三角函数的图象和性质

合集下载

三角函数的图像与性质

三角函数的图像与性质

三角函数的图像与性质三角函数的图像与性质在数学中,三角函数是一种基本的函数类型,其中的很多图像和性质对理解数学十分重要。

它们有助于理解各种模型的表示和应用,增强数学思维的能力和加深数学知识。

本文就三角函数的图像与性质做一些简单的介绍。

I、三角函数图像1、正弦曲线:正弦曲线是由参数从0到2π(2π是将一个周期跨越两次)形成的空间曲线。

它是圆的切线,有一定的规律性,并且把圆分为一个完整的一个周期,表现的曲线是一个“s”字形,形成有节奏的变化形式。

2、余弦曲线:余弦曲线是一条由参数从0到2π(2π是将一个周期跨越两次)形成的空间曲线,它也是圆的切线,有一定的规律性,但是它把圆分为两个半周期,比较起来更加缓和,表现的曲线是一个“v”字形,形成有节奏的变化形式。

3、正切曲线:正切曲线可以由参数0到π(π是将一个周期跨越一次)形成的曲线。

它也是一个椭圆的切线,有一定的规律性,把椭圆分为一完整周期,表现的曲线是一个“z”字形,形成有节奏的变化形式。

II、三角函数的性质1、周期性:三角函数的周期性就是说其值的变化是有如左图5000式的一个循环周期,在实际应用中可以利用该性质进行参数估计。

2、增减性:三角函数具有明显的增减性,具体表现为当参数逐渐增加时,函数值会自动增大,而当参数逐渐减小时,函数值则会自动减小。

3、几何性:三角函数有一个令人惊讶的性质,即在几何上其值就等于一定参数的弧度,而且参数的变化也不会影响该弧度。

4、极限性:参数π/2处的正切函数的值无穷大,表示非常接近的范围内函数的变化是接近无穷大的,而参数为0处的余弦函数为1,表示函数在某一点的取值趋势没有了变化,变成一个规定值。

总结来说,三角函数可以说是数学之中一个基本的概念,其图形和性质极其重要,可以帮助我们更深入的理解数学,增进数学的应用能力,因此,值得我们认真好好的学习。

三角函数的图像与性质

三角函数的图像与性质

三角函数的图像与性质三角函数是数学中的重要概念,它们在几何、物理、工程等领域都有广泛的应用。

本文将探讨三角函数的图像与性质,并通过图像展示它们的特点。

一、正弦函数(sine function)正弦函数是最基本的三角函数之一,常用符号为sin(x)。

它的图像是一条连续的曲线,表现出周期性的波动。

正弦函数的性质如下:1. 周期性:正弦函数的周期为2π,即在每个2π的区间内,函数的值会重复。

2. 对称性:正弦函数是奇函数,即满足sin(-x)=-sin(x)。

这意味着它的图像关于原点对称。

3. 取值范围:正弦函数的值域在[-1, 1]之间,即函数的值不会超过这个范围。

二、余弦函数(cosine function)余弦函数是另一个常见的三角函数,常用符号为cos(x)。

它的图像也是一条连续的曲线,与正弦函数的图像非常相似。

余弦函数的性质如下:1. 周期性:余弦函数的周期也是2π,与正弦函数相同。

2. 对称性:余弦函数是偶函数,即满足cos(-x)=cos(x)。

这意味着它的图像关于y轴对称。

3. 取值范围:余弦函数的值域也在[-1, 1]之间,与正弦函数相同。

三、正切函数(tangent function)正切函数是三角函数中的另一个重要概念,常用符号为tan(x)。

正切函数的图像也是一条连续的曲线,但与正弦和余弦函数有所不同。

正切函数的性质如下:1. 周期性:正切函数的周期为π,即在每个π的区间内,函数的值会重复。

2. 奇点:正切函数在π/2和-π/2处有奇点,即函数在这些点上无定义。

3. 取值范围:正切函数的值域为整个实数轴,即它可以取到任意的实数值。

四、其他三角函数除了正弦、余弦和正切函数,还有许多衍生的三角函数,如余切函数、正割函数和余割函数等。

它们的图像和性质与前面介绍的三角函数类似,只是在计算和应用中有一些特殊的情况。

五、图像展示为了更好地理解三角函数的图像与性质,下面是一些图像展示:(插入正弦函数、余弦函数和正切函数的图像)从图中可以清楚地看出正弦函数和余弦函数的周期性和对称性,以及正切函数的特殊性。

三角、反三角函数图像及性质与三角公式

三角、反三角函数图像及性质与三角公式

三角、反三角函数图像(附:资料所有来自网络,仅对排版做了变动,以方便打印及翻阅,此中可能出现错误,阅者请自行注意。

)1.六个三角函数值在每个象限的符号:sin α· csc α cos α· sec α tan α· cot α2.三角函数的图像和性质:y=sinxy-5- 2 12-7o -4-3-2 -3 -2-1237 25223 422xy=cosxy-5- 2 1-32- -4-7-2 -3o 22-1yy=tanx3 3 7 2225 422yy=cotxx-3-- 22o322x-- 2o3 2x22函数y=sinxy=cosx y=tanxy=cotx{ x | x ∈R 且 { x | x ∈ R 且定义域R Rx ≠ k π+,k ∈ Z }x ≠ k π∈,kZ }2[ -1, 1] x=2k π+时[ -1,1]maxR2x=2k π时 y=1y max =1x=2k π +时π R无最大值值域无最大值y min =-1无最小值x=2k π- 时 y =-1无最小值min2周期性 周期为 2π 周期为 2π 周期为 π 周期为 π 奇偶性 奇函数偶函数 奇函数 奇函数在[ 2kπ-,2k π+]在[ 2kπ-π, 2kπ]在 (k π-,kπ+ )在 (k π, kπ+π)内上都是增函数;都是减函数2222在[ 2kπ,2kπ+π](k∈ Z)上都是增函数;在内都是增函数单一性2上都是减函数(k∈ Z)[ 2kπ+(k∈ Z),2k π+π]上23都是减函数 (k∈ Z)3.反三角函数的图像和性质:arcsinx arccosxarctanx名称反正弦函数y=sinx(x∈〔- ,〕的反函2 2定义数,叫做反正弦函数,记作 x=arsinyarcsinx 表示属于[- ,]理解22且正弦值等于x 的角定义域[ -1, 1]值域[ - ,]性22单一性在〔 -1, 1〕上是增质函数奇偶性arcsin(-x)=-arcsinx周期性都不是周期函数反余弦函数y=cosx(x∈〔0, π〕 )的反函数,叫做反余弦函数,记作x=arccosyarccosx 表示属于[ 0,π],且余弦值等于 x 的角[-1, 1][0,π]在[ -1,1]上是减函数arccos(-x)= π-arcc osxarccotx反正切函数反余切函数y=tanx(x∈ (-,y=cotx(x∈ (0, π ))的反函数,叫做2反余切函数,记2)的反函数,叫作 x=arccoty做反正切函数,记作x=arctanyarctanx 表示属于arccotx 表示属于(-, ),且正切值(0,π)且余切值等于 x 的角22等于 x 的角(-∞, +∞)(-∞, +∞)(-, )(0,π)2 2在 (-∞, +∞)上是增在(-∞,+∞)上是数减函数arctan(-x)=-arctanx arccot(-x)= π-arcc otxsin(arcsinx)=x(x∈cos(arccosx)=x(x tan(arctanx)=x(x ∈ R) cot(arccotx)=x(x[ -1,∈[-1,1] )arctan(tanx)=x∈ R)恒等式1] )arcsin(sinx)=x(x arccos(cosx)=x(xarccot(cotx)=x(x( x∈ (-, ))∈[-, ] )22∈[0, π] )∈ (0, π ))22互余恒等式arcsinx+arccosx= (x∈[ -1,1] )arctanx+arccotx=(X∈ R)22 arcsin(-x)=-arcsinx arccos(-x)=π-arccosxarctan(-x)=-arctanx arccot(-x)=π-arccotxarcsinx+arccosx=arctanx+arccotx=π/2sin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arccotx)=x当 x∈ [-π/2, π/2]arcsin(sinx)=xx∈[0,π]arccos(cosx)=xx∈(-π/2, π/2)arctan(tanx)=xx∈(0, π)arccot(cotx)=x三角公式总表abc1.正弦定理 :=== 2R ( R 为三角形外接圆半径)sin A sin B sin C2.余弦定理: a 2 =b 2 +c 2 -2bc cos Ab 2 =a 2 +c 2 -2ac cosB c 2 =a 2 +b 2 -2ab cosCb 2c 2 a 2cos A2bc⊿=12=1a h a = 2 ab sinC = a 2 sin B sin C b 2 =2sin A1bc sin A =1ac sin B =abc=2R 2 2 4Rsin Asin C c 2sin Asin B2sin B = =pr=2sinC2sin A sin B sin Cp( p a)( p b)( p c)(此中 p 1(a b c) , r 为三角形内切圆半径 )24.同角关系:⑴商的关系:① tg= sin= sinsec② ctgcos coscscsin cos③ sincostg④ sec1 tgcsccos⑤ cossinctg⑥ csc1 ctgsecsin⑵倒数关系: sin csc cos sec tg ctg 1⑶平方关系: sin 2 cos 2sec 2tg 2csc 2ctg 21⑷ a sinb cosa 2b 2 sin()(此中协助角 与点( a,b )在同一象限,且tgb )a5.和差角公式① sin( ) sin cos cos sin② cos( ) coscos sin sin③ tg ()tg tg④ tgtgtg ()(1 tgtg )1 tg tg⑤tg ()tg tgtg tg tg tg1 tgtgtgtgtg此中当 A+B+C=π时 ,有 :tgi). tgAtgB tgCtgA tgB tgCii). tg A tgBtg A tgCtg B tg C12 2 22 226.二倍角公式: (含全能公式 )① sin 22sin cos2tg 1 tg 2② cos 22sin221 12 sin21tg2 cos 2 cos1tg 2③ tg 22tgtg 21④ sin 2tg 21cos22 1 cos21 tg 22⑤cos27.半角公式:(符号的选择由所在的象限确立)2① sin1cos② sin2222③ cos1cos④ cos2222⑤ 1cos 2 sin 2⑥ 1 cos2⑦ 1sin(cos sin ) 2cos sin2222⑧ tg1cos sin 1 cos21cos 1 cos sin1cos21cos22 cos228.积化和差公式:① sin cos1sin()sin()2② cos sin1sin()sin()2③ cos cos 1cos()cos() 2④ sin sin 1cos()cos 29.和差化积公式:① sin sin2sin cos22② sin sin 2 cos sin22③ cos cos 2 cos cos22④ cos cos2sin sin22。

三角函数的图象与性质 (共44张PPT)

三角函数的图象与性质 (共44张PPT)

(
)
3 3 A.-2,2 3 3 3 3 C. - , 2 2
解析: 当 故
π π 1 π π 5π x∈0,2 时, 2x- ∈- 6, 6 , sin2x-6 ∈-2,1, 6
上是减函数 - π , 0 C.在[0,π]上是增函数,在
)
π π π π D.在2,π和-π,-2上是增函数,在-2,2 上是减函数
3.(2015· 皖南八校模拟)函数 f(x)=cos 2x+2sin x 的最大值与最小值 的和是 A.-2 3 C.- 2
4.求函数 y=cos x+sin
2
π x|x|≤4 的最大值与最小值.
π 2 2 解:令 t=sin x,∵|x|≤ ,∴t∈- , . 4 2 2
∴y=-t
2
1 2 5 +t+1=-t-2 + , 4
1- 2 1 5 2 ∴当 t= 时,ymax= ,当 t=- 时,ymin= . 2 4 2 2 ∴函数 y=cos x+sin
sin 2x>0, 解析:由 2 9-x ≥0,
π kπ<x<kπ+ ,k∈Z, 2 得 -3≤x≤3.
π π ∴-3≤x<- 或 0<x< . 2 2 ∴函数 y=lg(sin 2x)+ 9-x
2
π π 的定义域为-3,2 ∪0,2 .
2
π 1- 5 x通法]
1.三角函数定义域的求法 求三角函数定义域实际上是构造简单的三角不等式(组),常借 助三角函数线或三角函数图象来求解.
2.三角函数值域的不同求法 (1)利用 sin x 和 cos x 的值域直接求;

三角函数的图像和性质

三角函数的图像和性质

三角函数的图像和性质三角函数是数学中的一类特殊函数,以其图像的周期性和性质的多样性而被广泛研究和应用。

本文将介绍三角函数的图像特点和基本性质。

一、正弦函数的图像和性质正弦函数是最基本的三角函数之一,用sin(x)表示。

其图像为周期性曲线,其周期为2π。

在一个周期内,正弦函数的值在[-1,1]之间变化。

图像在x轴上的零点是正弦函数的特殊点,记为x=kπ,其中k为整数。

正弦函数的图像在x=kπ时经过极大值或极小值。

正弦函数的性质:1. 周期性:sin(x+2π)=sin(x),即正弦函数在过一周期后会重复。

2. 奇偶性:sin(-x)=-sin(x),即正弦函数关于原点对称。

3. 对称性:sin(π-x)=sin(x),即正弦函数关于y轴对称。

二、余弦函数的图像和性质余弦函数是另一个常见的三角函数,用cos(x)表示。

余弦函数的图像也是周期性曲线,其周期同样为2π。

在一个周期内,余弦函数的值同样在[-1,1]之间变化。

与正弦函数不同的是,余弦函数的图像在x=kπ时经过极大值或极小值。

余弦函数的性质:1. 周期性:cos(x+2π)=cos(x),即余弦函数在过一周期后会重复。

2. 奇偶性:cos(-x)=cos(x),即余弦函数关于y轴对称。

3. 对称性:cos(π-x)=-cos(x),即余弦函数关于原点对称。

三、正切函数的图像和性质正切函数是三角函数中另一个常见的函数,用tan(x)表示。

正切函数的图像为周期性曲线,其周期为π。

正切函数的图像在x=kπ+π/2时会出现无穷大的间断点,即tan(x)在这些点是无界的。

正切函数的性质:1. 周期性:tan(x+π)=tan(x),即正切函数在过一个周期后会重复。

2. 奇偶性:tan(-x)=-tan(x),即正切函数关于原点对称。

四、其他三角函数除了正弦函数、余弦函数和正切函数,还有其他与它们密切相关的三角函数。

1. 反正弦函数:用arcsin(x)表示,表示一个角的正弦值等于x,返回值在[-π/2, π/2]之间。

三角函数图像与性质

三角函数图像与性质

三角函数图像与性质
三角函数是基本的初等函数之一,它以角度为自变量,以任意角度的终边与单位圆或其比值的交点坐标为因变量。

接下来看看常见三角函数的图像和性质。

三角函数的图像
三角函数的性质
1.正弦函数
在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A 的正弦,记作sinA,即sinA=∠A的对边/斜边。

正弦值在[2kπ-π/2,2kπ+π/2](k∈Z)随角度增大(减小)而增大(减小),在[2kπ+π/2,2kπ+3π/2](k∈Z)随角度增大(减小)而减小(增大)。

图像:波形曲线
值域:[-1,1]
定义域:R
2.余弦函数
在Rt△ABC(直角三角形)中,∠C=90°(如图所示),∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为
cosa=AC/AB。

余弦函数:f(x)=cosx(x∈R)。

余弦值在[2kπ-π,2kπ](k∈Z)随角度增大(减小)而增大(减小),在[2kπ,2kπ+π](k∈Z)随角度增大(减小)而减小(增大)。

图像:波形曲线
值域:[-1,1]
定义域:R
3.正切函数
在Rt△ABC(直角三角形)中,∠C=90°,AB是∠C的对边c,BC是∠A的对边a,AC是∠B的对边b,正切函数就是
tanB=b/a,即tanB=AC/BC。

正切值在[kπ-π/2,kπ+π/2](k∈Z)随角度增大(减小)而增大(减小)。

图像:右图平面直角坐标系反映
定义域:{x|x≠(π/2)+kπ,k∈Z}
值域:实数集R。

原创三角函数的概念图像及性质.ppt

原创三角函数的概念图像及性质.ppt

① asin□与bcos□之间是“+”连接
② a,b分别是sin□与cos□的系数 注3.辅助角φ的确定方法:
(a,b)
方法甚多凭爱好 坐标定义是基础
φ
数形结合两限制 注释说明一般角
O
X
(2) a sin □ bcos□ a2 b2 cos(□ )
(其中 tan a,Φ与点(b,a)同象限)
cos A b2 c2 a2 2bc
cos B a2 c2 b2 2ac
cos C a2 b2 c2 2ab
三角式运算公式总述
1.公式:
①同角关系 ②异角关系
2.作用:
一角二名三结构……
世上本无路三角走运的算人公多式了关便联有图了路
半角
作用
商数 平方 关系 关系
倒数
关系
同角
基本
1、同角基本关系式
(1)公式:
①平方关系 sin 2 cos2 1
②商数关系 sin tan cos③倒数关系 tan Fra bibliotekot 1 sinx
注:记忆图
①平方关系:阴影三角形…
tanx
②商数关系:边上左右邻居…
③倒数关系:对角线……
secx
cosx
1
cotx
cscx
1、同角基本关系式
(1).公式:……
(2).作用: 变名变结构
注:经典题型:同角两弦的和差商积可互化.即“知一有n”
桥梁: (sin x cos x)2 1 2sin x cos x 1 sin 2x
sin x n1 sin x cos x n3 sin x cos x n5 sin 2 x cos2 x n7
五点做图象 “代

三角函数的图象与性质

三角函数的图象与性质

-
;
-1
y=cosx
2 3
4 5 4 5
6 x 6 x
五.定义域 、值域及取到最值时相应的x的集合:
-6 -5
-4 -3
复习回顾
-2 -
y y=sinx
1 o
-1
2 3
y
si-n6x的对称-5轴:x
k -4
2-,3对 称点-:2(k
,0);
-
y cosx的对称轴:x k , 对称点:(k ,0);
1.4.1正弦、余弦函数的图象
复习
回顾 三角函数
三角函数线
正弦函数 余弦函数 正切函数
sin=MP
正弦线MP cos=OM 余弦线OM tan=AT 正切线AT
y PT
-1
O
M A(1,0) x
正弦、余弦函数的图象
问题:如何作出正弦、余弦函数的图象?
途径:利用单位圆中正弦、余弦线来解决。
描图:用光滑曲线
复习回顾
一.正弦余弦函数的作图: 几何描点法(利用三角函数线) 五点法作简图
二.周期性:
函数y Asin(x )和y Acos(x ),x R的周期T 2 | |
三.奇偶性:
y sin x为奇函数,图像关于原点对称; y cosx为偶函数图像关于y轴对称。
-6 -5
-4 -3
复习回顾 y y=sinx
(0,11)
3
( 2 ,1)
-
(-o12 ,0)
( 2 ,0)
2
( ,-1)
3
线
4
5 6 x
正弦、余弦函数的图象
y
五点画图法
1
(
2
,1)

三角函数的图像与性质课件

三角函数的图像与性质课件

1
0 -1
y
y=-cosx x [0,2 ]
1

o

3●
2
x
2
2
-1 ●

思考:
1、函数y=1+sinx的图象与函数y=sinx的图象有什么关系? 2、函数y=-cosx的图象与函数y=cosx的图象有什么关系?
y 2
1
o
2
-1
y
1
o
2
-1
y=1+sinx x[0, 2 ]
3
2
x
2
y=sinx x[0, 2 ]
解:(1)函数的定义域为 R,

f(x)

cos(
π 2

2x)


sin
2x.∵f( -x) =-
sin(-2x)=sin 2x=-f(x),∴函数 f(x)=cos(2x
+52π)是奇函数.(2)函数的定义域为 R,
且 f(-x)=sin[cos(-x)]=sin(cos x)=f(x),
∴函数 f(x)=sin(cos x)是偶函数.
【名师点评】 判断函数奇偶性时,必须先检查定义 域是否是关于原点的对称区间.如果是,再验证f(-x) 是否等于-f(x)或f(x),进而判断函数的奇偶性;如果 不是,则该函数必为非奇非偶函数.
跟踪训练
3.判断下列函数的奇偶性.
(1)f(x)=cos(2x+52π);
(2)f(x)=sin(cos x).
(2)y= - cosx, x [0, 2 ]
解:(1)按五个关键点列表
x
0
2
3
2
2
sinx 0 1 0 -1 0

三角函数的图像与性质(名师经典总结)

三角函数的图像与性质(名师经典总结)

三角函数的图像与性质(正弦、余弦、正切)【知识点1】函数y =sin x ,y =cos x ,y =tan x 的图象性质题型1:定义域例1:求下列函数的定义域(1)xx y cos 2cos 1+=; (2)x y 2sin = 2lg(4)x -题型2:值域 例2:求下列函数值域 (1))3π2,6π(,sin 2-∈=x x y (2)y=2sin(2x-3π),x 5,46ππ⎡⎤∈⎢⎥⎣⎦(3) )3π,2π(),3π2cos(2-∈+=x x y(4)函数1)6π21cos(2++-=x y 的最大值以及此时x 的取值集合题型3:周期例3:求下列函数的周期: (1)f(x)=2sin2x (2)y=cos(123x π-) (3)y=tan(2x 4π-) (4)y=sin x 例4: 若函数()2sin(2)3f x kx π=+的最小正周期T 满足12T <<,则自然数k 的值为______.例5:若)10(sin 2)(<<=ϖϖx x f 在区间[0,]3π上的最大值是2,则ϖ=________.例6:使x y ωsin =(ω>0)在区间[0,1]至少出现2次最大值,则ω的最小值为【 】A .π25B .π45C .πD .π23例7:设函数f(x)=2sin(25x ππ+),若对于任意的x R ∈,都有f(1x )2()()f x f x ≤≤成立,则12x x -的最小值是A.4B.2C.1D.12题型4:奇偶性 例8:函数y =sin (x +2π)(x ∈[-2π,2π])是【 】A.增函数B.减函数C.偶函数D.奇函数例9:判断下列函数的奇偶性 (1)y=xsin(x π+) (2)y=cos 1sin x x+例10:已知函数f(x)=x 3cosx+1,若f(a)=11,则f(-a)=________ 题型5:单调性例11:函数y =21log sin(2x +4π)的单调递减区间是【 】 A.(k π-4π,k π](k ∈Z ) B.(k π-8π,k π+8π](k ∈Z ) C.(k π-83π,k π+8π](k ∈ D.(k π+8π,k π+83π](k ∈Z )例12:.求1cos()3412logx y π+=的单调区间例13:求下列函数的单调增区间(1))3π21cos(-=x y ; (2) ]0,π[),6π2sin(2-∈+=x x y ;(3))23πsin(2x y -=例14:(1)求函数y=2sin(2x-3π)的单调递减区间。

3.4三角函数的图像与性质

3.4三角函数的图像与性质

例2 求函数y=cos3x的最大值及取得最大值时自变量x的集合.
解:令t=3x,y=cos3x=cost,ymax=1.
因为使函数cost取得最大值的t的集合为{t|t=2kΠ,k∈Z}因为t=3x,
所以{x|x=23kΠ,k∈Z}
练习
1.比较cos5与cos7值的大小.
解:5=36°,7≈26°,因为区间[0,Π]是减函数,所以cos5<cos7.
y=sinx是奇函数,从图像来看,y=sinx的图像关于原点对称,也能判断
出y=sinx是奇函数.
周期性:物体有规律地重复出现,做周期运动.
正弦曲线的部分图像是重复出现的,因此正
弦函数具有周期性.
周期函数:一般地,对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内
的每一个值,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么,函数f(x)就
下面五个点在确定图像形状
时起着关键作用:

(0,1),(
,0),(Π,2
1),(3
,0),(2Π,1)
2
这五个点描出后,余弦函数
y=cosx(x∈[0,2Π]) 的 图 像
形状就基本确定了.
0=0°,2=90°,Π=180°,3
=270°,2Π=360°,这五个点都是相差90°角
2
的关系.像这样画余弦函数的方法称为五点法.
(2)求出它的最大值和最小值;
(3)判断它的奇偶性;
(4)指出这个函数在[0,2Π]上的单调区间.
(2)ymin=-0.5,ymax=0.5.
(3)函数y=12sinx是奇函数.
(4)单调减区间为[ 2 , 3
],

常见三角函数图像及性质

常见三角函数图像及性质

常见三角函数图像及性质三角函数在数学中具有重要的作用,主要有正弦函数、余弦函数和正切函数。

这些三角函数的图像及性质对理解三角函数在不同角度下的变化规律至关重要。

1. 正弦函数(Sine Function)正弦函数可以表示为 $y = \\sin(x)$,其中x表示自变量(角度),x表示函数值。

正弦函数的图像是一条波浪形状的曲线,在 $[-\\pi, \\pi]$ 区间内,正弦函数的图像在原点(0,0)处达到最大值1和最小值−1,且图像在x轴上对称。

正弦函数的主要性质包括:•周期性:正弦函数的周期是 $2\\pi$,即 $f(x+2\\pi) = f(x)$。

•奇函数:正弦函数是奇函数,即x(−x)=−x(x)。

•范围:正弦函数的值域为[−1,1]。

•正负性:在第一和第二象限,正弦函数为正;在第三和第四象限,正弦函数为负。

2. 余弦函数(Cosine Function)余弦函数可以表示为 $y = \\cos(x)$,余弦函数的图像是一条类似正弦函数的波浪形状曲线,不过余弦函数的图像在x轴上下移了 $\\frac{\\pi}{2}$。

余弦函数的性质包括:•周期性:余弦函数的周期也是 $2\\pi$,即$f(x+2\\pi) = f(x)$。

•偶函数:余弦函数是偶函数,即x(−x)=x(x)。

•范围:余弦函数的值域为[−1,1]。

•正负性:在第一和第四象限,余弦函数为正;在第二和第三象限,余弦函数为负。

3. 正切函数(Tangent Function)正切函数可以表示为 $y = \\tan(x)$,正切函数的图像是一条周期性的曲线,其在某些角度处会出现无穷大的值。

正切函数的图像在 $x=k\\pi + \\frac{\\pi}{2}$ 时,即 $x =\\frac{\\pi}{2}, \\frac{3\\pi}{2}, \\frac{5\\pi}{2}$ 等,会出现垂直渐近线。

正切函数的性质包括:•周期性:正切函数的周期是 $\\pi$,即 $f(x+\\pi) = f(x)$。

三角函数图像与性质

三角函数图像与性质
7.(2013·四川高考)函数f(x)=2sin(ωx+φ) 的部分图象如图3-4-2所示,则ω,φ的值分别是()
图3-4-2 A.2,- B.2,- C.4,- D.4,
自测后你觉得哪类题做起来困难呢?那我们一起来解决吧!
典例:
题型一三角函数的定义域和值域
(1)函数y= 的定义域为________.
A.向右平移 个单位B.向右平移 个单位C.向左平移 个单位D.向左平移 个单位
3.[2014·福建卷]将函数y=sinx的图像向左平移 个单位,得到函数y=f(x)的图像,则下列说法正确的是()
A.y=f(x)是奇函数B.y=f(x)的周期为π
C.y=f(x)的图像关于直线x= 对称D.y=f(x)的图像关于点 对称
导疑:由解析式求函数定义域应考虑________.
导学:由tanx-1 0得tanx 1所以x ________.
所以所求定义域为________.
(2)求下列函数的值域①y=2cos2x+2cosx②y=3cosx- sinx,x∈[0,π];
导疑:二次函数给定区间如何求值域?形如y=Asin(ωx+φ)函数的值域?
A. B.
C. D.
2.函数f(x)=2cos 是()
A.最小正周期为2π的奇函数B.最小正周期为2π的偶函数
C.最小正周期为2π的非奇非偶函数D.最小正周期为π的偶函数
3.函数f(x)=sin 的图象的一条对称轴是()
A.x= B.x= C.x=- D.x=-
4.比较大小:sin ________sin .
A.A=3,T= ,φ=- B.A=1,T= ,φ=
C.A=1,T= ,φ=- D.A=1,T= ,φ=-
图3-4-3图3-4-4

三角函数的图像和性质PPT课件

三角函数的图像和性质PPT课件
三角函数的图像和性质
2021/6/7
1
一、三角函数图像的作法 二、三角函数图像的性质 三、f(x)= Asin(x+) 的性质
几何法 五点法 图像变换法
2021/6/7
2
一、三角函数图象的作法
1.几何法 y=sinx 作图步骤:
y
(1)等分单位圆作出特殊角的三角函数线;
(2)平移三角函数线; (3)用光滑的曲线连结各点.
得 到 y = s i n ( ω x + ) 在 某 周 期 内 的 简 图
步骤4
各点纵的坐纵标坐标变为伸原长来或的缩A倍短(横坐标不变);
得 到 y = A s i n ( ω x + ) 在 某 周 期 内 的 简 图
沿x轴
扩展
步骤5
得 到 y = A s i n ( ω x + ) 在 R 上 的 图 象
3
x
11
返回目录
二、三角函数图象的性质
函数 y sin x
ycosx
y tanx
图象
y 1
0
1
2 x
y
1
0
1
2
x
y
2
3 2
2
0
3 2
x
单调性
[2k, 32k](kz)
2
2
递减
[ 2 k, 2 2 k](k 递z)增
[2k, 2k](kz) 递增 [2 k,2 k](k z)
22
递减
纵向伸长3倍
y=3sinx
左移 π 3π
y=3横si向n(缩x+短31) y=3sin(2x+ 2π) 方法2: y=sinx 3

三角函数图像与性质

三角函数图像与性质

三角函数的图像与性质一.正弦函数和余弦函数的图象:y=sinx打 3口正弦函数y = sin x 和余弦函数y = cos x 图象的作图方法:五点法:先取横坐标分别为0,-,兀,3-,2兀的2 2五点,再用光滑的曲线把这五点连接起来,就得到正弦曲线和余弦曲线在一个周期内的图象。

二、正弦函数y = sin x (x G R )、 余弦函数 y = cos x (x G R )的性质:(1)定义域:都是R 。

(2)值域:1、都是[-1,1],2、y = sin x ,当 x = 2 k -+-(k G Z )时,y 取最大值 1;当 x = 2 k -+ 3-( k G Z )时,y 取最小值一1; 2 2 3、y = cos x ,当 x = 2k - (k G Z )时,y 取最大值 1,当 x = 2k -+-(k G Z )时,y 取最小值一1。

例:(1)若函数y = a - b sin(3x + -)的最大值为3,最小值为-L 则a = , b =622——(答:a = —, b = 1或 b = —1 );22.函数y=-2sinx+10取最小值时,自变量x 的集合是课堂练习:1、函数y = sin x - sin x 的值域是2.已知f (x )的定义域为[0, 1],求f (c os x )的定义域;(3)周期性:①y = sin x 、y = cos x 的最小正周期都是2兀;2兀②f (x ) = A sin (3x +。

和f (x ) = A cos (3x +中)的最小正周期都是T = ——。

13| 兀x例:(1)若 f (x ) = sin 一,则 f (1)+ f (2) + f (3) + .・・ + f (2003)=—(答:0); ^3⑵.下列函数中,最小正周期为兀的是()(4)奇偶性与对称性:1、正弦函数y —sin x (x E R ) 7是奇函数,对称中心是(k 兀,0)(k E z ),对称轴是直线x — k K+-(k E Z );2 2、余弦函数y — cos x (x E R )是偶函数,对称中心是(k K +-,0 ](k E Z ),对称轴是直线x — k R (k E Z ) I 2)(正(余)弦型函数的对称轴为过最高点或最低点且垂直于x 轴的直线,对称中心为图象与x 轴的交点)。

§4.3 三角函数的图象与性质

§4.3 三角函数的图象与性质

于点( x0 ,0) 中心对称.
( ) 设 f( x) =
4cos
ωx-
π 6
sin ωx - cos ( 2ωx + π) , 其 中 ω
>0.
(1)求函数 y = f(x)的值域;
[ ] (2)若 f(x)在区间
- 32π,
π 2
上为增函数,求 ω 的最大值.
( ) 解析 (1)f(x)= 4

(2) (2019 成都七中 1 月月考,14) 如图为一弹簧振子作简 谐运动的图象,横轴表示振动的时间,纵轴表示振动的位移,则 这个振子振动的一个函数解析式是 .
解析
( 1) 由
T 4

11 12
π-
2 3
π=
π 4
,得


π,

T=
2π ,∴
ω
ω = 2,∴
f( x) =
对称性
对称轴:x = kπ+
π 2
( k∈Z) ;
对称中心:( kπ,0) ( k∈Z)
周期
2π
单调性
单调增区间:
[ ] 2kπ-
π 2
,2kπ+
π 2
( k∈Z) ;
单调减区间:
[ ] 2kπ+
π 2
,2kπ+
3π 2
( k∈Z)
奇偶性
奇函数
[ -1,1]
对称轴:x = kπ( k∈Z) ;
( ) 对称中心:
换,设


ωx+φ,由


0,
π 2
3π ,π, ,2π

来求出相
应的
x,通过列
表、计算得出五点坐标,描点连线后得出图象.

三角函数图像及其性质

三角函数图像及其性质

k 上是增函数;在
单调性
在 2k ,2k k 上 是 增函数;在 2k ,2k
在 k , k 2 2
3 2 k , 2 k 2 2
k 上是减函数.

2
最值
ymax 1 ;当 x 2k
ymax 1 ;当 x 2k
既无最大值也无最小值
k 时, ymin 1.
周期性 奇偶性
2 奇函数
k 时, ymin 1.
2 偶函数

奇函数
在 2k , 2k 2 2
无对称轴
三角函数图象的变换
函数 y sin x 的图象 所有 点向 左(右) 平移
| | 个单
所有点 的横坐标 伸长(缩 短)到原来的
1
位长度

倍(纵坐
标不变)
(x ) 函数 y sin 的图象函数 y sin x 的图象
横坐标伸 长(缩短)到 1 原来的 倍(纵坐标不变) 所有点向 左(右)平移 | | 个单 位长度
k 上是增函数.
k 上是减函数.
对称中心 k ,0 k 对称性 对称轴 x k

2
k
对称中心 k , 0 k 2
对称轴 x k k
k 对称中心 , 0 k 2
正弦函数、余弦函数和正切函数的图象与性质:
性 函 质 数
y sin x
y cos x
y tan x
图象
定义域 值域
R
R
x x k , k 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数的图象和性质知识网络三角函数的图象和性质结构简图画龙点晴 概念三角函数的图象:(1) 函数x y sin =的图象叫做正弦曲线, 如图1; (2) 函数x y cos =的图象叫做余弦曲线, 如图2; (3) 函数x y tan =的图象叫做正切曲线, 如图3; (4) 函数x y cot =的图象叫做余切曲线, 如图4;周期函数: 对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有:f (x +T)=f (x )那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期。

说明:1︒周期函数x ∈定义域M ,则必有x+T ∈M, 且若T>0则定义域无上界;T<0则定义域无下界;2︒“每一个值”只要有一个反例,则f (x )就不为周期函数(如f (x 0+t)≠f (x 0)); 3︒T 往往是多值的(如y=sinx 2π,4π,…,-2π,-4π,…都是周期)周期T 中最小的正数叫做f (x )的最小正周期(有些周期函数没有最小正周期). 三角函数的性质: 三角函数的性质如下表:[活用实例][例1] 求下列函数的最值: (1)y=sin(3x+4π)-1 ; (2) y=sin 2x-4sinx+5 ; (3) y=x x cos 3cos 3+- ; (4))3cos(2π-=x y (6π≤x ≤32π).[题解] (1) 当3x+4π=2k π+2π即 x=1232ππ+k (k ∈Z)时y max =0; 当3x+4π=2k π-2π即x=432ππ-k (k ∈Z)时y min =-2. (2) y=(sinx-2)2+1 ∴当x=2k π-2π k ∈Z 时y max =10; 当x=2k π-2πk ∈Z 时y min = 2. (3)y=-1+xcos 31+ 当x=2k π+π k ∈Z 时 y max =2; 当x=2k π k ∈Z 时 y min = 21.(4)∵x ∈[6π,32π] ∴x-3π∈[-6π,3π], ∴当x-3π=0 即x=3π时 y max =2; 当x-3π=3π 即x=32π时 y min =1. [例2] 求下列函数的定义域:(1)y=x x 2cos 21cos 3-- ; (2)y=lg(2sinx+1)+1cos 2-x ; (3)y=)cos(sin x . [题解] (1)∵3cosx-1-2cos 2x ≥0 ∴21≤cosx ≤1 ∴定义域为:[2k π-3π, 2k π+3π] (k ∈Z). (2))(32326726221cos 21sin Z k k x k k x k x x ∈⎪⎩⎪⎨⎧+≤≤-+<<-⇒⎪⎩⎪⎨⎧≥->ππππππππ )(3262Z k k x k ∈+≤<-⇒ππππ ∴定义域为:)](32,62(Z k k k ∈+-ππππ.(3) ∵cos(sinx)≥0 ∴ 2k π-2π≤x ≤2k π+2π(k ∈Z) ∵-1≤sinx ≤1 , ∴x ∈R , 1cos ≤y ≤1.[例3] 已知函数f(x)=2asin 2x-23asinxcosx+b 的定义域为[0,2π],值域为[-5,4],求常数a,b 的值。

[题解] f(x)=-2asin(2x+6π)+a+b ,Θx ∈[0,2π],]67,6[62πππ∈+∴x ,]1,21[)62sin(-∈+∴πx ,则当a>0时,;2,3425-==⇒⎩⎨⎧=+-=+-b a b a b a当a<0时,1,3524=-=⇒⎩⎨⎧-=+=+-b a b a b a .[例4]作出函数()π2,0,tan 1tan 2∈+=x xx y 且23,2ππ≠x 的简图。

[题解] ⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛ππ∈-⎪⎭⎫ ⎝⎛ππ⋃⎪⎭⎫ ⎝⎛π∈==+=23,2,sin 2,232,0,sin sec tan tan 1tan 2x x x x x x x x y[例5] 已知函数[题解] Θf (x )=|sin2x| ,∴f (-x )=|sin(-2x)|=|sin2x|=f (x ) ∴f (x )为偶函数 , 周期 T=2π则由图象可知函数f (x )的增区间为[42,2πππ+k k ] k ∈Z, 减区间为[2)1(,42πππ++k k ] (k ∈Z). [例6] 已知函数)cos (sin sin 2)(x x x x f +=.π-π2π2(1)函数数)(x f 的最小正周期和最大值;(2)在给出的直角坐标系中,画出函数]2,2[)(ππ-=在区间x f y 上的图象.[题解] (1)x x x x x x f 2sin 2cos 1cos sin 2sin 2)(2+-=+= )42sin(21)4sin 2cos 4cos 2(sin 21πππ-+=-⋅+=x x x所以函数)(x f 的最小正周期为π,最大值为21+.(2)由(1)知x83π-8π-8π 83π 85π y121-121+1故函数)(x f y =在区间]2,2[ππ-上的图象是 [例7] 求函数f (x )=)431cos(log 21π+x 的单调递增区间。

[题解] ∵f (x )=)431cos(log 21π+x , 令431π+=x t ∴y=t cos log 21 t 是x 的增函数 又∵0<21<1 ∴当y=t cos log 21为单调递增时 cost 为单调递减 且cost>0, ∴2k π≤t<2k π+2π (k ∈Z)∴2k π≤431π+x <2k π+2π (k ∈Z) 6k π-43π≤x<6k π+43π (k ∈Z) ∴f (x )=)431cos(log 21π+x 的单调递减区间是[6k π-43π,6k π+43π] (k ∈Z). [例8]求函数⎪⎭⎫⎝⎛-=33tan πx y 的定义域、值域,并指出它的周期性、奇偶性、单调性。

[题解] 由233πππ+≠-k x ,得1853ππ+≠k x, ∴ 所求定义域为⎭⎬⎫⎩⎨⎧∈+≠∈z k k x R x x ,1853,|ππ且,值域为R ,周期3π=T ,是非奇非偶函数,在区间()z k k k ∈⎪⎭⎫⎝⎛+-1853,183ππππ上是增函数。

函数y=Asin(ϕω+x )的图象: 函数y=Asin(ϕω+x )的图象(A>0,ω>0)叫做正弦型曲线,它的作图方法有如下两种:(1)五点法: 五点法作图的步骤为: 先求出周期T=ωπ2,其次求振幅A, 再次作变量代换X=ϕω+x ,当X 分别取ππππ22320、、、、时, 逐一求出x 、y 的值,即得到在一个周期内的五个特殊点。

[活用实例][例9]作出函数x y 2sin 3=在一个周期内的图象.[题解] 函数x y 2sin 3=的周期是π,最大值是3,最小值是-3. 先求0到π范围内的图象的一些特殊点, 列x0 4π2π 43π π2x0 2π π23π 2π x y 2sin 3=3-3得到(0,0)、()3,4π、(2π,0)、(4π,-3)、(π,0)五点,作出对应的各点,再用平滑曲线把这5个点连结起来,即得到所求作的图象,如下图:(2)图象变换法:振奋变换:y=Asinx ,x ∈R(A>0且A ≠1)的图象可以看作把正弦函数x y sin =图象上的所有点的纵坐标伸长(A>1)或缩短(0<A<1)到原来的A 倍得到的。

它的值域[-A, A], 最大值是A, 最小值是-A. 若A<0 可先作y=-Asinx 的图象 ,再以x 轴为对称轴翻折。

周期变换:函数y=sin ωx, x ∈R (ω>0且ω≠1)的图象,可看作把正弦函数x y sin =图象上所有点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的ω1倍(纵坐标不变). 若ω<0则可用诱导公式将符号“提出”再作图。

相位变换: y=sin(x+φ)的图象可由正弦函数x y sin =图象向左(ϕ>0)或向右(ϕ<0)平移|ϕ|个单位. 函数y=Asin(ϕω+x )的图象的作法:[活用实例][例10] 已知函数y=21cos 2x+23sinxcosx+1, x R ∈,(1)当函数y 取得最大值时,求自变量x 的集合;(2)该函数的图象可由y=sinx(x R ∈)的图象经过怎样的平移和伸缩变换得到?[题解] (1)y=21cos 2x+23sinxcosx+1=2145)2sin 32(cos 4112sin 4322cos 1++=+++⋅x x x x =45)62sin(21++πx ,当2x+226πππ+=k ,即x=k )(,6Z k ∈+ππ时,y 取得最大值47.(2)方法1:依次进行相位变换、周期变换、振幅变换、平移:−−−−−−−→−+=−−−−−−→−=倍纵不变,横缩个单位左平移21)6sin(6sin ππx y x y −−−−−−−−→−+=倍横不变,纵缩21)62sin(πx y45)62sin(2145)62sin(21++=−−−−−−−−→−+=ππx y x y 个单位向上平移.方法2:依次进行周期变换、相位变换、振幅变换、平移:−−−−−−−→−=−−−−−−−→−=个单位左平移倍纵不变,横缩122sin 21sin πx y x y −−−−−−−−→−+=倍横不变,纵缩21)62sin(πx y45)62sin(2145)62sin(21++=−−−−−−−−→−+=ππx y x y 个单位向上平移.[例11] 如图,某地一天从6时至14时的温度变化曲线近似满足函数b x A y ++=)sin(ϕω。

(Ⅰ)求这段时间的最大温差; (Ⅱ)写出这段曲线的函数解析式。

[题解](1)最大温差为300-100=200; (2)Θ14-6=8 , ωπ216==∴T , 得.8πω=A=21(30-10)=10, .20)1030(21=+=b∴ .20)8sin(10++=ϕπx y 又当10=x 时, y =20,∴ .43,1,45,810,0)8sin(πϕππϕπϕπϕπ==-==+=+时k k k x∴].14,6[,20)438sin(10∈++=x x y ππ。

相关文档
最新文档