铁矿石分类及成矿分析

合集下载

铁矿石的分类

铁矿石的分类

铁矿石的分类铁矿石是钢铁工业的重要原材料之一,根据其化学成分和物理性质的不同,可以分为多种类型。

本文将从铁矿石的分类、特点以及应用等方面进行详细介绍。

一、磁铁矿磁铁矿,又称磁铁石,是铁矿石中含铁量最高的一种,一般含铁量在60%以上。

其主要化学成分是氧化铁磁铁矿(Fe3O4)。

磁铁矿的特点是具有强磁性,可用磁力分离法选别,常用于制造重型铁器、电磁铁、电动机等。

二、赤铁矿赤铁矿,又称赤铁矿石,是一种含铁量较高的铁矿石。

其主要化学成分是氧化铁赤铁矿(Fe2O3),含铁量一般在50%以上。

赤铁矿的特点是颜色呈现红色,质地坚硬,可用冶金法提炼铁。

赤铁矿广泛用于制造钢铁、合金等。

三、铁砂矿铁砂矿,又称铁砂,是一种含铁量较低的铁矿石,一般含铁量在30%以下。

其主要化学成分是氧化铁铁砂矿(Fe2O3·nH2O)。

铁砂矿的特点是颜色呈现棕红色,质地疏松,常用于制造水泥、耐火材料等。

四、菱铁矿菱铁矿,又称菱铁矿石,是一种含铁量较高的铁矿石。

其主要化学成分是碳酸铁菱铁矿(FeCO3),含铁量一般在40%以上。

菱铁矿的特点是颜色呈现白色或灰色,质地较软,可用冶金法提炼铁。

菱铁矿广泛用于制造铁合金、耐火材料等。

五、黄铁矿黄铁矿,又称黄铁矿石,是一种含铁量较低的铁矿石,一般含铁量在30%以下。

其主要化学成分是硫化铁黄铁矿(FeS2)。

黄铁矿的特点是颜色呈现金黄色,质地较软,可用冶金法提炼铁。

黄铁矿广泛用于制造硫酸、电池等。

六、褐铁矿褐铁矿,又称褐铁矿石,是一种含铁量较低的铁矿石,一般含铁量在30%以下。

其主要化学成分是氢氧化铁褐铁矿(FeOOH)或含水铁氧体。

褐铁矿的特点是颜色呈棕黄色,质地较软,常用于制造颜料、陶瓷等。

七、绿柱石绿柱石,又称绿色铁矿石,是一种含铁量较低的铁矿石,一般含铁量在30%以下。

其主要化学成分是水合硫酸铁绿柱石(FeSO4·7H2O)。

绿柱石的特点是颜色呈现绿色,质地较软,常用于制造颜料、医药等。

常见铁矿品种及典型指标

常见铁矿品种及典型指标

常见铁矿品种及典型指标首先,赤铁矿是最常见的铁矿石,也是主要的铁矿资源之一、它是一种含有铁氧化物的矿石,主要成分为Fe2O3,具有鲜红色或暗红色的外观。

赤铁矿的典型指标包括:铁含量(Fe)、硅含量(SiO2)、铝含量(Al2O3)、钛含量(TiO2)等。

其中,铁含量是衡量赤铁矿质量的重要指标,通常要求铁含量大于55%。

同时,硅含量也是非常重要的指标,因为高硅含量会对炼铁工艺产生不良影响,一般要求硅含量低于6%。

其他指标的要求因铁矿的不同而有所差异。

其次,磁铁矿是另一种常见的铁矿石,由铁氧化物和矿物磁铁石组成。

它的主要成分是Fe3O4,一般呈黑色,具有良好的磁性。

磁铁矿的典型指标包括:铁含量(Fe)、硅含量(SiO2)、铝含量(Al2O3)、钛含量(TiO2)等。

与赤铁矿相比,磁铁矿的铁含量较高,通常要求铁含量大于60%。

硅含量等其他指标的要求与赤铁矿类似。

另外,菱铁矿也是一种重要的铁矿石,由菱铁矿矿物组成,主要成分为FeCO3、菱铁矿通常呈白色或浅灰色,含有一定的碳酸气体。

菱铁矿的典型指标包括:铁含量(Fe)、硅含量(SiO2)、钙含量(CaO)等。

菱铁矿的铁含量通常在40%至50%之间,硅含量要求低于10%,同时钙含量也是一个重要指标。

最后,褐铁矿是一种含有铁氧化物的铁矿石,主要成分是Fe2O3·H2O。

褐铁矿呈褐色或棕色,质地较软。

其典型指标包括:铁含量(Fe)、硅含量(SiO2)、铝含量(Al2O3)等。

褐铁矿的铁含量通常在50%至60%之间,硅含量和铝含量要求相对较低。

总之,常见的铁矿品种包括赤铁矿、磁铁矿、菱铁矿和褐铁矿,它们具有不同的物理性质和化学成分。

铁含量是衡量铁矿质量的重要指标,其他指标如硅含量、铝含量、钛含量等也对炼铁工艺产生影响。

对于不同的铁矿品种,其典型指标的要求会有所不同,但都是以提高铁含量为主要目标。

铁矿石成分全分析报告

铁矿石成分全分析报告
铁元素含量
铁矿石中铁元素的含量是评估矿石品质的重要指标,通常通过化学分析或光谱分析等方法进行测定。
铁元素分布
铁元素在铁矿石中的分布形式对矿石的冶炼性能和产品质量有重要影响,一般通过矿物学研究和显微 镜下观察来了解其分布情况。
有害元素含量及分布
有害元素种类
铁矿石中常见的有害元素包括硫、磷、砷、铅、锌等,这些元素对钢铁生产过程和产品 质量都有不同程度的影响。
体系。
针对不同成因类型提出找矿建议
加强区域地质调查和变质岩系的研究,注意寻找沉积 变质型铁矿的赋存层位和变质程度较高的地段。
输入 岩浆标型题铁矿
注意研究岩浆岩的类型、分布和岩浆活动期次,寻找 与岩浆活动有关的铁矿床。同时,注意利用地球物理 和地球化学方法进行深部探测。
沉积变质型 铁矿
火山岩型铁 矿
有害元素含量及分布
有害元素的含量和分布情况是评估铁矿石质量的重要方面,一般通过化学分析和矿物学 研究等方法进行了解。
伴生元素含量及利用价值评估
伴生元素种类
铁矿石中常伴生有铜、钴、镍、钒、钛 等元素,这些元素在钢铁生产过程中可 以被回收利用,具有一定的经济价值。
VS
伴生元素含量及利用价值
伴生元素的含量和利用价值是评估铁矿石 综合利用潜力的重要指标,一般通过化学 分析、矿物学研究和工艺流程试验等方法 进行评估。同时,还需要考虑伴生元素的 回收成本和市场价格等因素,以确定其实 际利用价值。
磁性
利用铁矿石的磁性差异,可以采 用磁选工艺实现铁与其他非磁性 杂质的分离。
密度
根据铁矿石与脉石矿物的密度差 异,采用重选工艺可实现二者的 有效分离。
综合利用化学成分和物理性质优化选矿流程
1 2 3
化学成分分析 通过对铁矿石的化学成分进行深入分析,了解各 元素含量及赋存状态,为选矿工艺提供基础数据 支持。

地质样品中铁矿石的物相分析与探讨

地质样品中铁矿石的物相分析与探讨

地质样品中铁矿石的物相分析与探讨铁矿石是一种富含铁元素的矿石,广泛用于制铁、制钢和其他工业生产中。

地质样品中的铁矿石物相分析是对其成分和结构进行研究和探讨的过程。

本文将介绍铁矿石的常见物相,并探讨其在地质样品中的分布和形成机制。

铁矿石的常见物相包括赤铁矿、磁铁矿和褐铁矿。

赤铁矿是最常见的铁矿石,其化学式为Fe2O3,呈黑色或褐色。

赤铁矿的结晶形态多为六面体或四面体,常以颗粒状或块状存在。

磁铁矿的化学式为Fe3O4,其具有强磁性,在地质样品中常以矿物的形式存在。

褐铁矿主要由铁氧化物和水合铁氧化物组成,常呈棕色或黄褐色。

地质样品中铁矿石的分布与成因多与地质历史和矿床类型有关。

一般来说,铁矿石主要分布在沉积岩、变质岩和岩浆岩中。

沉积岩中的铁矿石主要形成于沉积作用过程中,如河流、湖泊和海洋等环境中。

变质岩中的铁矿石则是由于地壳内部的变质作用所形成。

岩浆岩中的铁矿石则是由于岩浆中富含铁元素,经过岩浆活动和深部结晶作用形成的。

铁矿石的形成机制与地质过程密切相关。

在沉积岩中,铁矿石可以通过氧化还原反应、溶解-析出和沉淀作用等过程形成。

变质作用可以改变铁矿石的组成和结构,使其发生物理和化学变化。

岩浆作用则可以使铁矿石从岩浆中析出形成矿床。

通过物相分析,可以揭示铁矿石的成分和结构特征,进而了解其形成机制和地质意义。

常用的物相分析方法包括显微镜观察、X射线衍射和电子显微镜等。

通过显微镜观察,可以确定铁矿石的晶体形态和成分。

X射线衍射可以测定铁矿石的晶体结构和晶格参数。

电子显微镜可以揭示铁矿石的微观组织和微区化学成分。

地质样品中铁矿石的物相分析对于了解其成分和结构特征,揭示其形成机制具有重要意义。

通过物相分析,可以为铁矿石的开发和利用提供科学依据,推动矿产资源的可持续利用。

铁矿石的分类、特征及其成矿机制。

铁矿石的分类、特征及其成矿机制。

铁矿石是一种重要的矿产资源,其在现代工业生产中具有重要的地位。

下面将从铁矿石的分类、特征及其成矿机制三个方面介绍铁矿石的相关知识。

一、铁矿石的分类铁矿石按其化学成分可分为含铁矿石和含铁质矿石两大类。

含铁矿石是指矿石中含有较高的铁成分,一般指含铁量超过50的矿石。

常见的含铁矿石有赤铁矿、磁铁矿、褐铁矿等。

含铁质矿石是指矿石中含有一定量的含铁矿物,但含铁量较低,一般指含铁量在30以下的矿石。

例如石灰岩、白云石等。

二、铁矿石的特征1. 赤铁矿:赤铁矿是一种重要的含铁矿石,其主要成分是Fe2O3。

赤铁矿呈暗红色,硬度较大,是一种重要的工业矿石。

赤铁矿主要分布在潮湿的地区,常与水混合形成赤铁矿矿床。

2. 磁铁矿:磁铁矿的主要成分是Fe3O4,呈黑色,具有较强的磁性。

磁铁矿主要分布在火山岩和变质岩中,常与含铁硅酸盐共生。

3. 褐铁矿:褐铁矿的主要成分是Fe2O3·H2O,呈棕褐色,是一种常见的含铁矿石。

褐铁矿主要形成于氧化还原条件较好的地质环境中,常与含铁质的沉积岩共生。

三、铁矿石的成矿机制铁矿石的成矿机制主要与地质作用相关。

目前关于铁矿石的成矿机制研究较为充分,总结起来主要有以下几点:1. 热液成矿:热液是铁矿石形成的重要介质,热液中含铁的离子在适当的条件下沉淀形成了铁矿石。

2. 沉积成矿:在沉积作用过程中,铁矿石成分被携带并沉积在特定的地质环境中,形成了铁矿床。

3. 热液矿化:在岩浆活动过程中,热液的作用导致了含铁物质的聚集和结晶,形成了铁矿床。

4. 早期成矿:古老的岩浆、构造作用和岩石圈过程中形成的铁矿石被后续构造作用带动或热液作用改造,形成了许多重要的铁矿床。

以上是关于铁矿石的分类、特征及其成矿机制的相关知识介绍,希望能够为大家对铁矿石有更深入的了解提供帮助。

铁矿石的开发利用对于国民经济的发展和建设具有重要意义,应该加强对铁矿石资源的综合利用和开发探索。

铁矿石作为重要的工业原料,其开发利用对于国民经济的发展和建设有着重要的意义。

铁矿石比例-概述说明以及解释

铁矿石比例-概述说明以及解释

铁矿石比例-概述说明以及解释1.引言1.1 概述铁矿石作为钢铁生产的主要原料之一,在现代工业中具有重要的地位。

铁矿石的比例对生产过程和产品质量都有着显著的影响。

因此,了解和掌握合理的铁矿石比例对于优化生产流程和提高产品品质至关重要。

本篇文章将围绕铁矿石比例展开论述。

首先,我们将简要介绍不同种类的铁矿石,包括其物理性质和化学成分。

然后,我们将详细探讨铁矿石的比例对生产过程的影响。

不同种类的铁矿石在进一步加工前需要进行混合,不同比例的混合将会对炼钢过程中的高炉操作和冶炼产出产生不同的影响。

我们将分析不同比例下的燃烧特性、温度和压力变化,进而探讨其对产品质量的影响。

笔者的研究旨在为生产企业提供合理的铁矿石比例建议,以提高生产效率和降低生产成本。

通过深入研究铁矿石比例的影响因素和机理,我们有望为钢铁行业的发展和优化提供有益的启示。

在本篇文章的结尾部分,我们将对全文进行总结,并对未来的研究方向提出展望。

我们希望这篇文章能为读者提供关于铁矿石比例的全面了解,并为相关领域的学者和从业人员提供有价值的观点和研究思路。

在钢铁行业日益竞争激烈的环境下,深入研究铁矿石比例对生产的影响具有重要的实际意义。

1.2文章结构1.2 文章结构本文主要分为引言、正文和结论三个部分。

引言部分概述了本篇文章的主题和内容。

首先,我们将介绍不同种类的铁矿石,并探讨它们对生产的影响。

接着,我们将详细讨论铁矿石的比例对生产的影响,并分析其中的关键因素和机制。

正文部分将分为两个主要部分展开讨论。

首先,我们将介绍常见的几种铁矿石的种类,包括赤铁矿、磁铁矿和褐铁矿等。

我们将对它们的性质和特点进行详细说明,并分析它们在炼铁过程中的应用和影响。

接着,我们将重点探讨铁矿石的比例对生产的影响。

我们将通过对不同比例铁矿石的实验和数据分析,来揭示铁矿石比例对炼铁过程中产量、质量和能耗等方面的影响机制。

同时,我们还将讨论在不同条件下选择合适的铁矿石比例的原则和方法,以及优化比例对提高炼铁效率的重要性。

铁矿石成分

铁矿石成分

铁矿石成分
铁矿石成分分析
铁矿石是重要的原材料之一,铁矿石各成分的组成构成了不同类型的铁矿石,因此,对铁矿石成分的分析便成为了了解和辨识铁矿石的重要步骤。

铁矿石成分主要包括氧化铁、锰矿、镁矿、硅灰石等,其中氧化铁最为重要,可占此类矿石总重的70\%~90\%。

而锰矿、镁矿以及硅灰石则占比少,分别占2\%~4\%、0.2\%~4\%以及0.1\%~17\%。

因此,氧化铁的含量可以作为衡量铁矿石质量的很大指标,若氧化铁含量高,则铁矿石品质较高。

另外,还有许多细微的成分也十分重要,如磷、二氧化硫、水合物等,其中磷影响物理性质与机械性能,二氧化硫及水合物影响铁矿石的流动性等,它们的含量也决定着铁矿石的品质。

因此,通过对铁矿石成分的分析,可以了解矿石的性质是否符合要求,以决定其机械性能、熔血性、可塑性、炼铁率等,最终确定其应用性。

铁矿铁矿储量分类、分级和级别条件

铁矿铁矿储量分类、分级和级别条件

铁矿储量分类、分级和级别条件矿产资源含量分类分级由国家专门机构——全国储量委员会制订。

一、储量分类根据我国当前技术经济条件,并考虑远景发展的需要,将铁矿储量分为两类:、1、表内储量:符合当前生产技术经济条件,能利用的储量。

、2、表外储量:由于矿物含量低,矿山开采技术条件和水文地质条件特别复杂,或对这种矿石加工技术方法尚未解决,不符合当前生产技术、经济条件,工业上暂不能利用而将来可能利用的储量。

二、储量分级和级别条件在全矿区勘探研究的基础上,按照对矿体不同部位的控制程度,将铁矿石储量分为A、B、C、D四级。

各级储量的工业用途和条件如下:A级:是矿山编制采掘计划依据的储量,由生产部门探求,其条件是:、1、准确控制矿体的形状、产状和空间位置;、2、对于影响开采的断层、褶皱、破碎带已准确控制。

对于夹石和破坏矿体的火成岩的岩性、产状及分布情况,已经确定;、3、对于矿石工业类型和品级的种类及其比例和变化规律已完全确定。

在需要分采和地质条件可能的情况下,应圈出矿石工业类型和品级。

B级:是矿山建设设计依据的储量,又是地质勘探阶段探求的高级储量,并可起到验证C级储量的作用,一般分布在矿体的浅部。

其条件是在C级储量的基础上:、1、详细控制矿体的形状、产状和空间位置;、2、在B级范围内对破坏和影响矿体较大的断层、褶皱、破碎带已详细控制。

对夹石和破坏主要矿体的主要火成岩和岩性、产状和分布情况已基本确定;、3、对矿石工业类型和品级的种类及其比例和变化规律已详细确定。

在需要分采和地质条件可能的情况下,就圈出主要矿石工业类型和品级。

C级:是矿山建设设计依据的储量。

基条件是:、1、基本控制矿体的形状、产状和空间位置;、2、对于破坏和影响主要矿体的较大断层、褶皱、破碎带已基本控制。

对于夹石和破坏主要矿体的主要火成岩的岩性、产状及分布情况,已大致了解;、3、基本确定矿石工业类型和品级的种类及其比例和变化规律。

D级:是用稀疏的勘探工程控制的储量;或虽用较密的工程控制,但由于矿体变化复杂或其他原因仍达不到C级要求的储量;或物化探异常经过工程验证所计算的储量;以及由C级以上储量块段外推的储量。

2021年全球及中国铁矿石行业现状及竞争格局分析

2021年全球及中国铁矿石行业现状及竞争格局分析

2021年全球及中国铁矿石行业现状及竞争格局分析一、铁矿石分类铁矿石是钢铁冶炼最主要的原料之一。

铁矿石的种类很多,其中用于钢铁冶炼的主要有磁铁矿、赤铁矿、菱铁矿以及褐铁矿等。

在生产、流通以及应用中,铁矿石一般分为块矿、粉矿、精矿以及球团矿四大类:二、全球铁矿石市场现状分析铁矿石在全球的分布较为集中,其中大洋洲、美洲以及亚洲是全球铁矿石的主要分布区域。

据统计,全球可用铁矿石储量约1800亿吨,其中澳大利亚为可用铁矿石储量第一大国,储量约为510亿吨,约占全球总储量的28.33%;巴西、俄罗斯及中国分列第二、三、四位,以上四国的可用铁矿石储量共占全球储量的70%以上。

产量方面,2021年,澳大利亚和巴西分别生产了9亿吨及3.8亿吨可用铁矿石,占可用全球铁矿石总产量的49.23%。

我国也是铁矿石生产大国,2021年共生产3.60亿吨可用铁矿石,约占世界总产量的13.85%。

三、中国铁矿石市场现状分析1、产量我国铁矿石品味较低,平均品位仅为34.29%。

与之对比,世界的铁矿石平均品位为48.42%。

据统计,2012-2021年我国铁矿石原矿产量具有一定波动性,2014-2017年呈下降态势,2018-2021年呈上升态势,截至2022年第一季度我国铁矿石原矿产量为2.56亿吨,同比增长8.96%。

从我国各省市铁矿石原矿产量来看,河北、辽宁与四川是我国铁矿石原矿产量前三地区,2021年产量分别为10674.42万吨、3653.21万吨与2741.24万吨。

2、进出口由于国内铁矿石存在供给不足、品位较低等问题,我国铁矿石的对外依存度居高不下。

据统计,2015年我国铁矿石对外依存度首次超过80%,我国铁矿石进口贸易需求量长期处于高水平,截至2022年第一季度我国铁矿石进口量为2.68亿吨,同比下降5.38%,出口量为0.07亿吨,同比增长48.07%。

进出口金额方面,2015-2021年我国铁矿石进口额增长迅速,截至2021年进口金额达到1797.44亿美元,同比增长51.12%,截至2022年第一季度我国铁矿石进口金额为298.76亿美元,同比下降29.89%,出口金额为11.16亿美元,同比增长67.47%。

赤铁矿的矿床类型与成矿规律分析

赤铁矿的矿床类型与成矿规律分析

赤铁矿的矿床类型与成矿规律分析赤铁矿是一种重要的铁矿石,广泛用于钢铁冶炼和建筑材料制造等领域。

本文将对赤铁矿的矿床类型和成矿规律进行详细分析。

首先,赤铁矿的矿床类型可以分为火山岩型矿床、沉积岩型矿床和变质岩型矿床。

火山岩型矿床是最常见的赤铁矿矿床类型,形成于含铁火山岩熔融作用的结果。

火山岩中含有丰富的铁元素,在火山喷发过程中,铁矿石以溶液或气态形式从岩浆中分离出来,沉积在火山口周围形成矿床。

沉积岩型矿床主要形成于大规模的沉积作用过程中,当河流、湖泊或者海洋中的铁元素达到饱和状态时,赤铁矿石就会形成。

变质岩型矿床是由变质作用形成的,当含有铁的岩石经历高温高压变质作用时,铁元素会以溶液的形式分离出来,形成赤铁矿矿床。

其次,赤铁矿的成矿规律主要与地质作用、构造运动和化学成分有关。

首先,赤铁矿的形成与火山喷发和沉积作用紧密相关。

火山喷发过程中,岩浆中的铁元素会以溶液或气态形式从岩浆中分离出来,随着火山活动的不断发展,铁矿石沉积在火山口周围,逐渐形成火山岩型赤铁矿矿床。

沉积作用也是赤铁矿形成的重要因素,当河流、湖泊或者海洋中的铁元素达到饱和状态时,赤铁矿石会沉积下来,形成沉积岩型赤铁矿矿床。

其次,构造运动对赤铁矿的形成起到了重要作用。

构造运动是地壳变形的结果,常常伴随着岩石的变质作用和岩浆活动,这种构造运动不仅改变了地质环境,还改变了地壳中铁元素的运移路径。

由于构造运动的压力和温度的变化,岩石中的铁元素可能会在高温高压的条件下逸出,进而形成变质岩型赤铁矿矿床。

此外,赤铁矿的成矿规律还与矿石中的化学成分密切相关。

赤铁矿石主要由铁氧化物组成,在形成过程中,矿石中含有的其他元素也是起到了重要作用的。

例如,硅、镁、铝等元素能够影响赤铁矿矿石的成色和矿石的硬度。

同时,还存在着一些辅助元素如磷、锰、钒等,它们不仅影响赤铁矿矿石的性质,还可能影响赤铁矿矿石的使用价值。

总之,赤铁矿的矿床类型主要有火山岩型矿床、沉积岩型矿床和变质岩型矿床。

中国铁矿床主要成因类型及其地质特征

中国铁矿床主要成因类型及其地质特征

中国铁矿床主要成因类型及其地质特征摘要:中国是全球对铁矿石资源需求最大的国家,目前中国铁矿石需求的50%以上来自国外。

中国铁矿资源丰富,但高品位矿石稀缺。

中国铁矿床可分为六种类型:沉积变质型、岩浆型铁钛型、火山岩型、接触交代热液型(主要为矽卡岩型)、沉积型和风化淋滤型。

中国不同类型的铁矿具有独特的时空分布。

文章简要介绍了各类铁矿矿床的地质特征,认为古亚洲成矿域海相-火山侵入型铁矿有一定的找矿潜力。

关键字:地质特征;成因类型;铁矿床1 概述中国是全球对铁矿石资源需求最大的国家,目前中国铁矿石需求的50%以上来自国外。

中国铁矿资源丰富(已探明铁矿约800亿吨),但高品位的铁矿石却十分稀缺。

中国铁矿床可分为六种类型:沉积变质型、岩浆型铁钛型、火山岩型、接触交代热液型(主要为矽卡岩型)、沉积型和风化淋滤型(赵宏军等,2018)。

沉积变质铁矿床主要分布在华北克拉通地区,以高变质变形的BIF相关铁矿床为主。

虽然这些矿石的TFe平均含量只有30.35%,但其粗粒磁铁矿在加工过程中很容易被回收。

沉积变质铁矿床是我国最常见的铁矿床类型,约占全国探明储量的56.3%。

中国铁矽卡岩矿床产于中生代中长英质中浅层侵入体与碳酸盐岩围岩接触带及其附近。

晚古生代海西运动在元古宙基底岩石中形成的岩浆铁-钛-钒矿床,以富钛磁铁矿为主要铁矿矿物的镁铁质-超镁铁质杂岩为主。

火山岩型铁矿床分为海相火山岩型和陆相火山岩型铁矿床,两者以磁铁矿为主。

海相火山岩型铁矿主要分布在新疆阿尔泰山、天山晚古生代岩石中。

陆相火山岩型铁矿床主要分布于长江中下游宁武、鲁中盆地燕山期(中生代晚期)富钠中基性岩系中。

沉积型铁矿主要赋存于华南泥盆系碎屑海相地层和华北中元古代海相地层中,以赤铁矿为主。

中国风化淋滤铁矿规模小,经济价值低。

2.1铁床的主要成因类型及其特征我国已探明铁矿资源量巨大,但是仍有发现众多未知铁矿床的巨大潜力,因此总结已知铁矿床的成因类型及其基本特征,将对我国寻找更多具经济价值的铁矿床意义重大。

我总结的铁矿石的种类及特征

我总结的铁矿石的种类及特征

我总结的铁矿石的种类及特征铁矿石种类及特征铁矿石是指岩石(或矿物)中TFe含量达到最低工业品位要求者。

(一)铁矿石分类按照矿物组分、结构、构造和采、选、冶及工艺流程等特点,可将铁矿石分为自然类型和工业类型两大类。

1.自然类型1)根据含铁矿物种类可分为:磁铁矿石、赤铁矿石、假象或半假象赤铁矿石、钒钛磁铁矿石、褐铁矿石、菱铁矿石以及由其中两种或两种以上含铁矿物组成的混合矿石。

2)按有害杂质(S、P、Cu、Pb、Zn、V、Ti、Co、Ni、Sn、F、As)含量的高低,可分为高硫铁矿石、低硫铁矿石、高磷铁矿石、低磷铁矿石等。

3)按结构、构造可分为浸染状矿石、网脉浸染状矿石、条纹状矿石、条带状矿石、致密块状矿石、角砾状矿石,以及鲕状、豆状、肾状、蜂窝状、粉状、土状矿石等。

4)按脉石矿物可分为石英型、闪石型、辉石型、斜长石型、绢云母绿泥石型、夕卡岩型、阳起石型、蛇纹石型、铁白云石型和碧玉型铁矿石等。

2.工业类型1)工业上能利用的铁矿石,即表内铁矿石,包括炼钢用铁矿石、炼铁用铁矿石、需选铁矿石。

2)工业上暂不能利用的铁矿石,即表外铁矿石,矿石含铁量介于最低工业品位与边界品位之间。

(二)一般工业质量要求1.炼钢用铁矿石(原称平炉富矿)矿石入炉块度要求:平炉用铁矿石50,250 mm;电炉用铁矿石50,100 mm;转炉用铁矿石10,50 mm。

直接用于炼钢的矿石质量(适用于磁铁矿石、赤铁矿石、褐铁矿石)。

2.炼铁用铁矿石(原称高炉富矿)矿石入炉块度要求:一般为8,40mm。

炼铁用铁矿石,按造渣组分的酸碱度可划分为: 碱性矿石(CaO+MgO)/(SiO2+Al2O3),1.2; 自熔性矿石(CaO+MgO)/(SiO2+Al2O3)=0.8,1.2; 半自熔性矿石(CaO+MgO)/(SiO2+Al2O3)=0.5,0.8; 酸性矿石(CaO+MgO)/(SiO2+Al2O3),0.5。

酸性转炉炼钢生铁矿石P?0.03%碱性平炉炼钢生铁矿石P?0.03%,0.18% 碱性侧吹转炉炼钢生铁矿石P?0.2%,0.8% 托马斯生铁矿石P?0.8%,1.2%普通铸造生铁矿石P?0.05%,0.15% 高磷铸造生铁矿石P?0.15%,0.6%3.需选铁矿石对于含铁量较低或含铁量虽高但有害杂质含量超过规定要求的矿石或含伴生有益组分的铁矿石,均需进行选矿处理,选出的铁精粉经配料烧结或球团处理后才能入炉使用。

铁矿相关知识-概述说明以及解释

铁矿相关知识-概述说明以及解释

铁矿相关知识-概述说明以及解释1.引言1.1 概述概述部分主要介绍铁矿相关知识的背景和重要性。

铁矿是一种重要的矿石资源,是钢铁工业的基础原料,对于推动经济发展和满足人们日益增长的需求具有重要作用。

铁矿的开采和加工过程中,涉及到多个环节和技术,需要综合运用采矿、选矿、冶炼等工艺,以及新技术的应用,以提高资源利用效率和产品质量。

然而,随着经济全球化的发展和资源的有限性,铁矿资源面临着日益严峻的挑战。

因此,保护和可持续利用铁矿资源成为亟待解决的问题。

同时,铁矿行业也面临着市场需求和环境保护等方面的挑战,需要在探索新市场、提高产业链水平、加强环保措施等方面进行改进和创新。

本文将围绕以上内容展开,以期对铁矿相关知识进行全面深入的探讨。

文章结构部分的内容如下:1.2 文章结构本文主要分为引言、正文和结论三个部分。

引言部分主要包括概述、文章结构和目的三个部分。

在概述中,将介绍铁矿的背景和重要性,引起读者的兴趣。

接着,将介绍文章的整体结构,让读者对文章有一个整体的了解。

最后,明确文章的目的,即本文探讨铁矿相关知识的目的和意义。

正文部分包括三个小节,分别是铁矿的定义和分类、铁矿的产地和分布以及铁矿的开采和加工。

在铁矿的定义和分类中,将介绍什么是铁矿以及不同类型的铁矿的特征和分类方法。

在铁矿的产地和分布中,将介绍各个地区的主要铁矿储量和产出情况,以及各地的特点和差异。

在铁矿的开采和加工中,将介绍铁矿的开采过程和技术,以及铁矿的加工方法和应用领域。

结论部分主要总结全文,并讨论铁矿的重要性和应用、铁矿资源的保护和可持续利用,以及对铁矿行业的展望和挑战。

对于铁矿的重要性和应用,将强调其在工业和经济发展中的重要地位,并探讨其在未来的应用前景。

对于铁矿资源的保护和可持续利用,将提出相应的措施和建议,以确保资源的可持续利用和环境的保护。

最后,对铁矿行业的展望和挑战进行讨论,分析未来可能面临的问题和发展趋势,为读者提供对铁矿行业的更深入的了解和思考。

铁矿石——品种、分类、冶炼、有害元素

铁矿石——品种、分类、冶炼、有害元素

铁矿石——品种、分类、冶炼、元素一、铁矿石品种1、PB粉、块(Pb Fines/Pb Lumps):产于澳大利亚,又称皮尔巴拉混合矿(必和必拓公司经营),粉的品位在61.5%左右,部分褐铁矿,烧结性能较好;块的品位在62.5%左右,属褐铁矿,还原性好,热强度一般。

PB粉和块可由汤姆普赖斯矿、帕拉布杜矿、马兰杜矿、布鲁克曼矿、那牟迪矿和西安吉拉斯矿等矿山的粉矿混匀成。

2、杨迪粉(Yandi Fines):产于澳大利亚(必和必拓公司经营),品位在58%左右,铝含量低,属褐铁矿,结晶水较高,混合制料所需水分要求较高,因其结构疏松,烧结同化性和反应性较好,因此可部分替代纽曼山粉矿或巴西粉矿。

含相对低的Al2O3,而且这两种矿粉都比哈默斯利矿粉粗,它们都有合理的冶炼性能,但烧结性能不佳。

3、麦克粉(Mac Fines):MAC粉的正常品位在61.5%左右,目前供给中国市场多为58%左右的品位,部分属褐铁矿,烧结性能较好,含有5%左右的结晶水,炼铁时烧损较高,随其配比加大,烧结矿的烧成率逐步下降。

经钢厂研究,MAC粉配比在15%-20%时烧结矿小于5mm级水平较低,配比为20%的烧结成品率最高。

4、纽曼粉、块矿(Newman Fines/Newman Lumps):产于澳大利亚的东皮尔巴拉的纽曼镇的纽曼山矿,属赤铁矿,烧结性能较好,粉的品位在62.5%左右,块的品位在65%左右,由澳大利亚西澳州必和必拓公司生产。

5、罗布河粉、块(Robe River Fines/Robe River Lumps):产于澳大利亚的罗布河铁矿联合公司;品位在57.5%左右,含3%-5%的复合水,这会导致高燃料率及低生产率;属于褐铁矿,烧结性能不好,但其烧结矿的冶炼性能很好。

6、火箭粉:又称FMG(福蒂斯丘金属集团(Fortescue metal Group (FMG)))粉,由澳大利亚第三大铁矿石生产商FMG公司生产;据说用作火箭发动机燃料的一种成分,故称火箭粉,其品位在58.5%左右,硅4左右,铝1.5左右,属于褐铁矿,烧结性能较好,储量大且单烧品位高,结晶水在8%左右。

中国主要富铁矿床类型及地质特征

中国主要富铁矿床类型及地质特征

中国主要富铁矿床类型及地质特征中国是世界上铁矿资源储量最大的国家之一,其中包括了多种主要富铁矿床类型,如磁铁矿、赤铁矿和褐铁矿等。

这些不同类型的铁矿床具有不同的地质特征,下面将以此为主线进行阐述。

1. 磁铁矿型铁矿床磁铁矿型铁矿床是中国最主要的类型之一,其主要成矿岩石为长英质岩石。

磁铁矿通常出现在深部地质结构复杂的区域。

这种铁矿床的地层通过变质作用形成,常常与脉状矿体及矿脉结构有关。

这些矿脉、矿体呈伞形、漏斗形、钻孔形状,铁矿石含量在30%以上,磁性极强,可用磁力选别。

2. 赤铁矿型铁矿床赤铁矿型铁矿床主要成矿岩石是变质岩或沉积岩,分布广泛,如华北地区、东北地区、西南地区等地。

这种铁矿床通常与变形、变质有关,形成方式多样,如板状、块状、层状、砂岩状、矿脉状等,其中板状铁矿床最为常见。

赤铁矿型铁矿床中赤铁矿含量较高,矿石品位一般为30%左右。

3. 褐铁矿型铁矿床褐铁矿型铁矿床主要成矿岩石是火山岩和沉积岩,由火山岩相和轻变质相构成。

其中火山岩相的褐铁矿床多位于太行山和阜阳地区,轻变质相的褐铁矿床主要分布于华中地区。

这种铁矿床矿体形态多样,有层状、叠层状、似层状、斑状、散状等,矿石的品位一般不高,一般在20%以下。

综合以上几种铁矿床类型,可以发现中国的铁矿床类型分布广泛、类型丰富。

在矿床开发利用中对不同的铁矿床类型,需要采取不同的技术手段,以实现更好的开采效果。

同时,中国需要更加注重不同铁矿床的开发和利用,不断加强技术研发和生产管理,提高铁矿石产出和品质,促进资源的有效开发利用,推进矿业可持续发展。

中国是世界上铁矿石产量最大的国家之一,据统计,截至2020年底,中国的原铁矿石产量为1.1亿吨左右,为全球总量的50%左右。

同时,中国还是世界上铁矿石进口大国,2020年全年进口铁矿石亿吨,而出口仅为3.02万吨。

以下是对这些数据进行分析:1. 原铁矿石产量居世界首位中国原铁矿石的产量一直都在世界领先地位。

全球15大铁矿石品种及其特点

全球15大铁矿石品种及其特点

全球15大铁矿石品种及其特点1、PB粉、块(Pb Fines/Pb Lumps):产于澳大利亚,又称皮尔巴拉混合矿(力拓公司经营),粉的品位在61.5%左右,部分褐铁矿,烧结性能较好;块的品位在62.5%左右,属褐铁矿,还原性好,热强度一般。

PB粉和块可由汤姆普赖斯矿、帕拉布杜矿、马兰杜矿、布鲁克曼矿、那牟迪矿和西安吉拉斯矿等矿山的粉矿混匀成。

2、杨迪粉(Yandi Fines):产于澳大利亚(必和必拓公司经营),品位在58%左右,铝含量低,属褐铁矿,结晶水较高,混合制料所需水分要求较高,因其结构疏松,烧结同化性和反应性较好,因此可部分替代纽曼山粉矿或巴西粉矿。

含相对低的Al2O3,而且这两种矿粉都比哈默斯利矿粉粗,它们都有合理的冶炼性能,但烧结性能不佳。

3、麦克粉(Mac Fines):MAC粉的正常品位在61.5%左右,目前供给中国市场多为58%左右的品位,部分属褐铁矿,烧结性能较好,含有5%左右的结晶水,炼铁时烧损较高,随其配比加大,烧结矿的烧成率逐步下降。

经钢厂研究,MAC粉配比在15%-20%时烧结矿小于5mm级水平较低,配比为20%的烧结成品率最高。

4、纽曼粉、块矿(Newman Fines/Newman Lumps):产于澳大利亚的东皮尔巴拉的纽曼镇的纽曼山矿,属赤铁矿,烧结性能较好,粉的品位在62.5%左右,块的品位在65%左右,由澳大利亚西澳州必和必拓公司生产。

5、罗布河粉、块(Robe River Fines/Robe River Lumps):产于澳大利亚的罗布河铁矿联合公司;品位在57.5%左右,含3%-5%的复合水,这会导致高燃料率及低生产率;属于褐铁矿,烧结性能不好,但其烧结矿的冶炼性能很好。

6、火箭粉:又称FMG(福蒂斯丘金属集团(Fortescue metal Group (FMG)))粉,由澳大利亚第三大铁矿石生产商FMG 公司生产;据说用作火箭发动机燃料的一种成分,故称火箭粉,其品位在58.5%左右,硅4左右,铝1.5左右,属于褐铁矿,烧结性能较好,储量大且单烧品位高,结晶水在8%左右。

铁矿床地质特征及成因分析

铁矿床地质特征及成因分析

矿产资源M ineral resources铁矿床地质特征及成因分析胡发卯摘要:本文主要研究铁矿床的地质特征及成因分析,并对其勘探和开发利用进行了探讨。

在地质特征方面,铁矿床的分布与产状、矿石类型、岩石组成、矿物学特征以及矿物资源量和品位等都进行了详细的分析描述;在成因分析方面,主要探讨了铁矿床形成的基本条件、成矿物质来源、成矿作用以及成矿机制等;在勘探和开发利用方面,介绍了铁矿床的勘探方法、开发利用现状以及存在的问题和发展趋势等。

关键词:铁矿床;地质特征;成因分析;勘探;开发利用铁矿是人类重要的金属矿产资源之一,广泛应用于钢铁、建筑、机械、交通等各个领域。

随着社会经济的发展和人们对生活品质的要求不断提高,对铁矿的需求也在不断增加。

因此,研究铁矿床的地质特征及成因分析,对于科学合理地开发和利用铁矿资源,提高铁矿勘探开发水平具有重要的意义。

铁矿床是指地球上含有铁矿的岩石体,它的产状和地质特征对于铁矿的勘探和开发至关重要。

本文将从铁矿床的地质特征入手,分析铁矿床的分布、产状、矿石类型、岩石组成、矿物学特征以及矿物资源量和品位等方面的内容。

同时,对铁矿床的成因进行分析,包括成矿物质来源、成矿作用以及成矿机制等方面的内容,为铁矿床的勘探和开发提供理论依据。

最后,本文还将探讨铁矿床的勘探方法、开发利用现状以及存在的问题和发展趋势等方面的内容。

1 铁矿床的地质特征1.1 分布与产状铁矿床广泛分布于世界各地,其产状形式多种多样。

一般来说,铁矿床的产状与地质构造、岩性、变质作用等因素密切相关。

在地质构造方面,铁矿床常位于褶皱带、断裂带、地堑、岛弧和盆地等地质构造带内。

在岩性方面,铁矿床常与含铁质的火山岩、沉积岩、变质岩等有密切的关系。

在变质作用方面,铁矿床往往形成于区域变质作用或者热液蚀变作用的影响下。

此外,铁矿床还可分为海底铁矿床、沉积铁矿床和热液铁矿床等多种类型,各种类型的铁矿床产状也有所不同。

因此,了解铁矿床的分布和产状对于其勘探和开发利用具有重要的指导意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1铁矿石是钢铁生产企业的重要原材料,天然矿石(铁矿石)经过破碎、磨碎、磁选、浮选、重选等程序逐渐选出铁。

凡是含有可经济利用的铁元素的矿石叫做铁矿石。

铁矿石的种类很多,用于炼铁的主要有磁铁矿(Fe3O4)、赤铁矿(Fe2O3)和菱铁矿(FeCO3)等。

铁矿石试样经盐酸溶解后,其中的铁铁矿石转化为Fe3+。

在强酸性条件下,Fe3+可通过SnCl2还原为Fe2+。

Sn2+将Fe3+还原完毕后,甲基橙也可被Sn2+还原成氢化甲基橙而褪色,因而甲基橙可指示Fe3+还原终点。

Sn2+还能继续使氢化甲基橙还原成N ,N-二甲基对苯二胺和对氨基苯磺酸钠。

可以直接投入炼钢炉炼钢的铁矿石旧称“平炉富矿”,可以直接用于炼铁的铁矿石旧称“高炉富矿”,都带个“富”字。

这些富矿最好是磁铁矿和赤铁矿,它们的含铁量都在70%以上。

贫矿,或者是有害杂质较多的铁矿,则需要先经过选矿,成本一下子就上去了。

铁矿石的分类十分复杂,可以按主要成分、有害杂质、结构形态、脉石种类等许多角度来分,每种角度都能分出许多种,工业上选用哪一种,对应于什么样的工艺流程,有非常多的讲究, 铁矿物分类铁都是以化合物的状态存在于自然界中,尤其是以氧化铁的状态存在的量特别多。

磁铁矿(MagnetITe )是一种氧化铁的矿石,主要成份为Fe3O4,是Fe2O3和FeO 的复合物,呈黑灰色,比重大约5.15磁铁矿左右,含Fe72.4%,O 27.6%,具有磁性。

在选矿(Beneficiation )时可利用磁选法,处理非常方便;但是由于其结构细密,故被还原性较差。

经过长期风化作用后即变成赤铁矿。

赤铁矿(Hematite )也是一种氧化铁的矿石,主要成份为Fe2O3,呈暗红色,比重大约为5.26,含Fe70%,O 30%,是最主要的铁矿石。

由其本身结构状况的不同又可分成很多类别,如赤色赤铁矿(Red hematite )、镜铁矿(SPEcularhematite )、云母铁矿(Micaceous hematite )、粘土质赤铁(Red Ocher )等。

[3] (Limonite )这是含有氢氧化铁的矿石。

它是针铁矿(Goethite )HFeO2和鳞铁矿(LepidoCRocite)FeO(OH)两种不同结构矿石的统称,也有人把它主要褐铁矿成份的化学式写成mFe2O3.nH2O,呈现土黄或棕色,含有Fe约62%,O 27%,H2O 11%,比重约为3.6~4.0,多半是附存在其它铁矿石之中。

菱铁矿(Siderite)是含有碳酸亚铁的矿石,主要成份为FeCO3,呈现青灰色,比重在3.8左右。

这种矿石多半含有相当多数量的钙盐和镁盐。

由于碳酸根在高温约800~900℃时会吸收大量的热而放出二氧化碳,所以我们多半先把这一类矿石加以焙烧之后再加入鼓风炉。

编辑本段品位要求铁矿石的品位指的是铁矿石中铁元素的质量分数,通俗来铁矿石说就是含铁量。

比如说,铁矿石的品位为62,指的是其中铁元素的质量分数为62%对于赤铁矿(主要成分为Fe2O3),理论最高品位为70%对于磁铁矿(主要成分为Fe3O4),理论最高品位为72.4%对于菱铁矿(主要成分为FeCO3),理论最高品位为48.3%对于褐铁矿(主要成分为Fe2O3.H2O),理论最高品位为62.9%有益与有害元素铁矿石中有益与无益元素:铁矿石中的杂质很多,根据其对冶炼过程及其对产品质量的影响又可分为有益的与有害的两类。

1.有害杂质(元素)指影响选冶的杂质。

常见和最主要的有害杂质有:硫、磷、砷、钾、钠、氟等。

(1)磷磷在矿石中一般以磷灰石(3CaO?P2O5)状态存在,也有以蓝铁矿(3FeO?As3O5)状态存在。

磷在高炉中全部被还原并大部分进入生铁。

含磷多的钢铁在低温加工时易破裂,即所谓“冷脆”。

(2)硫2硫在矿石中主要以黄铁矿(FeS2)存在,也有以黄铜矿(FeS?、CuS)或硫酸盐(CaSO4.2H2O\BaSO4)状态存在。

冶炼时硫部分被还原进入生铁,钢铁中含硫在其热加工时易产生“热脆”。

高炉冶炼时虽然可以脱硫,但却要多消耗焦碳(提高炉温)和石灰石(提高炉渣碱度),以至提高生产成本,因此入炉铁矿石要求含硫应< 0.15%。

(3)钾、钠常存在于霓石、钠闪石、云石之中。

它们的最大危害性是降低铁矿石的软化点,常常因此造成高炉结瘤。

含钾、钠高的矿石往往容易影响高炉冶炼的顺行。

(4)砷砷在一般铁矿石中很少,但在褐铁矿中比较常见,它以毒砂(FeAs2S)或其它氧化物(As2O3、As3O5)的形态存在,砷在冶炼时大部分进入生铁,当钢中砷含量超过0.1%时会使钢冷脆冷脆,并影响钢的焊接性能。

2.有益元素(杂质)铁矿石中有些元素对冶炼过程不一定带来好处,但是它们却往往能改善产品的某些性能,象这些元素我们称它为有益元素。

这类元素常见的有:锰、镍、铬、钒、钛等。

1.硫铁矿矿石的主要有益伴生元素中国硫铁矿床中,除部分沉积变质型矿床矿石组分比较单一、以硫铁矿为主、其他有用组分较少外,大多数矿床都含有多种有益组分。

据统计,在硫铁矿矿石及其氧化矿石内含有的有益伴生组分将近有15种,有:铜、金、银、镓、碲、钴、镉、锗、铊、锰等,有利于硫铁矿床的综合开发利用。

2.硫铁矿矿石的主要有害组分及影响硫铁矿在制硫酸时的主要有害组分有:砷、氟、铅、锌、碳、钙、镁、碳酸盐等。

砷:在硫酸生产中,砷会使触媒中毒,生成氧化砷结晶,使转化率下降,并堵塞管道,造成清理困难,还容易使人中毒;排出的污水中含砷会造成环境污染。

氟:焙烧时大部分以氟化氢存在,小部分为四氟化硅。

氟化氢能使触媒粉碎;四氟化硅能使触媒结块,导致触媒阻力升高,转化率降低。

在酸洗流程中,生成的氢氟酸,会腐蚀砖衬里和磁环;在水洗流程中,因氟的溶解度大,大部分随污水排出,会污染饮用水和影响农作物生长。

铅锌;焙烧过程中熔点较低,易使焙烧炉产生结疤现象。

碳:含量较多时,在焙烧过程中发热很高,炉温不易控制,还要消耗较多的氧,生成一氧化碳或二氧化碳,影响转化。

钙、镁碳酸盐:硫铁矿石中的钙、镁碳酸盐脉石(白云石、方解石)使硫铁矿在焙烧过程中分解出二氧化碳气体,稀释了炉气中二氧化硫的浓度。

同时,氧化钙和氧化镁还吸收部分二氧化硫形成硫酸钙和硫酸镁,降低了硫的利用率,使设备的生产能力下降。

而且新形成的钙、镁硫酸盐残留在硫铁矿石的烧渣中,影响综合利用。

在制造二硫化碳人造纤维时,硫铁矿石中的沥青和砷是有害杂质。

在造纸工业中,制亚硫酸盐纸浆的硫不能含硒,因为硒会使纸发黑。

在制造火柴和炸药时,硫中不能含微量的二氧化硅杂质,因为二氧化硅会妨碍燃烧。

3铁矿石选矿铁矿石是钢铁生产企业的重要原材料,一般低于50%品位的铁矿石需要经过选矿才能冶炼利用。

天然矿石(铁矿石)经过破碎、磨碎、磁选、浮选、重选等程序逐渐选出铁。

针对中国铁矿石存在的特点,以及钢铁工业对铁精矿更高的要求等给中国选矿工作者提出了新的挑战。

因此对中国冶金矿山选矿技术有了更深的发展要求,随之而来的就是促发选矿设备的进一步提高。

选矿工艺流程应该尽可能的高效、简单,比如抓好节能设备的开发,要尽可能以最合适的流程取得最佳的效果等。

在选矿厂中,破碎和磨碎作业的设备投资、生产费用、电能消耗和钢材消耗往往所占的比例最大,故破碎和磨碎设备的计算选择及操作管理的好坏,在很大程度上决定着选矿厂的经济效益。

中国铁矿资源中易选的铁矿资源日益减少,铁矿资源特点是贫矿多,富矿少,伴生矿产多,矿石组分比较复杂,矿石嵌布粒度大多较细,给选矿造成一定的困难。

从技术上来讲,迫切需要先进的技术、先进的工艺和先进的设备,来推动贫铁矿资源的高效开发与利用。

从经济效益来讲,选矿厂对于贫铁矿的生产,必须扩大生产规模,必须扩大原矿的处理能力,节能降耗,降低选矿加工成本,才会有较好的经济效益。

在矿石进入磨矿作业之前,将混入矿石中的一部分脉石矿物预选剔除,实现该丢早丢,以利于提高原矿品位。

采用超细碎粗粒抛尾优化的预选工艺,这是贫铁矿提高生产能力、节能降耗、创造较好的经济效益行之有效的方法。

深湘辊式柱磨机与低品位铁矿的作用嵌布粒度极细低品位铁矿石在进行超细碎作业时,由于铁矿石在料层的状况下,受到快速旋转的磨辊反复多次碾压和搓揉,使得矿石碾压成细粒及粉末状。

从而使有用矿物与脉石的结合界面即会发生疲劳断裂或发生微裂纹和内应力,部分的结合界面也会完全分离。

这样很大一部分有用矿物便获得了完全的单体解离,另一部分没有完全单体解离的颗粒内部的结合界面处,也会产生微裂纹或内应力。

当获得了完全单体解离或部分单体解离的颗粒,进入预选作业粗粒抛尾时,便可获得品位较高的粗精矿和品位较低的尾矿。

这种脉石矿物较少的粗精矿进入球磨机时,没有完全单体解离的颗粒内部的结合界面,由于含有大量的微裂纹和内应力,因此在球磨机中,这部分颗粒中的有用矿物和脉石便很容易获得更好的单体解离。

这样粗精矿磨矿后有利于磁选精选作业提高最终精矿的品位。

嵌布粒度极细低品位铁矿石经辊式柱磨机超细碎后,预选:干式弱磁选可以抛弃40%左右品位较低的尾矿,湿式弱磁选可以抛弃50%左右品位较低的尾矿。

其原因在于辊式磨机超细碎产品的粒度很小,粒度分布范围广,其中-5mm以下的粒级达80%以上,-1mm以下的粒级达50%以上,-200目粒级达20%左右,其超细碎产品呈粉末状,所以这种粒级分布的铁矿石进行预选,粗粒抛尾时会获得显著的选别效果。

4铁矿成矿理论一、成矿条件和地层岩浆岩构造三者关系密切1.层位与岩性对铁矿的控制1)稳定的层位2)含矿层位往往是大范围分布, 一般沿走向延展数千米至数百千米, 沿剖面矿体厚度数米至数十米;3) 铁矿层的产状与地层产状基本一致;4) 矿层顶底板围岩岩性与铁矿体富集存在明显依存关系, 当矿层底板为含砾砂岩时, 矿层稳定, 且延展较大, 若为砂质板岩或二者交替出现时, 矿体则延展较小, 多为透镜体, 从而反映了海水深度的变迁及环境对铁质的富集有着直接的影响。

2 岩相古地理对成矿的控制一个地区强烈的上升造陆运动,容易造成地层间角度不整合接触,运动强度的不同又使得方向的改变。

3 古构造对成矿的控制地台与褶皱带的结合地带,容易发生构造运动。

4 变质作用对成矿的控制1)变质作用的影响: 当在动力活动强烈的挤压部位, 由于动力变质热液的影响, 有机硫( H2S) 和处于还原环境中赤铁矿, 在还原剂( H、HS) 的作用下, 还原为磁铁矿。

因此,铁矿体中磁铁矿含量明显增多, 粒度加粗( 由微细粒变为中粗粒) , 常形成厚度较大的磁铁矿体, 且磁铁矿石中普遍出现大量的黄铁矿, 硫含量也略高于赤铁矿。

故动力变质作用是使赤铁矿变成磁铁矿的一个重要因素。

2) 热液变质作用的影响: 在空间位置上,当铁矿层呈现出愈靠近岩体或岩脉, 铁矿石磁性率愈增高的趋势, 故岩浆热液活动是该区磁铁矿形成的重要原因之一。

相关文档
最新文档