结构光三维测量方法与相关技术

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本技术公开了一种结构光三维测量方法,属于计算机视觉技术领域;方法包括:步骤S1,采用深度预测模型对目标物体的表面形成的第一变化图像进行预测,得到目标物体的深度图像;步骤S2,根据不同相移的第二变化图像,计算每一点的主值相位,并利用深度图像,对第二变化图像中每一点的主值相位进行相位展开处理,以得到连续相位场的分布图;步骤S3,采用标定的系统参数对连续相位场的分布图进行处理,以得到得到目标物体的表面每一个三维点的坐标,从而实现对目标物体的三维测量。上述技术方案的有益效果是:能够减少投射图像的数量,提高空间编码的效率和质量,最终获得高精度的三维测量结果。

权利要求书

1.一种结构光三维测量方法,采用投影装置先后将伪随机图案和具有不同初始相位的标准余弦分布的光栅条纹图案投射到目标物体的表面,随后采用相机装置记录所述目标物体的表面经投射形成的图像;其特征在于,会预先训练形成一深度预测模型,所述深度预测模型的输入数据为投射所述伪随机图像后在所述目标物体的表面形成的一第一变化图像,输出数据为预测得到的所述目标物体的深度图像;

所述光栅条纹图案投射到所述目标物体的表面并形成对应的第二变化图像;

所述结构光三维测量方法具体包括:

步骤S1,采用所述深度预测模型对所述目标物体的表面形成的所述第一变化图像进行预

测,得到所述目标物体的所述深度图像;

步骤S2,根据不同相移的所述第二变化图像,计算每一点的主值相位,并利用所述深度图像,对所述第二变化图像中每一点的主值相位进行相位展开处理,以得到连续相位场的分布图;

步骤S3,采用标定的系统参数对所述连续相位场的分布图进行处理,以得到所述得到目标物体的表面每一个三维点的坐标,从而实现对所述目标物体的三维测量。

2.如权利要求1所述的结构光三维测量方法,其特征在于,所述步骤S2具体包括:

步骤S21,根据所述第一变化图像中得到的每一点的初始点云坐标以及所述深度图像分别处理得到每一点的空间点坐标;

步骤S22,根据所述空间点坐标分别处理得到每一点的相位初值;

步骤S23,根据每一点的所述相位初值分别处理得到每一点的条纹级数;

步骤S24,根据每一点的条纹级数对每一点上根据所述第二变化图像计算得到的所述主值相位进行相位展开,以得到所述连续相位场的分布图。

3.如权利要求2所述的结构光三维测量方法,其特征在于,所述步骤S21中,根据所述第一变化图像中每一点的所述初始点云坐标以及所述深度图像,采用双线性插值方法分别处理得到每一点的所述空间点坐标。

4.如权利要求2所述的结构光三维测量方法,其特征在于,所述步骤S22具体包括:

步骤S221,根据所述空间点坐标得到对应点在在投影平面上的投影坐标系中的投影点坐标;

步骤S222,根据所述投影点坐标处理得到对应点的所述相位。

5.如权利要求1所述的结构光三维测量方法,其特征在于,所述深度预测模型采用卷积神经网络结构实现。

6.如权利要求5所述的结构光三维测量方法,其特征在于,所述深度预测模型采用Encode-Decode形的全卷积神经网络结构实现。

7.如权利要求5所述的结构光三维测量方法,其特征在于,所述深度预测模型中的损失函数采用下述函数实现:

其中,

yij用于表示所述深度图像的真实值;

用于表示所述深度图像的预测值;

在每次梯度下降时,

8.如权利要求1所述的结构光三维测量方法,其特征在于,在系统离线的状态下,分别生成用于训练形成所述深度预测模型的训练数据,以及训练形成所述深度预测模型。

技术说明书

一种结构光三维测量方法

技术领域

本技术涉及计算机视觉技术领域,尤其涉及一种结构光三维测量方法。

背景技术

结构光三维测量是一种主动式光学三维测量技术,其采用投影装置向被测物体投射经调制或者编码的光学图案(即结构光图案),同时相机拍摄经被测物体表面调制而发生变形的结构光图案,随后从这些携带有被测物体表面三维信息的图像中计算出被测物体表面点的三维坐标。相比于双目视觉法以及飞行时间法(Time of Flight,ToF)等三维测量方法,结构光三维测量具有全场扫描、高测量速度、高分辨率和高精度等显著优势,可广泛应用在工业检测、3D打印、逆向工程、文物保护、医学、三维物体识别、虚拟穿戴、娱乐等在内的众多领域。得益于DLP(Digital Light Processing,DLP)技术的发展,使得结构光图案可以通过计算机编程灵活选择,最大限度的满足测量精度和测量速度的要求。因此,结构光三维测量方法逐渐成为物体三维测量的主流方式。

在结构光三维测量中,根据编码策略可以分为时间编码、空间编码和直接编码,而根据结构光图案类型又可以分为光栅条纹图案、二值编码图案、空间编码图案以及伪随机图案等测量方式。其中光栅条纹图案由于测量精度高以及速度快等优点,是目前普遍采用的结构光三维测量技术。

采用光栅条纹图案进行结构光三维测量的基本思想是投射具有周期性的光栅条纹,经目标表面形状调制而产生相应的相位变化,通过求取变形光栅条纹的相位并结合标定的系统参数从而求取物体表明的三维信息。代表性的计算方法有傅里叶轮廓术(FTP,Fourier Transform Profilometry)和相位轮廓术(Phase Measurement Profilometry,PMP)等方法。

其中,相位场的计算是PMP计算方法的关键,相移法是通过采集多帧有一定相移的光栅条纹图案来计算包含被测物体表面三维信息的相位场,在相移法中往往得到的是相位主值,与真实值还相差一个2kπ,因此需要解相位 (Phase Unwrapping)从而得到快速连续的相位场分布。解相位是PMP中关键技术问题之一,直接影响着相移法测量的精度和速度。通常来说,直接在相位主值图上进行解相位是非常耗时的,其通过在相位主值图上检测2π跳变来

相关文档
最新文档