2019年全国硕士研究生入学考试数学二真题及答案

合集下载

2019考研数学二真题及答案

2019考研数学二真题及答案

2019考研数学二真题及答案一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. 1、当0x →时,若tan x x -与 kx 昰 同阶无穷小量,则k=( )A 、 1.B 、2.C 、 3.D 、 4.【答案】C .【解析】因为 3tan ~3x x x --,所以3k =,选 C .2、曲线3sin 2cos y x x x x ππ⎛⎫=+<< ⎪⎝⎭ -22的拐点昰( )A 、,ππ⎛⎫ ⎪⎝⎭ 22 . B 、()0,2 . C 、(),2π- . D 、33,ππ⎛⎫⎪⎝⎭ 22.【答案】C . 【解析】cos sin y x x x '=- ,sin y x x ''=-,令 sin 0y x x ''=-=,解得0x =或x π=.当x π>时,0y ''>;当x π<时,0y ''<,所以(),2π- 昰拐点.故选 C . 3、下列反常积分发散的昰( )A 、x xe dx +∞-⎰. B 、 2x xe dx +∞-⎰. C 、 2tan 1arx xdx x+∞+⎰. D 、21xdx x +∞+⎰. 【答案】D . 【解析】A 、1x x xx xe dx xde xe e dx +∞+∞+∞+∞----=-=-+=⎰⎰⎰,收敛;B 、222001122x x xedx e dx +∞+∞--==⎰⎰,收敛;C 、22200tan 1arctan 128arx x dx x x π+∞+∞==+⎰,收敛; D 、2222000111(1)ln(1)1212x dx d x x x x +∞+∞+∞=+=+=+∞++⎰⎰,发散,故选D .4、已知微分方程的x y ay by ce '''++=通解为12()x x y C C x e e -=++,则,,a b c 依次为( )A 、 1,0,1.B 、 1,0,2.C 、2,1,3.D 、2,1,4. 【答案】D .【解析】 由题设可知1r=-昰特征方程20r ar b ++=的二重根,即特征方程为2(1)0r +=,所以2,1ab == .又知*x y e =昰方程2x y y y ce '''++=的特解,代入方程的4c =.故选D . 5、已知积分区域(),2D x y x y π⎧⎫=+≤⎨⎬⎩⎭ ,1D I =,2DI =⎰⎰,(31DI dxdy =-⎰⎰,则( )A 、321I I I <<.B 、 213I I I <<.C 、123I I I <<.D 、231I I I <<.【答案】A .【解析】比较积分的大小,当积分区域一致时,比较被积函数的大小即可解决问题.由 2x y π+≤,可得 2222x y π⎛⎫+≤ ⎪⎝⎭【画图发现2x y π+≤包含在圆2222x y π⎛⎫+= ⎪⎝⎭的内部】,令u ,则 02u π≤≤,于昰有 sin u u >,从而DD>⎰⎰.令()1cos sin f u u u =--,则()sin cos f u u u '=-,()04f π'=.()f u 在0,4π⎛⎫⎪⎝⎭内单调减少,在,42ππ⎛⎫⎪⎝⎭单调增加,又因为(0)()02f f π==,故在0,2π⎛⎫⎪⎝⎭内()0f u <,即1cos sin u u -<,从而(1DDdxdy >-⎰⎰⎰⎰.综上,选A .6、设函数(),()f x g x 的二阶导数在x a =处连续,则2()()lim0()x af xg x x a →-=-昰两条曲线()y f x =,()y g x =在x a =对应的点处相切及曲率相等的( )A 、充分非必要条件.B 、充分必要条件.C 、必要非充分条件.D 、既非充分也非必要条件. 【答案】A .【解析】充分性:利用洛必达法则,由2()()lim0()x af xg x x a →-=-可得()()lim 02()x a f x g x x a →''-=-及()()lim02x a f x g x →''''-=, 进而推出 ()()f a g a =,()()f a g a ''=,()()f a g a ''''=.由此可知两曲线在x a =处有相同切线,且由曲率公式322[1()]y K y ''='+可知曲线在x a =处曲率也相等,充分性得证.必要性:由曲线()y f x =,()y g x =在x a =处相切,可得()()f a g a =,()()f a g a ''=; 由曲率相等332222()()[1(())][1(())]f ag a f a g a ''''=''++,可知()()f a g a ''''=或()()f a g a ''''=-.当()()f a g a ''''=-时,所求极限2()()()()()()limlim lim ()()2()2x ax a x a f x g x f x g x f x g x f a x a x a →→→''''''---''===--,而()f a ''未必等于0,因此必要性不一定成立.故选A .7、设A 昰4阶矩阵,*A 为A 的伴随矩阵,若线性方程组0Ax =的基础解系中只有2个向量,则*()r A =( ).A 、0.B 、 1.C 、2.D 、3.【答案】A .【解析】因为方程组0Ax =的基础解系中只有2个向量,,所以4()2r A -=,从而()241r A =≤-,则*()r A =0,故选 A .8、设A 昰3阶实对称矩阵,E 昰3阶单位矩阵,若22A A E +=,且4A =,则二次型Tx Ax 的规范型为( )A 、222123y y y ++.B 、 222123y y y +-.C 、222123y y y --.D 、222123y y y ---.【答案】C .【解析】设λ昰A 的特征值,根据22A A E +=得22λλ+=,解得1λ=或2λ=-;又因为4A =,所以A 的特征值为1,-2,-2,根据惯性定理,T x Ax 的规范型为222123y y y --.故选C .二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. 9、2lim(2)x xx x →+=.【答案】24e .【解析】0222lim ln[1(21)]0lim(2)lim[1(21)]x x x x xxxxx x x x e→++-→→+=++-=0212lim 2(1ln 2)24x x x xee e →+-+===.10、曲线sin 1cos x t t y t=-⎧⎨=-⎩在32t π=对应点处的切线在y 轴上的截距为 .【答案】322π+. 【解析】斜率32sin 11cos t dy t dx t π===--,切线方程为 322y x π=-++,截距为322π+. 11、设函数()f u 可导,2()y z yf x =,则2z zxy x y∂∂+=∂∂ . 【答案】2y yf x ⎛⎫⎪⎝⎭.【解析】3222222,z y y z y y y f f f x x x y x x x ⎛⎫⎛⎫⎛⎫∂∂''=-=+ ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭ ,22z zy x y yf x y x ⎛⎫∂∂+= ⎪∂∂⎝⎭.12、曲线ln cos (0)6y x x π=≤≤的弧长为 .【答案】1ln 32【解析】sec ds xdx ===66001sec ln(sec tan )ln3.2s xdx x x ππ==+=⎰ 13、已知函数21sin ()xt f x x dt t=⎰,则10()f x dx =⎰ .【答案】1(cos11)4-. 【解析】设21sin ()xt F x dt t=⎰,则 1111122200000111()()()[()]()222f x dx xF x dx F x dx x F x x dF x ===-⎰⎰⎰⎰211112222000011sin 111()sin cos (cos11)22244x x F x dx x dx x x dx x x '=-=-=-==-⎰⎰⎰.14、已知矩阵1100211132210034A -⎛⎫⎪-- ⎪= ⎪-- ⎪⎝⎭,ij A 表示元素ij a 的代数余子式,则1112A A -= .【答案】4-.【解析】由行列式展开定理得111211001000111111211121111210104322131210343434034A A A -----------====-==----. 三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.15、(本题满分10分)已知函数2,0()1,0x x xx f x xe x ⎧>⎪=⎨+≤⎪⎩,求()f x ',并求函数()f x 的极值.【解析】当0x >时,22ln ()xx x f x xe ==,2()2(ln 1)xf x x x '=+;当0x <时,()(1)x f x x e '=+;22000()(0)12(ln 1)(0)lim lim lim 1x x x x x f x f x x x f x x ++++→→→---'====-∞,即()f x 在0x =处不可导.综合上述:22(ln 1),0()(1),0xxx x x f x x e x ⎧+>⎪'=⎨+<⎪⎩;令()0f x '=得驻点1211,x x e=-=;0x =昰函数()f x 的不可导点. 当1x <-时,()0f x '<;当10x -<<时,()0f x '>;当10x e<<时,()0f x '<;当1x e >时,()0f x '>;故11x =-昰函数的极小值点,极小值为1(1)1f e --=-;21x e=昰函数的极小值点,极小值为21()e f e e-=;函数()f x 在0x =处连续且有极大值(0)1f =.16、(本题满分10分)求不定积分2236(1)(1)x dx x x x +-++⎰.【解析】设222236(1)(1)1(1)1x A B Cx Dx x x x x x x ++=++-++--++ (1)两边同乘以2(1)x -且令1x =,可得3B =; (2)两边同乘以x 且令x →∞,可得0A C+=;(3)两边分别令0x =,1x =-,可得63244A B D A B C D -++=⎧⎪⎨-+-+=⎪⎩;解得2,2,1A C D =-==.则2222362321(1)(1)1(1)1x x x x x x x x x ++=-++-++--++,于昰2222362321(1)(1)1(1)1x x dx dx x x x x x x x ⎛⎫++=-++ ⎪-++--++⎝⎭⎰⎰2223(1)32ln 12ln 1ln(1)111d x x x x x x C x x x x ++=---+=---++++-++-⎰.17、(本题满分10分)设函数()y x昰微分方程22x y xy e '-=满足条件(1)y =解.(1)求()y x 的表达式;(2)设平面区域{(,)|12,0()}D x y x y y x =≤≤≤≤,求D 绕x 轴旋转一周所形成的旋转体的体积. 【解析】(1)方程为一阶线性非齐次微分方程.由通解公式可得222()222()()())x x x xdxx dxy x e ee dx C e C e C -⎰⎰=+=+=,把初始条件(1)y =,得0C =,从而得到 22().x y x xe =(2)旋转体的体积为2222411()()2x x V y x dx xe dx e e πππ===-⎰⎰.18、(本题满分10分)设平面区域2234{(,)|,()}D x y x y x y y =≤+≤,计算二重积分D.【解析】显然积分区域D 关于y 轴对称,由对称性可得0D=;将2234()x y y +≤化为极坐标,有 20sin rθ≤≤,于昰23sin 44sin DDd r dr πθπθθ==⎰⎰33522444411sin (1cos )cos 22120d d ππππθθθθ==--=⎰⎰. 19、(本题满分10分)设n 昰正整数,记n S 为曲线sin (0)xy e x x n π-=≤≤与x 轴所形成图形的面积,求n S ,并求lim .n n S →∞【解析】当()2,(21)x k k ππ∈+时,sin 0x >;当()(21),(22)x k k ππ∈++时,sin 0x <,故曲线sin (0)xy ex x n π-=≤≤与x 轴之间图形的面积应表示为(1)0sin sin nn k xx n k k S exdx e xdx πππ+--===∑⎰⎰,先计算(1)sin k x kk b e xdx ππ+-=⎰, 作变量替换 u x k π=-,于昰有 ()sin()u k kb eu k du πππ-+=+⎰0sin k u ee u du ππ--=⎰()01sin [sin cos ]2k u k u e e udu e e u u ππππ----==-+⎰12k e eππ--+=. 所以00(1)(1)(1)(1)(1)22(1)2(1)k n n nnn k k k e e e e e e S b e e ππππππππ------==++-+-====--∑∑, 因此 (1)(1)1lim lim 2(1)2(1)n n n n e e e S e e πππππ-→∞→∞+-+==--. 20、(本题满分11分)已知函数(,)u x y 满足关系式222222330u u u ux y x y∂∂∂∂-++=∂∂∂∂.求,a b的值,使得在变换(,)(,)ax byu x y v x y e +=之下,上述等式可化为函数(,)v x y 的不含一阶偏导数的等式.【解析】在变换(,)(,)ax by u x y v x y e+=之下(,)ax byax by u v e av x y e x x++∂∂=+∂∂,(,),ax by ax by u v e bv x y e y y ++∂∂=+∂∂ 222222(,)ax by ax by ax byu v v e a e a v x y e x x x+++∂∂∂=++∂∂∂, 222222(,)ax by ax by ax byu v v e b e b v x y e y y y+++∂∂∂=++∂∂∂; 把上述式子代入关系式222222330u u u ux y x y∂∂∂∂-++=∂∂∂∂,得到 22222222(43)(34)(223)(,)0v v v va b a b b v x y x y x y∂∂∂∂-+++-+-+=∂∂∂∂根据要求,显然当33,44a b =-=时,可化为函数(,)v x y 的不含一阶偏导数的等式. 21、(本题满分11分)已知函数()f x 在[]0,1上具有二阶导数,且(0)0,(1)1f f ==,1()1f x dx =⎰,证明:(1)至少存在一点(0,1)ξ∈,使得()0f ξ'=;(2)至少存在一点(0,1)η∈,使得()2f η''<-. 证明:(1)令0()()xx f t dt Φ=⎰,则1(0)0,(1)()1f x dx Φ=Φ==⎰,则由于()f x 在[]0,1连续,则()x Φ在[]0,1上可导,且()()x f x 'Φ=,则由拉格朗日中值定理,至少存在一点1(0,1)ξ∈,使得1()(1)(0)1ξ'Φ=Φ-Φ=,即1()1f ξ=;又因为(1)1f =,对()f x 在[]1,1ξ上用罗尔定理 ,则至少存在一点1(,1)(0,1)ξξ∈⊂,使得()0f ξ'=; (2)令2()()F x f x x=+,显然 ()F x 在[]0,1具有二阶导数,且211(0)0,(1)2,()1F F F ξξ===+.对()F x 分别在[][]110,,,1ξξ上用拉格朗日中值定理,至少存在一点11(0,)ηξ∈,使得2111111()(0)11()10F F F ξξηξξξ-+'===+-;至少存在一点21(,1)ηξ∈,使得1211()(1)()11F F F ξηξξ-'==+-;对()()2F x f x x ''=-在[]12,ηη上用拉格朗日中值定理,则至少存在一点12(,)(0,1)ηηη∈⊂,使得211212111()()()0F F F ηηξηηηηη-''-''==<--,又因为()()2F f ηη''''=+,故()2f η''<-.22.(本题满分11分)已知向量组Ⅰ:12321111,0,2443a ααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭;向量组Ⅱ:12321011,2,3313a a a βββ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+-+⎝⎭⎝⎭⎝⎭.若向量组Ⅰ和向量组Ⅱ等价,求常数a 的值,并将3β用123,,ααα线性表示.【解析】向量组Ⅰ和向量组Ⅱ等价的充分必要条件昰123123123123(,,)(,,)(,,;,,)r r r αααβββαααβββ==1231232222111101111101(,,;,,)102123011022443313001111a a a a a a a a αααβββ⎛⎫⎛⎫ ⎪ ⎪=→- ⎪ ⎪⎪ ⎪++-+----⎝⎭⎝⎭(1)当1a =时,显然, 123123123123(,,)(,,)(,,;,,)2r r r αααβββαααβββ===,两个向量组等价.此时,123311111023(,,;)0112011200000000αααβ⎛⎫⎛⎫ ⎪ ⎪→-→-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 方程组112233x x x αααβ++=的通解为123231210x x x k x -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪==+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,也就昰3123(23)(2)k k k βααα=-++-+,其中k 为任意常数;(2)当1a ≠时,继续进行初等行变换如下:12312322111101111101(,,;,,)011022011022001111001111a a a a a a αααβββ⎛⎫⎛⎫ ⎪ ⎪→-→- ⎪ ⎪⎪ ⎪----+-+⎝⎭⎝⎭显然,当1a ≠-且1a ≠时,123123123(,,)(,,;,,)3r r ααααααβββ==,同时()123101101101,,02202201111101001a a a βββ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪→→→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-+-+⎝⎭⎝⎭⎝⎭,123(,,)3r βββ=,也就昰123123123123(,,)(,,)(,,;,,)3r r r αααβββαααβββ===,两个向量组等价.这时,3β可由123,,ααα线性表示,表示法唯一:3123βααα=-+.(3)当=1a -时,()123123111101,,,,,011022000220αααβββ⎡⎤⎢⎥→-⎢⎥⎢⎥-⎣⎦,此时两个向量组不等价.综上所述,综上所述,当向量组Ⅰ和向量组Ⅱ等价时,1a ≠-.23、(本题满分11分)已知矩阵22122002A x --⎛⎫ ⎪=- ⎪ ⎪-⎝⎭与 21001000B y ⎛⎫ ⎪=- ⎪ ⎪⎝⎭ 相似, (I )求,x y ;(II )求可逆矩阵P ,使得 1P AP B -=.【解析】(I )由于A 与B 相似,根据矩阵相似必要条件,有 ()()A B tr A tr B ⎧=⎪⎨=⎪⎩ , 即2(24)22221x y x y--+=-⎧⎨-+-=-+⎩,解得 3,2x y ==-.(II )矩阵B 昰上三角矩阵,易得B 的特征值为2,1,2--.又因为A 与B 相似,所以A 的特征值也昰2,1,2--.对于矩阵A :解方程组()0(1,2,3)i E A x i λ-==,可得属于特征值12,λ=21,λ=-32λ=-的线性无关的特征向量为:1(1,2,0)T α=-,2(2,1,0)T α=-,3(1,2,4)T α=-对于矩阵B :解方程组()0(1,2,3)i E B x i λ-==,可得属于特征值12,λ=21,λ=-32λ=-的线性无关的特征向量为:1(1,0,0)T β=,2(1,3,0)T β=-,3(0,0,1)T β= 令1123(,,)P ααα=, 2123(,,)P βββ=,则有111122212P AP P BP --⎛⎫ ⎪=-= ⎪ ⎪-⎝⎭, 即 112112P P APP B --=, 令 1112121110111212030212004001004P PP -----⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪==--=-- ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,则有 1PAP B -=,证毕.。

2019考研数学二答案解析

2019考研数学二答案解析

= lim +
x →0
所以 f (0) 不存在,因此
2x 2 x (1 + ln x), x 0, f ( x) = x x 0. ( x + 1)e ,
1 ;另外 f ( x) 还有一个不可导点 x2 = 0 ; e 1 1 又 (−, −1) 为单调递减区间 , ( −1, 0) 为单调递增区间, (0, ) 为单调递减区间, ( , +) 为单 e e
2
= e (
1 2 x
dx + C ) = e ( x + C ) ;
x2 2
又由 y (0) = e 得 C = 0 ,最终有
y ( x) = xe .
(2)所求体积
x2 2
x2 2
V = π( xe ) 2 dx = π xe x dx
2
2
2
1
1
π 2 π = e x = (e 4 − e) . 2 1 2
18、已知平面区域 D 满足 x
2
y, ( x 2 + y 2 )3 y 4 ,求
x+ y x2 + y 2
D
dxdy .
解:由 x
2
y 可知区域 D 关于 y 轴对称,在极坐标系中,
2 3
π 3π ;将 x = r cos , y = r sin 4 4
代入 ( x + y )
y 4 得 r sin 2 ;
解:
( x − 1) ( x
3x + 6 2 3 2x +1 dx = [− + + 2 ]dx 2 2 2 + x + 1) x − 1 ( x − 1) x + x +1

2019年全国硕士研究生入学统一考试(高等数学二)真题及答案解析

2019年全国硕士研究生入学统一考试(高等数学二)真题及答案解析

y
=
g(x) 在 x
=
a 对应的点处相切且曲率相等的充
分但不必条件,应选(A).
(7)设 A 是4阶矩阵,A* 是 A 的伴随矩阵,若线性方程组 Ax = 0 的基础解系中只有2个向量,
则 r( A*) = ( )
(A)0
应选(B)。
(3)下列反常积分发散的是( )
∫ (A) +∞ xe−xdx 0
∫ (B) +∞ xe−x2 dx 0
【答案】D
+∞ arctan x
∫ (C) 0
1+ x2 dx
+∞ x
∫ (D) 0
1+ x2 dx
【解析】(方法一)
∫ ∫ 由 +∞ xe−xdx = Γ(2) = 1,得 +∞ xe−xdx 收敛;
=
a 处连续,则 lim x→a
f
(x) − g(x) (x − a)2
= 0 是曲线
y = f (x) 和 y = g(x) 在 x = a 对应的点处相切且曲率相等的( )
(A)充分非必要条件,(B)充分必要条件 (C)必要非充分条件 (D)既非充分又非必要条件 【答案】A
【解析】若 lim x→a
∫∫ (5)已知平面区= 域 D
{(
x,
y)
||
x
|
+
|
y
|≤
π 2
}
,= 设 I1
D
x2 + y2 dxdy , I2 =
∫∫ ∫∫ sin x2 + y2 dxdy , I3 =(1− cos x2 + y2 )dxdy ,则( )
D

2019考研数学二答案真题解析

2019考研数学二答案真题解析

0034 0034
三、解答题:15 23 小题,共 94 分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程
或演算步骤.
15.设函数
y
f (x) 是微分方程
y
xy
e
x2 2
满足条件
y(0)
0 的特解。
(1)求 y f (x) ;
(2)求曲线 y y(x) 的凹凸区间及拐点。
4/9
【答案】A
【解析】在区域
D
上,x2
y2
2 4
,令
x2
y2
,则 0
u
2
,所以有 sin
x2 y2
x2 y2 ;
令 f (u) 1 cos u sin u ,则 f (u) sin u cos u ,
故当 0
u
4

f
(u)
0 ;当
4
u
2

f
(u)
0;
而 f (0) f (2 ) 0 ,所以 f (u) 0 ,即1 cos u sin u ,得到1 cos x2 y2 sin x2 y2
又因为 A 4 123 ,故 A 的 3 个特征值为1, 2, 2 ,所以二次型 xT Ax 的规范形为 y12 y22 y32 .
二、填空题:9 14 小题,每小题 4 分,共 24 分.请将答案写在答题纸指定位置上.
2
9. lim(x 2x ) x
.
x0
【答案】 4e2
2
【解析】 lim(x 2x ) x
0
0
n1
k 0
e (k 1) x
sin x
dx
n1
(1)k

2019全国硕士研究生考研数学二真题及答案解析

2019全国硕士研究生考研数学二真题及答案解析

一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.1、当→x 0时,若−x x tan 与x k是同阶无穷小,则=k A. 1. B. 2.C. 3. D.4.【答案】C【解析】−−x x x 3tan ~3,所以选C.2、设函数=+−y x x x x 22sin 2cos ()π3π的拐点 A. 22(,).ππB.(0,2).C.−,2).π( D. −22(,).π3π3【答案】C.【解析】令=−=''y x x sin 0,可得=x π,因此拐点坐标为(,)−2π. 3、下列反常积分发散的是A. ⎰−+∞x xx e d 0B. ⎰−+∞x xx e d 02C.⎰++∞x x x1d arctan 02D.⎰++∞x x x 1d 02【答案】D 【解析】⎰+=+=+∞+∞+∞x x x x 12d ln(1)1022,其他的都收敛,选D. 4、已知微分方程x ce =by +y ¢a +y ¢¢的通解为x e +x -e )x 2C +1C (=y ,则a 、b 、c 依次为A 、1,0,1B 、 1,0,2C 、2,1,3D 、2,1,4【答案】 D.【解析】由通解形式知,==−λλ112,故特征方程为()+++λλλ1=21=022,所以==a b 2,1,又由于=y x e 是+='''y y y ce x +2的特解,代入得=c 4.5、已知积分区域=+D x y x y2{(,)|}π,⎰⎰=I x y d 1,2019全国硕士研究生考研数学二真题及答案解析(官方)2d DI x y =⎰⎰,3(1d DI x y =−⎰⎰,试比较123,,I I I 的大小A. 321I I I <<B. 123I I I <<C. 213I I I << D. 231I I I <<【答案】C【解析】在区域D上2220,4x y π≤+≤∴≤,进而213.I I I <<6、已知(),()f x g x 的二阶导数在x a =处连续,则2()g()lim0()x af x x x a →−=−是曲线(),()y f x y g x ==在x a =处相切及曲率相等的A.充分非必要条件.B.充分必要条件.C.必要非充分条件.D.既非充分又非必要条件.【答案】A【解析】充分性:利用洛必达法则,有2()g()()g ()()g ()limlim lim 0.()2()2x ax a x a f x x f x x f x x x a x a →→→''''''−−−===−−从而有()(),()(),()()f a g a f a g a f a g a ''''''===,即相切,曲率也相等. 反之不成立,这是因为曲率322(1)y K y ''='+,其分子部分带有绝对值,因此()()f a g a ''''=或()()f a g a ''''=−;选A.7、设A 是四阶矩阵,*A 是A 的伴随矩阵,若线性方程组Ax =0的基础解系中只有2个向量,则*A 的秩是() A.0 B.1 C.2D.3【答案】 A.【解析】由于方程组基础解系中只有2个向量,则()2r A =,()3r A <,()0r A *=.8、设A 是3阶实对称矩阵,E 是3阶单位矩阵. 若22+=A A E ,且4=A ,则二次型T x Ax 规范形为A. 222123.y y y ++ B. 222123.y y y +−C. 222123.y y y −− D. 222123.y y y −−−【答案】C【解答】由22+=A A E ,可知矩阵的特征值满足方程220λλ+−=,解得,1λ=或2λ=−. 再由4=A ,可知1231,2λλλ===−,所以规范形为222123.y y y −−故答案选C.二、填空题:9~14小题,每小题4分,共24分. 9. 2lim(2)x xx x →+=___________.【解析】022lim ln(2)lim(2)ex x x x xxx x →+→+=其中000221lim ln(2)2lim 2lim(12ln 2)2(1ln 2)x xx x x x x x x x→→→+−+==+=+所以222ln 22lim(2)e4x xx x e +→+==10.曲线sin 1cos x t t y t=−⎧⎨=−⎩在32t π=对应点处切线在y 轴上的截距___________.【解析】d sin d 1cos y tx t=−当32t π=时,3d 1,1,12d yx y xπ=+==−所以在32t π=对应点处切线方程为322y x π=−++所以切线在y 轴上的截距为322π+11.设函数()f u 可导,2()y z yf x=,则2z zx y x y ∂∂+=∂∂___________.【解析】223222()()()z y y y y yf f x x x x x∂''=−=−∂2222222()()()()()z y y y y y y f yf f f y x x x x x x ∂''=+=+∂所以22()z z y x y yf x y x∂∂+=∂∂12.设函数ln cos (0)6y x xπ=的弧长为___________.【解析】弧长61d cos s x x x xπ===⎰6011ln |tan |ln 3cos 2x x π=+==13.已知函数21sin ()d xt f x xt t=⎰,则10()d f x x =⎰___________.【解析】设21sin ()d xt F x t t=⎰,则1100()d ()d f x x xF x x=⎰⎰112212000111()d [()]d ()222F x x x F x x F x ==−⎰⎰211220011sin ()d d 22x x F x x x xx '=−=−⎰⎰122100111sin d cos (cos11)244x x x x =−==−⎰14.已知矩阵1100211132210034−⎛⎫ ⎪−− ⎪= ⎪−− ⎪⎝⎭A ,ij A 表示||A 中(,)i j 元的代数余子式,则1112A A −=___________.【解析】11121100100021112111||3221312100340034A A −−−−−−−===−−−A 1111111210104034034−−−−=−==−三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.15、(本题满分10分)已知2,0,()e 1,0,xx x x f x x x ⎧>⎪=⎨+⎪⎩求()f x ',并求()f x 的极值.解:0x >时,2ln 2ln (0)(e)e (2ln 2)x xx x f x ''==+;0x <时,()(1)e x f x x '=+;又2ln 00()(0)e 1(0)lim lim0x x x x f x f f x x+++→→−−'==−002ln lim lim 2ln x x x xx x++→→===−∞, 所以(0)f '不存在,因此22(1ln ),0,()(1)e ,0.xxx x x f x x x ⎧+>⎪'=⎨+<⎪⎩令()0f x '=,得驻点1311,ex x =−=;另外()f x 还有一个不可导点20x =; 又(,1)−∞−为单调递减区间,(1,0)−为单调递增区间,1(0,)e 为单调递减区间,1(,)e+∞为单调递增区间;因此有极小值1(1)1e f −=−和极小值2e 1()e ef −=,极大值(0)1f =.16、(本题满分10分) 求不定积分2236d .(1)(1)x x x x x +−++⎰解:2222362321d []d (1)(1)1(1)1x x x xx x x x x x x ++=−++−++−−++⎰⎰ 232ln 1ln(1)1x x x C x =−−−++++−17、(本题满分10分)()y y x =是微分方程22e x y xy '−=满足(1)y =.(1)求()y x ;(2)设平面区域{(,}|12,0()}D x y x y y x =,求D 绕x 轴旋转一周所得旋转体的体积.解(1)2d d 2()e [e e d ]x x xx xy x x C −⎰⎰=+⎰2222e ()e )x x x C C =+=+;又由(0)y =得0C =,最终有22()e x y x =.(2)所求体积22222211πe )d πe d x x V x x x==⎰⎰2241ππe (e e)22x ==−.18、已知平面区域D 满足2234,()xy x y y +,求d x y ⎰⎰.解:由xy 可知区域D 关于y 轴对称,在极坐标系中,π3π44θ;将cos ,sin x r y r θθ==代入2234()x y y +得2sin r θ;由奇偶对称性,有2πsin 2π04sin d d 2d d r x y x y r r r==⎰⎰⎰⎰⎰⎰θθθππ52222ππ44sin d (1cos )dcos 120==−−=⎰⎰θθθθ19、设n 为正整数,记n S 为曲线e sin (0π)xy x x n −=与x 轴所围图形的面积,求n S ,并求lim n n S →∞.解:设在区间[π,(1)π]k k +(0,1,2,,1)k n =−L 上所围的面积记为k u ,则(1)π(1)πππe |sin |d (1)e sin d k k x kx k k k u x x x x ++−−==−⎰⎰;记e sin d x I x x −=⎰,则e d cos (e cos cos de )x x x I x x x −−−=−=−−⎰⎰e cos e dsin e cos (e sin sin de )x x x x x x x x x x −−−−−=−−=−−−⎰⎰e (cos sin )x x x I −=−+−,所以1e (cos sin )2xI x x C −=−++;因此(1)π(1)πππ11(1)()e (cos sin )(e e )22k kk k k k k u x x +−−+−=−−+=+;(这里需要注意cos π(1)kk =−)因此π(1)π1ππ111e e e 221e n n n k n k k k S u −−+−−−==−==+=+−∑∑; π(1)πππππ1e e 1e 11lim lim21e 21e 2e 1n n n n S −−+−−−→∞→∞−=+=+=+−−−20、已知函数(,)u x y 满足222222330u u u u x y x y∂∂∂∂−++=∂∂∂∂,求,a b 的值,使得在变换(,)(,)e ax by u x y v x y +=下,上述等式可化为(,)v x y 不含一阶偏导数的等式.解:e e ax byax by x u v va x++∂'=+∂, 222e e e e ax by ax by ax byax by xx x x u v v a v a va x++++∂''''=+++∂2e 2ee ax by ax byax by xx x v av a v +++'''=++同理,可得ee ax by ax by y u v bv y++∂'=+∂,222e 2e e ax by ax by ax by yy y u v bv b v y +++∂'''=++∂; 将所求偏导数代入原方程,有22e [22(43)(34)(2233)]0ax by xx yy x y v v a v b v a b a b v +''''''−+++−+−++=,从而430,340a b +=−=,因此33,44a b =−=. 21、已知函数(,)f x y 在[0,1]上具有二阶导数,且1(0)0,(1)1,()d 1f f f x x ===⎰,证明:(1)存在(0,1)ξ∈,使得()0f ξ'=; (2)存在(0,1)η∈,使得()2f η''<−. 证明:(1)由积分中值定理可知,存在(0,1)c ∈,使得1()d (10)()f x x f c =−⎰,即()1f c =.因此()(1)1f c f ==,由罗尔定理知存在(,1)((0,1))c ∈⊂ξ,使得()0f ξ'=.(2)设2()()F x f x x =+,则有2(0)0,()1,(1)2F F c c F ==+=;由拉格朗日中值定理可得:存在1(0,)c ∈η,使得21()(0)1()0F c F c F c c −+'==−η;存在2(,1)c ∈η,使得22(1)()1()111F F c c F c c c−−'===+−−η;对于函数()F x ',由拉格朗然中值定理同样可得,存在12(,((0,1))∈⊂ηηη,使得22121212111(1)1()()()0c c F F c c F ++−−''−''===<−−−ηηηηηηηηη, 即()20f ''+<η;结论得证.22.已知向量组(Ⅰ)232111=1=0,=2443a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦1ααα,,(Ⅱ)21231011,2,3,313a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+−+⎣⎦⎣⎦⎣⎦βββ,若向量组(Ⅰ)和向量组(Ⅱ)等价,求a 的取值,并将3β用23,,1ααα线性表示.【解析】令123(,,)=A ααα,123(,,)=B βββ,所以,21a =−A ,22(1)a =−B . 因向量组I 与II 等价,故()()(,)r r r ==A B A B ,对矩阵(,)A B 作初等行变换.因为2222111101111101(,)102123011022.443313001111a a a a a a a a ⎛⎫⎛⎫ ⎪ ⎪=→− ⎪ ⎪ ⎪ ⎪++−+−−−−⎝⎭⎝⎭A B 当1a =时,()()(,)2r r r ===A B A B ;当1a =−时,()()2r r ==A B ,但(,)3r =A B ;当1a ≠±时,()()(,)3r r r ===A B A B . 综上,只需1a ≠−即可. 因为对列向量组构成的矩阵作初等行变换,不改变线性关系.①当1a =时,12331023(,,,)01120000⎛⎫ ⎪→−− ⎪ ⎪⎝⎭αααβ,故3112233x x x =++βααα的等价方程组为132332,2.x x x x =−⎧⎨=−+⎩故3123(3)(2)k k k =−+−++βααα(k 为任意常数);②当1a ≠±时,12331001(,,,)01010011⎛⎫⎪→− ⎪ ⎪⎝⎭αααβ,所以3123=−+βααα.23.已知矩阵22122002x −−⎡⎤⎢⎥=−⎢⎥⎢⎥−⎣⎦A 与21001000y ⎡⎤⎢⎥=−⎢⎥⎢⎥⎣⎦B 相似, (Ⅰ)求,x y ;(Ⅱ)求可逆矩阵P 使得1−P AP =B 解:(1)相似矩阵有相同的特征值,因此有2221,,x y −+−=−+⎧⎪⎨=⎪⎩A B 又2(42)x =−−A ,2y =−B ,所以3,2x y ==−. (2)易知B 的特征值为2,1,2−−;因此2102001000r⎛⎫⎪−⎯⎯→ ⎪ ⎪⎝⎭A E ,取T 1(1,2,0)ξ=−,120001000r⎛⎫ ⎪⎯⎯→ ⎪ ⎪⎝⎭A+E ,取T 2(2,1,0)ξ=−,4012021000r⎛⎫ ⎪⎯⎯→− ⎪ ⎪⎝⎭A+E ,取T3(1,2,4)ξ=−令1123(,,)P ξξξ=,则有111200010002P AP −⎛⎫⎪=− ⎪ ⎪−⎝⎭;同理可得,对于矩阵B ,有矩阵2110030001P −⎛⎫ ⎪= ⎪ ⎪⎝⎭,122200010002P BP −⎛⎫ ⎪=− ⎪ ⎪−⎝⎭,所以111122P AP P BP −−=,即112112B P P APP −−=,所以112111212004P PP −−−−⎛⎫⎪== ⎪ ⎪⎝⎭.。

考研数学二解析2019

考研数学二解析2019

2019年数学(二)真题解析一、选择题(1)【答案】(C).【解】方法一由lim工_向工=恤1_sec咯=_£得工_tan〜_£工3(工一°),工LO3z33故工一tan x为3阶无穷小量,即k=3,应选(C).方法二由tan x—x+£工3+o(j:3)得z—tan x~----x3(z—0),«J o故%=3,应选(C).(2)【答案】(E).【解】y f=x cos x一sin x,夕〃=—x sin x?令夕〃=——x sin x=0得工=。

9工=7T,当z€(-J,O)时,/<0,当工e(0,7T)时V0,则(0,2)不是拐点;当工G(冗,2兀)时,j/'>0,故(兀,一2)为拐点,应选(E).(3)【答案】(D).【解】方法一r+°°f+8由x e_r d jc=r(2)=1得x e_r dj?收敛;J o J0f+°°212I+°°1r+°°2由|x djr=----e~x=百得|x(£z收敛;Z I o/J oarctan x.1..,I+,"x2/曰f+°°arctan x.比心---------dx=—-(arctan jc)2==得------ckz收敛,1+/2I o8Jo1+_z2—~dx发散,应选(D).方法二qr r+8nr由lim x•--------7=1且q=1W1得广义积分-----dr发散9应选(D).l+81+工2Jo1+X(4)【答案】(D).【解】微分方程:/'+ay r+by的特征方程为A2+«A+6=0,由y=(Ci+C2x)e_J+e"为微分方程的通解可知,特征根为入i=入2=—1,则a=2,b=l;再由_y*=e"为微分方程y"+ay r-V by=ce J的特解得c=4,应选(D).(5)【答案】(A).【解】由/$0时,sin/£/得sin y2W Jx2y2,从而I2V4;/~2~~I F/~~2~~i F/~2~~i F tv i r^r~\_r。

2019年考研数学二真题及全面解析(Word版)

2019年考研数学二真题及全面解析(Word版)

2019年考研数学(二)真题及完全解析(Word 版)一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. 1、当0x →时,若tan x x -与k x 是 同阶无穷小量,则k =( )A 、 1.B 、2.C 、 3.D 、 4.【答案】C . 【解析】因为3tan ~3x x x --,所以3k =,选 C .2、曲线3sin 2cos y x x x x ππ⎛⎫=+<< ⎪⎝⎭ -22的拐点是( ) A 、,ππ⎛⎫ ⎪⎝⎭ 22 . B 、()0,2 . C 、(),2π- . D 、33,ππ⎛⎫⎪⎝⎭ 22. 【答案】C . 【解析】cos sin y x x x '=- ,sin y x x ''=-,令 sin 0y x x ''=-=,解得0x =或x π=。

当x π>时,0y ''>;当x π<时,0y ''<,所以(),2π- 是拐点。

故选 C .3、下列反常积分发散的是( )A 、0xxe dx +∞-⎰. B 、2x xe dx +∞-⎰. C 、20tan 1arx x dx x +∞+⎰. D 、201x dx x+∞+⎰. 【答案】D . 【解析】A 、1xxx x xe dx xde xee dx +∞+∞+∞+∞----=-=-+=⎰⎰⎰,收敛;B 、222001122x x xedx e dx +∞+∞--==⎰⎰,收敛;C 、22200tan 1arctan 128arx x dx x x π+∞+∞==+⎰,收敛;D 、2222000111(1)ln(1)1212x dx d x x x x +∞+∞+∞=+=+=+∞++⎰⎰,发散,故选D 。

4、已知微分方程的x y ay byce '''++=通解为12()x x y C C x e e -=++,则,,a b c 依次为( )A 、 1,0,1.B 、 1,0,2.C 、2,1,3.D 、2,1,4. 【答案】D .【解析】 由题设可知1r =-是特征方程20r ar b ++=的二重根,即特征方程为2(1)0r +=,所以2,1ab == 。

2019年考研数学二真题及全面解析

2019年考研数学二真题及全面解析

2019年考研数学(二)真题及完全解析(Word 版)一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. 1、当0x →时,若tan x x -与 kx 是 同阶无穷小量,则k=( )A 、 1.B 、2.C 、 3.D 、 4.【答案】C .【解析】因为 3tan ~3x x x --,所以3k =,选 C .2、曲线3sin 2cos y x x x x ππ⎛⎫=+<< ⎪⎝⎭ -22的拐点是( ) A 、,ππ⎛⎫ ⎪⎝⎭ 22 . B 、()0,2 . C 、(),2π- . D 、33,ππ⎛⎫⎪⎝⎭ 22. 【答案】C . 【解析】cos sin y x x x '=- ,sin y x x ''=-,令 sin 0y x x ''=-=,解得0x =或x π=。

当x π>时,0y ''>;当x π<时,0y ''<,所以(),2π- 是拐点。

故选 C . 3、下列反常积分发散的是( )A 、0xxe dx +∞-⎰. B 、 2x xe dx +∞-⎰. C 、 20tan 1arx x dx x +∞+⎰. D 、201x dx x+∞+⎰. 【答案】D . 【解析】A 、1xxx x xe dx xde xee dx +∞+∞+∞+∞----=-=-+=⎰⎰⎰,收敛;B 、222001122x x xedx e dx +∞+∞--==⎰⎰,收敛;C 、22200tan 1arctan 128arx x dx x x π+∞+∞==+⎰,收敛;D 、2222000111(1)ln(1)1212x dx d x x x x +∞+∞+∞=+=+=+∞++⎰⎰,发散,故选D 。

4、已知微分方程的x y ay byce '''++=通解为12()x x y C C x e e -=++,则,,a b c 依次为( )A 、 1,0,1.B 、 1,0,2.C 、2,1,3.D 、2,1,4. 【答案】D .【解析】 由题设可知1r =-是特征方程20r ar b ++=的二重根,即特征方程为2(1)0r +=,所以2,1ab == 。

2019全国硕士研究生考研数学二真题及答案解析

2019全国硕士研究生考研数学二真题及答案解析

x ⎰ ⎰ 2 2019 年全国硕士研究生入学统一考试数学(二)试题及答案解析一、选择题:1~8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.1、当 x → 0 时,若 x - tan x 与 x k是同阶无穷小,则k = A. 1. B. 2. C. 3. D. 4.【答案】C3 【解析】 x - tan x ~ - ,所以选C. 32、设函数 y = x sin x + 2 cos x (- π x 3π) 的拐点π πA. ( , ).2 22 2 B. (0, 2). C. (π, -2).【答案】C.D. (3π , - 3π). 2 2【解析】令 y '' = -x sin x = 0 ,可得 x = π ,因此拐点坐标为(π,- 2). 3、下列反常积分发散的是A.+∞x e - xd xB.+∞x e - x 2d x 0 C. +∞ arctan x d xD. +∞ x d x⎰0 【答案】D 1+ x 2⎰1+ x 2+∞【解析】xd x = +∞ln(x 2 +1)= +∞ ,其他的都收敛,选D. 0 1+ x 2 04、已知微分方程 y '' + ay ' + by = ce x 的通解为 y = (C A 、1,0,1B 、 1,0, 2C 、2,1, 3D 、2,1, 4【答案】 D.+ C x )e- x+ e x ,则 a 、b 、c 依次为 【解析】由通解形式知, λ = λ = -1 , 故特征方程为(λ +1)2=λ 2+ 2λ +1=0 , 所以12a = 2,b = 1 ,又由于 y = e x 是 y '+2 y ' + y = ce x 的特解,代入得c = 4 .5 、 已 知 积 分 区 域D = {(x , y ) | x + y, I 1 = ⎰⎰D x 2 + y 2 d x d y ,2 π} 21 ⎰ 1D1 2 31 2 3 1 2 3I 2 = ⎰⎰D x d y , I 3 = ⎰⎰ (1-x d y ,试比较 I , I , I 的大小A. I 3 < I 2 < I 1C. I 2 < I 1 < I 3B. I 1 < I 2 < I 3D. I 2 < I 3 < I 1【答案】C【解析】在区域D 上0 ≤ x2+ y 2≤ π2 4,∴,进而 I 2 < I 1 < I 3.6 、已知 f (x ), g (x ) 的 二 阶导 数 在 x = a 处 连 续, 则 limx →af (x ) - g(x )(x - a )2= 0 是曲线y = f (x ), y = g (x ) 在 x = a 处相切及曲率相等的A. 充分非必要条件.B. 充分必要条件.C. 必要非充分条件.D. 既非充分又非必要条件. 【答案】A【解析】充分性:利用洛必达法则,有limf (x ) - g(x ) = lim f '(x ) -g '(x ) = lim f '(x ) - g '(x ) = 0.x →a(x - a )2 x →a 2(x - a ) x →a 2从而有 f (a ) = g (a ), f '(a ) = g '(a ), f '(a ) = g '(a ) ,即相切,曲率也相等. 反之不成立,这是因为曲率 K =f '(a ) = -g '(a ) ;选 A.3(1+ y '2 )2,其分子部分带有绝对值,因此 f '(a ) = g '(a ) 或7、设 A 是四阶矩阵, A *是 A 的伴随矩阵,若线性方程组 Ax = 0 的基础解系中只有 2 个向量,则 A *的秩是( ) A.0 B.1 C.2D.3【答案】 A.【解析】由于方程组基础解系中只有 2 个向量,则r ( A ) = 2 , r ( A ) < 3 , r ( A *) = 0 .8、设 A 是3 阶实对称矩阵, E 是3 阶单位矩阵. 若 A 2+ A = 2E ,且 A = 4 ,则二次型x T Ax 规范形为A. y 2 + y 2 + y 2.B. y 2 + y 2 - y 2. y ''1 2 3 1 2 3⎩ C. y 2 - y 2 - y 2. D. - y 2 - y 2 - y 2.【答案】C【解答】由 A 2+ A = 2E ,可知矩阵的特征值满足方程 λ 2+ λ - 2 = 0 ,解得, λ = 1 或λ = -2 . 再由 A = 4 ,可知λ = 1, λ = λ = -2 ,所以规范形为 y 2 - y 2 - y 2 . 故答案选C.123123二、填空题:9~14 小题,每小题 4 分,共 24 分. 29. lim(x + 2x) x= .x →02 2 x x lim ln(x +2 ) 【解析】lim(x + 2 ) x = e x →0 xx →02 x x + 2x -1 x其中lim ln(x + 2 ) = 2 l im = 2 lim(1+ 2 ln 2) = 2(1+ ln 2)x →0 x x →0 xx →02所以lim(x + 2x) x= e2+2ln 2= 4e 2x →0⎧x = t - sin t 310. 曲线 ⎨y = 1- cos t 在t = 2 π 对应点处切线在 y 轴上的截距 .【解析】d y= d x sin t 1- cos t 当t = 3 π 时, x = 3 π +1, y = 1, d y= -12 2 d x所以在t = 3 π 对应点处切线方程为 y = -x + 3π + 22 2所以切线在 y 轴上的截距为 3π + 22 y 2 ∂z ∂z11. 设函数 f (u ) 可导, z = yf ( x ),则2x ∂x + y ∂y= .∂z 【解析】 =' y 2- y 2= - y 3 ' y 2∂x yf ( )( x x 2) f ( ) x 2 x∂z = y 2' y 2 2 y y 2 2 y 2 ' y 2f ( ) + yf ∂y x ( )( x ) = f ( ) + x x xf ( )x∂z ∂z y 2 所以2x ∂x + y ∂y = yf ( x)12. 设函数 y = ln cos x (0 xπ) 的弧长为.66 ⎝ ⎭ ⎩πππ 1【解析】弧长 s =⎰61+ ( y ')2d x = ⎰61+ tan 2x d x = ⎰ 6d x0 cos x= ln |1 cos xπ+ tan x | = ln 0= 1 ln 3 2xsin t 2113. 已知函数 f (x ) = x⎰1td t ,则⎰0 f (x )d x =.xsin t 211【解析】设 F (x ) =⎰1td t ,则⎰0 f (x )d x = ⎰0 xF (x )d x = 1 1 F (x )d x 2 = 1 [x 2F (x )] 1 - 11 x 2d F (x )2 ⎰22 ⎰0= - 1 ⎰1 x 2 F '(x )d x = - 1 ⎰1 x 2 sin x 2 d x2 0 2 0 x = - 1 1 x sin x 2d x = 1 cos x 21 = 1 (cos1-1)2 ⎰04 04⎛ 1 -1 0 0 ⎫ -2 1 -11 ⎪14. 已知矩阵 A =⎪ , A 表示 | A | 中 (i , j ) 元的代数余子式, 则3 -2 2 -1⎪ ij0 0 3 4 ⎪A 11 - A 12 = .1 -1 0 0 1 0 0 0 -2 1-1 1-2 -1 -1 1【解析】 A 11 - A 12 =| A |= 3-2 2 -1 =3 1 2 -1 0 03 4 03 4-1 -1 1 -1 -1 1= 1 2 -1 = 0 1 0 = -4 0 3 4 0 3 4三、解答题:15~23 小题,共 94 分.解答应写出文字说明、证明过程或演算步骤.15、(本题满分 10 分)⎧⎪x 2 x , x > 0, 已知 f (x ) = ⎨⎪x e x +1, x 0, 求 f '(x ) ,并求 f (x ) 的极值.解: x > 0 时, f '(0) = (e2 x ln x)' = e 2 x ln x (2 ln x + 2) ;x < 0 时, f '(x ) = (x +1)e x ;3e xe + ⎩ ⎰ ⎰' f (x ) - f (0)e 2 x ln x -1又 f (0) = lim x →0+x - 0 = limx →0+x= lim 2x ln x = lim 2 l n x = -∞ ,x →0+xx →0+所以 f '(0) 不存在,因此'⎪⎧2x 2 x(1+ ln x ),x > 0,f (x ) = ⎨⎪(x +1)e x , x < 0. 令 f '(x ) = 0 ,得驻点 x = -1, x = 1;另外 f (x ) 还有一个不可导点 x = 0 ;1 3 e2又(-∞, -1) 为单调递减区间, (-1, 0) 为单调递增区间, (0, 1) 为单调递减区间, (1, +∞) 为单e e 1 1- 2 调递增区间;因此有极小值 f (-1) = 1- 和极小值 f ( ) = e e ,极大值 f (0) = 1.e e16、(本题满分 10 分) 3x + 6求不定积分(x -1)2(x 2+ x +1) d x .3x + 6232x +1解:⎰ (x -1)2(x 2+ x +1) d x = ⎰[- x -1 + (x -1)2+ x 2+ x + ]d x117、(本题满分 10 分)= -2 ln x -1 -3x -1+ ln(x 2 + x +1) + Cy = y (x ) 是微分方程 y ' - xy =x 2e 2 满足 y (1) = 的特解.(1) 求 y (x ) ;(2) 设平面区域 D = {(x , y }|1 x 2, 0 y y (x )} ,求 D 绕 x 轴旋转一周所得旋转体的体积.x 2解(1) y (x ) = e ⎰x d x[ e ⎰- x d x⋅1e 2 d x + C ] 2x 2= e 2 (⎰ x 2 d x + C ) = e 2(+ C ) ;又由 y (0) = 得C = 0 ,最终有2 x 2 x x 1 1sin 2 θ 2⎰π⎰πn n1 1(2)所求体积y (x ) = x 2 x e 2.V = ⎰ π( x 2x e 2 )2 d x = π⎰2x e x 2 d x= π e x 2 2 1 = π (e 4- e) . 218、已知平面区域 D 满足 xy ,(x 2+ y 2 )3y 4,求 ⎰⎰x d y .解:由 x y 可知区域 D 关于 y 轴对称,在极坐标系中,π θ3π;将 x = r cos θ , y = r sin θ代入(x 2+ y 2 )3由奇偶对称性,有44y 4 得 r ;x + yyπsin 2 θr sin θ ⎰⎰D x d y = ⎰⎰x d y = 2 2 d θ 04r d r rππ 43 2 = 2 sin 5 θ d θ = - 2 (1- cos 2 θ )2 dcos θ =1204419、设n 为正整数,记 S 为曲线 y = e - xsin x (0求lim S . n →∞x n π) 与 x 轴所围图形的面积,求 S n ,并解:设在区间[k π,(k +1)π] (k = 0,1, 2,L , n -1) 上所围的面积记为u k ,则u k =(k +1) π e - x| sin x | d x = (-1)kk π(k +1) π e - xsin x d x ;k π记 I = ⎰e- xsin x d x ,则 I = -⎰e - x d cos x = -(e - x cos x - ⎰ cos x de - x )= -e - x cos x - ⎰e - x dsin x = -e - x cos x - (e - x sin x - ⎰sin x de - x ) = -e - x (cos x + sin x ) - I ,所以 I = - 1e - x(cos x + sin x ) + C ;2因此u k= (-1)k(-1 )e -k (cos x + sin x )2 (k +1) πk π= 1(e -(k +1) π + e -k π ) ; 2(这里需要注意cos k π = (-1)k)x 2+ y 2x 2 + y 2x 2+ y 2⎰π ⎰⎰2⎰xx x 1因此n -11n-k π1 e -π - e -(n +1) πS n = ∑u k = 2 + ∑e = 2 + 1- e -π ;k =0k =11 e -π - e -(n +1) π1e -π 1 1 lim S n = + lim -π= + -π = + π n →∞2 n →∞ 1- e2 1- e 2 e -120 、已知函数 u (x , y ) 满足 2 ∂2u ∂x 2∂2u 2 ∂y 2 + 3 ∂u ∂x + 3 ∂u∂y = 0 ,求 a , b 的值, 使得在变换u (x , y ) = v (x , y )e ax +by 下,上述等式可化为v (x , y ) 不含一阶偏导数的等式.解: ∂u = v 'e ax +by + va e ax +by ,∂x ∂2u =x ' ax +by' ax +by ' ax +by2 ax +by ∂x 2v xx e + v x a e + v x a e + va e= v ' eax +by + 2av 'e ax +by + a 2v e ax +by∂u'ax +by ax +by ∂2u' ax +by ' ax +by 2 ax +by同理,可得 ∂y = v y e + bv e , ∂y 2= v yye + 2bv y e + b v e ;将所求偏导数代入原方程,有eax +by[2v ' - 2v ' + (4a + 3)v ' + (3 - 4b )v ' + (2a 2 - 2b 2+ 3a + 3b )v ] = 0 , xx yy x y从而4a + 3 = 0, 3 - 4b = 0 ,因此a = - 3 , b = 3.4 4121、已知函数 f (x , y ) 在[0,1] 上具有二阶导数,且 f (0) = 0, f (1) = 1, ⎰f (x )d x = 1 ,证明:(1)存在ξ ∈(0,1) ,使得 f '(ξ ) = 0 ;(2)存在η ∈(0,1) ,使得 f ''(η) < -2 .证明:(1)由积分中值定理可知,存在c ∈(0,1) ,使得⎰f (x )d x = (1- 0) f (c ) ,即 f (c ) = 1 .因此 f (c ) = f (1) = 1,由罗尔定理知存在ξ ∈(c ,1)(⊂ (0,1)) ,使得 f '(ξ ) = 0 .(2)设 F (x ) = f (x ) + x 2,则有 F (0) = 0, F (c ) = 1+ c 2, F (1) = 2 ;由拉格朗日中值定理可得:存在η ∈(0, c ) ,使得 F '(η = F (c ) - F (0) =c 2 +11 1 ) c - 0 c ;存在η ∈(c ,1) ,使得 F '(η = F (1) - F (c ) = 1- c 2 = +2 2 ) 1- c 1- c1 c ;-⎝ ⎭⎝ ⎭对于函数 F '(x ) ,由拉格朗然中值定理同样可得,存在η ∈ (η1,η2 (⊂ (0,1)) ,使得c 2 +1 1'' F '(η ) - F '(η ) (c +1) - 1- cc F (η) = 2 1 = = < 0 ,η2 -η1 η2 -η1 η2 -η1即 f ''(η) + 2 < 0 ;结论得证.⎡1 ⎤ ⎡1⎤ ⎡ 1 ⎤22. 已知向量组(Ⅰ) α = ⎢1 ⎥,α = ⎢0⎥ , α = ⎢ 2 ⎥,1 ⎢ ⎥ ⎢⎣4⎥⎦2 ⎢ ⎥ ⎢⎣4⎥⎦3 ⎢ ⎥⎢⎣a 2+ 3⎥⎦⎡ 1 ⎤ ⎡ 0 ⎤ ⎡ 1 ⎤(Ⅱ) β = ⎢ 1 ⎥ , β = ⎢ 2 ⎥ , β =⎢ 3 ⎥ , ,若向量组(Ⅰ)和向量组(Ⅱ)等价,1 ⎢ ⎥2 ⎢⎥ 3 ⎢ ⎥ ⎢⎣a + 3⎦⎥ ⎣⎢1- a ⎦⎥ ⎢⎣a 2+ 3⎥⎦求a 的取值,并将β3 用α1 , α2 , α3 线性表示.【解析】令 A = (α , α , α ) , B = ( β , β , β ) ,所以, A = 1- a 2 , B = 2(a 2-1) .123123因向量组 I 与 II 等价,故r ( A ) = r (B ) = r ( A , B ) ,对矩阵( A , B ) 作初等行变换.因为⎛ 1 1 1 1 0 1 ⎫ ⎛ 1 1 1 1 0 1 ⎫ ( A , B ) =1 02 1 23 ⎪ → 0 -1 1 0 2 2 ⎪.⎪ ⎪ 4 4 a 2 + 3 a + 3 1- a a 2 + 3⎪ 0 0 a 2 -1 a -1 1- a a 2 -1⎪ ⎝ ⎭ ⎝ ⎭当 a = 1时,r ( A ) = r (B ) = r ( A , B ) = 2 ;当a = -1 时,r ( A ) = r (B ) = 2 ,但r ( A , B ) = 3 ; 当 a ≠ ±1时, r ( A ) = r (B ) = r ( A , B ) = 3 . 综上,只需a ≠ -1即可. 因为对列向量组构成的矩阵作初等行变换,不改变线性关系.⎛ 1 0 2 3 ⎫ ①当a = 1时,(α , α , α , β ) → 0 1 -1 -2 ⎪,故 β = x α + x α + x α 的等价方程1 2 3 3 ⎪ 0 0 0 0 ⎪ 3 1 1 2 2 3 3⎧ x 1 = 3 - 2x 3 , 组为 故 β = (3 - k )α + (-2 + k )α + k α ( k 为任意常数); ⎨x = -2 + x . 3 1 2 3⎩ 23⎛ 1 0 0 1 ⎫ ②当a ≠ ±1时,(α , α , α , β ) →0 1 0 -1⎪ ,所以 β = α - α + α . 1 2 3 3 ⎪ 0 0 1 1 ⎪ 3 1 2 3⎩⎝ ⎭⎝ ⎭⎝ ⎭ ⎝ ⎭⎡-2 -2 1 ⎤ ⎡2 1 0⎤ 23.已知矩阵 A = ⎢ 2 x -2⎥ 与B = ⎢0 -1 0⎥ 相似, ⎢ ⎥ ⎢ ⎥(Ⅰ)求 x , y ;⎢⎣ 0 0 -2⎥⎦ ⎢⎣0 0 y ⎥⎦(Ⅱ)求可逆矩阵P 使得P -1AP = B⎧⎪-2 + x - 2 = 2 -1+ y ,解:(1)相似矩阵有相同的特征值,因此有⎨⎪ A = B ,又 A = -2(4 - 2x ) , B = -2 y ,所以 x = 3, y = -2 . (2)易知 B 的特征值为2, -1, -2 ;因此⎛ 2 1 0 ⎫ A - 2E ↓r↓→0 0 1 ⎪ ,取ξ = (-1, 2, 0)T ,⎪1 0 0 0 ⎪ ⎛ 12 0 ⎫ A+ E ↓r↓→0 0 1 ⎪ ,取ξ = (-2,1, 0)T ,⎪2 0 0 0 ⎪ ⎛ 4 0 1 ⎫ A+ 2E ↓r↓→0 2 -1⎪ ,取ξ = (-1, 2, 4)T⎪ 0 0 0 ⎪3⎛ 2 0 0 ⎫ 令 P = (ξ ,ξ ,ξ ) ,则有 P -1AP = 0 -1 0 ⎪;1 123 1 1 ⎪ 0 0 -2⎝ ⎭⎛ 1 -1 0 ⎫ ⎛ 2 0 0 ⎫ 同理可得,对于矩阵 B ,有矩阵 P = 0 3 0 ⎪ , P -1BP = 0 -1 0 ⎪ ,所以2 ⎪ 2 2 ⎪ 0 0 1 ⎪ 0 0 -2 ⎪ ⎝ ⎭ ⎝ ⎭ P -1 AP = P -1BP ,即 B = P P -1 APP -1 ,所以11222 11 2⎛ -1 -1-1⎫ P = PP-1 =2 1 2 ⎪ . 1 2⎪ 0 0 4 ⎪。

2019年全国硕士研究生入学统一考试数学(二)真题及答案

2019年全国硕士研究生入学统一考试数学(二)真题及答案

2019年全国硕士研究生入学统一考试数学(二)真题及答案(江南博哥)1[单选题]当x→0时,x-tanx与x k是同阶无穷小,则k=( ).A.1B.2C.3D.4正确答案:C参考解析:因为,若要x-tanx与x k是同阶无穷小,则k=3,故选C项。

2[单选题]y=xsinx+2cosx[x∈()]的拐点坐标是().A.(0,2)B.(π,-2)C.(,)D.正确答案:B参考解析:y'=sinx+xcosx-2sinx,y”=-xsinx,令y”=0得x=0,x=π,又因为=-sinx-xcosx,将上述两点代入(π)≠0,所以(π,-2)是拐点。

3[单选题]下列反常积分发散的是().A.B.C.D.正确答案:D参考解析:对于A项:4[单选题]已知微分方程的通解为y=(C1+C2x)e-x+e x,则a,b,c 依次为().A.1,0,1B.1,0,2C.2,1,3D.2,1,4正确答案:D参考解析:由条件知特征根为λ1=λ2=-1,特征方程为(λ—λ1)(λ—λ2)=λ2+2λ+1=0,故a=2,b=1,而y*=e x为特解,代入得c=4,故选D项。

5[单选题]已知平面区域,,则I1,I2,I3的大小关系为( )。

A.I3<I2<I1B.I2<I1<I3C.I1<I2<I3D.I2<I3<I1正确答案:A参考解析:因为6[单选题]已知f(x),g(x)二阶导数存在且在x=a处连续,则是f(x),g(x)相切于a且曲率相等的( )。

A.充分非必要条件B.充分必要条件C.必要非充分条件D.既非充分又非必要条件正确答案:A参考解析:必要性:f(x),g(x)相切于a,则f(a)=g(a),f'(a)=g'(a),f(x)与g(x)相切于点a,且曲率相等,故选A项。

7[单选题]设A是四阶矩阵,A*是A的伴随矩阵,若线性方程Ax=0的基础解系中只有2个向量,则A*的秩是( )。

A.0B.1C.2D.3正确答案:A参考解析:因为Ax=0的基础解系中只有2个向量,所以4-r(A)=2,则r(A)=2.所以r(A*)=0,故选A项。

考研数学二答案解析

考研数学二答案解析

20
20
x
= − 1
2
1 x sin x2dx = 1 cos x2
0
4
1 0
=
1 4
(cos1−1)
1 −1 0 0
14. 已 知 矩 阵
A
=

−2
3
1 −2
−1 2
1

−1

Aij
表示
|
A|

(i,
j)
元的代数余子式,则

0
0
3
4

A11 − A12 = ___________.
【解析】 x − tan x ~ − x3 ,所以选 C. 3
2、设函数 y = x sin x + 2 cos x(− π x 3π) 的拐点 22
A. ( π , π ). 22
B. (0, 2).
C. (π, −2).
D. (3π , − 3π ). 22
【答案】C.
【解析】令 y = −x sin x = 0 ,可得 x = π ,因此拐点坐标为(π,− 2).
f (x) − f (0) x−0
= lim e2xln x −1
x→0+
x
2x ln x
= lim
= lim 2 ln x = − ,
x x→0+
x→0+
所以 f (0) 不存在,因此
f
(
x)
=
2x2x (1+
(
x
+
1)e
x
ln ,
x),
x 0, x 0.

f

2019年全国硕士研究生数学二答案11页word文档

2019年全国硕士研究生数学二答案11页word文档

一、选择题 1、【分析】本题考查等价无穷小的有关知识.可以利用罗必达法则或泰勒公式完成。

【详解】法一:由题设知 1003sin sin 33cos 3cos31=lim=lim k k x x x x x xcx kcx-→→-- 23003sin 9sin 33cos 27cos3=lim=lim (1)(1)(2)k k x x x x x xk k cx k k k cx --→→-+-+--- 3024=lim(1)(2)k x k k k cx -→--从而(1)(2)243k k k c k --=⎧⎨=⎩,故3,4k c ==。

从而应选(C )。

法二:333333(3)()3(())(3())4()3!3!x x f x x o x x o x x o x =-+--+=+ 所以3,4k c ==。

,从而应选(C )。

2、【分析】本题考查导数的定义。

通过适当变形,凑出()f x 在0x =点导数定义形式求解。

【详解】2322333300()2()()(0)()(0)limlim[2]x x x f x f x x f x x f f x f x x x →→---=- ()2233300()(0)()(0)lim 2lim '0x x x f x x f f x f f x x→→--=-=- 故应选(B )。

评注:已知抽象函数在一点可导,求含有该函数的某个极限,一般应利用导数定义完成。

3、【分析】本题考查驻点的定义。

先求出导函数,进而求出导函数的零点即可。

【详解】:2(2)(3)(1)(3)(1)(2)31211'()(1)(2)(3)(1)(2)(3)x x x x x x x x f x x x x x x x --+--+---+==------令231211'()0(1)(2)(3)x x f x x x x -+==---,只需求2312110x x -+=, 由于2124311120∆=-⋅⋅=>,所以有两解。

2019考研数学二答案真题解析

2019考研数学二答案真题解析

D
D
I3 (1 cos x2 y2 )dxdy ,试比较 I1, I2 , I3 的大小( ) D
(A) I3 I2 I1
(B) I1 I2 I3
(C) I2 I1 I3
(D) I2 I3 I1
【答案】A
【解析】在区域
D
上,x2
y2
2 4
,令
x2
y2
,则 0
u
2
,所以有 sin
lim ( x 2x 1) 2
ex0
x
e22 ln 2
4e2
x0
10.曲线
2019 年全国硕士研究生入学统一考试数学(二)试题解析
一、选择题:1 8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项符合题目
要求的,请将所选项前的字母填在答.题.纸.指定位置上.
(1)当 x 0 时,若 x tan x 与 xk 是同阶无穷小,则 k ( )
(8)设 A 是 3 阶实对称矩阵, E 是 3 阶单位矩阵,若 A2 A 2 E 且 A 4 ,则二次型 xT Ax 的规
范形为( )
(A) y12 y22 y32
(B) y12 y22 y32
(C) y12 y22 y32
(D) y12 y22 y32
【答案】C
【解析】设矩阵 A 的特征值为 ,由 A2 A 2E 可得, 2 2 ,解得 1, 2 ,
【答案】D
【解析】由通解形式可得, (C1 C2 x)ex 是对应齐次方程的解,故是 1其二重特征值,所以其特
征方程为 ( 1)2 0 ,即 2 2 1 0 ,所以 a 2,b 1;再将特解 ex 带入原方程可得 c 4
(5)已知积分区域 D {(x, y)

2019考研数学二答案解析

2019考研数学二答案解析

+
1)e
x
ln ,
x),
x 0, x 0.

f
( x)
=
0 ,得驻点
x1
=
−1,
x3
=
1 e
;另外
f
(x)
还有一个不可导点
x2
=
0;
又 (−, −1) 为单调递减区间, (−1, 0) 为单调递增区间, (0, 1) 为单调递减区间, (1 , +) 为单
e
e
调递增区间;因此有极小值
f
(−1)
=1−
y = f (x), y = g(x) 在 x = a 处相切及曲率相等的
A. 充分非必要条件.
B. 充分必要条件.
C. 必要非充分条件.
D. 既非充分又非必要条件.
【答案】A
【解析】充分性:利用洛必达法则,有
lim
x→a
f
(x) − g(x) (x − a)2
= lim x→a
f (x) − g(x) 2(x − a)
2019 年全国硕士研究生入学统一考试 数学(二)试题及答案解析
一、选择题:1~8 小题,每小题 4 分,共32 分.下列每题给出的四个选项中,只有一个 选项是符合题目要求的.
1、当 x → 0 时,若 x − tan x 与 xk 是同阶无穷小,则 k =
A. 1. C. 3.
【答案】C
B. 2. D. 4.
A
=
−2
3
1 −2
−1 2
1
−1

Aij
表示
|
A|

(i,
j)
元的代数余子式,则

2019年考研数学二真题答案解析

2019年考研数学二真题答案解析
1 令 f x =0 ,得 x1 e , x2 1 .
于是有下列表
x
f ( x) f ( x)
(, 1)
-1 0 极小值
(-1,0) +

0 不存在 极大值
1

1 0, e
1 e
0 极小值
1 , e +

当 x 0, e
I 3 1 cos x 2 y 2 dxdy 的大小关系为( )
D


A. I 3 I 2 I1 【答案】A
B.
I1 I 2 I 3
C. I 2 I1 I 3
D. I 2 I 3 I1
【答案解析】因为 sin x x ( x 0时) ,所以 x y sin

1
, f x 0, f x 单调递减,当 x e
,+ , f x 0, f x 单调递增,
2
1 e 1 故 f e = 为极小值. e
0 , f x 0, f x 单调递增,当 x 0, e 当 x -1,
2
2
x 2 y 2 ,故可知: I1 I 2 ;
1 cos x sin x( x 0时) ,故由定积分性质可知: I 2 I 3 ,故选 A.
6.已知 f x g x 是二阶可导且在 x a 处连续,则 f x g x 相切于 a 且曲率相等是

B.1
C.2
D.3
【答案】A. 【答案解析】由于 Ax 0 的基础解系中只有 2 个向量,故 r ( A) 4 2 2 ,由

2019年考研《数学》考试试题及答案(卷二)

2019年考研《数学》考试试题及答案(卷二)

2019年考研《数学》考试试题及答案(卷二)一、选择题:1~8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内. (1)设函数()f x 有二阶连续导数,且0()1lim01cos x f x x →-=-,01x →=,则 (A)()f x 在点0x =处取极大值 (B)()f x 在点0x =处取极小值 (C)点(0,(0))f 是曲线()y f x =的拐点(D)点0x =不是()f x 的极值点,点(0,(0))f 也不是()y f x =的拐点[ ](2)设函数(,)f x y 在全平面上都有(,)0f x y x∂<∂,(,)0f x y y ∂>∂.则下列条件中能保证1122(,)(,)f x y f x y <的是(A) 1212,x x y y << (B)1212,x x y y <> (C) 1212,x x y y >< (D)1212,x x y y >>[ ](3)累次积分cos 2(cos ,sin )d f r r rdr πθθθθ⎰⎰可以写成(A)10(,)dy f x y dx ⎰(B)10(,)dy f x y dx ⎰ (C)11(,)dx f x y dy ⎰⎰(D)10(,)dx f x y dy ⎰[ ](4)设01p <≤,级数11sin()1n pnn x dx x π∞+=+∑⎰(A)绝对收敛 (B)条件收敛 (C)发散 (D)敛散性与p 有关[ ](5)设A ,B 是n 阶可逆矩阵,满足AB A B =+.则① ||||||A B A B +=; ② 111()AB A B ---=;③()0A E X -=只有零解; ④B E -不可逆. 中正确的项数是(A )1 (B )2 (C )3 (D )4[ ](6)已知线性方程组12AX k ββ=+有解,其中111121111A -⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦,1213β⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,2131β⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,则k 等于(A )1 (B )-1 (C )2 (D )-2[ ](7)设A 、B 、C 为事件,()0P ABC >,如果(|)(|)(|)P AB C P A C P B C =,则 (A )(|)(|)P C AB P C A = (B )(|)(|)P C AB P C B = (C )(|)(|)P B AC P B A = (D )(|)(|)P B AC P B C =[ ](8)设12,,,n X X X 是总体(0,1)N 的简单随机样本,记11ni i X X n ==∑,2211()1ni i S X X n ==--∑,2(1)(1)T X S =++,则()E T 的值为 (A )0 (B )1 (C )2 (D )4[ ]二、填空题:9~14小题,每小题4分,共24分.把答案填在题中横线上. (9)2cos 0t xe dt -+=⎰⎰的实根个数是_____.(10)设(,)f x y 存在一阶偏导数,且(1,1)1f =,(1,1)2x f '=,(1,1)1y f '=.又()(,(,(,)))x f x f x f x x ϕ=,则(1)ϕ'=_____.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019全国研究生招生考试数学二真题及答案解析一、选择题1.当0→x 时,若x x tan -与kx 是同阶无穷小,则=k A.1. B.2. C.3. D.4.2.)(π202≤≤+=x x cos x sin x y 的拐点A.⎪⎭⎫⎝⎛2,2ππ B.()2,0C.()2,πD.⎪⎭⎫⎝⎛-23,23ππ 3.下列反常积分收敛的是() A.dx xe x ⎰+∞-0B.dx xe x ⎰+∞-02C.dx x x⎰+∞+021arctanD.dx x x ⎰+∞+0214.c ,b ,a ,x C C y ce byy a y x -x x 则的通解为已知e )e (21++==+'+''的值为( )A.1,0,1B.1,0,2C.2,1,3D.2,1,45.已知积分区域⎭⎬⎫⎩⎨⎧≤+=2πy x |y ,x D )(,dxdy y x I D ⎰⎰+=221,dxdy y x I D⎰⎰+=222sin,(dxdy y x I D)cos 1223⎰⎰+-=,试比较321,,I I I 的大小A.123I I I <<B.321I I I <<C.312I I I <<D.132I I I <<6.已知)()(x g x f 是二阶可导且在a x =处连续,请问)()(x g x f 相切于a 且曲率相等是0)()()(lim2=--→a x x g x f ax 的什么条件?A.充分非必要条件B.充分必要条件C.必要非充分条件D.既非充分又非必要条件7.设A 是四阶矩阵,*A 是A 的伴随矩阵,若线性方程组0=Ax 的基础解系中只有2个向量,则*A 的秩是A.0B.1C.2D.38.设A 是3阶实对称矩阵,E 是3阶单位矩阵,若E A A 22=+,且4=A ,则二次型Axx T的规范形为A.232221y y y ++B.232221y y y -+ C.232221y y y -- D.232221y y y --- 二、填空题 9.2lim(2)x xx x →∞+=10.曲线sin 1cos x t t y t =-⎧⎨=-⎩在32t π=对应点处切线在y 轴上的截距为11.设函数()f u 可导,2()y z yf x =,则2z zx y x y∂∂+=∂∂12. 设函数ln cos 6y x x π=≤≤(0)的弧长为13. 已知函数2sin ()xtt f x xdt t=⎰,则10()f x dx =⎰14.已知矩阵1100211132210034A -⎛⎫ ⎪--⎪= ⎪-- ⎪⎝⎭,ij A 表示A 中(,)i j 元的代数余子式,则1112A A -=三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤. 15.(本题满分10分)已知函数⎩⎨⎧≤+>=010)(2x xe x x x f xx ,求的极值并求)()(x f x 'f16.(本题满分10分)求不定积分.dx x x x x ⎰++-+)1()1(6322 17.(本题满分10分))(x y y =是微分方程2221'x e xxy y =-满足条件e y =)1(的特解.由考研云助手整理( 专注免费考研资料 微信公众号提供更多资讯)(1)求)(x y(2)设平面区域{})x (y y ,x y ,D≤≤≤≤=021x )(,求D 绕轴旋转一周所得旋转体的体积.18.(本题满分10分) 已知平面区域D 满足()(){}4322y y x|y ,x ≤+,求.dxdy yx yx D⎰⎰++2219.(本题满分10分)x x f S ,N n x n sin e )(-+=∈是的图像与x 轴所谓图形的面积,求n S ,并求.S n n ∞→lim20.(本题满分11分)已知函数)(y ,x u 满足,yux u y u x u 033222222=∂∂+∂∂+∂∂-∂∂求b ,a 的值,使得在变换by ax y ,x v y ,x u +=)e ()(下,上述等式可化为)(y ,x v 不含一阶偏导数的等式.21.(本题满分11分)已知函数),(y x f 在[]1,0上具有二阶导数,且⎰===11)(,1)1(,0)0(dx x f f f ,证明:(1)存在)1,0(∈ξ,使得0)('=ξf ; (2)存在)1,0(∈η,使得2)(''-<ξf .22.(本题满分11分)已知向量组(Ⅰ)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=4111α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=4012α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+=32123a α, (Ⅱ)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+=3111a β,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=a 1202β,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+=33123a β,若向量组(Ⅰ)和向量组(Ⅱ)等价,求a 的取值,并将β用321,,ααα线性表示.23.(本题满分11分)已知矩阵相似与⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛----=y B x A 0001001220022122(1)求y x ,,x(2)求可逆矩阵,P 使得B AP P =-1由考研云助手整理( 专注免费考研资料 微信公众号提供更多资讯)2019年全国硕士研究生入学统一考试数学试题解析(数学二)1.C2.C3.D4.D5.A6.C7.A8.C9. 24e 10. 223+π 11. z 12. 3ln 2113.)11(cos 41- 14. 4-15.解:当0x >时,()()()()()22ln 2ln 22ln 2=2ln 2xx xx xx f x x e ex x x '''===++.当0x <时,()()()e 1e e 1e x x x x f x x x x ''=+=+=+.当=0x 时,()01f =,()22ln 000112ln 0lim lim lim x x x x x x x e x xf x x x ++++→→→--'====-∞, ()00110lim lim 1x xx x xe f e x---→→+-'===.故()()()22ln 2 0=1e 0x xx x x f x x x ⎧+>⎪'⎨+<⎪⎩. 令()=0f x ',得112,1x e x -==-.(1)当()()()10,,0,x e f x f x -'∈<单调递减, 当()()()1,0,x e f x f x -'∈∞>,+单调递增,故()211=ef ee -⎛⎫ ⎪⎝⎭为极小值. (2)当()()()0,0,x f x f x '∈>-1,单调递增, 当()()()10,,0,x e f x f x -'∈<单调递减,故()0=1f 为极大值.(3)当()()(),1,0,x f x f x '∈-∞-<单调递减,当()()()0,0,x f x f x '∈>-1,单调递增, 故()11=1f e ---+为极小值.16.17.18.由考研云助手整理( 专注免费考研资料 微信公众号提供更多资讯)()()2333sin 544444443322244444sin 11=sin sin cos 22111cos cos 12cos cos cos 22120r I d rdr d d r d d πθπππππππππθθθθθθθθθθθ==-=--=--+=⎰⎰⎰⎰⎰⎰19.20.解:()(),,ax byu x y v x y e+=2222222222ax byax by ax byax by ax by ax by ax by ax byax by ax by ax byax by u v e ave x xu v e bve y yu v v v e a e a e a ve x x x x u v v v e b e b e b ve y y y y++++++++++++∂∂=+∂∂∂∂=+∂∂∂∂∂∂=+++∂∂∂∂∂∂∂∂=+++∂∂∂∂,带入得430340ab+=⎧⎨-=⎩,解得3434ab⎧=-⎪⎪⎨⎪=⎪⎩.21.22.解:由考研云助手整理( 专注免费考研资料 微信公众号提供更多资讯)()1231232222111101,,,,,10212344+331+3111101011022001111a a a a a a a a αααβββ⎡⎤⎢⎥=→⎢⎥⎢⎥+-⎣⎦⎡⎤⎢⎥-⎢⎥⎢⎥----⎣⎦(1)当210a -≠,即1a ≠±时,()()123123,,3,,,3r r αααβββ==,此时两个向量组必然等价,且3123=+βααα-.(2)当=1a 时,()123123111101,,,,,011022000000αααβββ⎡⎤⎢⎥→-⎢⎥⎢⎥⎣⎦此时两个向量组等价,()()3123=232+k k k βααα-++-.(3)当=1a -时,()123123111101,,,,,011022000220αααβββ⎡⎤⎢⎥→-⎢⎥⎢⎥-⎣⎦.此时两个向量组不等价.23.(1)A 与B 相似,则()()tr A tr B =,A B =,即41482x y x y -=+⎧⎨-=-⎩,解得32x y =⎧⎨=-⎩(2)A 的特征值与对应的特征向量分别为1=2λ,11=20α⎛⎫ ⎪- ⎪ ⎪⎝⎭;2=1λ-,22=10α-⎛⎫ ⎪ ⎪ ⎪⎝⎭;3=2λ-,31=24α-⎛⎫⎪ ⎪⎪⎝⎭. 所以存在()1123=P ααα,,,使得111212P AP -⎡⎤⎢⎥=Λ=-⎢⎥⎢⎥-⎣⎦. B 的特征值与对应的特征向量分别为1=2λ,11=00ξ⎛⎫⎪ ⎪⎪⎝⎭;2=1λ-,21=30ξ⎛⎫ ⎪- ⎪ ⎪⎝⎭;3=2λ-,30=01ξ⎛⎫ ⎪ ⎪ ⎪⎝⎭. 所以存在()2123=P ξξξ,,,使得122212P AP -⎡⎤⎢⎥=Λ=-⎢⎥⎢⎥-⎣⎦.所以112211=P AP P AP --=Λ,即1112112B P P APP P AP ---== 其中112111212004P PP --⎡⎤⎢⎥==--⎢⎥⎢⎥⎣⎦.。

相关文档
最新文档