1)是曲线y =kx(k ≠0)上一点,则下列各点中不在该图像上的点是( )A .(13,-9)B .(3,1)C .(-1,3)D .(6,-12)5. 如果两点P 1(1,y 1)和P 2(2,y 2)在反比例函数y =1x 的图象上,那么( )A .y 2<y 1<0B .y 1<y 2<0C .y 2>y 1>0D .y 1>y 2>0*6. 若r 为圆柱底面的半径,h 为圆柱的高.当圆柱的侧面积一定时,则h 与r 之间的函数关系的图象大致是( )BC D7. 已知反比例函数y =2x,下列结论中,不正确的是( )A. 图象必经过点(1,2)B. y 随x 的增大而减小C. 图象在第一、三象限内D. 若x >1,则y <28. 反比例函数y =kx (k >0)的部分图象如图所示,A 、B 是图象上两点,AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,若△AOC 的面积为S 1,△BOD 的面积为S 2,则S 1和S 2的大小关系为( )A. S 1>S 2B. S 1=S 2C. S 1<S 2D. 无法确定二. 填空题1. 反比例函数y =kx 的图像经过点(2,-1),则k 的值为__________.2. 反比例函数y =15x 中,k =__________.3. 如果y =1x2n -5是反比例函数,则n =__________.4. 反比例函数y =kx的图象经过点(2,3),则这个反比例函数的解析式为_______________.5. 已知反比例函数y =kx 的图象分布在第二、四象限,则一次函数y =kx +b 中,y 随x 的增大而________(填“增大”、“减小”、“不变”).*6. 如图,双曲线y =kx 与直线y =mx 相交于A 、B 两点,B 点坐标为(-2,-3),则A点坐标为__________.**7. 双曲线y =8x与直线y =2x 的交点坐标为__________.三. 解答题1. 指出下列式子哪些是反比例函数解析式?并指出x 的取值.(1)y =x 5 (2)y =-23x (3)y =13x 2 (4)y =3x2. 已知反比例函数y = kx 的图象与一次函数y =3x +m 的图象相交于点(1,5).求这两个函数的解析式;3.x 和y 的一些值:(1)写出y 与x 的函数关系式;(2)根据求出的函数关系式完成上表.*4. 已知点P (2,2)在反比例函数y =kx (k ≠0)的图象上,(1)当x =-3时,求y 的值;(2)当1<x <3时,求y 的取值范围.**5. 如图所示,R t △ABO 的顶点A 是双曲线y =kx与直线y =-x +(k +1)在第四象限的交点,AB ⊥x 轴于B ,且S △ABO =32.求这两个函数的表达式;【试题答案】一. 选择题1. D2. B3. B4. B5. D6. B7. B8. B二. 填空题1. -22. 153. 34. y =6x 5. 减小 6. (2,3) 7. (2,4)和(-2,-4)三. 解答题1. (2)和(4)是反比例函数,其取值范围都是x ≠0.2. y =5x,y =3x +23. (1)y =20x(2)如下表所示:4. (1)-43(2)43<y <45. y =-3x ,y =-x -2。
反比例函数
![反比例函数](https://img.taocdn.com/s3/m/d4af2b7c02768e9951e738b4.png)
k 1 .反比例函数 y= (k 是常数, k≠0)的图象是 x 双曲线.因为 x≠0,k≠0,相应地 y 值也不能为 0, 所以反比例函数的图象无限接近 x 轴和 y 轴,但永不 与 x 轴、y 轴相交.
2.反比例函数的图象和性质 k 反比例函数 y= (k 是常数, k≠0)的图象总是关于 x 原点对称的,它的位置和性质受 k 的符号的影响.
(1)求该轿车可行驶的总路程 s 与平均耗油量 a 之 间的函数解析式(关系式). (2)当平均耗油量为 0.08 升/千米时, 该轿车可以行 驶多少千米? 【点拨】本题考查建立反比例函数模型解答实际 问题. k k 解:(1)把 a=0.1,s=700 代入 s= ,得 700= , a 0.1 70 k=70,s= . a
考点三 反比例函数值的大小比较 例 3(2014· 衡阳)若点 P1(-1,m),P2(-2,n)在 k 反比例函数 y= (k>0)的图象上,则 m________n(填 x “>”“<”或“=”).
【点拨】方法一:∵k>0,∴在每个象限内y 随x的增大而减小.又∵0>-1>-2,∴m<n.方 法二:∵k>0,∴取k=2,把x=-1,x=-2分别 2 代入y= ,得m=-2,n=-1,∴m<n. x
k 2. (2014· 株洲)已知反比例函数 y= 的图象经过点 x (2,3),那么下列四个点中,也在这个函数图象上的是 ( B ) A.(-6,1) C.(2,-3) B.(1,6) D.(3,-2)
k 解析:∵y= 的图象经过点(2,3),∴k=2×3=6. x 又∵1×6=6=k, ∴点(1,6)也在这个函数的图象上. 故 选 B.
A.②③
B.③④
C.①②
D.①④
反比例函数的性质与计算
![反比例函数的性质与计算](https://img.taocdn.com/s3/m/9498cb1e814d2b160b4e767f5acfa1c7aa0082a3.png)
反比例函数的性质与计算反比例函数是数学中重要的一类函数,指的是函数中的两个变量在其取值之间存在着一种相反的关系。
本文将介绍反比例函数的性质以及如何进行相关计算。
一、反比例函数的定义与性质一个函数y = k/x(其中k为常数)被称为反比例函数。
反比例函数具有以下性质:1. 输入与输出的关系:反比例函数表示两个变量之间的相互关系,其中,当一个变量的值增加时,另一个变量的值将减少,反之亦然。
这种关系可以用直观的比喻来理解,比如:行驶的速度越快,所需要的时间就越短;倒数是反比例函数中常见的表达方式之一。
2. 定义域与值域:反比例函数的定义域为实数除去0,因为在反比例函数中,分母不能为零。
而函数的值域则可以是任意的实数。
所以,反比例函数的图像通常不包含y轴上的点(0, 0)。
3. 特殊情况:当k等于0时,反比例函数退化为y = 0,即一条水平的直线,其图像为x轴。
二、反比例函数的计算方法在计算反比例函数时,我们通常会遇到以下几个重要的问题。
1. 求解常数k的值:当已知反比例函数图像上的一个点坐标(x1, y1)时,可以通过代入求解的方法得到常数k的值。
具体步骤如下:(1) 将已知点的坐标代入反比例函数的表达式中,得到方程y1 =k/x1;(2) 通过变形将方程转化为k = x1 * y1的形式,从而得到k的具体值。
2. 求解反比例函数上某一点的坐标:当已知反比例函数的常数k的值与一个变量的值x时,我们可以通过代入计算的方法求解相应的y值。
具体步骤如下:(1) 将已知的x的值代入反比例函数的表达式中,得到方程y = k/x;(2) 将x的值代入方程,计算出对应的y值,从而得到点坐标(x, y)。
3. 求解满足条件的反比例函数:有时候,我们需要找到一个满足特定条件的反比例函数。
例如,已知反比例函数通过点A(x1, y1)和点B(x2, y2),我们可以通过以下步骤确定满足条件的反比例函数:(1) 利用求解常数k的值的方法,分别求解两个点的常数k1和k2;(2) 将求解得到的两个常数代入反比例函数的表达式中,得到两个反比例函数的具体表达式为y1 = k1/x、y2 = k2/x;(3) 利用两个点的图像,可以画出两个反比例函数的图像,并找到它们的交点C(xc, yc);(4) 通过观察交点C的坐标,可以确定满足条件的反比例函数的具体表达式。
反比例函数概念与性质
![反比例函数概念与性质](https://img.taocdn.com/s3/m/cd6d0fe2b8f3f90f76c66137ee06eff9aef849f5.png)
反比例函数概念与性质反比例函数的概念与性质一、反比例函数的概念1.反比例函数可以写成y=k/x的形式,其中自变量x的指数为-1.在解决有关自变量指数问题时,应特别注意系数。
2.反比例函数也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式。
3.反比例函数的自变量不能为0,故函数图象与x轴、y轴无交点。
二、反比例函数的图象1.在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称)。
2.反比例函数的图象是双曲线。
随着k的增大,图象的弯曲度越小,曲线越平直;随着k的减小,图象的弯曲度越大。
3.反比例函数的图象与坐标轴没有交点,称两条坐标轴是双曲线的渐近线。
当k>0时,图象的两支分别位于第一、第三象限内,在每个象限内,y随x的增大而减小;当k<0时,图象的两支分别位于第二、第四象限内,在每个象限内,y随x的增大而增大。
4.反比例函数的图象关于原点对称,即若(a,b)在双曲线的一支上,则(-a,-b)在另一支上。
5.反比例函数的k值的几何意义是:如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B 点,则矩形PBOA的面积是k;如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥XXX的延长线于C,则三角形PQC的面积也是k。
6.反比例函数的增减性需要将两个分支分别讨论,不能一概而论。
7.直线y=k与双曲线y=k/x的关系:当k>0时,两图象必有两个交点,且这两个交点关于原点成中心对称;当k=0时,两图象有一个公共点O;当k<0时,两图象没有交点。
8.反比例函数与一次函数的联系:当k=0时,反比例函数变为一次函数y=0.求反比例函数的解析式的方法主要有三种:待定系数法、反比例函数k的几何意义、实际问题。
四、反比例函数解析式的确定一、反比例函数的定义:反比例函数是指函数表达式为y=k/x的函数,其中k为非零常数。
18.3(2)反比例函数的图像和性质
![18.3(2)反比例函数的图像和性质](https://img.taocdn.com/s3/m/9f4cd90c59eef8c75fbfb345.png)
图象名称
K>0
y=kx (k≠0)
直 线
(过原点)
图象位于:一、三象限 增减性:y随x的增大而增大 图象位于:二、四象限
性 质
K<0 增减性: y随x的增大而减小
小练习:
1、正比例函数y=2x经过第
一、三
象限.
2、已知矩形面积为6,则它的长y与宽x之间的函数关系 6 ,y是x的 式为 函数. y 反比例
为
y 1 >0 >y 2
.
A
y
y1
o
x2
x
B
x1
y2
1.已知点A(-2,y ),B(-1,y A(-2,y1 ),B(-1,y 1 2) 2),C(4,y 3) 都在反比例函数 为
y 3 >y 1>y 2
4 y x
的图象上,
则y1、y2与y3的大小关系(从大到小)
.
-2
y
-1 y3
A
B
o y1 y2
) D不能确定 y
C非正数
本题要注意A,B是否在同一象限内 o 若A,B在不同的象限则可能有多种情况出现
x
数学题目形式灵活多变,大家要善于思考
3 y (x 0) x
D、
y 2x
1.已知点A(-2,y1),B(-1,y2) 都在反比例函数 为
y 1> y 2
4 y x
的图象上,
则y1与y2的大小关系(从大到小)
.
当k>0时:
在每一个象限内,y随x的增大而减小
1.已知点A(-2,y1),B(-1,y2)
4 k 都在反比例函数 y y x(k<0) 的图象上, x
1 标由小到大的顺序联结起来,再向两方伸展 -6 -5 -4 -3 -2 -1 -1 -2 -3 -4 -5 -6 0 1 2 3 4 5 6 3
反比例函数的性质及解析方法
![反比例函数的性质及解析方法](https://img.taocdn.com/s3/m/c6688549591b6bd97f192279168884868762b892.png)
反比例函数的性质及解析方法反比例函数是数学中常见且重要的函数类型之一。
它的特点是随着自变量的增大,函数值会随之减小,并且二者之间呈现一种相对的关系。
本文将探讨反比例函数的性质以及解析方法。
一、反比例函数的定义反比例函数可以用以下的形式进行表示:y = k/x,其中k为常数,x 不等于0。
该函数中,自变量x的值越大,函数值y就越小,反之亦然。
二、反比例函数的特性1. 零和不存在点:由于反比例函数中的自变量x不能等于0,因此该函数在x=0处不存在定义。
当自变量等于0时,函数值无法确定。
2. 定义域和值域:反比例函数的定义域为除了x=0以外的实数集,值域为除了y=0以外的实数集。
3. 关于x轴和y轴的对称性:反比例函数关于x轴对称,即(x, y)在函数曲线上,则(x, -y)也在函数曲线上。
4. 渐近线:除了x=0,反比例函数还存在一条水平渐近线y=0。
当x趋近于无穷大或无穷小时,函数值会趋近于0但不会等于0。
5. 单调性:反比例函数具有单调性,即在定义域内,随着x的增大,函数值y逐渐减小。
三、反比例函数的图像反比例函数在坐标平面上呈现一种特殊的曲线形状,该曲线称为反比例函数的图像。
由于反比例函数的特性,图像通常会表现出以下几个特点:1. 零点:函数曲线与x轴的交点,即(x, 0)。
2. 渐近线:函数曲线与y=0的水平渐近线。
3. 函数曲线的变化趋势:随着x的增大,函数曲线逐渐向y轴靠拢,形成一个由第一象限向第三象限延伸的曲线。
四、解析反比例函数解析反比例函数的过程可以通过以下几个步骤完成:1. 确定常数k的值:可以通过已知条件或函数图像来确定常数k的值。
2. 确定定义域和值域:由于反比例函数的特性,定义域为除了0以外的实数集,值域为除了0以外的实数集。
3. 求解零点:当函数值为0时,解方程k/x=0,可以得到x=0。
4. 画出函数图像:根据常数k的值以及定义域和值域的特性,可以画出反比例函数的图像。
反比例函数常用知识点总结
![反比例函数常用知识点总结](https://img.taocdn.com/s3/m/30e57e20571252d380eb6294dd88d0d233d43c06.png)
反比例函数常用知识点总结一、反比例函数的定义反比例函数也叫做倒数函数,通常用y=k/x表示,其中k为非零常数。
这种函数的图像是一个双曲线,具有对称轴。
二、反比例函数的性质1. 反比例函数的定义域和值域反比例函数的定义域为x≠0,值域为y≠0。
2. 反比例函数的奇偶性反比例函数通常不具有奇偶性。
3. 反比例函数的单调性反比例函数在定义域内单调递减或递增。
4. 反比例函数的渐近线反比例函数的图像有两条渐近线,分别是x轴和y轴。
5. 反比例函数的对称性反比例函数的图像关于原点对称。
6. 反比例函数的零点和极限反比例函数有唯一的零点,即x=±√k。
当x→0时,y→±∞。
三、反比例函数的图像1. 反比例函数的基本图像反比例函数的基本图像是一个双曲线,具有对称轴。
2. 反比例函数的平移和缩放改变k的值可以使反比例函数的图像进行平移和缩放。
3. 反比例函数的特殊情况当k为正数时,反比例函数的图像在第一和第三象限。
当k为负数时,反比例函数的图像在第二和第四象限。
四、反比例函数的应用1. 反比例函数在物理学中的应用反比例函数可以用来描述两个物理量之间的关系,比如牛顿定律中的万有引力定律就是一个反比例函数。
2. 反比例函数在经济学中的应用反比例函数可以用来描述供求关系,比如需求曲线和供给曲线都是反比例函数。
3. 反比例函数在工程学中的应用反比例函数可以用来描述工程中的一些量与距离的关系,比如声音的传播距离与声音的强度之间的关系。
五、反比例函数的解题方法1. 求反比例函数的定义域和值域根据函数的定义,可以求出反比例函数的定义域和值域。
2. 求反比例函数的零点和极限根据函数的性质,可以求出反比例函数的零点和极限。
3. 求反比例函数的图像可以根据函数的性质和图形变换的知识,画出反比例函数的图像。
4. 求反比例函数的应用问题可以根据反比例函数在物理学、经济学和工程学中的应用问题,解决实际问题。
六、反比例函数的常见错误1. 关于定义域和值域的错误很多学生容易忽略反比例函数的定义域和值域,导致在解题过程中出现错误。
反比例函数的概念与性质
![反比例函数的概念与性质](https://img.taocdn.com/s3/m/11e88d4cba68a98271fe910ef12d2af90242a80a.png)
反比例函数在经济学中的应用
描述供求关系:反比例函数可以用来描述经济学中的供求关系,帮助分析 市场上的供需变化。
解释边际效用递减规律:反比例函数可以解释经济学中的边际效用递减规 律,即随着消费量的增加,单位消费所带来的效用逐渐减少。
反比例函数与二次函数的联系与区别
反比例函数与二次函数都是非线性函数,具有不同的函数图像和性质。
反比例函数的图像位于x轴和y轴之间,而二次函数的图像可能位于x轴上 方或下方。
反比例函数的导数在x=0处不存在,而二次函数的导数在x=0处存在。
反比例函数在x>0时单调递减,在x<0时单调递增,而二次函数在x<0时 单调递减,在x>0时单调递增。
反比例函数与幂函数的联系与区别
反比例函数与幂函数在形式上的联系:两者都是形如y=k/x(k为常数)的函数,具有反比例关 系的函数形式。
反比例函数与幂函数在性质上的区别:反比例函数的图像分布在第一、三象限,而幂函数的图 像根据幂次的不同分布在各象限;反比例函数的图像是关于原点对称的,而幂函数的图像则关 于:双曲 线,位于两轴之 间
图像位置:取决于 比例常数k,k>0 时位于一三象限, k<0时位于二四象 限
图像变化趋势: 随着x的增大或减 小,y值逐渐减小 或增大
图像与坐标轴的 交点:原点 O(0,0)和点(k,0)
反比例函数的解析式
定义:形如 y = k/x (k为常数且k≠0) 的函数称为反比例函数 解析式:y = k/x (k为常数且k≠0) 图像:双曲线,位于x轴和y轴的两侧 性质:当k>0时,图像位于第一、三象限;当k<0时,图像位于第二、四象限
反比例函数知识点
![反比例函数知识点](https://img.taocdn.com/s3/m/05659afca0c7aa00b52acfc789eb172ded63991f.png)
反比例函数知识点(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!反比例函数知识点数学学习反比例函数要求我们要深刻地理解,找出事物间的普遍联系和发展规律,能数学地发现问题,并能运用已有的数学知识,给以一定的解释.反比例函数知识点有哪些?一起来看看反比例函数知识点,欢迎查阅!反比例函数的定义定义:形如函数y=k/x(k为常数且k≠0)叫做反比例函数,其中k叫做比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。
反比例函数的象与性质
![反比例函数的象与性质](https://img.taocdn.com/s3/m/67dc050ba22d7375a417866fb84ae45c3a35c26a.png)
反比例函数的象与性质反比例函数是一种特殊的函数,它的性质在数学中具有一定的重要性。
本文将探讨反比例函数的象以及其性质。
一、反比例函数的定义反比例函数是指函数y = k/x,其中k为非零实数。
当x ≠ 0 时,该函数有定义。
二、反比例函数的图像和象1. 定义域对于反比例函数,其定义域为除0以外的所有实数,即D = ℝ \ {0}。
2. 值域将函数y = k/x中的x设为任意非零实数,可以得到y的取值,即y = k/x。
根据函数的定义,当x ≠ 0 时,y的取值范围为(-∞, 0) 和 (0, +∞),即R = (-∞, 0) U (0, +∞)。
3. 图像反比例函数的图像为一条经过原点的双曲线。
当x趋近于0时,y趋于无穷大;当x趋近于正无穷大或负无穷大时,y趋近于0。
4. 性质(1)异号性:当x和y为反比例关系时,x和y一定异号,即当x > 0时,y < 0;当x < 0时,y > 0。
(2)对称性:若(x, y)是反比例函数的一个点,则(-x, -y)也是反比例函数的一个点,即反比例函数关于原点对称。
(3)单调性:当x增大时,y减小;当x减小时,y增大。
反比例函数在定义域中单调递减或单调递增。
(4)渐近线:反比例函数的图像有两条渐近线,即x轴和y轴。
当x趋近于0时,函数曲线趋近于y轴;当y趋近于0时,函数曲线趋近于x轴。
三、反比例函数的应用反比例函数在实际生活中有着广泛的应用,尤其在物理学、经济学和工程学等领域中具有重要意义。
1. 物理学中的应用反比例函数可应用于一些物理量的关系描述,如牛顿第二定律中的质量和加速度之间的关系、光的折射定律等。
2. 经济学中的应用在经济学中,反比例函数可以用来描述供给和需求之间的关系,如边际效用递减规律、总产出与工人数量之间的关系等。
3. 工程学中的应用反比例函数在工程学中也有着广泛的应用,如电阻与电流之间的关系、速度与时间之间的关系等。
四、总结反比例函数具有一些独特的性质,包括异号性、对称性、单调性和渐近线等。
九年级数学反比例函数知识点归纳总结
![九年级数学反比例函数知识点归纳总结](https://img.taocdn.com/s3/m/2916651cac02de80d4d8d15abe23482fb4da02f9.png)
一、反比例函数的定义:
反比例函数是指其表达式可以表示为y=k/x(k≠0),其中k为常数,x≠0。
二、反比例函数的一般式:
1.y=k/x
2.k为比例系数,表示常数项。
三、反比例函数的图像特点:
1.垂直于y轴;
2.不过原点,但会经过x轴的正半轴和y轴的正半轴;
3.上升(k>0)或下降(k<0)。
四、反比例函数的性质:
1.定义域:x≠0,值域:y≠0
2.渐近线:x轴和y轴是反比例函数的渐近线。
3.对称性:关于y轴对称。
4.单调性:k>0时,单调递减;k<0时,单调递增。
五、反比例函数图像的平移:
1.y=k/(x-h):左右平移h个单位;
2.y=k/(x)+v:上下平移v个单位。
六、反比例函数与直线的关系:
1. 反比例函数与直线y=kx的图像在一起;
2. 直线y=kx可以看做反比例函数的简化形式,即k=1
七、反比例函数的应用:
1.反比例函数在实际中常用于描述两个变量之间的比例关系,如一方
的量增大,另一方的量就会减小的规律。
2.可以用反比例函数解决实际问题,如物品的价格与销量之间的关系、速度与时间之间的关系等。
八年级数学反比例函数的图解和性质
![八年级数学反比例函数的图解和性质](https://img.taocdn.com/s3/m/6bd14452640e52ea551810a6f524ccbff121ca8f.png)
声速
声速与频率和介质有关,在一定 介质中,声速与频率成反比关系。
磁场
在磁场中,磁感应强度与电流成 正比,与导线长度成反比,这是
电磁感应现象的基础。
在经济中的应用
供需关系
01
在市场经济中,商品的价格与供应量成反比关系,当需求量一
定时,供应量增加会导致价格下降。
投资回报
02
投资回报率与投资额成反比关系,当风险一定时,投资额越大,
中心对称
分布在第二和第四象限
由于k的正负性,反比例函数的图像分 布在第二和第四象限。
反比例函数的图像关于原点中心对称。
反比例函数图像的变换
k值变化
改变k的值会影响反比例函 数图像的形状和位置。
x轴和y轴的变换
通过伸缩x轴和y轴,可以 改变反比例函数图像的形 状。
图像的旋转
通过旋转反比例函数图像, 可以观察其在不同角度下 的形态。
01
02
03
确定函数表达式
首先确定反比例函数的表
达式,例如$y
=
frac{k}{x}$(其中k为常
数)。
ห้องสมุดไป่ตู้
确定坐标轴
在平面直角坐标系中,选 择适当的x和y轴范围。
绘制图像
根据反比例函数的表达式, 在坐标系中逐点绘制函数 图像。
反比例函数图像的特性
无限接近x轴和y轴
反比例函数的图像会无限接近x轴和y 轴,但不会与它们相交。
反比例函数可以看作是幂函数的一种特殊情况,即当n=-1时 的幂函数。因此,反比例函数与幂函数在性质上有一定的相 似性,例如它们的导数都与自身有关。
THANKS FOR WATCHING
感谢您的观看
反比例函数的概念与性质
![反比例函数的概念与性质](https://img.taocdn.com/s3/m/5516250568eae009581b6bd97f1922791688be0c.png)
反比例函数的概念与性质反比例函数是数学中一种常见的函数形式,它的特点是当自变量增大时,因变量会相应地减小,而当自变量减小时,因变量会相应地增大。
本文将介绍反比例函数的概念与性质,并探讨它在数学中的应用。
一、概念反比例函数是指一个函数,其形式为f(x) = k/x,其中k是常数且不为零。
该函数的定义域是除了x=0之外的所有实数集,因为当x等于0时,由于分母为零,函数值无定义。
二、性质1. 变量关系:反比例函数的自变量和因变量之间是一种反比关系,即当自变量增大时,因变量会相应地减小,反之亦然。
这种反比关系反映了一种数量之间的对立关系,也是反比例函数的主要特点。
2. 对称性:反比例函数具有对称性,即当自变量x1与x2满足x1*x2=k时,函数值f(x1)与f(x2)相等。
这是因为在反比例函数中,当自变量的乘积等于常数k时,因变量的取值是相等的,体现了函数图像关于y轴的对称性。
3. 零点与极限:反比例函数的零点是x=0,因为当自变量为零时,函数值为无穷大或无穷小。
同时,在反比例函数中,当自变量趋近于正无穷大或负无穷小时,函数值趋近于零。
这一特性可以用极限的概念来描述,即lim(x→±∞) f(x) = 0。
4. 图像特征:反比例函数的图像是一条开口向下或开口向上的双曲线。
当k大于零时,图像开口向下,称为负比例函数;当k小于零时,图像开口向上,称为正比例函数。
反比例函数的图像在随着x的变化而越来越接近x轴和y轴,但永远不会触及它们。
三、应用反比例函数在实际生活和科学研究中有着广泛的应用。
以下是一些常见的应用场景:1. 电阻与电流关系:在电学中,欧姆定律描述了电流和电阻的关系,其形式可以表示为I = V/R,其中I是电流,V是电压,R是电阻。
根据欧姆定律,当电阻增大时,电流会减小,二者呈反比关系。
2. 物体的速度与时间关系:在物理学中,当一个物体以匀速运动时,其位移与时间的关系可以表示为s = vt或v = s/t,其中s是位移,v是速度,t是时间。
反比例的所有概念和性质
![反比例的所有概念和性质](https://img.taocdn.com/s3/m/88f7e262ae45b307e87101f69e3143323968f5b2.png)
反比例的所有概念和性质反比例是指两个变量之间存在一种相互制约的关系,当其中一个变量增大时,另一个变量会相应地减小,反之亦然。
在数学中,反比例通常用一个函数来表示,即y = k/x,其中k表示一个常数。
反比例的概念和性质如下:1. 反比例函数的定义:反比例函数是一种形式为y = k/x的函数,其中k为常数。
当x不等于零时,函数是定义良好的。
2. 反比例函数的图像:反比例函数的图像呈现出一种特殊的形态,即一个双曲线。
随着自变量x趋近于零,因变量y趋近于无穷大;随着自变量x趋近于无穷大,因变量y趋近于零。
3. 反比例的变化趋势:反比例的关系是由两个变量之间的相互制约所决定的。
当其中一个变量增大时,另一个变量会相应地减小;当其中一个变量减小时,另一个变量会相应地增大。
这种变化趋势与正比例关系相反。
4. 反比例的例子:反比例关系在现实生活中有许多实际应用,例如弹簧刚度与其伸长长度的关系、密度与体积的关系、速度与时间的关系等等。
5. 反比例的性质:反比例具有以下性质:a. 零点:反比例函数的图像经过坐标轴的原点。
b. 单调性:反比例函数在自变量的正值区间上是单调递减的,在自变量的负值区间上是单调递增的。
c. 渐进线:反比例函数的图像有两条渐近线,即y轴和x轴。
当自变量趋近于无穷大时,函数的图像趋近于x轴;当因变量趋近于无穷大时,函数的图像趋近于y轴。
d. 定比关系:反比例函数中,y/x的值始终等于常数k,即y = k/x。
6. 反比例的应用:反比例关系在实际生活中有广泛的应用,例如电阻和电流的关系、速度和时间的关系、浓度和体积的关系等等。
这些应用可以通过反比例关系来描述和解释。
7. 反比例的变种:在一些情况下,变量之间的关系可能不是严格的反比例,而是近似反比例。
在这种情况下,函数可能具有形式为y = k/x^n的一般反比例关系,其中n为正整数。
8. 反比例与正比例的关系:反比例和正比例是两个相关但相反的概念。
反比例函数图象及性质
![反比例函数图象及性质](https://img.taocdn.com/s3/m/a7917ba5a58da0116d17493b.png)
反比例函数图象及性质【知识点】定义:一般的,如果两个变量x ,y 之间的关系可以表示成(k 为常数,k≠0,x≠0),其中k 叫做反比例系数,x 是自变量,y 是x 的函数,x 的取值范围是不等于0的一切实数,且y 也不能等于0。
表达式:y*x=-1,y=x^(-1)*k ,y=kx^-1(k 为常数(k≠0),x 不等于0)函数的图像:当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内,两个分支无限接近x 和y 轴,但永远不会与x 轴和y 轴相交.函数的性质:Y 与x 的变化:当k>0时,图象分别位于第一、三象限,每一个象限内,从左往右,y 随x 的增大而减小; 当k<0时,图象分别位于第二、四象限,每一个象限内,从左往右,y 随x 的增大而增大。
因为在(k≠0)中,x 不能为0,y 也不能为0,所以反比例函数的图象不可能与x 轴相交,也不可能与y 轴相交,只能无限接近x 轴,y 轴。
面积:在一个反比例函数图像上任取两点,过点分别作x 轴,y 轴的平行线,与坐标轴围成的矩形面积为|k|, 反比例函数上一点 向x 、y 轴分别作垂线,分别交于y 轴和x 轴,则QOWM 的面积为|k|,则连接该矩形的对角线即连接OM,则RT △OMQ 的面积=½|k|。
对称性:类型一:函数性质,比较大小例1.如果两点P 1(1,y 1)和P 2(2,y 2)在反比例函数xy 1=的图象上,那么y 1与y 2间的关系是( ) A. y 2<y 1<0 B.y 1<y 2<0 C.y 2>y 1>0 D.y 1>y 2>0 例2.对于函数3x ky x+=(k >0)有以下四个结论: ①这是y 关于x 的反比例函数;②当x >0时,y 的值随着x 的增大而减小; ③函数图象与x 轴有且只有一个交点;④函数图象关于点(0,3)成中心对称.其中正确的是 。
反比例函数的概念与性质
![反比例函数的概念与性质](https://img.taocdn.com/s3/m/637408ef32d4b14e852458fb770bf78a64293a6b.png)
反比例函数的概念与性质反比例函数是数学中常见的一类函数,其表达形式为y = k/x,其中k是一个非零常数,x和y分别表示自变量和因变量。
概念:反比例函数是一种特殊的函数,其特点是自变量和因变量呈反比关系。
当自变量的值增大时,因变量的值就会减小;反之,当自变量的值减小时,因变量的值就会增大。
这种函数在实际问题中往往具有很重要的意义。
性质一:定义域和值域反比例函数的定义域为除了x=0以外的所有实数,因为分母不能为零;而值域则为除了y=0以外的所有实数。
性质二:图像特征反比例函数的图像是一个开口向下或者开口向上的双曲线。
这是因为当x的绝对值趋近于无穷大时,y的值会趋近于0,而当x的绝对值趋近于0时,y的值会趋近于无穷大。
性质三:关于坐标轴的对称性反比例函数的图像关于原点对称。
也就是说,如果一个点(x,y)在函数的图像上,那么对应的点(-x,-y)也在图像上。
这是因为当自变量取相反数时,函数的值也会取相反数。
性质四:零点问题反比例函数的零点是x等于k的时候,因为此时分母为0,因变量为零。
换句话说,当x等于k时,函数的图像与x轴相交,这是图像的一个特殊点。
性质五:渐近线反比例函数的图像会有两条渐近线,分别是x轴和y轴。
当x趋近于正无穷或者负无穷时,函数的值会趋近于0,也就是说,函数的图像会无限接近x轴。
同样地,当y趋近于正无穷或者负无穷时,函数的值会趋近于0,函数的图像会无限接近y轴。
结论:反比例函数是一种重要的函数类型,在实际问题中经常出现。
了解反比例函数的概念和性质可以帮助我们更好地理解数学中的种种问题,同时也有助于我们在实际生活中解决各种与反比关系相关的情况。
人教版初中数学八上反比例函数定义和性质
![人教版初中数学八上反比例函数定义和性质](https://img.taocdn.com/s3/m/98f459f36e1aff00bed5b9f3f90f76c660374c5f.png)
反比例函数定义和性质一、反比例函数的定义一般地,形如xky =(k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解:⑴x 是自变量,y 是x 的反比例函数;⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠;⑶比例系数0k ≠是反比例函数定义的一个重要组成部分;⑷反比例函数有三种表达式:①xky =(0k ≠),②1kx y -=(0k ≠),③k y x =⋅(定值)(0k ≠);⑸函数xky =(0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。
(k 为常数,0k ≠)是反比例函数的一部分,当k=0时,xky =,就不是反比例函数了,由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。
至于这一组对应值给出的方式一般有以下几种:①当x= 时,y= ②从列表中找 ③点坐标 ④图像上的一个能看出坐标的点。
二、反比例函数的图像及画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们关于原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。
再作反比例函数的图像时应注意以下几点:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。
三、反比例函数的性质☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:反比例函数xky =(0k ≠)k 的符号k >0k <图像性质①x 的取值范围是0x ≠,y 的取值范围是0y ≠②当0k >时,函数图像的两个分支分别在第一、第三象限,在每个象限内,y 随x 的增大而减小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
状元廊学校数学思维方法讲义之三 年级:九年级§第3讲 反比例函数(1)【精彩知识】1.反比例函数的定义 一般地,如果两个变量x ,y 之间的关系可以表示为xk y =(或1-=kx y )(k 为常数,且0__k )的形式,那么称y 是x 的 函数。
自变量x 与的取值范围是 。
y 是x 的反比例函数⇔xky =⇔1-=kx y ⇔k xy =⇔y 与x 成反比例函数。
2.反比例函数的图象和性质反比例函数xky =(0≠k )的图象是由两支曲线组成的,称为 ,它们关于原点成 对称,关于直线x y ±=成 对称,与两坐标轴 交点。
①当k >0时, 图象(双曲线)的两个分支分别在第 象限,且在每个象限内,y 随x的增大而 ;②当k <0时, 图象(双曲线)的两个分支分别在第 象限,且在每个象限内,y 随x 的增大而 。
3.反比例函数xky =(0≠k )中的比例系数k 的几何意义 过双曲线上任一点作x 轴、y 轴的垂线PM 、PN 所得的矩形PMON 的面积||||____S PM PN x y =⋅=⋅=;若连接PO ,则______==∆∆PON POM S S 。
【典例解析】考点1: 反比例函数的概念 【例1】已知122)2(-++=m m xm m y(1)如果y 是x 正比例函数,求m 的值; (2)如果y 是x 反比例函数,求m 的值。
【例2】已知12y y y =-,其中1y 与x 成反比例,2y 与2x +成正比例,且12,y y 所表示的函数图象相交于点P (1,5)。
求当5x =时y 的值。
变式训练1: 1.已知函数mm xm y 3123--+=是反比例函数,则m 的值为 ;2. 若y 与x 1成反比例函数,x 与z1成正比例函数,则y 是z 的( ) A .正比例函数 B .反比例函数 C .一次函数 D .二次函数 考点2: 反比例函数的图象和性质【例3】若M ⎪⎭⎫ ⎝⎛-1,21y 、N ⎪⎭⎫ ⎝⎛-2,41y 、P ⎪⎭⎫ ⎝⎛3,21y 三点都在函数x k y 12--=的图象上,则321y y y 、、的大小关系为( )A 、2y >3y >1yB 、2y >1y >3yC 、3y >1y >2y 【例4】如图,一次函数y =x +3的图象与x 轴,y 轴交于A ,B 两点,与反比例函数xy 4=的图象相交于C ,D 两点,分别过C ,D 两点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE .有下列四个结论:①△CEF 与△DEF 的面积相等;②△AOB ∽△FOE ;③△DCE ≌△CDF ; ④AC BD =.其中正确的结论是 。
变式训练2:1. 如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y =-x +6于A 、B 两点,若反比例函数ky x=(x >0)的图像与△ABC 有公共点,则k 的取值范围是( )A .2≤k ≤9B . 2≤k ≤8C . 2≤k ≤5D . 5≤k ≤8yxA BEF CDOyxABC OG2. 如图,P 是函数x y 21=(x >0)的图象上的一点,直线1+-=x y 分别交x 轴、y 轴于点A 、B ,过点P 分别作PM ⊥x 轴于点M ,交AB 于点E ,作PN ⊥y 轴于点N ,交AB 于点F ,则AF ·BE 的值为 。
考点3: 反比例函数xky =(0≠k )中的比例系数k 的几何意义与面积法的综合运用【例5】如图,正方形OABC 的面积是4,点B 在反比例函数(00)ky k x x=><,的图象上.若点R 是该反比例函数图象上异于点B 的任意一点,过点R 分别作x 轴、y 轴的垂线,垂足为M 、N ,从矩形OMRN 的面积中减去其与正方形OABC 重合部分的面积,记剩余部分的面积为S .则当S =m (m 为常数,且0<m <4)时,则点R 的坐标是 。
(用含m 的代数式表示)变式训练3:1.如图,若点M 是x 轴正半轴上的任意一点,过点M 作PQ ∥y 轴,分 别交函数x k 1y =(x >0)和xk2y =(x >0)的图象于点P 和Q ,连接OP 、 OQ ,则下列结论正确的是( )A .∠POQ 不可能等于900B .21K K QM PM= C .这两个函数的图象一定关于x 轴对称 D . △POQ 的面积是)(|k ||k |2121+2.如图,点A (x 1,y 1)、B (x 2,y 2)都在双曲线(0)ky x x=>上,且214x x -=,122y y -=;分别过点A 、B 向x 轴、y 轴作垂线段,垂足分别为C 、D 、E 、F ,AC 与BF 相交于G 点,四边形FOCG 的面积为2,五边形AEODB 的面积为14,那么双曲线的解析式为 .考点4:函数综合题(待定系数法+数形结合、函数与方程思想、分类讨论思想)【例6】已知反比例函数xk y 2=与一次函数12-=x y ,其中一次函数的图象经过(a ,b )、(a +1,b +k )两点.(1)求反比例函数的解析式;(2)如图,已知A 点是上述两函数图象在第一象限内的交点,求A 点的坐标;(3)利用(2)的结果,在x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,请把所有符合条件的P 点坐标都求出来;若不存在,请说明理由.变式训练4:如图,一次函数y kx b =+的图象 与坐标轴分别交于A ,B 两点,与反比例函数my x=的图象在第二象限的交点为C ,CD ⊥x 轴,垂足为D ,若OB =2,OD =4,△AOB 的面积为1,(1)求一次函数与反比例函数的解析式; (2)根据两函数图象直接写出不等式0mkx b x+->的解集。
yxCABO【例7】如图,已知双曲线ky x=,经过点D (6,1)C 作CA ⊥x 轴,过D 作DB ⊥y 轴,垂足分别为A ,B ,连接(1)求k 的值;(2)若△BCD 的面积为12,求直线CD 的解析式; (3)判断AB 与CD 的位置关系,并说明理由.变式训练5:如图,直线4y kx =+与函数my x=(x >0,m >0)的图像交于A ,B 两点,且与,x y 轴分别交于C ,D 两点.(1)若直线y =kx +4与直线y =-x -2平行,且△AOD 面积为2,求m 的值;(2)若△COD 的面积是△AOB 2倍,过A 作AE x ⊥轴于E ,过B 作BF y ⊥轴于F ,AE 与BF 交于H 点.①求:AH OD 的值; ②求k 与m 之间的函数关系式.(3)若点P 坐标为(2,0),在(2)的条件下,是否存在,k m ,使得△APB 为直角三角形,且090APB ∠=.若存在,求出,k m 的值,若不存在,请说明理由.y =x +4与x 轴、y 轴分别交于A 、B 两点,抛物线y =-x 2+bx +c 经过A 、B C (点C 点A 的右侧),点P 是抛物线上一动点. C 的坐标;(2)若点P 在第二象限内,过点P 作PD ⊥轴于D ,交AB 于点E .当点P 运动到什么位置时,线段PE 最长?此时PE 等于多少?(3)如果平行于x 轴的动直线l 与抛物线交于点Q ,与直线AB 交于点N ,点M 为OA 的中点,那么是否存在这样的直线l ,使得△MON 是等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.【课后测试】1.在同一坐标系内,表示函数b kx y +=与()0,0≠≠=b k xkby 的图像是下图中的( )y xB AD O Cy xDCH EF B AO(A ) (B ) (C ) (D )2.如图,直线6y x =-交x 轴、y 轴于A 、B 两点,P 是反比例函数4(0)y x x=>图象上位于直线下方的一点,过点P 作x 轴的垂线,垂足为点M ,交AB 于点E ,过点P 作y 轴的垂线,垂足为点N ,交AB 于点F 。
则AF BE ⋅=( ) A .8 B .6 C .4 D .62第2题图 第3题图 第4题图3.如上图中,正比例函数x y 3=的图象与反比例函数)0(>=k xky 的图象交于点B ,若k 取1,2,3,…,20,对应的Rt △AOB 的面积分别为1S ,2S ,…,20S ,则1S +2S +…+20S = ; 4.两个反比例函数k y x =和1y x =在第一象限内的图象如图所示,点P 在ky x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x =的图象于点B ,当点P 在ky x=的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等; ②四边形P AOB 的面积不会发生变化; ③P A 与PB 始终相等; ④当点A 是PC 的中点时,点B 一定是PD 的中点. 其中一定正确的是 。
5.如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点D 为对角线OB 的中点,点E (4,n )在边AB 上,反比例函数ky x =(k ≠0)在第一象限内的图象经过点D 、E ,且tan ∠BOA =21. (1)求反比例函数的解析式和n 的值;(2)若反比例函数的图象与矩形的边BC 交于点F ,将矩形折叠,使点O 与点F 重合,折痕分别与x 、y 轴正半轴交于点H 、G ,求线段OG 的长.6.如图,在直角坐标平面内,函数my x=(0x >,m 是常数)的图象经过(14)A ,,()B a b ,,其中1a >.过点A 作x 轴垂线,垂足为C ,过点B 作y 轴垂线,垂足为D ,连结AD ,DC ,CB . (1)若ABD △的面积为4,求点B 的坐标; (2)求证:DC AB ∥;(3)当AD BC =时,求直线AB 的函数解析式.【例4】根据题意可求得D (1,4 ),C (-4,-1),则F (1,0),∴△DEF 的面积是:14122⨯⨯=,△CEF 的面积是:14122⨯⨯=,∴△CEF 的面积=△DEF 的面积,故①正确;②即△CEF 和△DEF 以EF 为底,则两三角形EF 边上的高相等,故EF ∥CD ,△AOB ∽△FOE ,故②正确;DF =CE ,四边形CEFD 是等腰梯形,所以△DCE ≌△CDF ,③正确;⑤∵BD ∥EF ,DF ∥BE ,∴四边形BDFE 是平行四边形,∴BD =EF ,同理EF =AC ,∴AC =BD ,故④正确;正确的有4个.xC ODBAy学生对本次课的评价:○特别满意 ○满意 ○一般 ○不怎么样 家长意见或建议:家长签字:【例7】解:(1)∵双曲线kyx=经过点D(6,1),∴k16=,解得k=6。