行列式计算方法归纳总结
计算行列式的方法总结PPT
THANK YOU
感谢聆听
性质
行列式具有以下基本性质
行列式转置不变
行列式的值与其转置行列式的值相 等。
行列式按行(列)展开
行列式的值等于其任意一行(列)元 素与其对应代数余子式的乘积之和。
行列式的倍数性质
行列式中某一行(列)的所有元素 都乘以一个常数k,则行列式的值也 乘以k。
行列式的消元性质
若行列式中两行(列)成比例,则 行列式的值为0。
例题3
利用数学归纳法计算分块矩阵的行列式。对于具有某种递推关系的分块矩阵,可以利用数 学归纳法进行证明和计算。通过假设当n=k时结论成立,进而证明当n=k+1时结论也成 立,从而得出对于任意正整数n结论都成立的结论。
06
特殊类型行列式的计算方法
箭型行列式的计算
箭型行列式的定义
箭型行列式是一种具有特殊形状的行列式,其主对角线上方的元素构成了一个箭头形状。
计算方法
对于 n 阶箭型行列式,可以先将其化为上三角或下三角行列式,然后直接计算对角线元素的乘积。具体步骤包括 :利用行列式的性质,将第 1 列的 -1 倍加到其他列上,从而将箭型行列式化为上三角或下三角行列式;计算对 角线元素的乘积。
两三角型行列式的计算
两三角型行列式的定义
两三角型行列式是指行列式的上半部分和下半部分分别呈现三角形形状的行列式。
80%
典型方法
拉普拉斯展开定理,将高阶行列 式按某一行(列)展开为低阶行 列式的和。
典型例题解析
例题1
利用数学归纳法计算范德蒙德 行列式。
例题2
计算含有特定元素的行列式, 如含有三角函数、指数函数等 。
例题3
利用归纳法证明某些特殊类型 的行列式具有特定的性质,如 对称性、反对称性等。
计算行列式常用的7种方法
行列式的计算方法介绍7种常用方法1 三角化方法:通过行列初等变换将行列式化为三角型行列式.例1 计算n+1阶行列式xa a a a a x a a a a x D nnn32121211=+2 把某一行(列)尽可能化为零 例2 计算:yy x x D -+-+=222222222222222243 递归法(数学归纳法):设法找出D n 和低级行列式间的关系,然后进行递归.例4 证明:βαβαβαβααββααββα--=++++=++1110000010001000n n n D例5 证明范德蒙行列式(n ≥2)∏≤<≤-----==nj i jin nn n n n nn x x x x x x x x x x x x x x V 111312112232221321)(11114 加边法:对行列式D n 添上一适当行和列,构成行列式D n+1,且D n+1=D n 例6 证明:)11(11111111111111111111121321∑=+=++++=ni in nn a a a a a a a a D5 拆分法:将行列式表为行列式的和的方法.即如果行列式的某行(或列)元素均为两项和,则可拆分为两个行列式之和 例7 设abcd=1,求证:011111111111122222222=++++ddd d c c c c b b b ba a a a6 利用行列式的乘积:为求一个行列式D 的值,有时可再乘上一个适当的行列式∆;或把D 拆分为两个行列式的积. 例8(1)1)cos()cos()cos()cos(1)cos()cos()cos()cos(1)cos()cos()cos()cos(1121332312322113121n n n n n n D αααααααααααααααααααααααα------------=(2)设S k =λ1k +λ2k +⋯+λn k (k=1,2…),求证:∏≤<≤-+-+--=nj i j in n nn n nn s s s s s s s s s s s s s s s n 1222111432321121)(λλ7 利用拉普拉斯定理求行列式的值.拉普拉斯定理是行列式按某一行(或列)展开定理的推广.定义(1) 在n 阶行列式D 中,任取k 行k 列 (1≤k ≤n),位于这k 行k 列交叉处的k 2个元素按原来的相对位置组成的k 阶行列式S ,称为D 的一个k 阶子式.如:D=3751485210744621则D 的一个2阶子式为:S=8261 在一个n 阶行列式中,任取k 行,由此产生的k 阶子式有C kn 个.(2) 设S 为D 的一个k 阶子式,划去S 所在的k 行k 列,余下的元素按原来的相对位置组成的n-k 阶行列式M 称为S 的余子式.又设S 的各行位于D 中的第i 1,i 2…i k 行,S 的各列位于D 中的第j 1,j 2…j k 列,称A=(-1)(i1+i2+…+ik)+(j1+j2+…+jk)M.如:3751485210744621则D 的一个2阶子式为:S=8261M=3517为S 的2阶子式 M=(-1)(1+3)+(1+3)3517为S 的代数余子式.拉普拉斯定理:若在行列式D 中任取k 行 (1≤k ≤n-1),则由这k 行所对应的所有k 阶子式与它们的代数余子式的乘积等于D. 例9 计算2112100012100012100012=D 例10 块三角行列式的计算 设:⎪⎪⎭⎫ ⎝⎛=⨯⨯n n m m C B A *0或 ⎪⎪⎭⎫⎝⎛=⨯⨯n n m m C B A 0* 则:detA=(detB)(detC).特别地:若A=diag(A 1,A 2,…,A t ),则DetA=(detA 1)(detA 2)…(detA t ).例11 设分块矩阵⎪⎪⎭⎫⎝⎛=D C B A 0,其中0为零阵,B和D可逆,求A-1.例12 计算nn b b b a a a D 1001000102121 =例13 设:⎪⎪⎭⎫ ⎝⎛=C B A , BC T =0.证明:|AA T |=|BB T ||CC T |.(注:可编辑下载,若有不当之处,请指正,谢谢!)。
行列式的几种计算方法
行列式的几种计算方法
空格
行列式是线性代数的基本概念,它具有重要的应用价值。
它的计算方法也有很多,下面主要介绍几种行列式计算的方法。
一、展开式法
把行列式的每一行的元素乘以其所在的代数余子式的值,再将所有的积相加,得到的结果就是行列式的值。
这种方法理论上可以计算任何n阶的行列式,但当n阶较大时,展开比较繁琐,耗时也较长。
二、余子式法
计算第i行列式的方法是:取行列式的第i行,取其余行,去掉第i列,再找出这些行的代数余子式,再将每一行所对应的代数余子式乘以该行第i位置上的元素,再将所有的乘积之和,得到的结果就是行列式的值。
三、乘法法
若用行列式的乘法法来计算三阶行列式,则将行列式的三行分别乘以它们的代数余子式,将结果相加。
其中要用到符号乘,只要熟悉符号乘的规则,就可以简单地进行计算。
四、分块法
分块法是将行列式分解成几个临时的小行列式,再用余子式或展开式算出小行列式的值,再将小行列式的值按一定的规则组合起来,就得到原行列式的值了。
分块法优点是计算过程不复杂,缺点是分解成的小行列式的值计算比较复杂。
五、行变换法
用行变换法计算行列式的方法是:先将行列式的几行或几列进行线性变换,使行列式某一行或某一列为0,再将变换后的行列式化简为方阵或三角阵,再求解,之后再换回原行列式,则可以得出原行列式的值。
以上就是常用的几种行列式计算方法,不同的方法各有优劣,使用者可根据具体情况选择合适的方法用于行列式计算。
行列式的几种计算方法
行列式的几种计算方法行列式是线性代数中非常重要的概念,它可以帮助我们理解向量空间的性质和线性变换的特征。
在实际应用中,计算行列式有多种方法,包括拉普拉斯展开、按行(列)展开、特征多项式等。
本文将详细介绍行列式的几种常见计算方法,并举例说明其应用。
拉普拉斯展开法是计算行列式最常用的方法之一。
在计算n阶行列式时,通过选取任意一行或者一列,我们可以将行列式展开为n个n-1阶的代数余子式的和。
具体步骤如下:以一个具体例子来说明,计算3阶行列式:|A| = |1 2 3||4 5 6||7 8 9|选择第一行展开,展开过程为:|A| = 1*|5 6| - 2*|4 6| + 3*|4 5|4*|8 9| 5*|7 9| 6*|7 8|= 1*(5*9-6*8) - 2*(4*9-6*7) + 3*(4*8-5*7)= 1*(45-48) - 2*(36-42) + 3*(32-35)= 1*(-3) - 2*(-6) + 3*(-3)= -3 + 12 - 9= 0行列式的值为0。
特征多项式是计算行列式的另一种方法。
如果A是一个n阶矩阵,那么它的特征多项式定义为p(λ) = |A-λI|其中I是单位矩阵,λ是一个标量。
行列式的值等于特征多项式在λ=0处的值p(0)。
特征多项式的计算可以借助行列式的展开法来进行,通过计算A-λI的行列式,展开得到一个n次多项式,然后求解该多项式在λ=0处的值即可得到行列式的值。
下面举一个具体的例子来说明特征多项式的计算方法。
考虑一个2阶矩阵A的特征多项式:A = |a b||c d|则特征多项式为p(λ) = |A-λI|= |a-λ b||c d-λ|展开得到p(λ) = (a-λ)(d-λ) - bc= λ^2 - (a+d)λ + (ad-bc)= λ^2 - tr(A)λ + det(A)其中tr(A)是A的迹,det(A)是A的行列式。
行列式的值等于特征多项式在λ=0处的值,即为det(A)。
行列式计算方法归纳总结
2.行列式的计算方法2.1 定义法在引进行列式的定义之前,,为了更加容易的理解行列式的定义,首先介绍排列和逆序的概念.(1) n级排列:由1,2.3…n组成的一个有序数组称为一个n级排列.(2) 在一个排列中,如果一对数的前后位置与大小顺序相反,即:前面的数大于后面的数,那么它们就称为一个逆序,一个排列中逆序的总数称为这个排列的逆序数. (3) 逆序数为偶数的排列称为偶排列,逆序数为奇数的排列称为奇排列.在做好这些工作之后,来引入行列式的定义:定义:n 阶行列式aaaaa a a a a a a a a a a a nnn n n nn n321333323122322211131211 <I>等于所有取自不同行不同列的n 个元素的乘积.ja j a j a j a nn332211的代数和,这里jj j j n,,,,321为1,2,3,……,n 的一个排列,每一项<Ⅱ>都按下列规则带有符号,当jj j j n,,,321是偶排列时, <Ⅱ>带有正号,当jj j j n,,,,321是奇排列时,<Ⅱ> 带有负号.例2.1证明1112131415212223242531324142515200000000a a a a a a a a a a D a a a a a a ==. 分析 观察行列式我们会发现有许多零,故直接用定义法.证明 由行列式的定义知除去符号差别外行列式一般项可表示为1212n j j nj a a a则12512125()12(1)n j j j n j j nj j j j D a a a τ=-∑. (3)其中115,,,j j j 为1,2,3,4,5的任意排列,在D 中位于后三行后三列的元素为零,而在前两行前两列中,取不同行不同列的元素只有四个,就是说(3)式中每一项至少有一个来自后三行后三列. 故D =0.注意 此方法适用于阶数较低的行列式或行列式中零的个数较多.2.2递推法无论是初等数学,还是高等数学,递推公式都有着非常广泛的运用。
行列式的计算方法总结
行列式的计算方法总结行列式是数学中一类特殊的数值,它可以用于解决各种数学问题,如线性方程组的解、二次行列式的特征根以及三角形的面积等。
它的计算方法也颇为多样,各种行列式的计算方法可以归纳总结如下:第一种是规则式子求行列式的方法,即规则式子求行列式的值。
这种方法包括常见的拆分积式法,它可以用来计算简单行列式,其解算步骤如下:把行列式的第一行和其他所有行有序的放在一起,按列乘以每列的分量,然后把乘积相加,即可求出行列式的值。
另一种常用的计算行列式的方法是运用行列式的转置法则,这也是一种简单的计算行列式的方法,它的解算步骤如下:先把行列式的行和列都交换一下,然后把交换后的新行列式进行上面第一种规则式子求行列式的求值,便可求出行列式的值。
此外,还有多元函数求行列式的方法,以及行列式求导、求偏导数的方法。
多元函数求行列式的方法就是将行列式用多元函数的形式表示出来,然后用函数定义求和解决之。
行列式求导、求偏导数的方法就是将行列式的变量替换为一个新的变量,然后进行积分,并求出偏导数,最终得到行列式的值。
最后一种常用的计算行列式的方法是拆解行列式的方法,这是一种比较复杂的行列式计算方法。
它的解算步骤如下:先把行列式拆解成几个子行列式,然后逐步把子行列式拆解为更小的子行列式,最终得到一个最小子行列式,将其值替换到初始行列式中计算,即可求出该行列式的值。
以上是行列式的计算方法总结,由于行列式的类型众多,其计算方法也多如牛毛,仅有上述几种计算方法是不够的,若想解决复杂的行列式计算,还需要运用其他更加复杂的计算方法,如克莱姆法、罗宾逊法、孟加拉法等。
此外,计算行列式还需要掌握矩阵运算的基础知识,运用高等数学知识,才能解决复杂的行列式计算问题。
总之,行列式的计算是一件非常有技巧性的事情,找到合适的计算方法,解决行列式计算的难题,有助于提高数学的解题能力。
线性代数行列式计算方法总结
线性代数行列式计算方法总结线性代数是数学的一个重要分支,而行列式是线性代数中的一个重要概念。
行列式计算方法是线性代数的基础知识,掌握好行列式的计算方法对于深入理解线性代数具有重要的意义。
本文将对线性代数中行列式的计算方法进行总结,希望能够帮助读者更好地掌握这一知识点。
1. 行列式的定义。
在开始介绍行列式的计算方法之前,我们先来回顾一下行列式的定义。
对于一个n阶方阵A,它的行列式记作|A|,定义为:|A| = Σ(−1)^σP1,1 P2,2 ... Pn,n。
其中,σ是1到n的一个排列,P1,1 P2,2 ... Pn,n是这个排列的乘积,Σ表示对所有可能的排列求和。
2. 行列式的计算方法。
接下来,我们将介绍几种常见的行列式计算方法。
2.1 余子式法。
余子式法是计算行列式的一种常用方法。
对于一个n阶方阵A,它的行列式可以通过递归的方式计算得到。
具体步骤如下:对于n阶方阵A,选择第i行(或第j列)展开,得到A的余子式Mij;计算Mij的行列式|Aij|,其中Aij是Mij的转置矩阵;根据公式|A| = ai1 |A1| + ai2 |A2| + ... + ain |An|,计算得到行列式|A|。
2.2 克拉默法则。
克拉默法则是一种用于求解n元线性方程组的方法,它也可以用来计算行列式。
对于一个n阶方阵A,它的行列式可以通过克拉默法则计算得到。
具体步骤如下:对于n元线性方程组Ax = b,其中A是系数矩阵,x是未知数向量,b是常数向量,如果A是非奇异矩阵(即|A| ≠ 0),则方程组有唯一解;解出方程组的每个未知数,可以得到方程组的解向量x;根据克拉默法则,方程组的解向量x的每个分量可以表示为xj = |Aj| / |A|,其中Aj是将系数矩阵A的第j列替换为常数向量b得到的矩阵的行列式。
2.3 对角线法则。
对角线法则是一种简单直观的计算行列式的方法。
对于一个n阶方阵A,它的行列式可以通过对角线法则计算得到。
行列式的计算技巧与方法总结
行列式的计算技巧与方法总结行列式是线性代数中的重要概念,广泛应用于各个领域,如线性方程组的求解、线性变换的判断等。
在实际应用中,计算行列式是一个必不可少的环节。
本文将对行列式的计算技巧和方法进行总结,以便读者能够更加轻松地解决行列式相关问题。
一、行列式的定义行列式是一个数。
行列式的定义通常有多种不同的形式,其中最常见的是按照矩阵的形式定义的。
对于一个n阶方阵A=(a_ij),其行列式记作det(A),可以通过以下方式计算:det(A) = a_11 * C_11 + a_12 * C_12 + ... + (-1)^(n+1) * a_1n * C_1n其中,C_ij是指元素a_ij的代数余子式。
二、行列式的计算方法1.二阶行列式的计算对于2阶方阵A=(a_11,a_12;a_21,a_22),其行列式可以直接通过以下公式计算:det(A) = a_11 * a_22 - a_12 * a_212.三阶行列式的计算对于3阶方阵A=(a_11,a_12,a_13;a_21,a_22,a_23;a_31,a_32,a_33),可以通过Sarrus法则来计算行列式:det(A) = a_11*a_22*a_33 + a_12*a_23*a_31 + a_13*a_21*a_32 -a_13*a_22*a_31 - a_12*a_21*a_33 - a_11*a_23*a_323.高阶行列式的计算对于n(n>3)阶方阵A,一般采用高斯消元法将矩阵转化为上三角矩阵,然后再计算行列式的值。
具体操作如下:a)对第一列进行第二行、第三行、..、第n行的倍加,使得第一列除了第一个元素外的其他元素都为0。
b)接着在第二列中对第三行、第四行、..、第n行的倍加,使得第二列除了第二个元素外的其他元素都为0。
c)重复以上步骤,直到将矩阵转化为上三角矩阵。
d)上三角矩阵的行列式等于主对角线上的元素相乘。
4.行列式的性质行列式具有以下性质,可以在计算中灵活运用:a)行互换或列互换,行列式的值不变,其符号变为相反数。
行列式的几种计算方法
行列式的几种计算方法行列式是线性代数中重要的概念之一,它可以用来判断线性方程组的解的情况,也可以应用在向量空间、线性变换等诸多领域。
行列式的计算方法主要有初等变换法、代数余子式法和特征值法等。
初等变换法是最常用的计算行列式的方法之一。
它的基本思想是通过对行列式进行一系列的初等行变换,将其化为一个简单的行列式进行求解。
初等行变换包括互换两行、某一行乘以非零常数、将某一行的常数倍加到另一行等操作。
对于一个2×2的行列式A,其计算公式为:| A | = a11* a22 - a12 * a21而对于一个n×n的行列式A,可以通过将其化为上三角矩阵或者对角矩阵,从而简化计算。
代数余子式法是另一种计算行列式的方法。
它的基本思想是将行列式的展开式转化为代数余子式相加的形式。
代数余子式是指除去行列式中的某一行和某一列后,剩下的元素按原来的顺序构成的一个新的行列式。
通过将行列式展开为代数余子式的和,可以将计算行列式的问题转化为计算若干个较小规模的行列式的问题。
代数余子式的计算比较繁琐,需要使用递归的方法,但对于规模较大的行列式,代数余子式法是比较有效的方法。
特征值法是通过求解方程组的特征值和特征向量来计算行列式。
特征值是一个方阵A 的线性变换在某个特征方向上的伸缩因子,特征向量是对应于特征值的一个非零向量。
特征值和特征向量可以通过求解方程组A-λI=0来获得,其中I为单位矩阵。
而行列式的计算公式为行列式的特征值等于其主对角线上元素的乘积。
通过求解特征值和特征向量,可以将行列式的计算问题转化为求解方程组的问题。
除了以上常用的计算方法外,还有一些其他的特殊情况下的行列式计算方法。
对于三角矩阵来说,其行列式等于主对角线上元素的乘积。
对于对称矩阵来说,可以通过对角化将其化为对角矩阵,从而简化计算。
行列式的计算方法有很多种,初等变换法、代数余子式法和特征值法是比较常见的几种方法。
根据不同的问题和矩阵的性质,选择合适的计算方法可以简化问题,并提高计算的效率。
计算行列式的方法总结
计算行列式的方法总结行列式涉及的方面很多,例如判断矩阵可逆与否要计算行列式的值、解线性方程组、特征值等都与求行列式密不可分,所以各种类型解行列式的方法一定要掌握好,才能写好行列式,下面是计算行列式的方法总结,一起来看看吧!计算行列式的方法总结(一)首先,行列式的性质要熟练掌握性质1行列互换,行列式的值不变。
性质2交换行列式的两行(列),行列式的值变号。
推论若行列式中有两行(列)的对应元素相同,则此行列式的值为零。
性质3若行列式的某一行(列)各元素都有公因子k,则k可提到行列式外。
推论1数k乘行列式,等于用数k乘该行列式的某一行(列)。
推论2若行列式有两行(列)元素对应成比例,则该行列式的值为零。
性质4若行列式中某行(列)的每一个元素均为两数之和,则这个行列式等于两个行列式的和,这两个行列式分别以这两组数作为该行(列)的元素,其余各行(列)与原行列式相同。
性质5将行列式某行(列)的k倍加到另一行(列)上,行列式的值不变。
行列式展开法:行列式按某行(列)展开也是解行列式常用的方法。
行列式展开定理:定理1:n阶行列式D等于它的任一行(列)的各元素与各自的代数余子式乘积之和。
定理2:行列式D的某一行(列)各元素与另一行(列)对应元素的代数余子式乘积之和必为零。
(二)几种特殊行列式的值有关行列式的若干个重要公式:为便于考生综合复习及掌握概念间的联系,现将以后各章所涉及的有关行列式的几个重要公式罗列于下:2017考研数学:行列式的计算行列式是线性代数的一部分,题目比较灵活,下面为同学们简单讲一下行列式的几种计算方法,希望同学们可以有所启发,弄清楚这种类型题。
对于数值型行列式来说,我们先看低阶行列式的计算,对于二阶或者三阶行列式其是有自己的计算公式的,我们可以直接计算。
三阶以上的行列式,一般可以运用行列式按行或者按列展开定理展开为低阶行列式再进行计算,对于较复杂的三阶行列式也可以考虑先进行展开。
在运用展开定理时,一般需要先利用行列式的性质将行列式化为某行或者某列只有一个非零元的形式,再进行展开。
行列式计算方法归纳总结
数学与统计学学院中期报告学院:专业:年级:题目:学生姓名: 学号:指导教师姓名职称:年月日目录1 引言 (1)2行列式性质 (2)3行列式计算方法 (6)3.1定义法 (6)3.2递推法 (9)3.3化三角法 (9)3.4拆元法 (11)3 .4加边法 (12)3.6数学归结法 (13)3.7降价法 (15)3.8利用普拉斯定理 (16)3.9利用范德蒙行列式参考文献......................................................................................................... 错误!未定义书签。
8行列式的概念及应用摘要:本文先列举行列式计算相关性质,然后归纳总结出行列式的方法,包括:定义法,化三角法,递推法,拆元法,加边法,数学归结法,降价法,利用拉普拉斯定理,利用范德蒙行列式。
关键词:行列式;线性方程组;范德蒙行列式The concept and application of determinant Summary:This article lists calculated properties of determinants, and then sum up the determinant method, including: Definition, triangulation, recursive method, remove method, bordered by, mathematical resolution method, cut method, using Laplace theorem, using the vandermonde determinant.Keywords: determinant;Linear equations;;Vandermonde determinant1 引言行列式的概念最初是伴随着方程组的求解而发展起来的。
行列式的计算方法总结
故有 其ቤተ መጻሕፍቲ ባይዱ的例子: ……每一行提公因子,
7.利用数学归纳法证明行列式.(对行列式的级数归纳) 证明当时, 证明时,将按第一行(或第一列)展开得,利用归纳假设可得. 8. 利用递推公式. 例子: 计算行列式 解: 按第一行展开得: ,将此式化为: (1) 或 (2) 利用递推公式(1)得: ,即. (3) 利用递推公式(2)得: ,即. (4) 由(3)(4) 解得: 其它的例子 ,按第一行展开可得 ,此时令则, 变形为,此为递推公式.利用刚才的例子可求得结果. 这里即是方程的两个根. 9. 分拆法.将行列式的其中一行或者一列拆成两个数的和,将行列式分解 成两个容易求的行列式的和. 例子: : 除第一行外,其余各行加上第一行的倍,所得行列式按第一列展开,按第 一列展开. , 故, 由的对称性质,亦可得,这两个式子中削去,可得结论, .
行列式的计算方法总结:
1. 利用行列式性质把行列式化为上、下三角形行列式. 2. 行列式按一行(一列)展开,或按多行(多列)展开(Laplace定理). 几个特别的行列式: ,,其中分别是阶的方阵. 例子: , 利用Laplace定理,按第行展开,除级子式外其余由第行所得的级子式均为 零. 故,此为递推公式,应用可得 . 3. 箭头形行列式或者可以化为箭头形的行列式. 例: -----()
注: (1) 同一个行列式,可有多种计算方法.要利用行列式自身元素的特点, 选择合适的计算方法.
(2) 以上的各种方法并不是互相独立的,计算一个行列式时,有时需要综 合运用以上方法,
求行列式的值的方法总结
求行列式的值的方法总结本文旨在总结求解行列式的方法以及计算行列式的步骤。
行列式在线性代数中是一个重要的概念,广泛应用于各学科领域,尤其是在计算机科学、物理学、化学等领域。
行列式是矩阵的一种变换操作,本质上是一个标量值,有着重要的数学性质。
行列式的计算方法有多种,包括定义法、三角分解法、拉普拉斯展开法、按行(列)展开法、特征值法等,下面逐一进行介绍。
一、定义法行列式的定义法就是通过定义来计算出行列式的值。
通过这种方法来计算行列式时,需要先找到一个合适的行列式定义,进行推导并最终求解出它的值。
以一个二阶行列式为例:$D=\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2\end{vmatrix}$通过对行列式的定义进行推导,可以得到该二阶行列式的公式:$D=a_1b_2-a_2b_1$同理,对于 n 阶行列式,也可以通过定义法进行计算:$D=\sum\limits_{\sigma\in S_n}(-1)^{\tau(\sigma)}a_{1\sigma(1)}a_{2\sigma(2)}...a_{ n\sigma(n)}$其中 S(n) 表示 n 个数的排列组合,并且 $(-1)^{\tau(\sigma)}$ 表示交换相邻两数使得原序列变成排列 $\sigma$ 所需要的交换次数的奇偶性。
二、三角分解法三角分解法是指将一个矩阵变形成一个上三角和一个下三角矩阵。
上三角矩阵的对角线上是矩阵的主对角线,下三角矩阵的对角线上则是一串0。
行列式的值取决于对角线上的元素的乘积。
通过对角线上系数的相乘,就能得到一个矩阵的行列式值。
三角分解法可以将一个 MXN 矩阵化为一个 N*N 的上三角矩阵或者一个 M*M 的下三角矩阵。
计算行列式的结果是容易的,因为上三角和下三角矩阵的行列式是它们对角线上元素的乘积。
三、拉普拉斯展开法拉普拉斯(Laplace)展开法是一种通用的行列式计算法,基于这个展开式,可以将 n 阶行列式的计算拆分成较小的 n-1 阶子式的求解。
行列式计算方法小结
计算公式
对角行列式的计算公式为 $Delta = prod_{i=1}^{n} a_{ii}$,其中 $a_{ii}$ 表 示第 $i$ 行第 $i$ 列的元素。
04
行列式计算在矩阵中的应 用
行列式与矩阵的逆
总结词
上三角行列式的计算公式为 $Delta = sum_{i=1}^{n} (1)^{i+j} a_{ij} prod_{k=1}^{i1} a_{ik}$,其中 $a_{ij}$ 表示 第 $i$ 行第 $j$ 列的元素。
在计算上三角行列式时,需要 注意保持运算的正确性,避免 因元素位置错位导致计算错误 。
矩阵的秩是其行或列向量中线性无关向量的个数,而零行列式的矩阵必然有零秩 。因此,通过计算行列式值,可以确定矩阵秩的性质。
行列式与线性方程组
总结词
行列式在解线性方程组中起到关键作 用,通过行列式的性质可以简化方程 组的求解过程。
详细描述
对于线性方程组,如果系数矩阵的行 列式不为零,则该方程组有唯一解。 此外,行列式的性质如代数余子式等 在方程组的求解过程中也具有重要应 用。
代数余子式是由去掉一个元素后得到的$(n-1)$阶行列 式乘以一个系数$(n-1)$得到的。这种方法在实际应用 中较为常用,特别是在行列式中有很多零元素的情况。
展开法Βιβλιοθήκη 展开法是一种基于行列式展开定理的计算行列式值的方 法。具体来说,对于一个$n$阶行列式$|begin{matrix} a_{11} & a_{12} & cdots & a_{1n} a_{21} & a_{22} & cdots & a_{2n} vdots & vdots & ddots & vdots a_{n1} & a_{n2} & cdots & a_{nn} end{matrix}|$,其 值等于按照某一行或某一列展开后的代数和。
关于行列式的计算方法
关于行列式的计算方法行列式是线性代数中非常重要的一个概念,它在矩阵和线性方程组的求解中都有广泛的应用。
本文将介绍关于行列式的定义、计算方法及其性质,以及一些常用的行列式计算技巧。
一、行列式的定义行列式是一个方阵(只有行数和列数相等的矩阵才有行列式)所具有的一个确定的数值。
对于一个n阶的方阵,其行列式记作det(A),其中A 表示矩阵。
行列式的计算方法主要有三种:代数余子式法、按行(列)展开法和逆序数法。
二、代数余子式法对于一个n阶方阵A,它的第i行第j列元素的代数余子式表示为Mij,定义为:将A的第i行和第j列元素划去,然后找出剩余元素所形成的n-1阶方阵的行列式。
即:Mij = det(Aij)其中Aij表示由第i行和第j列元素删去后所得到的(n-1)阶方阵。
根据代数余子式的定义,行列式的计算可以通过以下公式进行求解:det(A) = a11M11 - a12M12 + a13M13 - ... + (-1)^(i+j)aijMij + ...其中a11,a12,a13,...是第一行元素,M11,M12,M13,...是它们对应的代数余子式。
三、按行(列)展开法按行(列)展开法是行列式计算中最常用的一种方法。
对于一个n阶方阵A,选择其中任意一行或者一列,然后按照一定规律展开计算。
以按第一行展开为例,按照以下规律进行展开:det(A) = a11C11 + a12C12 + a13C13 + ... + a1nC1n其中Cij表示第一行第j列元素aij的余子式,定义为:将A的第一行和第j列元素划去,然后找出剩余元素所形成的(n-1)阶方阵的行列式。
将Cij的计算公式中的行列式再按行(列)展开,可以得到更小阶的余子式,直到降阶为2阶方阵时,余子式的计算直接是两个元素之差。
四、逆序数法逆序数法是行列式计算中的另一种方法。
对于一个n阶方阵A,按照以下步骤进行计算:1.首先,将方阵A展开至最小的单位(1阶方阵)。
行列式计算方法
行列式计算方法行列式是线性代数中的一个重要概念,它在矩阵运算和方程组求解中都有着重要的应用。
本文将介绍行列式的计算方法,帮助读者更好地理解和掌握这一概念。
首先,我们来了解一下行列式的定义。
行列式是一个数学对象,它是一个关于矩阵的函数,可以用来描述矩阵的某些性质。
对于一个n阶方阵A,其行列式记作det(A)或|A|,它是一个确定的数值。
行列式的计算方法有多种,接下来我们将介绍其中的两种常用方法。
一、按定义展开法。
按定义展开法是行列式计算的最基本方法,也是最容易理解和掌握的方法。
对于一个3阶方阵A,其行列式计算方法如下:|A| = a11a22a33 + a12a23a31 + a13a21a32 a13a22a31 a12a21a33 a11a23a32。
其中a11、a12、a13分别为A的第一行元素,a21、a22、a23分别为A的第二行元素,a31、a32、a33分别为A的第三行元素。
上式中的加减号交替出现,这是根据行列式的定义展开式中的符号规律确定的。
二、拉普拉斯展开法。
拉普拉斯展开法是另一种常用的行列式计算方法,它通过逐步化简矩阵为小一阶行列式的方式来计算行列式的值。
对于一个n阶方阵A,其行列式计算方法如下:|A| = a11A11 + a12A12 + ... + a1nA1n。
其中Aij为A的余子式,它是将A中第i行和第j列划去后得到的n-1阶方阵的行列式。
通过逐步计算A的余子式,最终可以得到行列式的值。
在实际应用中,我们可以根据具体的矩阵大小和特点选择合适的行列式计算方法。
除了上述两种方法外,还有克拉默法则、三角形行列式等其他计算方法,读者可以根据实际情况选择合适的方法进行计算。
总结起来,行列式是线性代数中的重要概念,它在矩阵运算和方程组求解中有着重要的应用。
行列式的计算方法有多种,包括按定义展开法和拉普拉斯展开法等。
通过掌握这些计算方法,我们可以更好地理解和运用行列式的概念,为解决实际问题提供有力的数学工具。
各种行列式的计算方法
各种行列式的计算方法宝子们,今天咱们来唠唠行列式的计算方法呀。
一、定义法。
这就像是最基础的招式啦。
按照行列式的定义,把所有可能的排列组合算出来。
不过呢,这个方法可有点费时间,就像你要一个一个数小珠子一样,要是行列式的阶数大一点,那可就累得够呛。
比如说二阶行列式,按照定义算起来还比较轻松,就是主对角线元素相乘减去副对角线元素相乘。
但是三阶或者更高阶的,那可就复杂得多喽。
二、三角形行列式法。
这个方法可就比较巧妙啦。
我们想办法把行列式通过行变换或者列变换变成上三角或者下三角行列式。
为啥呢?因为三角形行列式的值就等于主对角线元素的乘积呀,多方便。
就像把一堆乱乱的东西整理得整整齐齐的,然后一下子就能算出结果。
比如说给你一个行列式,你就观察一下,哪行或者哪列加上或者减去其他行或者列的倍数,能让它慢慢变成三角形的样子。
三、按行(列)展开法。
这个方法就像是拆积木一样。
你可以按照行列式的某一行或者某一列展开。
比如说按第一行展开,那这个行列式的值就等于这一行的每个元素乘以它对应的代数余子式然后相加。
代数余子式呢,就像是这个元素的小跟班,有自己的计算方法。
这个方法在行列式里有很多零元素的时候特别好用,就像走捷径一样,直接找那些简单的部分来计算。
四、行列式的性质法。
行列式有好多有趣的性质呢。
比如说两行(列)交换,行列式的值就变成原来的相反数;某一行(列)乘以一个数加到另一行(列),行列式的值不变。
我们就可以利用这些性质,把行列式变得简单一些再去计算。
就像给行列式做个小整容,让它变得更可爱(好计算)。
宝子们,行列式的计算方法就这么些啦,多做做练习,就会发现其实也没有那么难啦。
加油哦!。
行列式的计算方法总结大全
行列式的计算方法总结大全
行列式的计算方法有很多种,以下是其中一些常见的方法:
1. 代数余子式法:利用代数余子式展开式,将行列式按某一行或某一列展开,然后计算各项的代数余子式的乘积之和,即可求出行列式的值。
2. 递推法:利用递推关系式,将行列式按某一行或某一列展开,然后逐步递推,即可求出行列式的值。
3. 归纳法:利用归纳法,通过观察和分析较小的行列式,逐步归纳出行列式的展开规律,然后逐步展开,即可求出行列式的值。
4. 矩阵相乘法:将行列式转换为矩阵相乘的形式,然后利用矩阵相乘的性质,计算行列式的值。
5. 元素替换法:利用元素替换的性质,将行列式中的某些元素替换为已知的值,然后逐步简化,即可求出行列式的值。
以上是常见的行列式计算方法,不同的行列式可能需要采用不同的方法进行计算。
在具体计算时,需要根据具体情况选择适合的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学与统计学学院中期报告学院:专业:年级:题目:学生姓名: 学号:指导教师姓名职称:年月日目录1 引言 (1)2行列式性质 (2)3行列式计算方法 (6)3.1定义法 (6)3.2递推法 (9)3.3化三角法 (9)3.4拆元法 (11)3 .4加边法 (12)3.6数学归结法 (13)3.7降价法 (15)3.8利用普拉斯定理 (16)3.9利用范德蒙行列式参考文献......................................................................................................... 错误!未定义书签。
8行列式的概念及应用摘要:本文先列举行列式计算相关性质,然后归纳总结出行列式的方法,包括:定义法,化三角法,递推法,拆元法,加边法,数学归结法,降价法,利用拉普拉斯定理,利用范德蒙行列式。
关键词:行列式;线性方程组;范德蒙行列式The concept and application of determinant Summary:This article lists calculated properties of determinants, and then sum up the determinant method, including: Definition, triangulation, recursive method, remove method, bordered by, mathematical resolution method, cut method, using Laplace theorem, using the vandermonde determinant.Keywords: determinant;Linear equations;;Vandermonde determinant1 引言行列式的概念最初是伴随着方程组的求解而发展起来的。
行列式的提出可以追溯到十七世纪,最初的雏形由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,时间大致相同。
日本数学家关孝和提出来的,他在1683年写了一部名为解伏题之法的著作,意思是“解行列式问题的方法”,书中对行列式的概念和它的展开已经有了清楚的叙述。
欧洲第一个提出行列式概念的是德国数学家,微积分学奠基人之一莱布尼茨。
十八世纪开始,行列式开始作为独立的数学概念被研究。
十九世纪以后,行列式理论进一步得到发展和完善。
矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和向量组的行列式的定义。
1 行列式的性质1.1 性质1 把行列式各行变为相应的列,所得行列式与原行列式相等。
即:aaaa a a a a a nnn n nn212222111211=aaaa a a a a a nnnnn n212221212111()1其实,元素aij在()1的右端位于第j 行第i 列,即此时i 是列指标,j 为行指标。
在行列式中,行与列的地位是对称的,所以有关行的性质,对列也成立。
1.2 性质2 如果行列式中一行为零,那么行列式为零。
因为aaakakaka a a a nnn n ini i n212111211==+++A ka A ka A ka in in i i i i 2211()A a A a A a in in i i i i k +++ 2211=aaa a aaaaannn n ini i nk212111211即当k =0时,就有行列式为零。
1.3 性质3 如果行列式的某一行()或一列的元都是二项式,那么这个行列式等于把这些二项式各取一项作成相应行()或列而其余行()或列不变的两个行列式的和。
aa ac b c b c b aaannn n n n n21221111211+++=()()()()()A c Ac A c A b A b A b A c b A c b A c b in n i i inni i innni i +++++++=++++++ 22112211222111=aaabbb aaa nnn n nn112111211aaacccaaannn n nn212111211+1.4 性质4 如果行列式中有两行相同,那么行列式为零,所谓两行相同就是说两行的对应元素都相等。
证明: 设行列式aaaa aaa a aaaannn n knk k ini i n21212111211=()a a a a nj kj ij j j j j j j j nkinn k i 11111∑-⎪⎭⎫⎝⎛τ ()2中第i 行与第k 行相同,即.,,2,1,n j aa kjij==为了证明()2为零,只须证明()2的右端所出现的项全能两两相消就行了。
事实上,与项()a a a a nj kj ij j j j j j nkin k i 1111-⎪⎭⎫⎝⎛τ同时出现的还有()a a a a nj kj ij j j j j j nikn k i 1111-⎪⎭⎫⎝⎛τ。
比较这两项,由()3有a a a a kj ij kj ij kkii==,也就是说,这两项有相同的数值。
但是排列jj j j nki1与jj j j nik1相差一个对换,因而有相反的奇偶性,所以这两项的符号相反。
易知,全部n 级排列可以按上述形式两两配对。
因之,在()2的右端,对于每一项都有一数值相同但符号相反的项与之成对出现,从而行列式为零。
1.5 性质5 如果行列式中两行成比例,那么行列式为零。
证明02121211121121212111211==aaaa a a a a aaaaaaakakaka aaaaaannn n ini i ini i nnn n n ini i ini i nk.这里第一步根据性质2,第二步根据性质4.1.6 性质6 把一行的倍数加到另一行,行列式不变。
设a a a a aaca a ca a ca a aaannn n knk k knin k i k i n2121221111211+++=aaaa aaa a aaaannn n knk k ini i n21212111211+aaaa aaa a aaaaaaaa aacacaca aaannn n knk k ini i nnnn n knk k knk k n2121211121121212111211=这里,第一步根据性质3,第二步根据性质5. 根据性质6即得1.7 性质7 对换行列式中两行的位置,行列式反号。
证明aa aa a aa a a a a a aaaaa aa aaa a aaaannn n knk k knin k i k i nnnn n knk k ini i n212122111121121212111211+++==aaaaaa aaaa a a aa aa a a a a a a a a aaannn n ini i knk k nnnn n in i i knin k i k i n212121112112121221111211---=---+++= aaa a a a aaa a aannn n ini i knk k n21212111211-这里,第一步是把第k 行加到第i 行,第二步是把第i 行的()1-倍加到第k 行,第三步是把第k 行加到第i 行,最后再把第k 行的公因子()1-提出。
2.行列式的计算方法2.1 定义法在引进行列式的定义之前,,为了更加容易的理解行列式的定义,首先介绍排列和逆序的概念.(1) n级排列:由1,2.3…n组成的一个有序数组称为一个n级排列.(2) 在一个排列中,如果一对数的前后位置与大小顺序相反,即:前面的数大于后面的数,那么它们就称为一个逆序,一个排列中逆序的总数称为这个排列的逆序数. (3) 逆序数为偶数的排列称为偶排列,逆序数为奇数的排列称为奇排列.在做好这些工作之后,来引入行列式的定义:定义:n 阶行列式aaaaa a a a a a a a a a a a nnn n n nn n321333323122322211131211 <I>等于所有取自不同行不同列的n 个元素的乘积.ja j a j a j a nn332211的代数和,这里jj j j n,,,,321为1,2,3,……,n 的一个排列,每一项<Ⅱ>都按下列规则带有符号,当jj j j n,,,321是偶排列时, <Ⅱ>带有正号,当jj j j n,,,,321是奇排列时,<Ⅱ> 带有负号.例2.1证明1112131415212223242531324142515200000000a a a a a a a a a a D a a a a a a ==. 分析 观察行列式我们会发现有许多零,故直接用定义法.证明 由行列式的定义知除去符号差别外行列式一般项可表示为1212n j jnj a a a则 12512125()12(1)n j j j n j j nj j j j D a a a τ=-∑. (3)其中115,,,j j j 为1,2,3,4,5的任意排列,在D 中位于后三行后三列的元素为零,而在前两行前两列中,取不同行不同列的元素只有四个,就是说(3)式中每一项至少有一个来自后三行后三列. 故D =0.注意 此方法适用于阶数较低的行列式或行列式中零的个数较多.2.2递推法无论是初等数学,还是高等数学,递推公式都有着非常广泛的运用。
适用递推法计算行列式的行列式有以下规律:按照行列式的某一行(列)展开,会产生阶数比原行列式低但却与原行列式有着相同类型的新的行列式,运用递推法逐层降阶,最终将计算出原行列式的值。
运用递推法求解行列式,一般会用到两个公式。
ⅰ若D D n n p 1-=时,则D p D n n 11-=ⅱ若D A D A D n n n 2211--+=时,则t A tA D n n n 122111--+=(其中A 1,A 2为待定系数)ⅰ的计算过程显然易见,而ⅱ中却出现了两个未知数,t 1,t 2,这两个未知数可以通过0212=--A A x x 的两根来确定。
例2.2求行列式的值:(4)的构造是:主对角线元全为;主对角线上方第一条次对角线的元全为,下方第一条次对角线的元全为1,其余元全为0;即为三对角线型。
又右下角的(n)表示行列式为n 阶。
解把类似于,但为k阶的三对角线型行列式记为。
把(4)的行列式按第一列展开,有两项,一项是另一项是上面的行列式再按第一行展开,得乘一个n– 2 阶行列式,这个n– 2 阶行列式和原行列式的构造相同,于是有递推关系:(5)移项,提取公因子β:类似地:(递推计算)直接计算若;否则,除以后移项:再一次用递推计算:∴,当β≠α(6)当β= α,从从而。