实验四区间估计及假设检验

合集下载

区间估计和假设检验

区间估计和假设检验
参数估计
在回归分析中,区间估计可以用来估计未知参数的取值范围,从 而更好地理解参数对结果的影响。
假设检验的应用场景
检验假设是否成立
在科学研究或实际应用中,我们经常需要通过假设检验来检验某个 假设是否成立,以做出决策或得出结论。
诊断准确性评估
在医学诊断中,假设检验常用于评估诊断方法的准确性,例如比较 新方法与金标准之间的差异。
非参数检验的优点是不受总体分布限制,适用于更广泛的情况。常见的非参数检验包括秩和检验、符 号检验等。
假设检验的步骤
选择合适的统计方法
根据假设和数据类型选择合适 的统计方法进行检验。
确定临界值
根据统计量的分布情况,确定 临界值。
提出假设
根据研究问题和数据情况,提 出一个或多个假设。
计算统计量
根据选择的统计方法计算相应 的统计量。
区间估计和假设检验
目录
• 区间估计 • 假设检验 • 区间估计与假设检验的联系 • 应用场景 • 案例分析
01
区间估计
定义
区间估计
基于样本数据,对未知参数或总体分布特征 给出可能的取值范围。
参数估计
基于样本数据,对总体参数进行估计,如均 值、方差等。
非参数估计
基于样本数据,对总体分布特征进行估计, 如分位数、中位数等。
结果具有互补性
03
区间估计和假设检验的结果可以相互补充,帮助我们更全面地
了解总体的情况。
区别
1 2 3
目的不同
区间估计的目的是估计一个参数的取值范围,而 假设检验的目的是检验一个关于总体参数的假设 是否成立。
侧重点不同
区间估计更侧重于估计总体参数的可能取值范围 ,而假设检验更侧重于对总体参数的假设进行接 受或拒绝的决策。

计量经济学----.区间估计和假设检验

计量经济学----.区间估计和假设检验
2

P[ 2 t se( 2 ) 2 2 t se( 2 )] 1
2 2
8
^
^
^
^
假设检验


检验某一给定的观测是否与虚拟假设(原假设)相符, 若相符,则接受假设,反之拒绝。 当我们拒绝虚拟假设时,我们说该统计量是统计上显 著的,反之则不是统计上显著的。
的临界值 t 2 (n 2) ,则有
ˆ ˆ P{[YF t 2 SE (eF )] YF [YF t 2 SE (eF )]} 1
1 因此,一元回归时 Y 的个别值的置信度为 的 预测区间上下限为 1 ( X F X )2 ˆ ˆ YF YF t 2 1 n xi2
给定,查t分布表得t (n 2) 2 ( )若t -t 2 (n 2), 或t t 2 (n 2),则拒绝原假设 1 H 0: 2 0,接受备择假设H1: 2 0; (2)若 - t 2 (n 2) t t 2 (n 2), 则接受原假设。
30
^
^
应变量Y 区间预测的特点
1、Y 平均值的预测值与真实平均值有误差,主要是 受抽样波动影响
YF Y F t 2
^ ^
1 ( X F X )2 n xi2
Y 个别值的预测值与真实个别值的差异,不仅受抽
样波动影响,而且还受随机扰动项的影响
1 ( X F X )2 ˆ ˆ YF YF t 2 1 n xi2
^
1 ( X F X )2 ˆ SE (YF ) n xi2
Y F 服从正态分布,将其标准化,
^

2
2 ei2 (n 2) 代替,这时有 未知时,只得用 ˆ ˆ YF E (YF X F ) t ~ t (n 2) 1 ( X F X )2 ˆ n xi2

实验报告4——SAS区间估计与假设检验

实验报告4——SAS区间估计与假设检验

【小结】
本次实验为区间估计与假设检验,主要是首先用分布拟合图、QQ 图、分布检验等方法 判断总体分布是否为正态分布。然后利用 SAS 软件中的 INSIGHT 模块和“分析家”功能以 及编程的方法,均可以在不同的置信水平下求出总体参数的置信区间,在不同的检验(显著) 水平下对总体的参数和分布特性进行检验。
表 4-6 学生成绩
81 68 71 85 57 85 92 74 61 80 68 77 75 57 46 80 69 63 67 92 88 75 89 75 59 72 85 77 100 73 58 69 68 68 59 89 70 72 89 94 78 45 92 93 69 70 99 79 80 69 82 67 74 73 72 70 83 70 76 60
input data group$ @@;
cards;
31 j 34 j 29 j 32 j 35 j 38 j 34 j 30 j 29 j 32 j
31 j 26 j
26 y 24 y 28 y 29 y 30 y 29 y 32 y 26 y 31 y 29 y
32 y 28 y ;
run;
表 4-7 装配时间(单位:分钟)
甲法: 31
34
29
32
35
38
34
30
29
32
31
26
乙法: 26
24
28
29
30
29
32
26
31
29
32
28
设两总体为正态总体,且方差相同。问两种方法的装配时间有无显著不同( = 0.05)? 生成数据集代码(甲组为 j,乙组为 y): data zy4_3;

区间估计与假设检验

区间估计与假设检验

"### 参数的区间估计与假设检验之间的区别
参数的区间估计和假设检验从不同的角度回答同一问 题, 它们的统计处理是相通的。 但是它们之间又有区别, 体现 以下三点: 第一, 参数估计解决的是多少 (或 范 围 ) 问题, 假设检验 则判断结论是否成立。前者解决的是定量问题, 后者解决的 是定性问题。 第二, 两者的要求各不相同。区间估计确定在一定概率 保证程度下给出未知参数的范围。 而假设检验确定在一定的 置信水平下, 未知参数能否接受已给定的值。 第三, 两者对问题的了解程度各不相同。进行区间估计 之前不了解未知参数的有关信息。 而假设检验对未知参数的 信息有所了解, 但作出某种判断无确切把握。 因而在实际应用中,究竟选择哪种方法进行统计推断, 需要根据实际问题的情况确定相应的处理方法。 否则将会产
" 拒 绝 域 为 +)J.)0!+#)(-- , 查表 %’#$#"4" 统计量 0’ ,)"" ’ & , %
得 0"$":’!$"(: , 计 算 得 0’)($A::A. 由 此 可 见 统 计 量 的 值 未 落 入 拒绝域中, 因而接受原假设, 认为符合设计要求。
(9!
统计与决策 !""# 年 # 月 (下)
上述关系虽就一特例而言, 但也有普遍意义。由区间估 计可以很容易构造检验函数。 下面来说明怎样由检验函数构 造区间估计。 设 # 是问题
生不同的结论, 做出错误的统计推断。 例 ! 测试某个品牌的汽车的百公里耗油量,假设在正 常的情况下汽车百公里耗油量服从正态分布, 路况以及驾驶 员的技术符合正常要求。现对该批汽车进行测试, 随机选取
+&".!-。

简述假设检验与区间估计之间的关系 统计学原理

简述假设检验与区间估计之间的关系 统计学原理

简述假设检验与区间估计之间的关系统计学原理一、简介假设检验与区间估计是统计学中两个重要的概念,它们都是基于样本数据对总体参数进行推断的方法。

假设检验主要用于判断总体参数是否符合某种特定假设,而区间估计则用于对总体参数进行范围性的估计。

本文将从统计学原理角度出发,详细介绍假设检验与区间估计之间的关系。

二、假设检验1. 假设检验的基本思想在进行假设检验时,我们首先要提出一个关于总体参数的假设(称为原假设),然后根据样本数据来判断这个假设是否成立。

具体来说,我们会根据样本数据计算出一个统计量(如t值、F值等),然后通过比较这个统计量与某个临界值(也称为拒绝域)来决定是否拒绝原假设。

2. 假设检验中的错误类型在进行假设检验时,有可能会犯两种错误:一种是将一个正确的原假设错误地拒绝了(称为第一类错误),另一种是将一个错误的原假设错误地接受了(称为第二类错误)。

通常情况下,我们会将第一类错误的概率控制在一个较小的水平(如0.05或0.01),这个水平被称为显著性水平。

3. 假设检验的步骤进行假设检验时,通常需要按照以下步骤进行:(1)提出原假设和备择假设;(2)选择适当的检验统计量,并计算出样本数据所对应的值;(3)确定显著性水平,并找到相应的拒绝域;(4)比较样本统计量与拒绝域,得出结论。

三、区间估计1. 区间估计的基本思想在进行区间估计时,我们会根据样本数据来构建一个区间,这个区间包含了总体参数真值的可能范围。

具体来说,我们会根据样本数据计算出一个点估计量(如样本均值、比例等),然后根据中心极限定理和大数定律等原理来构建置信区间。

2. 区间估计中的置信度在进行区间估计时,我们通常会给出一个置信度,表示该区间包含总体参数真值的概率。

例如,如果我们给出了一个95%置信度,则意味着在大量重复实验中,有95%的置信区间都会包含总体参数真值。

3. 区间估计的步骤进行区间估计时,通常需要按照以下步骤进行:(1)选择适当的点估计量,并计算出样本数据所对应的值;(2)确定置信度,并找到相应的置信区间;(3)解释置信区间的含义,得出结论。

区间估计与假设检验的联系与区别讲义资料

区间估计与假设检验的联系与区别讲义资料

区间估计与假设检验的联系与区别讲义资料
区间估计与假设检验是统计推断的两种常见方法。

它们虽然都属于推断统计,但也有明显的不同之处。

区间估计的主要目的是估计总体参数的值,也可以称作参数估计。

根据样本信息,我们可以得出一个可能的参数值范围,也就是置信区间,从而得到一个可靠的估计区间。

估计是不断变化的,每一次统计分析给出的参数估计值都可能有所变化,从而慢慢趋近真实值。

假设检验即“判断”,是统计学中比较常用的检验方法,目的是确定两个总体之间的差异是由随机因素造成的,还是由特定的因素(如环境因素)造成的。

假设检验涉及两个立场:备择假设和原假设。

假设检验的结果由抽样分布决定,不同的抽样分布对应不同的结论,比如有抽样分布下假设检验结果可能是拒绝备择假设,也可能是接受备择假设。

从概念上讲,区间估计技术计算的是一个参数的值的估计,而假设检验是用于检查参数的方法,它只检验两个总体是否具有显著的性质差异,而不会真正测量它们的差异。

总的来说,区间估计通过单组数据范围尽可能准确地估计参数的取值范围,而假设检验则是针对任何特定统计主题,利用数据样本来检验其是否与假设相符。

两者都具有自己的优点和不足,可以结合使用来为抽样荟萃而得出结论,从而更准确地了解样本的真实情况。

区间估计与假设检验的联系与区别

区间估计与假设检验的联系与区别
区间估计与假设检验的联系都以抽样分布为理论依据建立在概率论基础之上的推断都具有一定的可信程度和风二者可相互转换区间估计问题可以转换成假设问题假设问题也可以转换成区间估计问题
区间估计与假设检验 的联系与区别
11406
a
1
区间估计
参数估计:指的是用样本中的数据估计总体分布 的某个或某几个参数
参数估计的方法:点估计和区间估计。
点估计:用估计量的某个取值直接作为总体参数 的估计值。点估计的缺陷是没法给出估计的可靠 性,也没法说出点估计值与总体参数真实值接近 的程度。
区间估计:在点估计的基础上给出总体参数估计 的一个估计区间,该区间通常是由样本统计量加 减估计误差得到的。在区间估计中,由样本估计 量构造出的总体参数在一定置信水平下的估计区 间称为置信区间。
主要区别: a、参数估计是以样本资料估计总体参数的真 值,假设检验是以样本资料检验对总体参数 的先前假设是否成立; b、区间估计求得的是求以样本估计值为中心 的双侧置信区间,假设检验既有双侧检验, 也有单侧检验; c、区间估计立足于大概率,假设检验立足于 小概率。
a
6
拒绝域。 4.比较并作出统计推断。
a
4
区间估计与假设检验的联系
主要联系: a、都是根据样本信息推断总体参数; b、都以抽样分布为理论依据,建立在概率 论基础之上的推断,都具有一定的可信程 度和风险; c、二者可相互转换,区间估计问题可以转 换成假设问题,假设问的区别
a
2
区间估计
总体均值的区间估计 (1)大样本的估计方法:总体方差已知,用z
分布。 (2)小样本(样本数小于30)的估计方法:总
体方差未知 , t分布。 总体比率的区间估计 z分布 总体方差的区间估计 χ^2分布

简述假设检验与区间估计之间的关系 统计学原理

简述假设检验与区间估计之间的关系 统计学原理

假设检验与区间估计的关系假设检验和区间估计是统计学中两个重要的概念和方法。

它们在数据分析和推断中经常被使用,并且有密切的关联。

假设检验假设检验是统计学中一种通过样本数据对总体参数进行推断的方法。

它的基本思想是,我们根据样本数据得到的统计量,与我们对总体参数的假设进行比较,从而判断这个假设是否合理。

在假设检验中,我们通常会提出一个原假设(null hypothesis)和一个备择假设(alternative hypothesis)。

原假设是我们要进行推断的对象,备择假设则是原假设不成立时所代表的情况。

然后,我们根据样本数据计算得到一个统计量,并且利用该统计量对原假设进行检验。

这个统计量通常会服从某种已知或近似已知的概率分布。

最后,根据统计量在概率分布中所处位置的概率来决定是否拒绝原假设。

如果这个概率非常小(小于显著性水平),则我们有充分的证据拒绝原假设;反之,如果这个概率较大,则我们没有充分的证据拒绝原假设。

总结一下,假设检验的步骤如下:1.提出原假设和备择假设;2.根据样本数据计算得到一个统计量;3.假设这个统计量服从某种概率分布;4.利用概率分布来计算统计量在概率分布中所处位置的概率;5.根据这个概率来决定是否拒绝原假设。

区间估计区间估计是统计学中一种通过样本数据对总体参数进行估计的方法。

它的基本思想是,我们根据样本数据得到的统计量,以及该统计量的抽样分布特性,构建一个区间,这个区间可以包含真实总体参数的真值。

在区间估计中,我们通常会选择一个置信水平(confidence level),表示我们对该区间包含真实总体参数的程度的置信程度。

常用的置信水平有95%和99%。

然后,我们根据样本数据计算得到一个统计量,并且利用该统计量和抽样分布特性来构建一个置信区间。

这个置信区间具有以下特点:如果我们重复使用相同方法对不同样本进行估计,那么约有95%(或99%)的置信区间会包含真实总体参数的真值。

最后,我们根据置信区间来进行参数估计。

简述假设检验与区间估计之间的关系统计学原理

简述假设检验与区间估计之间的关系统计学原理

简述假设检验与区间估计之间的关系统计学原理假设检验与区间估计是统计学中两个重要的概念和方法,它们都是用于推断总体参数的。

假设检验是一种通过利用样本信息来判断总体参数的一个或一组特定值是否有效或可接受的方法。

在假设检验中,我们首先设立一个虚无假设(null hypothesis)H0,表示总体参数的一些值或总体参数之间的关系成立;然后通过收集样本数据,计算样本的统计量,然后与建立在虚无假设下的分布进行比较,从而得出对虚无假设的结论。

假设检验的结果可以分为接受虚无假设,拒绝虚无假设两种情况。

区间估计是一种通过利用样本信息来估计总体参数的取值范围的方法。

在区间估计中,我们使用样本数据计算样本的统计量,并根据统计量的抽样分布来构建一个置信区间。

置信区间表示总体参数在一些置信水平下的估计范围,置信水平通常取95%或90%等。

在这个范围内,我们可以合理地认为总体参数落在其中。

区间估计进一步提供了总体参数的不确定性程度。

此外,假设检验与区间估计之间还存在一种互补关系。

在假设检验中,我们可以根据检验的结果拒绝或接受虚无假设,从而判断总体参数是否落在一些给定的取值范围内,这可以视为一种特殊的区间估计。

而在区间估计中,我们利用样本数据估计总体参数的取值范围,这可以视为一种特殊的假设检验,即总体参数的真值是否落在估计的区间内。

综上所述,假设检验与区间估计是统计学中两个重要的概念和方法,它们都是推断总体参数的方法。

假设检验通过对总体参数的一个或一组特定值进行判断来推断,而区间估计通过构建置信区间来估计总体参数的取值范围。

两者在原理和方法上有相似之处,可以互相补充和解释。

在实际应用中,我们可以根据具体的问题选择使用假设检验还是区间估计,或者两者结合应用,从而得出更准确和可靠的推断结果。

区间估计和假设检验

区间估计和假设检验

说明这个区间估计的可靠性为95%.
对于同一总体和同一抽样规模来说
①所给区间的大小与做出这种估计所具有的把握性形
成正比.
② 区间大小所体现的是估计的精确性,区间越大,精确
性程度越低,区间越小精确性越高,二者成反比.
精选可编辑ppt
3
③ 从精确性出发,要求所估计的区间越 小越好,从把握性出发,要求所估计的区间越大 越好,因此人们总是需要在这二者之间进行平 衡和选择.
Z(0.05/2)=1.96
精选可编辑ppt
16
然后根据样本数计算统计值:
公式为:
Z= X—μ = 220—210 = 6.67
S/√n
15/√100
由于Z=6.67>Z (0.05/2) =1.96 所以.拒绝虚无假设,接受研究假设,即
从总体上说,该单位职工月平均奖金与上月 相比有变化.
精选可编辑ppt
P≤
0 .1 0 0 .0 5 0 .0 2 0 .0 1
│ Z│ ≥
一端
二端
1 .2 9
1 .6 5
1 .6 5
1 .9 6
2 .0 6
2 .3 3
2 .3 3
2 .5 8
精选可编辑ppt
7
3.总体百分数的区间估计
总体百分数的区间估计公式为:
P±Z(1-α)
P(1—p) n
这里,P为样本的百分比 。 例题:
为了验证这一假设是否可靠,我们抽取100 人作调查,结果得出月平均收入为220元,标准 差位15元.
显然,样本的结果与总体 结果之间出现了 误差,这个误差是由于我们假设错误引起的,还 是由于抽样误差引起的呢?
如果是抽样误差引起的,我们就应该承认

sas实验区间估计与假设检验

sas实验区间估计与假设检验

实验二、区间估计与假设检验实验(验证性实验)1、实验目的掌握正态总体的均值,方差的区间估计与假设检验以及非参数检验。

2、实验要求及学时:实验形式(个人);实验学时数4。

3、实验环境及材料(使用的软件系统、实验设备、主要仪器、材料等)。

装有版本为8.1以上的SAS系统的个人电脑(每人一台)。

4、实验内容用SAS软件进行正态总体的均值,方差的区间估计与假设检验以及非参数检验。

5、实验方法和操作步骤1)生成数据data zt;retain _seed_ 0;mu1=0;mu2=2;sigma1=1;sigma2=4;do _i_=1to1000;normal1=mu1+sigma1*rannor(_seed_);normal2=mu2+sigma2*rannor(_seed_);output;end;drop _seed_ _i_ mu1 sigma1 mu2 sigma2;run;这个步骤用rannor函数生成两个正态分布的变量保存在数据表zt中。

2)运用univariate过程作正态性检验。

proc univariate data=zt normal;var normal1 normal2;histogram normal1 normal2;probplot normal1 normal2;/*正态性假设检验*/run;这步的结果如下:表2-1:normal1的正态性检验结果图2-1:normal1的直方图图2-2:normal1的QQ图分析: 表2-1中的p-value都是大于0.05的,从检验的数量结果显示变量normal1是服从正态分布的,从直方图和QQ图我们也可以看到,直方图是对称的,而QQ图也是一条直线。

在程序的结果中还会相应的给出normal2的检验结果。

3)用ttest过程对变量normal1均值假设检验(0:0Hμ=)。

proc ttest data=zt h0=0alpha=0.01;/*总体均值的假设检验*/ var normal1;run;这步的结果如下:表2-2:normal1均值的假设检验分析: 表2-2中的p-value等于0.5312,远大于0.05的,从检验的数量结果显示变量normal1μ=是被接受的。

统计推断中的区间估计及假设检验方法

统计推断中的区间估计及假设检验方法

统计推断中的区间估计及假设检验方法统计推断是统计学的基础,它是关于如何从样本数据中推断总体特性的学科。

在统计推断中,区间估计和假设检验是两个最常用的方法。

一、区间估计区间估计是用来确定总体参数估计值的可信程度或置信程度的方法。

在区间估计中,我们通过计算样本均值等统计量来得到总体参数的估计,并且使用置信区间来表示这个估计的正确程度。

1. 置信区间置信区间是一个范围,它包含了总体参数的真值的估计范围。

在确定置信区间时,我们需要设定置信水平,来说明总体参数估计的可信程度。

一般常用的置信水平是95%或99%。

如果我们设定置信水平为95%,那么总体参数的真值有95%的概率在置信区间内。

2. 区间估计的应用区间估计常用于总体均值、总体方差、总体比例等参数的估计中。

比如,在一个人口调查中,我们希望估计某个地区的平均身高,那么我们可以利用所得到的样本身高数据进行区间估计。

二、假设检验假设检验是用来检验总体参数与某个特定值之间关系的方法,从而判断总体参数是否具有某种特定性质。

在假设检验中,我们首先假设总体参数具有某种特定值,然后根据样本数据判断这个假设是否成立。

1. 假设检验的步骤假设检验的步骤通常包括以下几个步骤:(1)建立假设首先,我们需要建立假设。

一般来说,我们会有一个原假设和一个备择假设。

原假设通常表示我们要检验的总体参数符合某种特定值,而备择假设则表示总体参数不符合这个特定值。

(2)确定检验统计量确定检验统计量是根据样本数据计算出来的一个统计量,它可以用于检验假设。

通常情况下,我们选择t检验或者z检验作为检验统计量。

(3)设定显著水平显著水平通常用来表示我们在假设检验中所允许的错误概率。

常见的显著水平有0.05和0.01。

如果我们设定显著水平为0.05,那么我们允许出错的概率为5%。

(4)计算p值p值是在假设检验中非常重要的一个概念,它表示样本数据出现假设的可能性。

如果p值小于设定的显著水平,我们就拒绝原假设,否则我们不拒绝原假设。

假设检验和区间估计

假设检验和区间估计

第7章 假设检验和区间估计7.1 内容框图7.2 基本要求(1) 理解假设检验的基本思想及两类错误的含义.(2) 掌握有关正态总体参数的假设检验的基本步骤和方法. (3) 理解单侧检验与双侧检验的异同.(4) 理解并掌握正态总体参数区间估计的的基本方法. (5) 了解总体分布的检验和独立性检验的基本方法.7.3 内容概要1)假设检验下面把各种情形列一个表:∈U 接受域0W ,接受0H∈U 拒绝域1W ,拒绝0H0H 为真,1H 不真 正确 犯第一类错误0H 不真,1H 为真犯第二类错误正确α值为显著水平。

然后,根据显著水平 α来确定临界值,用临界值来划分接受域 0W 假设检验 区间估计参数检验 分布的检验正态总体参数的检验独立性检验和拒绝域 1W 。

这样的检验,称为显著性检验。

假设检验的一般步骤是: (1)提出原假设 0H ;(2)选取合适的检验统计量 U ,从样本求出 U 的值;(3)对于给定的显著水平α,查 U 的分布表,求出临界值,用它划分接受域 0W 和拒绝域 1W ,使得当 0H 为真时,有 α=∈}{1W U P ;(4)若 U 的值落在拒绝域 1W 中,就拒绝 0H ,若 U 的值落在接受域 0W 中,就接受 0H 。

假设检验的理论依据是所谓的小概率事件原理,即一个概率很小的事件在一次试验中几乎是不可能发生的.要检验一个根据实际问题提出的原假设0H 是否成立,如果已知在0H 成立时,某个事件发生的可能性很小,而试验的结果却是这个事件发生了,那么根据小概率事件原理,我们就可以认为所提出的这个假设0H 是不成立的,即拒绝0H ;反之,则接受0H .这里的原假设0H 可以根据实际问题提出,事件是否发生可根据试验观测值判断,因此假设检验的关键问题就是要确定在0H 成立时,发生可能性很小的某个事件.我们知道,正态分布有个3σ原则,即ξ若服从正态分布,那么ξ的取值会大多集中在其均值附近,落入两侧的可能性很小.事实上,当ξ服从t 分布,2x 分布,F 分布时,其取值落入两侧的可能性也都相对很小.因此,我们要确定0H 成立时一个发生可能性很小的事件,只需根据样本构造出服从正态分布,t 分布,2x 分布或F 分布的随机变量(统计量)就可以了. 根据上述分析,正态总体参数的假设检验可概括为如下步骤。

区间估计及假设检验算法实现方法详解

区间估计及假设检验算法实现方法详解

区间估计及假设检验算法实现方法详解随着数学、统计学等学科的发展,计算机技术在数学、统计学中扮演着越来越重要的角色。

在实际应用中,人们往往需要对各种数据进行分析处理以满足不同的需求,如何快速准确地进行数据分析,是一个非常重要的问题。

其中,区间估计和假设检验是数据分析中常用的两种方法。

本文将详细介绍这两种方法的实现方式。

一、区间估计区间估计是以样本统计量为基础,通过分析样本的信息来推断总体参数的取值范围,同时限定一定程度的误差。

通常,我们通过样本估计总体的平均数、标准差等参数,并对其进行区间估计。

常见的区间估计有置信区间、预测区间等。

1. 置信区间置信区间是指在给定的置信水平下,估计总体参数的取值范围。

在实际中,一个置信水平通常取95%或99%,即我们希望在95%或99%的数据中,总体参数的真实值可以被估计出来。

例如我们要估计一个总体的均值,使用样本均值计算出来一个估计值,并使用标准误和置信系数得到置信区间,那么这个置信区间的含义就是,我们认为有95%的置信度,总体均值在这个置信区间之内。

2. 预测区间预测区间是指在给定的置信水平下,预测一个新的数据值的取值范围。

通常,我们需要根据给定的样本数据来估计总体参数,并通过置信水平和误差限制得到一个预测区间。

例如,我们要预测未来一家公司的利润,使用以前几年公司利润值的样本数据,得到一组样本均值、标准误和置信系数等参数,根据置信系数和置信区间计算得到预测区间,那么这个预测区间的含义就是,在一定置信水平下,公司未来的利润值会在这个预测区间之内。

在实际进行区间估计的过程中,通常会使用计算机进行计算。

例如,在R语言中,我们可以使用以下代码实现置信区间的计算:```# 假设有一个样本数据data# 想要计算一个均值的置信区间result <- t.test(data, conf.level = 0.95)# 得到result$conf.int即为置信区间```我们可以看到,R语言中的t.test函数就可以方便地实现置信区间的计算,而不需要手动进行计算。

统计中的区间估计与假设检验

统计中的区间估计与假设检验

统计中的区间估计与假设检验统计学是一门应用广泛的学科,其中的区间估计与假设检验是统计学中常用的两种方法。

这两种方法在研究和实践中被广泛应用,用于推断总体参数、比较样本之间的差异以及验证科学假设的有效性。

本文将介绍统计中的区间估计与假设检验的概念、原理以及应用。

一、区间估计区间估计是基于样本数据推断总体参数的取值范围。

在统计学中,常常无法获得整个总体的完整数据,而只能通过抽取部分样本数据,利用样本数据来推断总体的特征。

区间估计给出了参数估计的下限和上限,以一定的置信水平表示。

一般而言,置信水平常用的有95%和99%。

在区间估计中,经常使用的方法有点估计法和区间估计法。

点估计法基于样本数据对总体参数进行点估计,即使用样本数据作为总体参数的估计值。

而区间估计法则给出一个区间范围,以包含总体参数真实值的可能性,而不仅仅是一个点估计的值。

区间估计的步骤可以总结为以下几个:1. 选择合适的抽样方法,获取样本数据;2. 根据样本数据计算参数的点估计值;3. 根据样本数据计算置信水平和抽样误差等;4. 根据置信水平和抽样误差计算置信区间。

二、假设检验假设检验是一种用于验证科学假设的统计方法。

在假设检验中,我们根据样本数据对总体参数或者总体分布是否满足某种假设进行判断。

假设检验通常包括原假设(H0)和备择假设(H1)两个假设。

原假设通常是关于总体参数的一个陈述,而备择假设则是关于总体参数的一个替代陈述。

我们根据样本数据的表现来判断原假设是否应该被拒绝,从而接受备择假设。

通常使用统计量和p值来进行假设检验。

假设检验的步骤可以总结为以下几个:1. 建立原假设和备择假设;2. 选择适当的假设检验方法;3. 设置显著性水平,通常为0.05或0.01;4. 根据样本数据计算统计量的值;5. 根据统计量的值和显著性水平,判断原假设是否应该被拒绝。

三、区间估计与假设检验的应用区间估计与假设检验在实际应用中有着广泛的领域。

比如,在医学研究中,我们可以利用区间估计来估计某种治疗方法的疗效范围;在市场调研中,我们可以利用假设检验来判断广告的效果是否显著。

假设检验和区间估计

假设检验和区间估计

第7章假设检验和区间估计7.1 内容框图7.2 基本要求(1)理解假设检验的基本思想及两类错误的含义.(2)掌握有关正态总体参数的假设检验的基本步骤和方法.(3)理解单侧检验与双侧检验的异同.(4)理解并掌握正态总体参数区间估计的的基本方法.(5)了解总体分布的检验和独立性检验的基本方法.7.3 内容概要1)假设检验α值为显著水平。

然后,根据显著水平α来确定临界值,用临界值来划分接受域W和拒绝域 1W 。

这样的检验,称为显著性检验。

假设检验的一般步骤是: (1)提出原假设 0H ;(2)选取合适的检验统计量 U ,从样本求出 U 的值;(3)对于给定的显著水平α,查 U 的分布表,求出临界值,用它划分接受域 0W 和拒绝域 1W ,使得当 0H 为真时,有 α=∈}{1W U P ;(4)若 U 的值落在拒绝域 1W 中,就拒绝 0H ,若 U 的值落在接受域 0W 中,就接受 0H 。

假设检验的理论依据是所谓的小概率事件原理,即一个概率很小的事件在一次试验中几乎是不可能发生的.要检验一个根据实际问题提出的原假设0H 是否成立,如果已知在0H 成立时,某个事件发生的可能性很小,而试验的结果却是这个事件发生了,那么根据小概率事件原理,我们就可以认为所提出的这个假设0H 是不成立的,即拒绝0H ;反之,则接受0H .这里的原假设0H 可以根据实际问题提出,事件是否发生可根据试验观测值判断,因此假设检验的关键问题就是要确定在0H 成立时,发生可能性很小的某个事件.我们知道,正态分布有个3σ原则,即ξ若服从正态分布,那么ξ的取值会大多集中在其均值附近,落入两侧的可能性很小.事实上,当ξ服从t 分布,2x 分布,F 分布时,其取值落入两侧的可能性也都相对很小.因此,我们要确定0H 成立时一个发生可能性很小的事件,只需根据样本构造出服从正态分布,t 分布,2x 分布或F 分布的随机变量(统计量)就可以了. 根据上述分析,正态总体参数的假设检验可概括为如下步骤。

区间估计与假设检验的分类总结

区间估计与假设检验的分类总结

区间估计与假设检验的分类总结区间估计和假设检验是统计推断的两个主要方法。

它们都是根据样本数据对总体参数进行推断,但是它们的目的和原理不同。

下面我将对区间估计和假设检验进行分类总结。

一、区间估计分类总结:区间估计是根据样本数据对总体参数进行估计,并给出估计结果的一个范围。

根据不同的参数和样本情况,区间估计可以分为以下几种类型:1.均值的区间估计:a.单个总体均值的区间估计:当总体标准差已知时,使用正态分布进行估计;当总体标准差未知时,使用t分布进行估计。

b.两个总体均值之差的区间估计:根据两个总体样本的样本均值和样本方差的差异,使用正态分布或t分布进行估计。

c.大样本均值的区间估计:对于大样本,总体均值的估计可以使用正态分布进行估计。

2.方差的区间估计:a.单个总体方差的区间估计:对于正态总体,使用卡方分布进行估计。

b.两个总体方差之比的区间估计:根据两个总体样本方差的比值,使用F分布进行估计。

c.大样本方差的区间估计:对于大样本,总体方差的估计可以使用卡方分布进行估计。

3.比例的区间估计:b.两个总体比例之差的区间估计:根据两个总体样本比例的差异,使用正态分布进行估计。

二、假设检验分类总结:假设检验是根据样本数据对总体参数的一些假设进行检验,并得出是否拒绝假设的结论。

根据不同的参数和样本情况,假设检验可以分为以下几种类型:1.均值的假设检验:a.单个总体均值的假设检验:当总体标准差已知时,使用正态分布进行检验;当总体标准差未知时,使用t分布进行检验。

b.两个总体均值之差的假设检验:根据两个总体样本的样本均值和样本方差的差异,使用正态分布或t分布进行检验。

c.大样本均值的假设检验:对于大样本,总体均值的检验可以使用正态分布进行检验。

2.方差的假设检验:a.单个总体方差的假设检验:对于正态总体,使用卡方分布进行检验。

b.两个总体方差之比的假设检验:根据两个总体样本方差的比值,使用F分布进行检验。

c.大样本方差的假设检验:对于大样本,总体方差的检验可以使用卡方分布进行检验。

区间估计与假设检验

区间估计与假设检验

区间估计与假设检验在统计学中,区间估计和假设检验是两个常用的推断方法,用于对总体参数进行估计和推断。

本文将对区间估计和假设检验进行介绍,并讨论它们的应用和差异。

一、区间估计区间估计是用样本数据来推断总体参数的取值范围。

它通过计算估计值以及与之相关的置信水平,给出一个参数的范围估计。

这个范围被称为置信区间。

置信区间常用于描述一个参数的不确定性。

例如,我们要估计某种药物的平均效果。

通过对随机抽取的样本进行实验,我们可以得到样本均值和标准差。

然后,结合样本容量和置信水平,可以计算出药物平均效果的置信区间。

例如,我们可以得出一个95%置信区间为(0.2, 0.6),表示我们有95%的置信水平相信真实的平均效果在这个区间内。

二、假设检验假设检验是用于判断总体参数是否符合某种假设的统计方法。

假设检验通常分为两类:单样本假设检验和双样本假设检验。

1. 单样本假设检验单样本假设检验用于推断一个总体参数与某个特定值之间是否存在显著差异。

它包括以下步骤:(1)建立原假设(H0)和备择假设(H1),其中原假设是要进行检验的假设,备择假设是对原假设的补充或对立的假设。

(2)选择合适的显著性水平(α),表示我们接受原假设的程度。

(3)计算样本数据的检验统计量,例如t值或z值。

(4)根据显著性水平和检验统计量,判断是否拒绝原假设。

2. 双样本假设检验双样本假设检验用于比较两个总体参数之间是否存在显著差异。

常见的双样本假设检验包括独立样本t检验和配对样本t检验。

独立样本t检验用于比较两个独立样本的均值是否有差异,而配对样本t检验用于比较同一样本的两个相关变量的均值是否有差异。

三、区间估计与假设检验的差异区间估计和假设检验都是推断总体参数的方法,但它们的应用和目的略有不同。

区间估计主要关注参数的范围估计,给出了参数估计值的不确定性范围。

它强调了估计的稳定性和精确度,但不直接涉及参数的显著性判断。

因此,区间估计对于参数的精确度提供了一个相对准确的度量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验4 区间估计与假设检验
利用样本对总体进行统计推断,主要有两类问题:一类是估计问题,另一类是检验问题。

参数估计是根据样本的统计量来对总体的参数进行估计,假设检验则是利用样本的统计量来检验事先对总体参数或分布特性所作的假设是否正确。

利用SAS软件中的INSIGHT模块和“分析家”功能以及编程的方法,均可以在不同的置信水平下求出总体参数的置信区间,在不同的检验(显著)水平下对总体的参数和分布特性进行检验。

在对总体参数作区间估计和假设检验之前,常常需要判断总体分布是否为正态分布。

检验数据是否来自正态分布总体,应用中常用分布拟合图、QQ图、分布检验等方法。

4.1 实验目的
掌握使用SAS对总体参数进行区间估计与假设检验方法,掌握使用SAS对总体分布情况进行判断以及正态性检验的方法。

4.2 实验内容
一、用INSIGHT对总体参数进行区间估计与假设检验
二、用“分析家”对总体参数进行区间估计与假设检验
三、编程对总体参数进行区间估计与假设检验
四、在INSIGHT和“分析家”模块中研究分布并使用UNIV ARIATE过程对总体分布进行正态性检验
4.3 实验指导
一、用INSIGHT对总体参数进行区间估计与假设检验
【实验4-1】已知某种灯泡的寿命服从正态分布,现从一批灯
图4-1 数据集Mylib.sy4_1 泡中抽取16只,测得其寿命如表4-1(sy4_1.xls)所示:
表5-1 某种灯泡的寿命(单位:小时)
系。

假设上述数据已存放于数据集Mylib.sy4_1中,如图4-1所示,变量sm表示灯泡寿命。

实验步骤如下:
(1) 启动INSIGHT模块,并打开数据集Mylib.sy4_1。

(2) 选择菜单“Analyze(分析)”→“Distribution(Y)(分布)”。

在打开的“Distribution(Y)”对话框中选定分析变量:sm,如图4-2左所示。

(3) 单击“Output”按钮,在打开的对话框中选中“Basic Confidence interval(基本置信
区间)”复选框,如图4-2右。

两次单击“OK ”按钮,得到结果,如图4-3所示。

图4-2 区间估计的设置
结果包括一个名为“95%Confidence Intervals (95%置信区间)”的列表,表中给出了均值(Mean )、标准差(Std Dev )、方差(V ariance )的估计值(Estimate )、置信下限(LCL )和置信上限(UCL )。

结果表明,根据抽样样本,灯泡平均使用寿命的置信水平为95%的置信区间为(1476.8034,1503.1966)。

(4) 选择菜单“Tables (表)”→“Basic Confidence Interval (基本置信区间)”→“Others (其他)”,在打开的“Basic Confidence Interval ”对话框中修改置信水平,如图4-4所示。

图4-4 90%、97.5%置信区间
可以看到,由于置信水平的提高,置信区间的长度在增加。

【实验4-2】正常人的脉搏平均每分钟72次,某医生测得10例“四乙基铅中毒”患者的脉搏数如表4-2(sy4_2.xls )所示:
表4-2 “四乙基铅中毒”患者的脉搏数(次/min )
无显著差异(α = 0.05)?
这是一个单样本均值的双边检验问题。

若μ为“四乙基铅中毒”患者脉搏数的均值,需要通过样本数据检验如下假设: H 0:μ =72, H 1:μ ≠ 72。

假定上述数据存放在数据集Mylib.sy4_2中,如图4-5所示,脉搏次数用变量cs 表示。

使用INSIGHT 对均值进行检验的步骤如下:
(1) 首先启动INSIGHT ,并打开数据集Mylib.sy4_2,选择菜单“Analyze (分析)”→“Distribution(Y)(分布)”。

(2) 在打开的“Distribution(Y)”对话框中选定分析变量:选择变量cs ,单击“Y ”按钮,将变量移到右上方的列表框中。

单击“OK ”按钮,得到变量的描述性统计量。

(3) 选择菜单“Tables (表)”→“Tests for Location (位置检验)”;在弹出的“Tests for Location ”对话框中输入72,单击“OK ”按钮得到输出结果,如图4-6所示。

图4-6 位置检验
结果显示,不等于72的观测有10个,其中有1个观测值大于72。

图中第一个检验为t 检验(Student's t),需要假定变量服从正态分布,检验的p 值为0.0366,这个检验在0.05水平下是显著的,可认为均值与72有显著差异。

第二个检验(Sign)是叫做符号检验的非参数检验,其p 值为0.0215,在0.05水平下是显著的,第三个检验(Sgned Rank)是叫做符号秩检验的非参数检验,其p 值为0.0410,在0.05水平下也是显著的。

由于这三个检验的结论中的p 值均小于0.05,所以应拒绝原假设,即总体的均值与72有显著差异。

因此,可认为“四乙基铅中毒”患者的脉搏和正常人的脉搏有显著差异。

二、用“分析家”对总体参数进行区间估计与假设检验
【实验4-3】用数据集SASUSER.GPA ,求总体中女生比例的95%的置信区间(α = 0.05)。

步骤如下: (1) 在“分析家”中打开数据集SASUSER.GPA ,选择菜单“Statistics (统计)”→“Hypothesis Tests (假设检验)”→“One Sample Test for a Proportion (单样本比例检验)”。

(2) 在打开的“One Sample Test for a Proportion ”对话框中选择变量sex ,单击“Variable ”,
图4-3 95%置信区间 图4-5 数据集Mylib.sy4_2
将其移到“Variable ”中,单击“Level of Interest ”下拉框右侧的下拉箭头,选“female ”,如图4-7左所示。

(3) 单击“Intervals ”按钮,在打开的对话框中选定置信估计类型和置信水平,如图4-7右所示。

两次单击“OK ”按钮,得到结果,如图4-8所示。

图4-7 设置比例的置
信区间
结果显示:变量sex 取值为“female ”的比例的95%置信区间为(0.585,0.710)。

【实验4-4】生产工序的方差是工序质量的一个重要度量。

当方差较大时需要对工序进行改进以减小方差,现测得两部机器生产的部分袋茶重量如表4-3(sy4_4.xls )所示,设两个总体为正态总体,求两个总体方差比的95%的置信区间(α = 0.01)。

表4-3 两部机器生产的袋茶重量(单位:克)
步骤如下: (1) 首先,将表中的数据生成数据集mylib.sy4_4,如图4-9所示,两部机器生产的袋茶重量分别用两个变量jq1和jq2表示。

(2) 在分析家中打开数据集mylib.sy4_4后,选择菜单“Statistics (统计)”→“Hypothesis Tests (假设检验)
”→“Two-Sample Test for Variance (双样本方差检验)”,打开“Two-Sample Test for Variance ”对话框。

(3) 在“Groups are in ”栏中选择“Two variables ”选项,并将变量jq1和jq2分别移至“Group1”和“Group2”框中;如图4-10左所示。

(4) 单击“Intervals ”按钮,在打开的对话框中选定置信估计类型和置信水平,如图4-10右所示。

两次单击“OK ”按钮,得到分析结果,如图4-11所示。

图4-10 设置方差比检验
结果显示,在95%的置信水平下,两个总体方差比的置信区间为(0.3827,2.3244)。

【实验4-5】某种电子元件的寿命(以小时记)服从正态分布。

现测得16只元件的寿命如表4-4(sy4_5.xls )所示:
表4-4 某种电子元件的寿命
这是一个单样本均值的单边检验问题。

若μ为元件的平均寿命,需
要通过样本数据检验如下假设:
H 0:μ >= 225, H 1:μ < 225。

由于此时的方差未知,所以使用t 检验法。

假定上述数据存放在数据集mylib.sy4_5中,灯泡寿命用变量sm 表示,如图4-12所示。

图4-8 比例的置信区间 图4-9 数据集Mylib.sy5_4 图4-11 双样本方差比的置信区间 图4-12 数据集Mylib.sy4_5。

相关文档
最新文档