福州大学数值计算实验报告一
数值计算方法实验分析报告
学生实验报告实验课程名称数值计算方法开课实验室数学实验室实验五解线性方程组的直接方法实验(主元的选取与算法的稳定性)问题提出:消去法是我们在线性代数中已经熟悉的。
但由于计算机的数值运算是在一个有限的浮点数集合上进行的,如何才能确保消去法作为数值算法的稳定性呢?消去法从理论算法到数值算法,其关键是主元的选择。
主元的选择从数学理论上看起来平凡,它却是数值分析中十分典型的问题。
实验内容:考虑线性方程组nn Rn∈=⨯,Ax∈,RbAb编制一个能自动选取主元,又能手动选取主元的求解线性方程组的消去过程。
实验要求:()取矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=1415157,6816816816M O O Ob A ,则方程有解Tx )1,,1,1(*Λ=。
取计算矩阵的条件数。
让程序自动选取主元,结果如何?()现选择程序中手动选取主元的功能。
每步消去过程总选取按模最小或按模尽可能小的元素作为主元,观察并记录计算结果。
若每步消去过程总选取按模最大的元素作为主元,结果又如何?分析实验的结果。
()取矩阵阶数或者更大,重复上述实验过程,观察记录并分析不同的问题及消去过程中选择不同的主元时计算结果的差异,说明主元素的选取在消去过程中的作用。
()选取其他你感兴趣的问题或者随机生成矩阵,计算其条件数。
重复上述实验,观察记录并分析实验结果。
实验(线性代数方程组的性态与条件数的估计) 问题提出:理论上,线性代数方程组b Ax =的摄动满足⎪⎪⎭⎫ ⎝⎛∆+∆∆-≤∆-b b A A AA A cond x x 11)( 矩阵的条件数确实是对矩阵病态性的刻画,但在实际应用中直接计算它显然不现实,因为计算1-A 通常要比求解方程b Ax =还困难。
实验内容:中提供有函数“”可以用来估计矩阵的条件数,它给出的是按范数的条件数。
首先构造非奇异矩阵和右端,使得方程是可以精确求解的。
再人为地引进系数矩阵和右端的摄动b A ∆∆和,使得bA ∆∆和充分小。
数值计算实践报告_实习总结_总结汇报_实用文档
---数值计算实践上机报告学院:理学院指导老师:范晓娜老师姓名:***学号:B********日期:2015年10月11日—24日一、方程求根(一)实验目的熟悉掌握Newton法,割线法,抛物线法三种方法求方程近似根的算法思想,在matlab软件上分别使用这三种方法编程解决给定的三次方程的求根问题。
(二)问题描述一. 方程求根(1).给定一个三次方程,分别用Newton法,割线法,抛物线法求解.方程的构造方法:(a)根:方程的根为学号的后三位乘以倒数第二位加1再除以1000.假设你的学号为B06060141,则根为141*(4+1)/1000=0.564(b)方程:以你的学号的后三位数分别作为方程的三次项,二次项,一次项的系数,根据所给的根以及三个系数确定常数项.例如:你的学号是B06060141,则你的方程是x3+4x2+x+a0=0的形式.方程的根为0.564,因此有0.5643+4*0.5642+0.564+a0=0,于是a0=-2.015790144你的方程为x3+4x2+x-2.015790144=0.(2)假设方程是sinx+4x2+x+a0=0的形式(三个系数分别是学号中的数字),重新解决类似的问题(3)构造一个五次方程完成上面的工作.四次方程的构造:将三次多项式再乘以(x-p*)2得到对应的五次多项式(p*为已经确定的方程的根,显然,得到的五次方程有重根).(4)将(2)中的方程同样乘以(x-p*)得到一个新的方程来求解注:(1)Newton法取0.5为初值,割线法以0,1为初值,抛物线法以0,0.5,1为初值, (2)计算精度尽量地取高.终止准则:根据|p n-p n-1|<ε来终止|(3)可供研究的问题:(一)ε的取值不同对收敛速度有多大的影响(二)将注(1)中的初值该为其它的初值,对收敛性以及收敛速度有无影响 (三)能否求出方程的所有的根(三)算法介绍(包括基本原理)牛顿法牛顿法是一种能在许多不同情况下应用的通用过程。
数值分析第一次实验报告
数值分析实验报告(一)2016级数学基地班尹烁翔320160928411一、问题重述:hamming级数求和二、问题分析级数为∑1k(k+x)∞k=1易知当X=1时,φ(1)=1我们可以考虑这个新级数:φ(x)−φ(1)用这个级数可以使精度更高,误差更小且迭代次数变少。
通分易得:φ(x)−φ(1)=1k(k+x)−1k(k+1)=1−xk(k+x)(k+1)我们还可以继续算得φ(2)及φ(x)−φ(2)这样精度会继续提高,且迭代次数也会减少。
下面考虑误差:由公式可得∑1−xk(k+x)(k+1)∞k=1<1k3<∫1k3∞n−1<10−10要把误差控制在范围内,需要k即迭代次数至少70001次。
三、算法实现:#include<iostream>#include<iomanip>>using namespace std;int main(){double sum;//sum为级数和double x;//x为代入的自变量int k=1;//k为迭代次数for (x=0; x<=10; x=x+0.1)//对0到10以内进行迭代运算,每次加0.1{sum=0;//每迭代完一个x,级数归零for (k=1; k<=70001; k++)//固定x并对k进行运算{sum=sum+1/(k*(k+x)*(k+1));}sum=(1-x)*sum+1.0;cout<<setiosflags(ios::fixed)<<" "<<setprecision(1)<<x;cout<<setiosflags(ios::fixed)<<" "<<setprecision(10)<<sum<<endl;}for (x=11; x<=290; x++)//对11到290以内进行迭代运算,每次加1{sum=0;for (k=1; k<=70001; k++)//固定x{sum=sum+1/(k*(k+x)*(k+1));}sum=(1-x)*sum+1.0;cout<<setiosflags(ios::fixed)<<" "<<setprecision(1)<<x;cout<<setiosflags(ios::fixed)<<" "<<setprecision(10)<<sum<<endl;}for (x=290; x<=300; x=x+0.1)//对290.1到300以内进行迭代运算,每次加0.1 {sum=0;for (k=1; k<=70001; k++)//固定x{sum=sum+1/(k*(k+x)*(k+1));}sum=(1-x)*sum+1.0;cout<<setiosflags(ios::fixed)<<" "<<setprecision(1)<<x;cout<<setiosflags(ios::fixed)<<" "<<setprecision(10)<<sum<<endl;}return 0;}四、数据结果:0.0 1.6449340667 0.1 1.5346072448 0.2 1.4408788415 0.3 1.3600825867 0.4 1.2895778007 0.5 1.2274112777 0.6 1.1721051961 0.7 1.1225193425 0.8 1.07775887270.9 1.03711091781.0 1.0000000000 1.1 0.9659560305 1.2 0.9345909181 1.3 0.9055811887 1.4 0.8786548819 1.5 0.853******* 1.6 0.8301644486 1.7 0.8082346082 1.8 0.78764591881.9 0.76827137672.0 0.7500000000 2.1 0.7327343381 2.2 0.7163884348 2.3 0.7008861540 2.4 0.6861597923 2.5 0.6721489224 2.6 0.6587994241 2.7 0.6460626684 2.8 0.63389482552.9 0.62225627673.0 0.6111111113 3.1 0.6004266954 3.2 0.5901732990 3.3 0.5803237751 3.4 0.5708532792 3.5 0.5617390263 3.6 0.5529600781 3.7 0.5444971556 3.8 0.53633247553.9 0.52844960504.0 0.5208333336 4.1 0.5134695598 4.2 0.5063451894 4.3 0.49944804604.4 0.49276679034.5 0.48629084784.6 0.48001034484.7 0.47391604974.8 0.46799932104.9 0.46225205975.0 0.45666666715.1 0.45123600545.2 0.44595336325.3 0.44081242345.4 0.43580723395.5 0.43093218145.6 0.42618196715.7 0.42155158445.8 0.41703629915.9 0.41263163046.0 0.40833333386.1 0.40413738606.2 0.40003996986.3 0.39603746096.4 0.39212641636.5 0.38830356206.6 0.38456578316.7 0.38091011406.8 0.37733372946.9 0.37383393577.0 0.37040816397.1 0.36705396157.2 0.36376898657.3 0.36055100097.4 0.35739786507.5 0.35430753177.6 0.35127804177.7 0.34830751887.8 0.34539416537.9 0.34253625788.0 0.33973214368.1 0.33698023688.2 0.33427901518.3 0.33162701648.4 0.32902283598.5 0.32646512338.6 0.32395258008.7 0.32148395698.8 0.31905805168.9 0.31667370669.0 0.31432980689.1 0.31202527809.2 0.30975908459.3 0.30753022799.4 0.30533774499.5 0.30318070609.6 0.30105821429.7 0.29896940319.8 0.29691343609.9 0.294889504210.0 0.292896826311.0 0.274534305112.0 0.258600891013.0 0.244625674714.0 0.232254453215.0 0.221215267616.0 0.211295563617.0 0.202326620618.0 0.194172672719.0 0.186723141720.0 0.179886984821.0 0.173588511822.0 0.167764240823.0 0.162360502724.0 0.157331593125.0 0.152638329626.0 0.148246914727.0 0.144128030628.0 0.140256111329.0 0.136608754530.0 0.133166240731.0 0.129911138432.0 0.126827978033.0 0.123902979834.0 0.121123826635.0 0.118479472636.0 0.115959981337.0 0.113556388138.0 0.111260583139.0 0.109065210040.0 0.106963580041.0 0.104949596342.0 0.103017690143.0 0.101162762944.0 0.099380138345.0 0.097665518246.0 0.096014944747.0 0.094424767348.0 0.092891612649.0 0.091412358750.0 0.089984111851.0 0.088604185152.0 0.087270081253.0 0.085979474654.0 0.084730197955.0 0.083520227556.0 0.082347672757.0 0.081210763958.0 0.080107843659.0 0.079037357560.0 0.077997846261.0 0.076987938262.0 0.076006343163.0 0.075051846164.0 0.074123301865.0 0.073219629966.0 0.072339810267.0 0.071482878568.0 0.070647922969.0 0.069834080070.0 0.069040532171.0 0.068266503872.0 0.067511259473.0 0.066774100374.0 0.066054362875.0 0.065351416076.0 0.064664659377.0 0.063993521278.0 0.063337457279.0 0.062695948280.0 0.062068499081.0 0.061454637382.0 0.0608539117 83.0 0.060265891284.0 0.059690163685.0 0.059126334986.0 0.058574027887.0 0.058032881288.0 0.057502549189.0 0.056982699990.0 0.056473015891.0 0.055973191792.0 0.055482935193.0 0.055001964994.0 0.054530011295.0 0.054066814696.0 0.053612125897.0 0.053165704998.0 0.052727321299.0 0.0522967526100.0 0.0518737853101.0 0.0514582132102.0 0.0510498380103.0 0.0506484683104.0 0.0502539197105.0 0.0498660140106.0 0.0494845798107.0 0.0491094512108.0 0.0487404681109.0 0.0483774760110.0 0.0480203256111.0 0.0476688725112.0 0.0473229772113.0 0.0469825047114.0 0.0466473244115.0 0.0463173100116.0 0.0459923394117.0 0.0456722940118.0 0.0453570593119.0 0.0450465242120.0 0.0447405812121.0 0.0444391259122.0 0.0441420572123.0 0.0438492771124.0 0.0435606905125.0 0.0432762052126.0 0.0429957316127.0 0.0427191829128.0 0.0424464746129.0 0.0421775249130.0 0.0419122542131.0 0.0416505852132.0 0.0413924428133.0 0.0411377539134.0 0.0408864476135.0 0.0406384549136.0 0.0403937087137.0 0.0401521437138.0 0.0399136963139.0 0.0396783048140.0 0.0394459089141.0 0.0392164502142.0 0.0389898715143.0 0.0387661174144.0 0.0385451338145.0 0.0383268679146.0 0.0381112684147.0 0.0378982853148.0 0.0376878698149.0 0.0374799743150.0 0.0372745524151.0 0.0370715590152.0 0.0368709499153.0 0.0366726822154.0 0.0364767137155.0 0.0362830036156.0 0.0360915118157.0 0.0359021994158.0 0.0357150281159.0 0.0355299609160.0 0.0353469614161.0 0.0351659940162.0 0.0349870241163.0 0.0348100178164.0 0.0346349421165.0 0.0344617645166.0 0.0342904534167.0 0.0341209780168.0 0.0339533080169.0 0.0337874138170.0 0.0336232666171.0 0.0334608381 172.0 0.0333001006 173.0 0.0331410270 174.0 0.0329835910 175.0 0.0328277666 176.0 0.0326735285 177.0 0.0325208518 178.0 0.0323697123 179.0 0.0322200861 180.0 0.0320719500 181.0 0.0319252812 182.0 0.0317800574 183.0 0.0316362566 184.0 0.0314938575 185.0 0.0313528391 186.0 0.0312131807 187.0 0.0310748622 188.0 0.0309378640 189.0 0.0308021665 190.0 0.0306677509 191.0 0.0305345985 192.0 0.0304026910 193.0 0.0302720107 194.0 0.0301425399 195.0 0.0300142615 196.0 0.029******* 197.0 0.029******* 198.0 0.029******* 199.0 0.029******* 200.0 0.029******* 201.0 0.029******* 202.0 0.029******* 203.0 0.029******* 204.0 0.028******* 205.0 0.028******* 206.0 0.028******* 207.0 0.028******* 208.0 0.028******* 209.0 0.028******* 210.0 0.028******* 211.0 0.028******* 212.0 0.028******* 213.0 0.027******* 214.0 0.027******* 215.0 0.027*******216.0 0.027*******217.0 0.027*******218.0 0.027*******219.0 0.027*******220.0 0.027*******221.0 0.027*******222.0 0.0269466153223.0 0.0268458877224.0 0.0267459700225.0 0.0266468523226.0 0.0265485248227.0 0.0264509777228.0 0.0263542015229.0 0.0262581869230.0 0.0261629247231.0 0.0260684057232.0 0.025*******233.0 0.025*******234.0 0.025*******235.0 0.025*******236.0 0.025*******237.0 0.025*******238.0 0.025*******239.0 0.025*******240.0 0.025*******241.0 0.025*******242.0 0.025*******243.0 0.024*******244.0 0.024*******245.0 0.024*******246.0 0.024*******247.0 0.024*******248.0 0.024*******249.0 0.024*******250.0 0.024*******251.0 0.024*******252.0 0.024*******253.0 0.024*******254.0 0.024*******255.0 0.024*******256.0 0.023*******257.0 0.023*******258.0 0.023*******259.0 0.023*******260.0 0.023*******261.0 0.023*******262.0 0.023*******263.0 0.023*******264.0 0.023*******265.0 0.023*******266.0 0.023*******267.0 0.023*******268.0 0.023*******269.0 0.022*******270.0 0.022*******271.0 0.022*******272.0 0.022*******273.0 0.022*******274.0 0.022*******275.0 0.022*******276.0 0.022*******277.0 0.022*******278.0 0.022*******279.0 0.022*******280.0 0.022*******281.0 0.022*******282.0 0.022*******283.0 0.021*******284.0 0.021*******285.0 0.021*******286.0 0.021*******287.0 0.021*******288.0 0.021*******289.0 0.021*******290.0 0.021*******290.1 0.021*******290.2 0.021*******290.3 0.021*******290.4 0.021*******290.5 0.021*******290.6 0.021*******290.7 0.021*******290.8 0.021*******290.9 0.021*******291.0 0.021*******291.1 0.021*******291.2 0.021*******291.3 0.021******* 291.4 0.021******* 291.5 0.021******* 291.6 0.021******* 291.7 0.021******* 291.8 0.021******* 291.9 0.021******* 292.0 0.021******* 292.1 0.021******* 292.2 0.021******* 292.3 0.021******* 292.4 0.021******* 292.5 0.021******* 292.6 0.021******* 292.7 0.021******* 292.8 0.021******* 292.9 0.021******* 293.0 0.021******* 293.1 0.021******* 293.2 0.021******* 293.3 0.021******* 293.4 0.021******* 293.5 0.021******* 293.6 0.021******* 293.7 0.021******* 293.8 0.021******* 293.9 0.021******* 294.0 0.021******* 294.1 0.021******* 294.2 0.021******* 294.3 0.021******* 294.4 0.021******* 294.5 0.021******* 294.6 0.021******* 294.7 0.021******* 294.8 0.021******* 294.9 0.021******* 295.0 0.021******* 295.1 0.021******* 295.2 0.021******* 295.3 0.021******* 295.4 0.021******* 295.5 0.021******* 295.6 0.021******* 295.7 0.021******* 295.8 0.021******* 295.9 0.021******* 296.0 0.021******* 296.1 0.021******* 296.2 0.021******* 296.3 0.021******* 296.4 0.021******* 296.5 0.021******* 296.6 0.021******* 296.7 0.021******* 296.8 0.021******* 296.9 0.021******* 297.0 0.021******* 297.1 0.021******* 297.2 0.021******* 297.3 0.021******* 297.4 0.021******* 297.5 0.021******* 297.6 0.021******* 297.7 0.021******* 297.8 0.021******* 297.9 0.021******* 298.0 0.021******* 298.1 0.021******* 298.2 0.021******* 298.3 0.021******* 298.4 0.021******* 298.5 0.021******* 298.6 0.021******* 298.7 0.021******* 298.8 0.021******* 298.9 0.021******* 299.0 0.021******* 299.1 0.020******* 299.2 0.020******* 299.3 0.020******* 299.4 0.020******* 299.5 0.020******* 299.6 0.020******* 299.7 0.020******* 299.8 0.020******* 299.9 0.020******* 300.0 0.020*******。
数值分析计算方法实验报告
end;
end;
X=x;
disp('迭代结果:');
X
format short;
输出结果:
因为不收敛,故出现上述情况。
4.超松弛迭代法:
%SOR法求解实验1
%w=1.45
%方程组系数矩阵
clc;
A=[2,10,0,-3;-3,-4,-12,13;1,2,3,-4;4,14,9,-13]
b=[10,5,-2,7]'
b=[10,5,-2,7]'
[m,n]=size(A);
if m~=n
error('矩阵A的行数和列数必须相同');
return;
end
if m~=size(b)
error('b的大小必须和A的行数或A的列数相同');
return;
end
if rank(A)~=rank([A,b])
error('A矩阵的秩和增广矩阵的秩不相同,方程不存在唯一解');
3.实验环境及实验文件存档名
写出实验环境及实验文件存档名
4.实验结果及分析
输出计算结果,结果分析和小结等。
解:1.高斯列主元消去法:
%用高斯列主元消去法解实验1
%高斯列主元消元法求解线性方程组Ax=b
%A为输入矩阵系数,b为方程组右端系数
%方程组的解保存在x变量中
format long;
A=[2,10,0,-3;-3,-4,-12,13;1,2,3,-4;4,14,9,-13]
return;
end
c=n+1;
A(:,c)=b;
for k=1:n-1
《数值计算》实验报告
《数值计算》实验报告第一部分:简答题(请简要回答以下问题,每小题字数不少于200字)1、Matlab变量命名有什么要求?以下变量名是否合法?对不合法的变量名说明理由。
abcd-2xyz_33chan NaN ABCDefgh2、插值、拟合、回归这三种方法是用来解决什么问题的?面对一组数据,如何选择用什么方法?3、数值积分的主要思想是什么?常用的数值积分公式有哪几个?4、请结合自己的学习,举例说明《数值计算》课程中所学方法在解决实际问题中是如何应用的。
第二部分:基础题(请完成以下问题,要求给出程序语句及计算结果,用截图方式附在各题目下方)1、已知点(1,3.0),(2,3.7),(5,3.9),(6,4.2),(7,5.7),(8,6.6),(10,7.1),(13,6.7), (17,4.5),绘出经过这些点的函数曲线图形,并给出曲线方程。
答:采取三次样条插值法,九个输入数据分成八段,每一段就是一个三次函数。
这八段的函数形式为y = a0 + a1*x + a2*x^2 + a3*x^3,每个分段函数的参数构成下图所示的coefs 矩阵。
2、在我国某海域测得海洋不同深度处的水温如表1所示,求水深为800m和1500m处的温度。
答:采取线性插值法求得800m和1500m处的温度3、求解方程组⎪⎪⎩⎪⎪⎨⎧=-++=--=-++=++56533332821w z y x w y x w z y x z y x ,请至少使用两种方法求解,并对这两种方法的计算结果进行说明。
高斯消元法LU 分解QR分解Jacobi迭代法使用 Jacobi 迭代法无法求出结果,表示迭代的过程中不收敛4、计算积分dx eI x ⎰-=1022,精度为10-6。
被积函数总共调用 13 次,求得积分值为 0.85565、求方程t et t f t5.0)(sin )(1.02-⋅=-在[0.5,1]内的根。
6、求解微分方程0)1(22=+'--''y y y y ,0)0(,1)0(,300='=≤≤y y x ,绘出解函数的图形。
数值计算基础实验报告(3篇)
第1篇一、实验目的1. 理解数值计算的基本概念和常用算法;2. 掌握Python编程语言进行数值计算的基本操作;3. 熟悉科学计算库NumPy和SciPy的使用;4. 分析算法的数值稳定性和误差分析。
二、实验内容1. 实验环境操作系统:Windows 10编程语言:Python 3.8科学计算库:NumPy 1.19.2,SciPy 1.5.02. 实验步骤(1)Python编程基础1)变量与数据类型2)运算符与表达式3)控制流4)函数与模块(2)NumPy库1)数组的创建与操作2)数组运算3)矩阵运算(3)SciPy库1)求解线性方程组2)插值与拟合3)数值积分(4)误差分析1)舍入误差2)截断误差3)数值稳定性三、实验结果与分析1. 实验一:Python编程基础(1)变量与数据类型通过实验,掌握了Python中变量与数据类型的定义方法,包括整数、浮点数、字符串、列表、元组、字典和集合等。
(2)运算符与表达式实验验证了Python中的算术运算、关系运算、逻辑运算等运算符,并学习了如何使用表达式进行计算。
(3)控制流实验学习了if-else、for、while等控制流语句,掌握了条件判断、循环控制等编程技巧。
(4)函数与模块实验介绍了Python中函数的定义、调用、参数传递和返回值,并学习了如何使用模块进行代码复用。
2. 实验二:NumPy库(1)数组的创建与操作通过实验,掌握了NumPy数组的基本操作,包括创建数组、索引、切片、排序等。
(2)数组运算实验验证了NumPy数组在数学运算方面的优势,包括加、减、乘、除、幂运算等。
(3)矩阵运算实验学习了NumPy中矩阵的创建、操作和运算,包括矩阵乘法、求逆、行列式等。
3. 实验三:SciPy库(1)求解线性方程组实验使用了SciPy库中的线性代数模块,通过高斯消元法、LU分解等方法求解线性方程组。
(2)插值与拟合实验使用了SciPy库中的插值和拟合模块,实现了对数据的插值和拟合,并分析了拟合效果。
数值分析实验报告心得(3篇)
第1篇在数值分析这门课程的学习过程中,我深刻体会到了理论知识与实践操作相结合的重要性。
通过一系列的实验,我对数值分析的基本概念、方法和应用有了更加深入的理解。
以下是我对数值分析实验的心得体会。
一、实验目的与意义1. 巩固数值分析理论知识:通过实验,将课堂上学到的理论知识应用到实际问题中,加深对数值分析概念和方法的理解。
2. 培养实际操作能力:实验过程中,我学会了使用Matlab等软件进行数值计算,提高了编程能力。
3. 增强解决实际问题的能力:实验项目涉及多个领域,通过解决实际问题,提高了我的问题分析和解决能力。
4. 培养团队协作精神:实验过程中,我与同学们分工合作,共同完成任务,培养了团队协作精神。
二、实验内容及方法1. 实验一:拉格朗日插值法与牛顿插值法(1)实验目的:掌握拉格朗日插值法和牛顿插值法的原理,能够运用这两种方法进行函数逼近。
(2)实验方法:首先,我们选择一组数据点,然后利用拉格朗日插值法和牛顿插值法构造插值多项式。
最后,我们将插值多项式与原始函数进行比较,分析误差。
2. 实验二:方程求根(1)实验目的:掌握二分法、Newton法、不动点迭代法、弦截法等方程求根方法,能够运用这些方法求解非线性方程的根。
(2)实验方法:首先,我们选择一个非线性方程,然后运用二分法、Newton法、不动点迭代法、弦截法等方法求解方程的根。
最后,比较不同方法的收敛速度和精度。
3. 实验三:线性方程组求解(1)实验目的:掌握高斯消元法、矩阵分解法等线性方程组求解方法,能够运用这些方法求解线性方程组。
(2)实验方法:首先,我们构造一个线性方程组,然后运用高斯消元法、矩阵分解法等方法求解方程组。
最后,比较不同方法的计算量和精度。
4. 实验四:多元统计分析(1)实验目的:掌握多元统计分析的基本方法,能够运用这些方法对数据进行分析。
(2)实验方法:首先,我们收集一组多元数据,然后运用主成分分析、因子分析等方法对数据进行降维。
福州大学数值计算实验报告一
福州⼤学数值计算实验报告⼀福州⼤学数学与计算机科学学院计算机上机实验报告L(175)=13.2302;⽽真实值为f(175)=13.2288;解决问题2:给出函数y=ln(x);给出X=10,11,12,13;对应的Y=2.3026,2.3979,2.4849,2.5649;⽤拉格朗⽇插值计算ln(11.75);并与真实值进⾏⽐较:⾸先⽤已有的M⽂件得到插值函数并画出图像和真实图像进⾏⽐较:并且可以计算出L(11.75)=2.4639,真实值f(11.75)=2.4639;(2)设计⽜顿插值算法的程序。
将其与拉格朗⽇程序结果进⾏⽐较得出结论。
设计Newton算法如下:function y=Newton(a,b,x)n=length(a);A=zeros(n);A(:,1)=b;for k=2:nfor r=k:nA(r,k)=(A(r,k-1)-A(r-1,k-1))/(a(r)-a(r-k+1));endendy=b(1);for k=2:nT=1;for r=1:k-1T=T.*(x-a(r));endN=T*A(k,k);y=y+N;end并⽤Newton法来解决前⾯的⼆道题:并且计算的N(175)=13.2302;⽽真实值为f(175)=13.2288;并且可以计算出N(11.75)=2.4639,真实值f(11.75)=2.4639;(3)利⽤三次样条插值函数spline()解决⼀两组问题。
给定数据x = 0:10;y = sin(x);xx = 0:.25:10;yy = spline(x,y,xx);plot(x,y,'o',xx,yy)研究与探讨通过⽤拉格朗⽇插值、⽜顿插值以及三次样条插值来处理数据,并且对数据进⾏分析,然后可以估算出⼀些未知数据。
通过对三种插值⽅法进⾏编程以及解决⼀些实际问题时发现各种⽅法都各有利弊,⾸先最基本的是拉格朗⽇插值⽅法,对于拉格朗⽇插值⽅法来说编程是⾮常简单的,但是⼀旦增加⼀组数据时,程序就要相应做出改变,⽽对于现实中的问题来说,增加或减少数据这是常见的事,这使得拉格朗⽇的实⽤性不强,⽽对于⽜顿法来说,编程相对与拉格朗⽇⽅法来说更加难⼀点,插值效果上⾯通过前⾯的实验可以看出,⽜顿法的插值效果和拉格朗⽇插值的效果是⼀样的,但是⽜顿法可以有效的改善拉格朗⽇法弊端,如果增加或者减少数据时,程序不⽤发⽣改变,这使得⽜顿法在⽇常使⽤中更加具有实⽤性。
数据运算实验报告总结(3篇)
第1篇一、实验背景随着科学技术的不断发展,数据处理与分析已成为各个领域不可或缺的重要环节。
为了更好地掌握数据运算的基本原理和方法,我们开展了数据运算实验,通过实际操作加深对数据运算的理解和应用。
本次实验旨在提高我们对数据处理与分析技能的掌握,为后续学习与研究打下坚实基础。
二、实验目的1. 掌握数据运算的基本概念和常用方法;2. 熟悉各类数据运算工具的使用;3. 提高数据处理的实际操作能力;4. 培养团队合作精神与交流能力。
三、实验内容本次实验主要包括以下内容:1. 数据的收集与整理:通过调查问卷、网络爬虫等手段获取数据,并进行数据清洗和预处理;2. 数据的统计分析:运用统计软件对数据进行描述性统计分析、推断性统计分析等;3. 数据的建模与预测:根据实际需求,选择合适的模型对数据进行建模,并对未来趋势进行预测;4. 数据可视化:运用图表、图形等方式展示数据,以便更好地理解和分析。
四、实验过程1. 数据收集与整理:本次实验以我国某地区居民消费数据为例,通过网络爬虫获取相关数据,并使用Python进行数据清洗和预处理,包括去除缺失值、异常值等;2. 数据统计分析:运用Python中的Pandas、NumPy等库对数据进行描述性统计分析,如计算均值、方差、标准差等,并绘制直方图、箱线图等图表;3. 数据建模与预测:针对消费数据,选择线性回归模型进行建模,运用Python中的scikit-learn库进行训练和预测,并对预测结果进行评估;4. 数据可视化:运用Python中的matplotlib、seaborn等库,将统计数据、模型预测结果以图表形式展示,便于直观理解。
五、实验结果与分析1. 数据收集与整理:通过数据清洗和预处理,提高了数据质量,为后续分析奠定了基础;2. 数据统计分析:描述性统计分析结果显示,居民消费水平整体呈上升趋势,其中食品、教育、医疗等消费支出占比较大;3. 数据建模与预测:线性回归模型对消费数据的拟合度较高,预测结果与实际数据基本吻合;4. 数据可视化:通过图表展示,直观地反映了居民消费趋势和结构,为相关决策提供了参考。
数值分析实验报告1
实验一 误差分析实验(病态问题)实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。
对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。
通过本实验可获得一个初步体会。
数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。
病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。
问题提出:考虑一个高次的代数多项式)1.1()()20()2)(1()(201∏=-=---=k k x x x x x p Λ显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。
现考虑该多项式的一个扰动)2.1(0)(19=+x x p ε其中ε是一个非常小的数。
这相当于是对()中19x 的系数作一个小的扰动。
我们希望比较()和()根的差别,从而分析方程()的解对扰动的敏感性。
实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。
roots(a)u =其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。
设a 的元素依次为121,,,+n a a a Λ,则输出u 的各分量是多项式方程01121=+++++-n n n n a x a x a x a Λ的全部根;而函数poly(v)b =的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。
可见“roots ”和“poly ”是两个互逆的运算函数。
;000000001.0=ess );21,1(zeros ve = ;)2(ess ve =))20:1((ve poly roots +上述简单的Matlab 程序便得到()的全部根,程序中的“ess ”即是()中的ε。
实验要求:(1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。
数值计算方法-实验指导书-8学时
本科生实验报告实验课程数值计算方法学院名称机电工程学院专业名称机械工程学生姓名学生学号指导教师实验地点实验成绩二〇二三年十一月二〇二三年十二月目录实验1 MATLAB的基本运算 (1)实验2 MALTAB多项式运算 (14)实验3 图形的可视化及修饰处理 (16)实验4 SIMULINK仿真实验 (19)实验1 MATLAB的基本运算一、实验目的基本掌握MATLAB向量、矩阵、数组的生成及其基本运算(区分数组运算和矩阵运算)、常用的数学函数、以及字符串的操作。
二、实验内容1向量的生成和运算;2矩阵的创建、引用和运算;3多维数组的创建及运算;4字符串的操作。
三、实验步骤1.向量的生成和运算(1) 向量的生成①直接输入法:>> A=[1;2;3;4;5]②冒号生成发:>> A=1:2:10 ,B=1:10 ,C=10:-1:1函数生成法:linspace( )是线性等分函数,logspace( )是对数等分函数。
>> A=linspace(1,10)B=linspace(1,30,10)>> A=logspace(0,4,5)(2) 向量的运算维数相同的行向量只可以相加减,维数相同的列向量也可以相加减,标量可以与向量直接相乘除。
>> A=[1 2 3 4 5], B=3:7,>> AT=A', BT=B',>> E1=A+B, E2=A-B>> F=AT-BT,>> G1=3*A, G2=B/3,②向量的点积与叉积运算。
>> A=ones(1,10);B=1:10; BT=B';>> E1=A*BT2.矩阵的创建、引用和运算(1)矩阵的创建和引用m 元素构成的矩阵结构,行向量和列向量是矩阵的特殊形式。
矩阵是由n①直接输入法:>> A=[1 2 3;4 5 6]>> B=[ 1 4 72 5 83 6 9 ]>> A(1)>> A(4:end)>> B(:,1)>> B(:)>> B(5)抽取法>> clear>> A=[1 2 3 4;5 6 7 8;9 10 11 12;13 14 15 16] >> B=A(1:3,2:3)>> C=A([1 3],[2 4])>> A([1 3;2 4])③函数法:>> A=ones(3,4)>> B=zeros(3)>> C=eye(3,2)>> D=magic(3)(2) 矩阵的运算①矩阵的加减、数乘与乘法已知矩阵:>> A=[1 23 -1],>> B=[-1 01 2]>> A+B >> 2*A >> 2*A-3*B >> A*B②矩阵的逆矩阵>> format rat;A=[1 0 1;2 1 2;0 4 6] >> A1=inv(A)>> A*A1③矩阵的除法>> a=[1 2 1;3 1 4;2 2 1],b=[1 1 2],d=b'>> c1=b*inv(a),c2=b/a>> c3=inv(a)*d, c4=a\d3.多维数组的创建及运算数组运算用小圆点加在运算符的前面表示,以区分矩阵的运算。
数值计算实习报告
数值计算课程实习报告足球比赛中的吊门初射角问题——实习内容以及过程前言:吊射是球员在距离球门很远的一种射门方式,一般是看到对方门将站位靠前或者注意力有所分散时做吊射选择,由于足球在空中运行时间较长,可以给守门员反应的时间较长,需要精确的脚法才能成功,因此在职业比赛中出现吊射的情况很罕见,但吊射往往能起到出其不意,打破僵局的作用。
吊射的运动轨迹与弹道轨迹相似,可能的影响因素有球与球门的距离a,守门员与球门的距离b,球门高h,守门员最大接球高度H,球在空中飞行时间t,球出脚的初速度v,与水平方向的夹角alpha(初射角)。
问题的提出与分析考虑如下的因素:球与球门的距离为a,守门员与球门的距离为b,球门高h,守门员最大摸高H,球出脚的初速度为v,与水平方向的夹角为alpha(称为初射角).给定,h=2.44m,H=3.20m,v=30m/s,重力加速度g=10m/s2提出问题:针对下列几组数据分别给出能吊门成功的相应初射角范围,画出最小及最大角度的运动轨迹。
要求精度在小数点后至少第3位。
(所给数据见计算结果)。
·a=6m,b=1m;·a=10m,b=3m;·a=20m,b=5m。
问题分析:1.先考虑最简单情形,即不考虑空气阻力等…,此时,球的运动轨迹是抛物线,如果守门员不动,总有合适的角度使吊门成功。
2.这不是求一个角度值,而是求一个范围!通常的思路是把问题整理成两个方程求根问题:一个方程是求吊门成功的最小角度,一个方程是求吊门成功的最大角度。
3.有可能落地弹入球门,要考虑反弹入门的情况。
直观分析:1.最简单情形,抛射体的运动轨迹为抛物线方程如下2.借助于使用方便的数学软件,可直观地看到各种初射角对应的抛射体运动的轨迹图形。
最简情形程序:v=30;g=10; h=2.44;H=3.2;a=6;b=1;l=a-b;L=a*1.01; %1.01表示进入门里 x=0:0.01:L; %对x 采样 i1=floor(a/0.01)+1; i2=floor((a-b)/0.01)+1; alpha=1.5368:0.00001:1.538; n=length(alpha); for i=1:n;[y,tfinal]=paosheti1(x,alpha(i),v,g);tH=l/(v*cos(alpha(i))); %从射门到球到守门员位置的时间if y(i1)>=h | y(i2)<=H; success(i)=0; else success(i)=1; endp lot(l,H,'r+',a,h,'r+'), hold on,2222cos 1sin 2()tan 2cos x vt y vt gt gy x x xv αααα=⎧⎪⎨=-⎪⎩⇒=-plot(x,y), grid, hold offtitle(['足球比赛中的吊门','初射角=',num2str(alpha(i),6) ,...' 守门员的移动时间=',num2str(tH)]),pauseendfigure(2)plot(alpha,success)程序抛射体轨迹函数(算法):function [y,t]=paosheti1(x,alpha,v,g)% 函数返回抛射体轨迹及第一第一次落地飞行时间y=x*tan(alpha)-x.^2*g/(2*v^2*(cos(alpha))^2);% 不考虑是直接进门还是落地后进门的轨迹t=2*v*sin(alpha)/g; % 第一次落地前最大飞行时间xmax=v*cos(alpha)*t; %第一次落地前最大飞行X向距离n=length(x);for i=1:nif y(i)<0 %判断是落地后进门xx=x(i)-xmax;y(i)=xx*tan(alpha)-xx.^2*g/(2*v^2*(cos(alpha))^2);%计算落地后进门的后半段轨迹endend运行结果:1.对于第一组数据,吊门成功的最小角度 1.5369(为弧度,下同),对应的时间大约在4.9179秒,最大角度1.53791,对应的时间是5.0689秒;·a=6m,b=1m;最小角度:最大角度2.对于第二组数据,吊门成功的最小角度1.51441,对应的时间大约在4.1403秒,最大角度1.5159,对应的时间大约在4.2526秒;·a=10m,b=3m;最小角度:最大角度:3.对于第三组数据,吊门成功的最小角度1.457,对应的时间大约在4.4033秒,最大角度1.4603,对应的时间大约是4.5343秒·a=20m,b=5m。
数值分析第一次实验报告
数值分析上机实验报告题目:插值法学生姓名学院名称计算机学院专业计算机科学与技术时间一. 实验目的1、掌握三种插值方法:牛顿多项式插值,三次样条插值,拉格朗日插值2、学会matlab提供的插值函数的使用方法二.实验内容1、已知函数在下列各点的值为试用4次牛顿插值多项式P4(x)及三次样条函数S(x)(自然边界条件)对数据进行插值。
用图给出{(x i,y i),x i=0.2+0.08i,i=0,1,11,10},P4(x)及S(x)。
2、在区间[-1,1]上分别取n=10,20用两组等距节点对龙格函数f(x)=1/(1+25x2)作多项式插值及三次样条插值,对每个n值,分别画出插值函数及f(x)的图形。
3、下列数据点的插值可以得到平方根函数的近似,在区间[0,64]上作图。
(1)用这9个点作8次多项式插值L8(x)(2)用三次样条(第一边界条件)程序求S(x)从得到结果看在[0,64]上,哪个插值更精确,在区间[0,1]上。
两种插值哪个更精确?三.实现方法1. 进入matlab开发环境2. 依据算法编写代码3. 调试程序4. 运行程序5. (1)牛顿插值多项式:P n=f(x0)+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+…+f[x0,x1,…,x n] (x-x0)(x-x n-1)三次样条插值:用三次样条插值函数由题目分析知,要求各点的M值:6.实验代码如下:(1)牛顿插值多项式程序:function varargout=newton(varargin)clear,clcx=[0.2 0.4 0.6 0.8 1.0]; fx=[0.98 0.92 0.81 0.64 0.38]; newtonchzh(x,fx);function newtonchzh(x,fx)n=length(x);FF=ones(n,n); FF(:,1)=fx';for i=2:nfor j=i:nFF(j,i)=(FF(j,i-1)-FF(j-1,i-1))/(x(j)-x(j-i+1));endendfor i=1:nfprintf('%4.2f',x(i)); for j=1:ifprintf('%10.5f',FF(i,j)); endfprintf('\n');end三次样条插值程序:function sanciyangtiao(n,s,t)x=[0.2 0.4 0.6 0.8 1.0];y=[0.98 0.92 0.81 0.64 0.38];n=5for j=1:1:n-1h(j)=x(j+1)-x(j);endfor j=2:1:n-1r(j)=h(j)/(h(j)+h(j-1));endfor j=1:1:n-1u(j)=1-r(j);endfor j=1:1:n-1f(j)=(y(j+1)-y(j))/h(j);endfor j=2:1:n-1d(j)=6*(f(j)-f(j-1))/(h(j-1)+h(j));endd(1)=0d(n)=0a=zeros(n,n);for j=1:1:na(j,j)=2;endr(1)=0;u(n)=0;for j=1:1:n-1a(j+1,j)=u(j+1);a(j,j+1)=r(j);endb=inv(a)m=b*d'p=zeros(n-1,4);for j=1:1:n-1p(j,1)=m(j)/(6*h(j));p(j,2)=m(j+1)/(6*h(j));p(j,3)=(y(j)-m(j)*(h(j)^2/6))/h(j);p(j,4)=(y(j+1)-m(j+1)*(h(j)^2/6))/h(j);endend图程序:x=[0.2 0.4 0.6 0.8 1.0];y=[0.98 0.92 0.81 0.64 0.38];plot(x,y)hold onfor i=1:1:5y(i)=0.98-0.3*(x(i)-0.2)-0.62500*(x(i)-0.2)*(x(i)-0.4)-0.20833*(x(i)-0.2)*(x(i)-0.4)*(x(i)-0.6)-0.52083*(x(i)-0.2)*(x(i)-0.4)*(x(i)-0.6)*(x(i)-0.8)endk=[0 1 10 11]x0=0.2+0.08*kfor i=1:1:4y0(i)=0.98-0.3*(x(i)-0.2)-0.62500*(x(i)-0.2)*(x(i)-0.4)-0.20833*(x(i)-0.2)*(x(i)-0.4)*(x(i)-0.6)-0.52083*(x(i)-0.2)*(x(i)-0.4)*(x(i)-0.6)*(x(i)-0.8)endplot( x0,y0,'o',x0,y0 )hold ony1=spline(x,y,x0)plot(x0,y1,'o')hold ons=csape(x,y,'variational')fnplt(s,'r')hold ongtext('Èý´ÎÑùÌõ×ÔÈ»±ß½ç')gtext('Ô-ͼÏñ')gtext('4´ÎÅ£¶Ù²åÖµ')(2)多项式插值程序:function [C,D]=longge(X,Y)n=length(X);D=zeros(n,n)D(:,1)=Y'for j=2:nfor k=j:nD(k,j)=(D(k,j-1)- D(k-1,j-1))/(X(k)-X(k-j+1));endendC=D(n,n);for k=(n-1):-1:1C=conv(C,poly(X(k)))m=length(C);C(m)= C(m)+D(k,k);endend三次样条插值程序:function S=longgesanci(X,Y,dx0,dxn)N=length(X)-1;H=diff(X);D=diff(Y)./H;A=H(2:N-1);B=2*(H(1:N-1)+H(2:N));C=H(2:N);U=6*diff(D);B(1)=B(1)-H(1)/2;U(1)=U(1)-3*(D(1));B(N-1)=B(N-1)-H(N)/2;U(N-1)=U(N-1)-3*(-D(N));for k=2:N-1temp=A(k-1)/B(k-1);B(k)=B(k)-temp*C(k-1);U(k)=U(k)-temp*U(k-1);endM(N)=U(N-1)/B(N-1);for k=N-2:-1:1M(k+1)=(U(k)-C(k)*M(k+2))/B(k);endM(1)=3*(D(1)-dx0)/H(1)-M(2)/2;M(N+1)=3*(dxn-D(N))/H(N)-M(N)/2;for k=0:N-1S(k+1,1)=(M(k+2)-M(k+1))/(6*H(k+1));S(k+1,2)=M(k+1)/2;S(k+1,3)=D(k+1)-H(k+1)*(2*M(k+1)+M(k+2))/6; S(k+1,4)=Y(k+1);endend(3)三次样条函数程序代码:function sanci3(n,s,t)y=[0 1 2 3 4 5 6 7 8];x=[0 1 4 9 16 25 36 49 64];n=9for j=1:1:n-1h(j)=x(j+1)-x(j);endfor j=2:1:n-1r(j)=h(j)/(h(j)+h(j-1));endfor j=1:1:n-1u(j)=1-r(j);endfor j=1:1:n-1f(j)=(y(j+1)-y(j))/h(j);endfor j=2:1:n-1d(j)=6*(f(j)-f(j-1))/(h(j-1)+h(j));endd(1)=0d(n)=0a=zeros(n,n);for j=1:1:na(j,j)=2;endr(1)=0;u(n)=0;for j=1:1:n-1a(j+1,j)=u(j+1);a(j,j+1)=r(j);endb=inv(a) m=b*d' t=ap=zeros(n-1,4);p(j,1)=m(j)/(6*h(j));p(j,2)=m(j+1)/(6*h(j));p(j,3)=(y(j)-m(j)*(h(j)^2/6))/h(j);p(j,4)=(y(j+1)-m(j+1)*(h(j)^2/6))/h(j); end拉格朗日插值程序:function y=lagrange(x0,y0,x)n=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:np=1.0;for j=1:nif j~=kp=p*(z-x0(j))/(x0(k)-x0(j));endends=p*y0(k)+s;endy(i)=s;endend四.实验结果1.牛顿插值多项式结果:所以有四次插值牛顿多项式为: P4(x)=0.98-0.3(x-0.2)-0.62500(x-0.2)(x-0.4)-0.20833(x-0.2)(x-0.4)(x-0.6)-0.52083(x-0.2)(x-0.4)(x-0.6)(x-0.8)三次样条插值结果:得到m=(0 -1.6071 -1.0714 -3.1071 0),则可得:图形为:2.多项式插值,n=10时:n=20时:三次样条插值,n=10时:n=20时:3.三次样条插值程序结果:解得:M0=0;M1=-0.5209;M2=0.0558;M3=-0.0261;M4=0.0006;M5=-0.0029;M6=-0.0008;M7=--0.0009;M8=0;则三次样条函数:图形:[0,64]:在区间[0,64]上从图3-2中可以看出蓝色虚线条和绿色线条是几乎重合的,而红色线条在[30,70]之间有很大的起伏,所在在区间[0,64]三次样条插值更精确。
大学数学实验报告总结(3篇)
第1篇一、实验背景随着科学技术的不断发展,数学在各个领域的应用日益广泛。
为了提高学生运用数学知识解决实际问题的能力,本实验课程旨在通过一系列数学实验,让学生深入理解数学理论,掌握数学软件的使用,并培养创新思维和团队协作精神。
二、实验目的1. 深入理解数学理论知识,提高数学应用能力。
2. 掌握数学软件(如MATLAB、Mathematica等)的基本操作和编程技巧。
3. 培养创新思维和团队协作精神,提高实践能力。
4. 通过实验,验证数学理论在实际问题中的应用价值。
三、实验内容本实验课程共分为以下几个部分:1. 数值分析实验:包括数值微分、数值积分、线性方程组的求解等。
2. 线性代数实验:包括矩阵运算、特征值与特征向量、线性方程组的求解等。
3. 概率论与数理统计实验:包括随机变量及其分布、参数估计、假设检验等。
4. 运筹学实验:包括线性规划、整数规划、网络流等。
5. 高等数学实验:包括常微分方程、偏微分方程、复变函数等。
四、实验过程1. 实验准备:查阅相关资料,了解实验原理和方法,明确实验目的和步骤。
2. 实验实施:按照实验指导书的要求,利用数学软件进行实验操作,记录实验数据。
3. 数据分析:对实验数据进行处理和分析,验证数学理论在实际问题中的应用。
4. 实验报告撰写:总结实验过程、结果和心得体会,撰写实验报告。
五、实验结果与分析1. 数值分析实验:通过数值微分、数值积分等方法,验证了数值方法在求解实际问题中的有效性。
例如,在求解非线性方程组时,采用了牛顿迭代法,成功找到了方程的近似解。
2. 线性代数实验:通过矩阵运算、特征值与特征向量等方法,解决了实际工程问题中的线性方程组求解问题。
例如,在求解电路分析问题时,利用矩阵方法求得了电路的电压和电流分布。
3. 概率论与数理统计实验:通过随机变量及其分布、参数估计、假设检验等方法,分析了实际问题中的数据,得出了可靠的结论。
例如,在产品质量检测中,利用假设检验方法判断了产品是否合格。
大学计算实验实验报告
实验名称:数值计算方法实验日期:2021年10月15日实验地点:计算机实验室实验目的:1. 理解数值计算的基本原理和方法。
2. 掌握常用数值计算算法的编程实现。
3. 培养分析和解决实际问题的能力。
实验内容:本次实验主要涉及以下内容:1. 线性方程组的求解2. 函数求值与数值微分3. 函数求根4. 数据插值实验原理:数值计算是计算机科学和工程领域中非常重要的一个分支,它涉及到将数学问题转化为计算机可以处理的数值问题。
本实验主要探讨了以下数值计算方法:1. 高斯消元法:用于求解线性方程组。
2. 牛顿法:用于求解函数的根。
3. 二分法:用于求解函数的根。
4. 拉格朗日插值法:用于数据插值。
实验步骤:1. 线性方程组的求解:- 编写程序实现高斯消元法,用于求解线性方程组。
- 输入方程组的系数和常数项。
- 输出方程组的解。
2. 函数求值与数值微分:- 编写程序实现中点法和辛普森法,用于求函数的近似值。
- 编写程序实现中心差分法,用于求函数的导数近似值。
- 输入函数表达式、求值点和微分点。
- 输出函数的近似值和导数的近似值。
3. 函数求根:- 编写程序实现牛顿法和二分法,用于求解函数的根。
- 输入函数表达式、初始猜测值和误差容忍度。
- 输出函数的根。
4. 数据插值:- 编写程序实现拉格朗日插值法,用于数据插值。
- 输入数据点和待插值点。
- 输出插值结果。
实验结果:1. 线性方程组的求解:- 输入方程组系数和常数项:`2x + 3y = 6`,`x - y = 1`。
- 输出解:`x = 2`,`y = 1`。
2. 函数求值与数值微分:- 输入函数表达式:`f(x) = x^2`,求值点:`x = 2`。
- 输出函数的近似值:`f(2) ≈ 4.000000`。
- 输入微分点:`x = 2`。
- 输出导数的近似值:`f'(2) ≈ 4.000000`。
3. 函数求根:- 输入函数表达式:`f(x) = x^2 - 2`,初始猜测值:`x = 1`,误差容忍度:`10^-6`。
数值计算方法实验报告
#include<math.h>
double f(double x)
{
double s;
s=x*x*x/3-x;
return fabs(s);
}
void main()
{double x=-0.99,y;
int k=0;
printf("%d ,%lf\n",k,x);
{if(r>=x[i]&&r<=x[i+1])
{s=m[i]*pow(x[i+1]-r,3)/6*h[i]+m[i+1]*pow(r-x[i],3)/6*h[i]+(y[i]-m[i]*pow(h[i],2)/6)*(x[i+1]-r)/h[i]+(y[i+1]-m[i+1]*pow(h[i],2)/6)*(r-x[i])/h[i];
28.65
39.62
50.65
5.28794
9.4
13.84
20.2
24.9
28.44
31.1
k
7
8
9
10
11
12
78
104.6
156.6
208.6
260.7
312.5
35
36.5
36.6
34.6
31.6
31.0
k
13
14
15
16
17
18
364.4
416.3
468
494
507
520
20.9
14.8
7.8
do
{y=x;
《数值分析》课程实验报告范文
《数值分析》课程实验报告范文《数值分析》课程实验报告姓名:学号:学院:机电学院日期:2022年某月某日目录实验一函数插值方法1实验二函数逼近与曲线拟合5实验三数值积分与数值微分7实验四线方程组的直接解法9实验五解线性方程组的迭代法15实验六非线性方程求根19实验七矩阵特征值问题计算21实验八常微分方程初值问题数值解法24实验一函数插值方法一、问题提出对于给定的一元函数的n+1个节点值。
试用Lagrange公式求其插值多项式或分段二次Lagrange插值多项式。
实验二函数逼近与曲线拟合一、问题提出从随机的数据中找出其规律性,给出其近似表达式的问题,在生产实践和科学实验中大量存在,通常利用数据的最小二乘法求得拟合曲线。
在某冶炼过程中,根据统计数据的含碳量与时间关系,试求含碳量与时间t的拟合曲线。
t(分)051015202530354045505501.272.162.863.443.874.154.374.51 4.584.024.64二、要求1、用最小二乘法进行曲线拟合;2、近似解析表达式为;3、打印出拟合函数,并打印出与的误差,;4、另外选取一个近似表达式,尝试拟合效果的比较;5、某绘制出曲线拟合图。
三、目的和意义1、掌握曲线拟合的最小二乘法;2、最小二乘法亦可用于解超定线代数方程组;3、探索拟合函数的选择与拟合精度间的关系四、实验步骤:第一步先写出线性最小二乘法的M文件functionc=lpoly(某,y,m)n=length(某);b=zero(1:m+1);f=zero(n,m+1); fork=1:m+1f(:,k)=某.^(k-1);enda=f'某f;b=f'某y';c=a\b;c=flipud(c);第二步在命令窗口输入:>>lpoly([0,5,10,15,20,25,30,35,40,45,50,55],[0,1.27,2.16,2.86,3.44,3.87,4.15,4.37,4.51,4.58,4.02,4.64],2)回车得到:an=-0.00240.20370.2305即所求的拟合曲线为y=-0.0024某2+0.2037某+0.2305在编辑窗口输入如下命令:>>某=[0,5,10,15,20,25,30,35,40,45,50,55];>>y=-0.0024某某.^2+0.2037某某+0.2305;>>plot(某,y)命令执行得到如下图五、实验结论分析复杂实验数据时,常采用分段曲线拟合方法。
福州大学至诚学院算法与数据结构实验报告
级 90
�级
年
术技与学科机算计
�业
专
系程工机算计
�别
系
******
�号
学
***
�名
姓
告报验试机上构结据数与法算 期学下年学 0101-9002 �目 题
告报验实院学诚至
;))tni(foezis *EZIS_TINI_TSIL(collam)* tni(=mele>-L { 表序顺化始初//)L* tsiLqS(qS_tsiLtinI diov
】述描题问【
置逆的表序顺�目题
�1�告报验实
} } ;pmet=]1-i-htgnel>-L[mele>-L ;]1-i-htgnel>-L[mele>-L=]i[mele>-L ;]i[mele>-L=pmet { )++i;2/htgnel>-L<i;0=i(rof ;pmet,i tni { 数函置逆//)L* tsiLqS(qs_iltsiL diov } ;EZIS_TINI_TSIL=ezistsil>-L ;0=htgnel>-L
】述描法算【
87 87 74 43 22 001例示件文出输 22 00174 43 5 例示件文入输 。列序序正的后序排成构好正�描 扫行按�数整正个一是都行每�行 n 共。txt.tuptuo 件文到出输果结序排将
】出输果结【
。素元据 数的序排待示表别分�数整正个一有行每�中行 n 的来下接。素元个 n 有表 性线的定给示表�n 数整正个 1 有行一第。据数入输出给 txt.tupni 件文由
} ;0 nruter ;]tnorf.Q[esab.Q=e { esle ;1- nruter ))Q(ytpmEeueuQ( fi { 素元头队取// )e& tni,Q eueuQqS(daeHteG tni
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福州大学数学与计算机科学学院计算机上机实验报告
L(175)=13.2302;而真实值为f(175)=13.2288;
解决问题2:给出函数y=ln(x);给出X=10,11,12,13;对应的
Y=2.3026,2.3979,2.4849,2.5649;用拉格朗日插值计算ln(11.75);并与真实值进行比较:首先用已有的M文件得到插值函数并画出图像和真实图像进行比较:
并且可以计算出L(11.75)=2.4639,真实值f(11.75)=2.4639;
(2)设计牛顿插值算法的程序。
将其与拉格朗日程序结果进行比较得出结论。
设计Newton算法如下:function y=Newton(a,b,x)
n=length(a);
A=zeros(n);
A(:,1)=b;
for k=2:n
for r=k:n
A(r,k)=(A(r,k-1)-A(r-1,k-1))/(a(r)-a(r-k+1));
end
end
y=b(1);
for k=2:n
T=1;
for r=1:k-1
T=T.*(x-a(r));
end
N=T*A(k,k);
y=y+N;
end
并用Newton法来解决前面的二道题:
并且计算的N(175)=13.2302;而真实值为f(175)=13.2288;
并且可以计算出N(11.75)=2.4639,真实值f(11.75)=2.4639;
(3)利用三次样条插值函数spline()解决一两组问题。
给定数据
x = 0:10;
y = sin(x);
xx = 0:.25:10;
yy = spline(x,y,xx);
plot(x,y,'o',xx,yy)
研
究
与
探
讨
通过用拉格朗日插值、牛顿插值以及三次样条插值来处理数据,
并且对数据进行分析,然后可以估算出一些未知数据。
通过对三
种插值方法进行编程以及解决一些实际问题时发现各种方法都各
有利弊,首先最基本的是拉格朗日插值方法,对于拉格朗日插值
方法来说编程是非常简单的,但是一旦增加一组数据时,程序就
要相应做出改变,而对于现实中的问题来说,增加或减少数据这
是常见的事,这使得拉格朗日的实用性不强,而对于牛顿法来说,
编程相对与拉格朗日方法来说更加难一点,插值效果上面通过前
面的实验可以看出,牛顿法的插值效果和拉格朗日插值的效果是
一样的,但是牛顿法可以有效的改善拉格朗日法弊端,如果增加
或者减少数据时,程序不用发生改变,这使得牛顿法在日常使用
中更加具有实用性。
但是对于拉格朗日插值和牛顿插值来说,当
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注!)。