杆件的强度计算公式

合集下载

杆件的强度计算公式

杆件的强度计算公式

杆件的强度计算公式 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT杆件的强度、刚度和稳定性计算1.构件的承载能力,指的是什么答:构件满足强度、刚度和稳定性要求的能力称为构件的承载能力。

(1)足够的强度。

即要求构件应具有足够的抵抗破坏的能力,在荷载作用下不致于发生破坏。

(2)足够的刚度。

即要求构件应具有足够的抵抗变形的能力,在荷载作用下不致于发生过大的变形而影响使用。

(3)足够的稳定性。

即要求构件应具有保持原有平衡状态的能力,在荷载作用下不致于突然丧失稳定。

2.什么是应力、正应力、切应力应力的单位如何表示答:内力在一点处的集度称为应力。

垂直于截面的应力分量称为正应力或法向应力,用σ表示;相切于截面的应力分量称切应力或切向应力,用τ表示。

应力的单位为Pa。

1Pa=1N/m2工程实际中应力数值较大,常用MPa或GPa作单位1MPa=106Pa1GPa=109Pa3.应力和内力的关系是什么答:内力在一点处的集度称为应力。

4.应变和变形有什么不同答:单位长度上的变形称为应变。

单位纵向长度上的变形称纵向线应变,简称线应变,以ε表示。

单位横向长度上的变形称横向线应变,以ε/表示横向应变。

5.什么是线应变什么是横向应变什么是泊松比答:(1)线应变单位长度上的变形称纵向线应变,简称线应变,以ε表示。

对于轴力为常量的等截面直杆,其纵向变形在杆内分布均匀,故线应变为l l∆=ε(4-2)拉伸时ε为正,压缩时ε为负。

线应变是无量纲(无单位)的量。

(2)横向应变拉(压)杆产生纵向变形时,横向也产生变形。

设杆件变形前的横向尺寸为a ,变形后为a 1,则横向变形为横向应变ε/为 a a∆=/ε(4-3)杆件伸长时,横向减小,ε/为负值;杆件压缩时,横向增大,ε/为正值。

因此,拉(压)杆的线应变ε与横向应变ε/的符号总是相反的。

(3)横向变形系数或泊松比试验证明,当杆件应力不超过某一限度时,横向应变ε/与线应变ε的绝对值之比为一常数。

弯曲杆件应力计算公式-精选文档

弯曲杆件应力计算公式-精选文档

M m ax m ax W z
max
F Q S
* zmax
Iz b

2. 设计截面 圆截面: 矩形截面:
W M z max
4 3 I d 64 d z W z y d2 32 max 3 2 Iz bh12 bh W z y h2 6 max
2.切应力强度条件

对于等截面直梁,全梁的最大切应力发生在FQmax 所在截面的中性轴处。
max
F Q S
* zmax
当杆件出现以下情况之一时,必须校核切应 力强度,甚至由切应力强度条件来控制: (1)梁的跨度较小或荷载作用在支座附时。 (2)某些组合截面梁(如焊接的工字形钢板 梁),当腹板厚度与高度之比小于相应型钢的相 应比值时。 (3)木梁或玻璃等复合材料梁。
Iz b

3.主应力强度条件

当截面为三块矩形钢板 焊接而成的工字形:
a z b y
M
τmin
2 1 2 2
2


τmax τmin


2 3 2 2
2

二、强度计算

1. 强度校核
3. 确定许用荷载
M W max z
例1 下图所示木梁,已知[σ]=10MPa, [τ]=2MPa,b=140mm,h=210mm,校核梁 强度。 解
=4m
h
q=2kN/m
z
b
4kN FQ图 4kN
M图 4kN m ·
作FQ 和M 图
F 4KN Q max
M 4 KN m max
复习:
弯曲杆件正应力计算公式:

力学计算公式

力学计算公式

欢迎阅读常用力学计算公式统计一、材料力学:1. 轴力(轴向拉压杆的强度条件)σmax =N max /A ≤[σ]其中,N 为轴力,A 为截面面积,如5. 惯性矩对y 轴的惯性矩I y =∫A z 2dA其中:A 为图形面积,z 为形心到y 轴的距离,单位为m 4常用简单图形的惯性矩矩形:I x =bh 3/12,I y =hb 3/12圆形:I z=πd4/64空心圆截面:I z=πD4(1-a4)/64,a=d/D(一)、求通过矩形形心的惯性矩求矩形通过形心,的惯性矩I x=∫Ay2dAdA=b·dy,则I x=∫h/2-h/2y2(bdy)=[by3/3]h/2-h/2=bh3/12(二)、求过三角形一条边的惯性矩3/12其中I x为对形心轴的惯性矩9.抛物线形曲线的主要特性A.抛物线曲线的最大垂度f max=y max=-(qL2)/(8H)任意点垂度y=(x-L)qx/(2H)dy/dx=q×(2x-L)/2H式中:q—均布荷载;L—跨距;H—水平张力B、抛物线的切线倾角tgφx= dy/dx=q(2x-L)/2HC、抛物线的一个重要特性D、抛物线的长度S=L+8f max/3L横μ件变形包括由温度引起的变形和由力引起的弹性变形两部分。

σ=P/A=αE△Tσ——为温度应力;α——为线膨胀系数(钢材为12.5×10-61/°C);E——为材料的弹性模量;△T——变化温度①平衡方程P1=P2=P②变形几何方程△l=△l T+△lN③物理方程P=αEA△T0.5N=S式中u式中d—钢丝绳直径二、平台尺寸:平台长度26m,平台宽度4m,满足1.5桩径冲击钻施工的要求。

三、平台结构形式:承重钢桩采用8根直径为0.6m的小钢管桩钢管支撑,平台顶面按需要铺设钢轨,平台自重约13t,同时安排两台16t的钻机进行工作。

详见平台及便桥施工图。

四、检算结构模型的选取:1.按端承桩对小钢管桩检算,钢管桩采用5mm的钢板用卷板机制作成直径为0.6m的小钢管。

杆件的强度计算

杆件的强度计算

平均应力
循环特征
应力幅
杆件的强度计算
1.6 交变应力与疲劳失效
1.6.1 交变应力及其循环特征
2.交变应力分类 交变应力按其循环特征,可以分为对称循环和非对称循环两种类型。 交变应力的最大应力σmax与最小应力σmin大小相等,符号相反,即σmax= -σmin,其循环特征为r=-1,这种应力循环称为对称循环。 r≠-1的应力循环称为非对称循环。在非对称循环中,当σmin=0,r=0 时,这种应力循环称为脉动循环。静载荷可以看作交变应力的特殊情况, 其σmax=σmin=σm,σa=0,r=1。
工程力学
杆件的强度计算
1.1 拉压杆件的强度条件 1.2 连接件的强度条件 1.3 梁的正应力强度
返回
1.4 圆轴扭转的强度 1.5 圆轴弯扭组合变形的强度 1.6 交变应力与疲劳失效
杆件的强度计算
1.1 拉压杆件的强度条件
返回
由于拉、压杆横截面上的应力是均匀分布的,因此,对于等截面的拉、 压杆,其最大轴力所在的截面是危险截面,拉、压杆强度条件为
式中,FNmax为危险截面的轴力;A为危险截面的面积。
强度条件可解决以下三类强度计算问题: (1)校核强度。(2)设计截面尺寸。(3)确定许可载荷。
杆件的强度计算
1.2 连接件的强度条件
1.2.1 剪切的实用计算
如右图所示,构件的某一截面两侧受
到一对大小相等,方向相反,作用线相距
很近的横向外力F作用,此时构件的相邻两
杆件的强度计算
1.4 圆轴扭转的强度
返回
1.4.1 圆轴扭转时横截面上的切应力
如图(a)、(b)所示分别为实心圆轴和空心圆轴横截面上扭转切应力的分
布规律。

杆件的轴向拉压变形及具体强度计算

杆件的轴向拉压变形及具体强度计算

根据强度条件,可以解决三类强度计算问题
1、强度校核:
max
FN A

2、设计截面:
A

FN

3、确定许可载荷: FN A
目录
拉压杆的强度条件
例题3-3
F
F=1000kN,b=25mm,h=90mm,α=200 。
〔σ〕=120MPa。试校核斜杆的强度。
解:1、研究节点A的平衡,计算轴力。
目录
——横截面上的应力
目录
FN
A
——横截面上的应力
该式为横截面上的正应力σ计 算公式。正应力σ和轴力FN同号。 即拉应力为正,压应力为负。
根据杆件变形的平面假设和材料均匀连续性假设 可推断:轴力在横截面上的分布是均匀的,且方向垂 直于横截面。所以,横截面的正应力σ计算公式为:
目录
• 拉(压)杆横截面上的应力
FN 2 45° B
F
FN1 28.3kN FN 2 20kN
2、计算各杆件的应力。
B
1

FN1 A1


28.3103 202 106

4
F
90106 Pa 90MPa
x
2

FN 2 A2

20103 152 106

89106 Pa 89MPa
目录
三、材料在拉伸和压缩时的力学性质
教学目标:1.拉伸、压缩试验简介; 2.应力-应变曲线分析; 3.低碳钢与铸铁的拉、压的力学性质; 4.试件的伸长率、断面收缩率计算。
教学重点:1.应力-应变曲线分析; 2.材料拉、压时的力学性质。
教学难点:应力-应变曲线分析。 小 结: 塑性材料与脆性材料拉伸时的应力-应变曲线分析。 作 业: 复习教材相关内容。

2016工程力学(高教版)教案:6.6杆件的强度计算

2016工程力学(高教版)教案:6.6杆件的强度计算

第六节 杆件的强度计算由内力图可直观地判断出等直杆内力最大值所发生的截面,称为危险截面,危险截面上应力值最大的点称为危险点。

为了保证构件有足够的强度,其危险点的有关应力需满足对应的强度条件。

一、正应力与切应力强度条件轴向拉(压)杆中的任一点均处于单向应力状态。

塑性及脆性材料的极限应力u σ分别为屈服极限s σ(或2.0σ)和强度极限b σ,则材料在单向应力状态下的破坏条件为u σσ= 材料的许用拉(压)应力[]nuσσ=,则单向应力状态下的正应力强度条件为[]σσ≤ (6-24)同理可得,材料在纯剪切应力状态下的切应力强度条件[]ττ≤ (6-25)二、正应力强度计算由式(6-1)和(6-25)得,拉(压)杆的正应力强度条件为[]σσ≤=AN maxmax (6-26) 由式(6-1)和(6-25)得,梁弯曲的正应力强度条件为[]σσ≤=zW M maxmax (6-27) 应用强度条件可进行强度校核、设计截面、确定许可载荷等三方面的强度计算。

例6-7 如图6-29(a)所示托架,AB 为圆钢杆2.3=d cm ,BC 为正方形木杆a=14cm 。

杆端均用铰链连接。

在结点B 作用一载荷P=60kN 。

已知钢的许用应力[]σ=140MPa 。

木材的许用拉、压应力分别为[]t σ=8MPa ,[]5.3=c σMpa ,试求:(1)校核托架能否正常工作。

(2)为保证托架安全工作,最大许可载荷为多大;(3)如果要求载荷P=60kN 不变,应如何修改钢杆和木杆的截面尺寸。

解 (1)校核托架强度 如图6-29(b)。

图6-29由 0=∑Y ,0sin 1=-P P α解得 100c s c 1==αP P kN 由 0=∑X ,0cos 21=+-P P α 解得 80cos 12==αP P kN杆AB 、BC 的轴力分别为10011==P N kN, 8022-=-=P N kN ,即杆BC 受压、轴力负号不参与运算。

开口和闭口薄壁杆件的强度和刚度

开口和闭口薄壁杆件的强度和刚度

开口和闭口薄壁杆件的强度和刚度摘要:一、开口和闭口薄壁杆件的定义与特点二、开口和闭口薄壁杆件的强度分析1.强度计算方法2.影响强度的因素三、开口和闭口薄壁杆件的刚度分析1.刚度计算方法2.影响刚度的因素四、开口和闭口薄壁杆件的应用领域五、总结正文:一、开口和闭口薄壁杆件的定义与特点薄壁杆件是指壁厚较薄的构件,广泛应用于建筑、机械、航空航天等领域。

根据端口的开放程度,薄壁杆件可分为开口薄壁杆件和闭口薄壁杆件。

开口薄壁杆件指一端开口,另一端固定的杆件;闭口薄壁杆件则指两端均固定的杆件。

这两种类型的杆件具有轻质、高强度、刚度可调等特点。

二、开口和闭口薄壁杆件的强度分析1.强度计算方法薄壁杆件的强度计算主要采用截面强度理论,包括剪切强度、弯曲强度、扭转强度等。

其中,剪切强度计算公式为τ= V*τ_y/I_y,弯曲强度计算公式为M_b = F*y_b/I_y,扭转强度计算公式为τ_t= G*τ_y/I_y。

2.影响强度的因素影响薄壁杆件强度的因素包括材料性能、截面几何形状、边界条件等。

材料性能主要包括材料的弹性模量、泊松比等;截面几何形状包括截面惯性矩、极惯性矩等;边界条件则包括固定端和自由端等。

三、开口和闭口薄壁杆件的刚度分析1.刚度计算方法薄壁杆件的刚度计算主要采用截面刚度理论,包括剪切刚度、弯曲刚度、扭转刚度等。

其中,剪切刚度计算公式为K_t = G*I_y/a,弯曲刚度计算公式为K_b = G*I_y/y_b,扭转刚度计算公式为K_t = G*I_y/a。

2.影响刚度的因素影响薄壁杆件刚度的因素包括材料性能、截面几何形状、边界条件等。

材料性能主要包括材料的弹性模量、泊松比等;截面几何形状包括截面惯性矩、极惯性矩等;边界条件则包括固定端和自由端等。

四、开口和闭口薄壁杆件的应用领域开口和闭口薄壁杆件广泛应用于各种工程结构中,如建筑中的梁、桁架等;机械中的轴、齿轮等;航空航天中的翼梁、框等。

这些应用场景中,薄壁杆件的轻质、高强度、刚度可调等特点得到了充分发挥。

杆件的强度分析与计算

杆件的强度分析与计算

第九章杆件的强度分析与计算第一节概述一、构件的承载能力机械或机器的每一组成部分称为构件,它是机器的运动单元,为保证构件正常工作,构件应具有足够的能力负担所承受的载荷。

因此,构件应当满足以下要求:(一)、强度要求:构件在外力作用下应具有足够的抵抗破坏的能力。

在规定的载荷作用下构件不应被破坏,具有足够的强度。

例如,冲床曲轴不可折断;建筑物的梁和板不应发生较大塑性变形。

强度要求就是指构件在规定的使用条件下不发生意外断裂或塑性变形。

(二)、刚度要求:构件在外力作用下应具有足够的抵抗变形的能力。

在载荷作用下,构件即使有足够的强度,但若变形过大,仍不能正常工作。

例如,机床主轴的变形过大,将影响加工精度;齿轮轴变形过大将造成齿轮和轴承的不均匀磨损,引起噪音。

刚度要求就是指构件在规定的使用条件下不发生较大的变形。

(三)、稳定性要求:构件在外力作用下能保持原有直线平衡状态的能力。

承受压力作用的细长杆,如千斤顶的螺杆、内燃机的挺杆等应始终维持原有的直线平衡状态,保证不被压弯。

稳定性要求就是指构件在规定的使用条件下有足够的稳定性。

为满足以上三方面的要求,构件可选用较好的材料和较大的截面尺寸,但这与节约和减轻构件自相矛盾。

构件设计的任务就是在保证满足强度、刚度和稳定性要求的前提下,以最经济的方式,为构件选择适宜的材料、确定合理的形状和尺寸。

二、变形固体的基本假设由各种固体材料制成的制成的构件在载荷作用下将产生变形,称为变形固体或变形体。

为了便于理论分析和实际计算,对变形固体常采用的几个基本假设:(一).连续性假设:假设在固体所占有的空间内毫无空隙地充满了物质。

实际上,组成固体的粒子之间存在空隙,但这种空隙极其微小,可以忽略不计。

于是可认为固体在其整个体积内是连续的。

基于连续性假设,固体内的一些物理量可用连续函数表示。

(二).均匀性假设:均匀性假设是指材料的力学性能在各处都是相同的,与其在固体内的位置无关。

(三).各向同性假设:即认为材料沿各个方向的力学性质是相同的。

截面杆的校核强度公式

截面杆的校核强度公式

截面杆的校核强度公式结构力学是在工程实践中一门重要的学科,截面杆的校核强度公式是其中一个重要的部分。

截面杆是指一种长杆,它的截面经过均匀压缩,然后用于支撑各种结构。

本文旨在介绍截面杆的校核强度公式及其计算方法。

首先,介绍截面杆的校核强度公式。

事实上,校核强度公式由以下两个部分组成:1、截面杆的抗压强度公式。

这个公式用于计算截面杆的最大抗压强度。

它有两个关键参数,即抗压截面系数 kp 、抗压系数a 以及截面杆材料的抗压强度 fc。

2、截面杆的弯曲强度公式。

这个公式用于计算截面杆的最大弯曲强度。

它有三个关键参数,即弯曲截面系数 kb 、弯曲系数 b 以及截面杆材料的弯曲强度 fb。

校核强度公式是两个公式结合后得到的结果,它可以用来确定截面杆的强度,因为它可以反映出杆件在各种载荷作用下的可能破坏形式和程度。

接下来介绍截面杆的校核强度公式的计算方法。

1、截面杆的抗压强度公式计算步骤:(1)先确定截面杆的抗压截面系数 kp。

这个系数可以从具体的截面杆材料截面图中获得,或者从某些标准中获得。

(2)确定抗压系数 a。

这个系数受到截面杆的不同参数的影响,包括尺寸、形状、接头类型和材料等。

(3)计算抗压截面系数 kp和抗压系数a的乘积,乘以杆材的抗压强度 fc,即可求得截面杆的抗压强度P。

2、截面杆的弯曲强度公式计算步骤:(1)先确定截面杆的弯曲截面系数 kb,可从截面杆材料截面图中获得。

(2)确定弯曲系数b,这个系数受到不同参数的影响,包括截面杆的尺寸、形状和接头类型等。

(3)计算弯曲截面系数kb和弯曲系数b的乘积,乘以杆材的弯曲强度 fb,即可求得截面杆的弯曲强度M。

到此为止,我们已经知道了截面杆的校核强度公式及其计算方法。

根据上述公式,我们可以得到截面杆的抗压强度P和弯曲强度M,这样就可以评估截面杆的强度,以确定是否满足结构的要求。

总之,截面杆的校核强度公式是一个重要的计算方法。

它不仅可以用来确定截面杆的强度,而且还可以用来研究杆件在不同载荷作用下的可能破坏形式和程度,为工程实践提供了可靠的计算依据。

杆件强度与刚度计算课件

杆件强度与刚度计算课件
强度计算案例可以包括各种类型的杆件,如梁 、柱、板等,以及各种不同的载荷条件,如静 载、动载等。
通过强度计算案例的学习,可以深入了解杆件 强度的计算方法和应用技巧,提高解决实际工 程问题的能力。
03
杆件刚度计算
Hale Waihona Puke 刚度定义与分类刚度定义
刚度是指杆件在受力后抵抗变形的能力。
刚度分类
根据受力情况,刚度可分为静刚度和动刚度;根据变形性质,刚度可分为弹性刚 度和塑性刚度。
复合材料
复合材料如碳纤维、玻璃纤维等具有轻质、高强、抗腐蚀等 优点,可以替代传统金属材料用于制造高强度杆件。
新的计算方法
有限元分析
有限元分析是一种数值计算方法,可 以模拟杆件的受力、变形和破坏过程 ,为杆件设计提供更精确的计算结果 。
人工智能与机器学习
人工智能和机器学习技术可以用于优 化设计过程,自动识别和预测杆件的 性能,提高设计效率和准确性。
杆件强度与刚度计 算课件
目 录
• 杆件强度与刚度概述 • 杆件强度计算 • 杆件刚度计算 • 杆件强度与刚度的实际应用 • 杆件强度与刚度的未来发展
01
杆件强度与刚度概述
定义与概念
杆件强度
指杆件在受力条件下,抵抗破坏 的能力。
杆件刚度
指杆件在受力条件下,抵抗变形 的能力。
强度与刚度的重要性
保证结构安全
优化设计
通过计算强度和刚度,可以对机械零件进行优化设计,以减小重量、降低成本和提高性 能。
航空航天中的应用
01 02
飞行器结构
在航空航天领域中,杆件广泛应用于飞行器的各种结构中,如机身、机 翼、尾翼等。计算强度和刚度是确保飞行器在各种工作状态下都能够保 持稳定性和安全性的基础。

杆件的强度计算公式

杆件的强度计算公式

杆件的强度、刚度和稳定性计算1.构件的承载能力,指的是什么答:构件满足强度、刚度和稳定性要求的能力称为构件的承载能力。

(1)足够的强度。

即要求构件应具有足够的抵抗破坏的能力,在荷载作用下不致于发生破坏。

(2)足够的刚度。

即要求构件应具有足够的抵抗变形的能力,在荷载作用下不致于发生过大的变形而影响使用。

(3)足够的稳定性。

即要求构件应具有保持原有平衡状态的能力,在荷载作用下不致于突然丧失稳定。

2.什么是应力、正应力、切应力应力的单位如何表示答:内力在一点处的集度称为应力。

垂直于截面的应力分量称为正应力或法向应力,用6表示;相切于截面的应力分量称切应力或切向应力,用T表示。

应力的单位为Pa。

21 Pa=1 N /m2工程实际中应力数值较大,常用MPa或GPa作单位61 MPa=106Pa91 G P a=109P a3.应力和内力的关系是什么答:内力在一点处的集度称为应力。

4.应变和变形有什么不同答:单位长度上的变形称为应变。

单位纵向长度上的变形称纵向线应变,简称线应变,以&表示。

单位横向长度上的变形称横向线应变,以& /表示横向应变。

5.什么是线应变什么是横向应变什么是泊松比答:(1)线应变单位长度上的变形称纵向线应变,简称线应变,以&表示。

对于轴力为常量的等截面直杆,其纵向变形在杆内分布均匀,故线应变为_1l(4-2 )拉伸时&为正,压缩时&为负。

线应变是无量纲(无单位)的量。

(2)横向应变拉(压)杆产生纵向变形时,横向也产生变形。

设杆件变形前的横向尺寸为a,变形后为a i,则横向变形为a a1a横向应变& /为/ _aa(4-3 )杆件伸长时,横向减小,& /为负值;杆件压缩时,横向增大,£/为正值。

因此,拉(压)杆的线应变& 与横向应变& /的符号总是相反的。

(3)横向变形系数或泊松比试验证明,当杆件应力不超过某一限度时,横向应变& /与线应变&的绝对值之比为一常数。

杆件的强度计算公式

杆件的强度计算公式

杆件的强度、刚度和稳定性计算1.构件的承载能力,指的是什么?答:构件满足强度、刚度和稳定性要求的能力称为构件的承载能力。

(1)足够的强度。

即要求构件应具有足够的抵抗破坏的能力,在荷载作用下不致于发生破坏。

??? (2)足够的刚度。

即要求构件应具有足够的抵抗变形的能力,在荷载作用下不致于发生过大的变形而影响使用。

??? (3)足够的稳定性。

即要求构件应具有保持原有平衡状态的能力,在荷载作用下不致于突然丧失稳定。

2.什么是应力、正应力、切应力?应力的单位如何表示?答:内力在一点处的集度称为应力。

垂直于截面的应力分量称为正应力或法向应力,用σ表示;相切于截面的应力分量称切应力或切向应力,用τ表示。

? ??应力的单位为Pa 。

??? ?????????????????1 Pa =1 N /m 2工程实际中应力数值较大,常用MPa 或GPa 作单位??? ?????????????????1 MPa =106Pa??? ?????????????1 GPa =109Pa3.应力和内力的关系是什么?答:内力在一点处的集度称为应力。

4.应变和变形有什么不同?答:单位长度上的变形称为应变。

单位纵向长度上的变形称纵向线应变,简称线应变,以ε表示。

单位横向长度上的变形称横向线应变,以ε/表示横向应变。

5.什么是线应变?什么是横向应变?什么是泊松比?答:(1)线应变单位长度上的变形称纵向线应变,简称线应变,以ε表示。

对于轴力为常量的等截面直杆,其纵向变形在杆内分布均匀,故线应变为 ? ????????????????l l ∆=ε????????????????????????????????????????????????(4-2) 拉伸时ε为正,压缩时ε为负。

线应变是无量纲(无单位)的量。

(2)横向应变拉(压)杆产生纵向变形时,横向也产生变形。

设杆件变形前的横向尺寸为a ,变形后为a 1,则横向变形为横向应变ε/为 ??????????????????????????a a ∆=/ε?????????????????????????????????????(4-3) 杆件伸长时,横向减小,ε/为负值;杆件压缩时,横向增大,ε/为正值。

15m水泥杆强度计算公式

15m水泥杆强度计算公式

15m水泥杆强度计算公式水泥杆是一种常见的建筑材料,用于支撑和固定建筑物的结构。

在设计和施工过程中,了解水泥杆的强度是非常重要的。

通过计算水泥杆的强度,可以确保其能够承受设计要求的荷载,从而保证建筑物的安全性和稳定性。

本文将介绍15m水泥杆强度的计算公式,并对其进行详细的解析。

15m水泥杆的强度计算公式如下:强度 = (0.85 fck Ac) + (fy As)。

其中,fck为混凝土的设计抗压强度,单位为N/mm^2;Ac为混凝土截面的面积,单位为mm^2;fy为钢筋的屈服强度,单位为N/mm^2;As为钢筋的面积,单位为mm^2。

在这个公式中,混凝土的抗压强度和钢筋的屈服强度是两个关键的参数。

混凝土的抗压强度通常由设计标准规定,而钢筋的屈服强度则取决于所选用的钢筋材料。

这两个参数的数值将直接影响到水泥杆的强度计算结果。

在进行15m水泥杆强度计算时,首先需要确定混凝土和钢筋的材料参数,然后计算出混凝土截面的面积和钢筋的面积。

接下来,将这些参数代入上述的强度计算公式中,就可以得到水泥杆的强度值。

需要注意的是,15m水泥杆的强度计算公式是基于弯曲破坏模式的。

在实际工程中,水泥杆可能还会受到其他类型的荷载,比如剪切力和轴向力。

对于这些情况,需要根据具体的设计要求和实际情况进行相应的修正和计算。

除了强度计算公式外,还需要对15m水泥杆的设计和施工过程进行严格的控制和监督。

在设计阶段,需要根据建筑物的荷载要求和使用环境,合理确定水泥杆的尺寸和配筋方案。

在施工阶段,需要确保水泥杆的制作和安装符合相关的标准和规范,从而保证其质量和性能。

总之,15m水泥杆的强度计算是建筑设计和施工过程中的重要环节。

通过合理的计算和控制,可以确保水泥杆能够满足设计要求,并且保证建筑物的安全和稳定。

希望本文介绍的15m水泥杆强度计算公式能够对相关工程技术人员有所帮助,也希望大家在实际工程中能够严格遵守相关的规范和标准,确保建筑物的质量和安全。

锚杆抗拉强度计算公式

锚杆抗拉强度计算公式

锚杆抗拉强度计算公式锚杆抗拉强度是指锚杆在受力状态下抵抗拉力的能力。

在工程施工和建筑领域中,锚杆被广泛应用于基础加固、岩石支护等工作中,因此对锚杆抗拉强度的计算具有重要的意义。

锚杆抗拉强度的计算公式如下:F = σ × A其中,F代表锚杆的抗拉强度,单位为牛顿(N);σ代表杆材的抗拉强度,单位为帕斯卡(Pa);A代表锚杆的截面面积,单位为平方米(m²)。

在计算锚杆抗拉强度时,需要考虑以下几个因素:1. 锚杆的材料特性:不同材料的抗拉强度不同,因此在计算抗拉强度时,需要根据锚杆的材料进行选择合适的公式。

2. 锚杆的截面形状:锚杆的截面形状也会对抗拉强度产生影响。

一般来说,圆形截面的锚杆比其他形状的锚杆具有更高的抗拉强度。

3. 锚杆的长度:锚杆的长度也会对其抗拉强度产生影响。

通常情况下,锚杆的长度越长,抗拉强度越低。

因此,在实际工程中,需要根据具体情况进行合理的长度选择。

在工程实践中,为了保证锚杆的抗拉强度,通常需要进行一系列的试验和计算。

首先,需要对杆材的抗拉性能进行试验,以获取准确的抗拉强度数值。

其次,根据土壤、岩石等地质情况,结合锚杆的长度和截面形状等参数,进行抗拉强度的计算。

最后,根据计算结果,选择合适的锚杆进行实际施工。

在实际工程中,还需要考虑到锚杆与周围环境的相互作用。

例如,锚杆与土壤之间的摩擦力、锚杆与周围岩石的摩擦力等。

这些作用力的存在,会对锚杆的抗拉强度产生影响,因此在计算过程中需要加以考虑。

总而言之,锚杆抗拉强度的计算是工程设计与施工中不可或缺的一环。

通过合理选择材料、考虑长度和截面形状等因素,并结合实际情况进行试验和计算,可以确保锚杆在受力状态下具备足够的抗拉强度。

这样,不仅可以保证工程的安全可靠性,还能有效提高工程的长期使用性能。

拉压杆的强度计算

拉压杆的强度计算
的许用应力[σ],其他横截面上的应力都比[σ]小,显然造 成了材料的浪费。
因此,为了合理地利用材料,应使杆的每一横截面上的应力都等 于材料的许用应力[σ],这样设计的杆称为等强度杆,其形状 如图2-33(a)所示。不过,等强度杆的制作复杂而且昂贵,故 在工程中,一般都制成与等强度杆相近的阶梯形杆[图2-33 (b)]或截锥形杆[图2-33(c)]。
2) 求杆EH的轴力。假想用截面m-m将桁架截开,取左边部分 为研究对象[图2-30(b)], 由平衡方程∑MC=0
3m×FNEH-4m×FA=0得 FNEH=4/3 RA=4/3×220kN =293kN
3) 计算杆EH的横截面积。由式(2-16),有
A≥FNEH/[σ]=293×103N/170×106Pa=1.72×10-3m2 =1720mm2
【例2-10】如图2-31(a)所示三角形托架,AB为钢杆,其横
截面面积为A1=400mm2,许用应力[σ]=170MPa ;BC 为木杆,其横截面面积为A2=10000mm2,许用压应力为[σc] =10 MP。求荷载F的最大值Fmax 。
【解】1) 求两杆的轴力与荷载的关系。取结点B为研究对象 [图2-31(b)],
图2-33
材料力学
由平衡方程
∑Y=0 FN2sin30°-F=0 得 FN2=F/sin30°=2F(压) ∑X=0 FN2cos30°-FN1=0 得 FN1=FN2cos30°=2F×31/2/2=31/2F(拉)
图2-31
2) 计算许用荷载。由式(2-16),AB杆的许用轴力为 FN1= 31/2F ≤A1[σ 所以对于AB杆,许用荷载为
3) 求拉杆的最大正应力。钢拉杆是等直杆,横截面上的轴力相 同,故杆的最大正应力为

杆件的强度计算公式

杆件的强度计算公式

杆件的强度计算公式1.应力:应力是杆件内部单位面积上的力,通常以帕斯卡(Pa)为单位。

应力被定义为负载除以横截面积。

在强度计算中,应力是一个重要的参数,用于评估杆件是否能够承受给定的负载。

2.截面形状:截面形状指的是杆件横截面的形状,如圆形、矩形、梯形等。

截面形状对杆件的强度计算有很大影响,因为不同的形状在承载能力方面具有不同的特点。

3.材料性质:杆件的材料性质包括弹性模量、屈服强度、抗拉强度等。

这些参数用于计算杆件在受力情况下的应力和应变,并评估其强度。

根据杆件的受力类型和计算方法的不同,强度计算公式可以有很多种形式。

以下是几个常见的强度计算公式示例:1.杆件的拉伸强度计算公式:拉伸强度=屈服强度/安全系数这个公式适用于纯拉伸情况下的杆件强度计算。

通常,设计中会采用一个安全系数,以确保杆件在实际应用中不会超过其屈服强度。

2.杆件的压缩强度计算公式:压缩强度=屈服强度/安全系数这个公式适用于纯压缩情况下的杆件强度计算。

与拉伸情况类似,设计中也会采用一个安全系数。

3.杆件的弯曲强度计算公式:弯曲强度=弯矩/抗弯矩弯曲强度计算涉及到杆件的几何形状和截面惯性矩等参数,以及杆件的材料性质。

通过计算弯矩和抗弯矩的比值,可以评估杆件在受弯应力作用下的强度。

此外,还有一些特殊情况下的杆件强度计算公式,如扭转、剪切、冲击等。

这些公式通常相对复杂,需要更详细的材料性质和截面形状参数。

需要注意的是,强度计算公式只是一种初步评估杆件承载能力的方法,它没有考虑杆件的缺陷、损伤和非均匀加载等因素。

因此,在实际工程中,还需要进行更为详细的强度分析和安全性评估,以确保杆件的可靠性和安全性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

杆件的强度、刚度和稳定性计算1.构件的承载能力,指的是什么答:构件满足强度、刚度和稳定性要求的能力称为构件的承载能力。

(1)足够的强度。

即要求构件应具有足够的抵抗破坏的能力,在荷载作用下不致于发生破坏。

(2)足够的刚度。

即要求构件应具有足够的抵抗变形的能力,在荷载作用下不致于发生过大的变形而影响使用。

(3)足够的稳定性。

即要求构件应具有保持原有平衡状态的能力,在荷载作用下不致于突然丧失稳定。

2.什么是应力、正应力、切应力应力的单位如何表示答:内力在一点处的集度称为应力。

垂直于截面的应力分量称为正应力或法向应力,用σ表示;相切于截面的应力分量称切应力或切向应力,用τ表示。

应力的单位为Pa。

1Pa=1N/m2工程实际中应力数值较大,常用MPa或GPa作单位1MPa=106Pa1GPa=109Pa3.应力和内力的关系是什么答:内力在一点处的集度称为应力。

4.应变和变形有什么不同答:单位长度上的变形称为应变。

单位纵向长度上的变形称纵向线应变,简称线应变,以ε表示。

单位横向长度上的变形称横向线应变,以ε/表示横向应变。

5.什么是线应变什么是横向应变什么是泊松比答:(1)线应变单位长度上的变形称纵向线应变,简称线应变,以ε表示。

对于轴力为常量的等截面直杆,其纵向变形在杆内分布均匀,故线应变为 l l∆=ε(4-2) 拉伸时ε为正,压缩时ε为负。

线应变是无量纲(无单位)的量。

(2)横向应变拉(压)杆产生纵向变形时,横向也产生变形。

设杆件变形前的横向尺寸为a ,变形后为a 1,则横向变形为横向应变ε/为a a∆=/ε(4-3)杆件伸长时,横向减小,ε/为负值;杆件压缩时,横向增大,ε/为正值。

因此,拉(压)杆的线应变ε与横向应变ε/的符号总是相反的。

(3)横向变形系数或泊松比试验证明,当杆件应力不超过某一限度时,横向应变ε/与线应变ε的绝对值之比为一常数。

此比值称为横向变形系数或泊松比,用μ表示。

εεμ/=(4-4)μ是无量纲的量,各种材料的μ值可由试验测定。

6.纵向应变和横向应变之间,有什么联系答:当杆件应力不超过某一限度时,横向应变ε/与纵向应变ε的绝对值之比为一常数。

此比值称为横向变形系数或泊松比,用μ表示。

εεμ/=(4-4)μ是无量纲的量,各种材料的μ值可由试验测定。

7.胡克定律表明了应力和应变的什么关系又有什么应用条件答:它表明当应力不超过某一限度时,应力与应变成正比。

胡克定律的应用条件:只适用于杆内应力未超过某一限度,此限度称为比例极限。

8.胡克定律是如何表示的简述其含义。

答:(1)胡克定律内力表达的形式EA lF l N =∆(4-6)表明当杆件应力不超过某一限度时,其纵向变形与杆件的轴力及杆件长度成正比,与杆件的横截面面积成反比。

(2)胡克定律应力表达的形式εσ⋅=E (4-7)是胡克定律的另一表达形式,它表明当应力不超过某一限度时,应力与应变成正比。

比例系数E 称为材料的弹性模量,从式(4-6)知,当其他条件相同时,材料的弹性模量越大,则变形越小,这说明弹性模量表征了材料抵抗弹性变形的能力。

弹性模量的单位与应力的单位相同。

EA称为杆件的抗拉(压)刚度,它反映了杆件抵抗拉伸(压缩)变形的能力。

EA越大,杆件的变形就越小。

需特别注意的是:(1)胡克定律只适用于杆内应力未超过某一限度,此限度称为比例极限(在第三节将作进一步说明)。

(2)当用于计算变形时,在杆长l内,它的轴力F N、材料E及截面面积A都应是常数。

9.何谓形心如何判断形心的位置答:截面的形心就是截面图形的几何中心。

判断形心的位置:当截面具有两个对称轴时,二者的交点就是该截面的形心。

据此,可以很方便的确定圆形、圆环形、正方形的形心;只有一个对称轴的截面,其形心一定在其对称轴上,具体在对称轴上的哪一点,则需计算才能确定。

10.具有一个对称轴的图形,其形心有什么特征答:具有一个对称轴的图形,其形心一定在其对称轴上,具体在对称轴上的哪一点,则需计算才能确定。

11.简述形心坐标公式。

答:建筑工程中常用构件的截面形状,一般都可划分成几个简单的平面图形的组合,叫做组合图形。

例如T形截面,可视为两个矩形的组合。

若两个矩形的面积分别是A1和A2,它们的形心到坐标轴z的距离分别为y1和y2,则T形截面的形心坐标为更一般地,当组合图形可划分为若干个简单平面图形时,则有 ∑∑⋅=ii i C A y A y (4-8) 式中y C ——组合截面在y 方向的形心坐标;A i ——组合截面中各部分的截面面积;y i ——组合截面中各部分的截面在y 方向的形心坐标。

同理可得∑∑⋅=ii i C A zA z (4-9) 12.何谓静矩答:平面图形的面积A 与其形心到某一坐标轴的距离的乘积称为平面图形对该轴的静矩。

一般用S 来表示,即:即平面图形对z 轴(或y 轴)的静矩等于图形面积A 与形心坐标y C (或z C )的乘积。

当坐标轴通过图形的形心时,其静矩为零;反之,若图形对某轴的静矩为零,则该轴必通过图形的形心。

13.组合图形的静矩该如何计算答:对组合图形,同理可得静矩的计算公式为⎪⎭⎪⎬⎫⋅=⋅=∑∑Ci i y Ci i z z A S y A S (4-10)式中A i 为各简单图形的面积,y Ci 、z Ci 为各简单图形形心的y 坐标和z 坐标。

(4-10)式表明:组合图形对某轴的静矩等于各简单图形对同一轴静矩的代数和。

14.何谓惯性矩、圆形截面的惯性矩公式如何表示答:截面图形内每一微面积dA 与其到平面内任意座标轴z 或y 的距离平方乘积的总和,称为该截面图形对z 轴或y 轴的惯性矩,分别用符号I z 和I y 表示。

即⎪⎩⎪⎨⎧==⎰⎰A y A z dA z I dA y I 22(4-11)不论座标轴取在截面的任何部位,y 2和z 2恒为正值,所以惯性矩恒为正值。

惯性矩常用单位是m 4(米4)或mm 4(毫米4)。

15.试算出矩形、圆形的惯性矩。

答:(1)矩形截面图4-10图4-11同理可求得对于边长为a 的正方形截面,其惯性矩为(2)圆形截面图4-12图4-12所示圆形截面,直径为d ,半径为R ,直径轴z 和y 为其对称轴,取微面积dy y R dA ⋅-=222 积分得圆形截面的惯性矩为:同理可求得16.试说出平行移轴公式每个量的计算方法。

答:(1)平行移轴公式A a I I z z 21+=(4-12a )同理得A b I I y y 21+=(4-12b)公式4-12说明,截面图形对任一轴的惯性矩,等于其对平行于该轴的形心轴的惯性矩,再加上截面面积与两轴间距离平方的乘积,这就是惯性矩的平行移轴公式。

17.组合图形惯性矩的计算分哪几个步骤答:组合图形对某轴的惯性矩,等于组成它的各个简单图形对同一轴惯性矩之和。

(1)求组合图形形心位置;(2)求组合图与简单图形两轴间距离;(3)利用平行移轴公式计算组合图形惯性矩。

18.低碳钢拉伸时,其过程可分为哪几个阶段答:根据曲线的变化情况,可以将低碳钢的应力-应变曲线分为四个阶段:弹性阶段,屈服阶段,强化阶段,颈缩阶段。

19.为什么说屈服强度与极限强度是材料强度的重要指标答:屈服强度与极限强度是材料强度的重要指标:(1)当材料的应力达到屈服强度σs时,杆件虽未断裂,但产生了显着的变形,势必影响结构的正常使用,所以屈服强度σs是衡量材料强度的一个重要指标。

(2)材料的应力达到强度极限σb时,出现颈缩现象并很快被拉断,所以强度极限σb也是衡量材料强度的一个重要指标。

20.什么是试件拉断后的延伸率和截面收缩率答:(1)延伸率:试件拉断后,弹性变形消失,残留的变形称为塑性变形。

试件的标距由原来的l 变为l 1,长度的改变量与原标距l 之比的百分率,称为材料的延伸率,用符号δ表示。

001100⨯-=l l l δ(4-14)(2)截面收缩率:试件拉断后,断口处的截面面积为A 1。

截面的缩小量与原截面积A 之比的百分率,称为材料的截面收缩率,用符号ψ表示。

001100⨯-=A A A ψ(4-15)21.试比较塑性材料与脆性材料力学性能有何不同答:塑性材料的抗拉和抗压强度都很高,拉杆在断裂前变形明显,有屈服、颈缩等报警现象,可及时采取措施加以预防。

脆性材料其特点是抗压强度很高,但抗拉强度很低,脆性材料破坏前毫无预兆,突然断裂,令人措手不及。

22.许用应力的涵义是什么答:任何一种构件材料都存在着一个能承受应力的固有极限,称极限应力,用σ0表示。

为了保证构件能正常地工作,必须使构件工作时产生的实际应力不超过材料的极限应力。

由于在实际设计计算时有许多不利因素无法预计,构件使用时又必须留有必要的安全度,因此规定将极限应力σ0缩小n 倍作为衡量材料承载能力的依据,称为许用应力,以符号[σ]表示: []n 0σσ=(4-16)n 为大于l 的数,称为安全因数。

23.轴向拉伸(压缩)正应力计算公式是什么并解释每个量的物理意义。

答:如用A 表示杆件的横截面面积,轴力为F N ,则杆件横截面上的正应力为A F N=σ(4-17)正应力的正负号规定为:拉应力为正,压应力为负。

24.轴向拉伸(压缩)杆的最大应力出现在什么截面答:当杆件受几个轴向外力作用时,由截面法可求得最大轴力F Nmax ,对等直杆来讲,杆件的最大正应力算式为:A F N maxmax =σ(4-18)最大轴力所在的横截面称为危险截面,由式4-18算得的正应力即危险截面上的正应力,称为最大工作应力。

25.简述轴向拉伸(压缩)的强度计算答:对于轴向拉、压杆件,为了保证杆件安全正常地工作,就必须满足下述条件[]σσ≤max (4-19)上式就是拉、压杆件的强度条件。

对于等截面直杆,还可以根据公式(4-18)改为[]σ≤A F N max (4-20)26.轴向拉伸(压缩)杆的强度条件可以解决哪三类问题答:在不同的工程实际情况下,可根据上述强度条件对拉,压杆件进行以下三方面的计算:(1)强度校核如已知杆件截面尺寸、承受的荷载及材料的许用应力,就可以检验杆件是否安全,称为杆件的强度校核。

(2)选择截面尺寸如已知杆件所承受的荷载和所选用的材料,要求按强度条件确定杆件横截面的面积或尺寸,则可将式(4-20)改为[]σmax N F A ≥(4-21)(3)确定允许荷载如已知杆件所用的材料和杆件横截面面积,要求按强度条件来确定此杆所能容许的最大轴力,并根据内力和荷载的关系,计算出杆件所允许承受的荷载。

则可将公式(4-20)改为[]σA F N ≤max (4-22)27.平面弯曲的受力特征和变形特征是什么答:平面弯曲的受力特征梁弯曲时,横截面上一般产生两种内力——剪力和弯矩。

与剪力对应的应力为切应力,与弯矩对应的应力为正应力。

相关文档
最新文档