进气系统基本知识介绍
汽轮机原理知识点总结
汽轮机原理知识点总结一、汽轮机的基本原理汽轮机是一种利用热能转化为机械能的装置,其基本原理是通过高温高压蒸汽驱动叶轮旋转,从而将热能转化为机械能。
汽轮机主要由进气系统、燃烧室、排气系统和叶轮组成。
二、进气系统进气系统主要由空气滤清器、增压器和进气管组成。
空气滤清器可以过滤掉空气中的杂质,增压器可以将空气压力提高到所需的水平,进气管将增压后的空气送入燃烧室。
三、燃烧室燃烧室是将油或天然气等可燃物质与空气混合并点火进行爆发性反应,产生高温高压蒸汽的地方。
在这里,可燃物质被点火后会迅速燃烧,并释放出大量的能量。
四、排气系统排气系统主要由排放管和涡轮组成。
通过涡轮的旋转运动将排放出来的废气排出,并驱动叶轮旋转。
五、叶轮叶轮是汽轮机最核心的部件,也是将热能转化为机械能的关键。
它由多个叶片组成,当高温高压蒸汽冲击到叶片上时,会使得叶轮开始旋转。
六、汽轮机的工作过程汽轮机的工作过程可以分为四个阶段:进气、压缩、燃烧和排气。
在进气阶段,空气被吸入进气系统并经过增压器增压后送入燃烧室;在压缩阶段,空气被压缩并提高温度;在燃烧阶段,可燃物质与空气混合并点火进行爆发性反应,产生高温高压蒸汽;在排气阶段,废气被排放出来,并通过涡轮驱动叶轮旋转。
七、汽轮机的类型根据不同的工作原理和用途,汽轮机可以分为循环式汽轮机和透平式汽轮机两种类型。
循环式汽轮机主要用于发电站等大型能源设施中,而透平式汽轮机则主要应用于船舶和飞机等交通工具中。
八、汽轮机的优缺点汽轮机具有高效率、稳定性好、寿命长等优点,但也存在一些缺点,如噪音大、维护成本高、占地面积大等。
此外,汽轮机的使用还会对环境造成一定的影响。
九、汽轮机的应用领域由于其高效率和稳定性好等特点,汽轮机在电力行业、船舶行业和航空航天行业等领域得到广泛应用。
在电力行业中,汽轮机主要用于发电站;在船舶行业中,汽轮机则主要用于驱动螺旋桨;在航空航天行业中,则主要应用于飞机发动机。
燃机空气进气系统
降噪优化
优化消音器设计,降低进气系 统运行时的噪音,提高设备的 舒适性和环保性。
过滤性能优化
改进过滤器的设计,提高其过 滤效率和寿命,减少维护成本 。
材料选择优化
根据不同部件的工作环境和功 能需求,合理选择高性价比的 材料,在保证性能的同时降低
优化温度
通过改进进气系统的设计或调整相关参数, 提高其对空气的加热或冷却效果。
优化压力
通过改进进气系统的设计或调整相关参数, 提高其对空气的压缩效果。
优化湿度
通过改进进气系统的设计或调整相关参数, 提高其对空气的加湿或干燥效果。
04
燃机空气进气系统应用与 案例
应用领域
01
02
03
能源发电
燃机空气进气系统广泛应 用于能源发电领域,为燃 机提供清洁、稳定的空气 供应,提高发电效率。
系统组成
系统组成
燃机空气进气系统主要由进气道、过滤器、压气机、冷却器 和相关管道组成。
主要组件功能
进气道负责引导空气进入系统,过滤器滤除空气中的杂质和 颗粒物,压气机对空气进行压缩,冷却器降低空气温度,管 道将压缩空气输送到燃机的燃烧室。
02
燃机空气进气系统设计
设计原则
01
02
03
04
高效性
确保进气系统能够最大化地提 高燃机的燃烧效率,从而提升
05
燃机空气进气系统问题与 解决方案
常见问题
空气过滤效果不佳
由于过滤器堵塞或老化,导致进入燃机的空气质量下降。
进气温度过高或过低
影响燃机的正常运转,可能导致性能下降或损坏。
进气压力波动
汽车进气系统
a)低速段(n<4400r/min);b)高速段(n>4400r/min)
当进气管中动力阀关闭时,可变进气管容积及总长大约为70cm的进气管,能在发动机转速n=3300r/min时, 形成谐振进气压力波,提高了充气效率,使转矩达到最大值。当发动机转速大于4000r/min时,进气管中便不能 形成有效的进气压力波,于是动力阀门打开,两个中间进气通道便连接成一体。优化选择在每个气缸与总管连接 的支管容积后,能形成高速(如:n=4400r/min)下谐振进气脉冲波,使转矩值达到较高值。于是在n=1500~ 5000r/min的范围内,转矩曲线变化平缓。
发动机油耗可以通过一扇门的运动来说明。门开启的大小和时间长短,决定了进出入的人流量。门开启的角 度越大,开启时间越长,进出入的人流量越大,门开启的角度越小,开启时间越短,进出入的人流量就越少。在 剧院入场看戏,要一个一个观众验票进场,就要控制大门的开启角度,有些匣道还设置栏杆,象地铁出入口一样。 在剧院散场时要尽快疏散观众,就要撤除匣道栏杆,将大门完全打开。大门开启角度和时间决定人流量,这非常 容易理解。同样的道理用于发动机上,就产生了气门升程和正时的概念。气门升程就好像门开启的角度,正时就 好象门开启的时间。以立体的思维观点看问题,角度加时间就是一个容积空间的大小,它的大小决定了耗油量。
可变配气
可变配气技术,从大类上分,包括可变气门正时和可变气门行程两大类。
首先谈一下普通发动机配气机构,大家都知道气门是由发动机的曲轴通过凸轮轴带动的,气门的配气正时取 决于凸轮轴的转角。在发动机运转的时候,我们需要让更多的新鲜空气进入到燃烧室,让废气能尽可能的排出燃 烧室,最好的解决方法就是让进气门提前打开,让排气门推迟关闭。这样,在进气行程和排气行程之间,就会发 生进气门和排气门同时打开的情况,这种进排气门之间的重叠被称为气门叠加角。在普通的发动机上,进气门和 排气门的开闭时间是固定不变的,气门叠加角也是固定不变的,是根据试验而取得的最佳配气定时,在发动机运 转过程中是不能改变的。然而发动机转速的高低对进,排气流动以及气缸内燃烧过程是有影响的。转速高时,进 气气流流速高,惯性能量大,所以希望进气门早些打开,晚些关闭,使新鲜气体顺利充入气缸,尽量多一些混合 气或空气。反之在在发动机转速较低时,进气流速低,流动惯性能量也小,如果进气门过早开启,由于此时活塞 正上行排气,很容易把新鲜空气挤出气缸,使进气反而少了,发动机工作不稳定。因此,没有任何一种固定的气 门叠加角设置能让发动机在高低转速时都能完美输出的,如果没有可变气门正时技术,发动机只能根据其匹配车 型的需求,选择最优化的固定的气门叠加角。例如,赛车的发动机一般都采用较小的气门叠加角,以有利于高转 速时候的动力输出。而普通的民用车则采用适中的气门叠加角,同时兼顾高速和低速时的动力输出,但在低转速 和高转速时会损失很多动力。而可变气门正时技术,就是通过技术手段,实现气门叠加角的可变来解决这一矛盾。
进气控制系统课件
类型
常见的空气滤清器有纸质 滤清器、油浸滤清器等。
更换周期
空气滤清器的更换周期一 般为每行驶1万公里至2万 公里,具体根据行驶环境 和滤清器类型而定。
进气管路
功能
将经过空气滤清器滤清后 的空气引导至发动机进气门。
设计要点
进气管路的设计需要考虑 气流动力学,以减少气流 阻力和涡流产生,提高充 气效率。
常见故障的排除技巧和案例分享
案例一:一辆汽车发动机动力 不足,经检查发现空气滤清器 严重堵塞。更换新的空气滤清
器后,发动机动力恢复正常。
案例三:一辆汽车燃油经济性 变差,经检查发现进气歧管存 在漏气现象。更换新的进气歧 管后,燃油经济性恢复正常。
案例二:一辆汽车怠速不稳, 通过诊断仪读取故障码,发现 是节气门脏污导致的。清洗节 气门后,怠速稳定性得到明显
提高充气效率:优化进气歧管的设计和 气流特性,提高发动机的充气效率。
功能
调节空气流量:根据发动机的工况和需 求,调节进入发动机的空气量。
进气控制系统的组成和工作原理
组成 空气滤清器:清除空气中的尘埃和杂质,保护发动机免受磨损。
进气歧管:将空气引导至发动机的各个气缸。
进气控制系统的组成和工作原理
节气门体
材料选择
一般选用耐高温、耐油蚀、 耐老化的材料,如硅胶、 橡胶等。
节气门体
功能 控制发动机的进气量,从而调节发动机的输出功率和转速。
结构 一般由节气门片、节气门轴、节气门位置传感器等组成。
控制方式 常见的节气门体控制方式有机械式、电子式等。电子式通 过节气门位置传感器将节气门开度信号传递给ECU,ECU 根据信号调整喷油量和点火提前角等参数。
排放。
进气控制系统的故障诊断 与排除
汽车进气系统
汽车进气系统汽车进气系统是车辆发动机中至关重要的一个部件,扮演着引入空气、混合空气与燃料的角色。
它的性能直接影响着发动机的功率、燃油效率和排放。
在现代汽车技术中,进气系统已经经历了多次演进和优化,以提高发动机性能和燃油经济性。
进气系统组成汽车进气系统通常包括空气滤清器、进气管道、节气门、进气歧管、进气门和气缸等组件。
空气滤清器空气滤清器主要作用是过滤进入发动机的空气,阻止灰尘、杂质等颗粒物污染进气系统,保护发动机不受损。
一个高效的空气滤清器能够保证发动机正常运行,延长发动机寿命。
进气管道进气管道将空气从空气滤清器引导至发动机。
设计合理的进气管道能够减少气流阻力,提升发动机的进气效率。
节气门节气门是控制进气量的调节器件,通过调节节气门的开合程度,可以控制发动机的运转速度和功率输出。
进气歧管进气歧管将来自不同缸的进气汇聚到一起,确保每个气缸获取到相同的燃烧条件,提高发动机的运行平稳性。
进气门进气门是进气系统最末端的组件,负责控制气缸内空气的进出。
进气门的设计与运作直接关系到发动机的进气效率和性能输出。
进气系统工作原理汽车的进气系统工作原理基本上遵循以下步骤:1.空气吸入:车辆行驶时,发动机通过空气滤清器吸入外部空气。
2.混合:空气与燃料在进气系统中混合,形成可燃气体,便于点燃。
3.进气调节:节气门调节空气的进入量,根据驾驶员的要求控制发动机的输出功率。
4.进气均衡:进气歧管将各缸的进气均匀分配,保证每个气缸工作条件相同。
5.燃烧:混合气体进入气缸后与火花塞点燃,产生燃烧反应,推动活塞运动。
6.废气排放:燃烧完毕后,废气通过排气阀排出排气系统。
进气系统维护和故障为了确保进气系统的正常运行,需要定期进行维护保养。
常见的维护方式包括更换空气滤清器、清洗节气门,检查进气管道是否有漏气等。
进气系统故障可能导致发动机性能下降、燃油经济性降低、尾气排放超标等问题。
常见故障包括空气滤清器堵塞、节气门失灵、进气歧管破裂等,一旦发现故障,应及时修复以免影响车辆的正常运行。
进气系统
扩压器将压气机叶轮出口高速空气的动能转变为压力能。扩压器一般是一渐 扩形的扩压管,空气流过扩压管时,流速降低、压力升高,大部分动能转化 为压力能,温度上升。 压气机蜗壳的作用是收集从扩压器流出来的空气,将其引导到发动机的进气 管。压气机蜗壳也有一定的扩压作用,由于从扩压器出来的空气仍有较大的 速度,在蜗壳中进一步把动能转化为压力能。
2.2 可变截面进气歧管
直喷柴油机和一些直喷汽油机常通过涡流进气道、切向进气道和直进 气道不同方式及其组合形成一定的进气涡流。在不同转速和负荷下,发 动机最佳涡流比不同。根据流体力学的原理,管道的截面积越大,流体 压力差越小;管道截面积越小,流体压力差越大。 可以使发动机在高转速时使用较大的进气歧管截面积,提高进气流量; 在低转速时使用较小的进气歧管截面面积,提高汽缸的进气负压,也能 在汽缸内充分形成涡流,让空气与汽油更好的混合。
机械增压器采用皮带与发动机曲轴皮带轮连接,带动机械增压器内部叶片, 使进气获得增压,与废气涡轮增压相比,其低速增压效果好。
机械增压器常用的压气机为罗茨式压气机,由转子(二叶或三叶)、转子轴、传动 轮、壳体和电磁离合器等组成。当转子旋转时空气从压气机入口吸入,在转子叶片 的推动下空气被加速,然后从压气机出口压出。
3.废气涡轮增压
3.1 工作原理与结构
废气涡轮增压器由涡轮机
和压气机等部分组成,涡 轮机进气口与排气歧管相
连,涡轮的排气口接在排
气管上。压气机进气口与 空气滤清器管道相连,压
气机的排气口接在进气歧
管上。涡轮和叶轮分别装 在涡轮机和压气机内,二
者同轴刚性连接。
3.2 离心式压气机
离心式压气机结构紧凑、质量小,在较宽的流量范围内具有较高的效率。 离心式压气机由进气道、叶轮、扩压器和压气机蜗壳组成。进气道的作用是 将外界空气导向压气机叶轮,为了降低流动损失,通道为渐缩形。空气在离心 力的作用下沿压气机叶片之间所形成的流道从中心流向周边,并从旋转的叶轮 获得能量,使其流速、压力和温度均有提高,然后进入扩压器。
进气系统基本知识介绍
密封件
确保滤清器与发动机进气 管路之间的密封性,防止 未经过滤的空气进入发动 机。
维护与更换
定期检查
按照车辆使用说明书的要求,定期检 查空气滤清器的状况,确保其正常工 作。
清洁滤清器
更换滤清器
当滤清器损坏严重或已达到使用寿命时, 应及时更换新的滤清器。更换时需注意滤 清器的型号和规格与原车要求相符。
05
进气系统传感器
空气流量传感器
01
作用
测量进入发动机的空气流量,为ECU提供控制喷油量的主要依据。
02
类型
热线式、热膜式、卡门涡旋式等。
03
工作原理
热线式利用惠斯顿电桥原理,通过测量热线电阻变化来计算空气流量;
热膜式与热线式类似,但采用热膜作为测量元件;卡门涡旋式则利用流
体振荡原理来测量空气流量。
燃油压力调节器及燃油泵
燃油压力调节器
燃油压力调节器的作用是保持燃油系统的压力稳定,防止因压力过高或过低而影响发动机性能。它主要由膜片、 弹簧和调压阀等组成,通过膜片感受燃油压力变化并调节调压阀的开度,从而保持燃油系统压力恒定。
燃油泵
燃油泵的作用是将燃油从油箱中抽出并加压后送往喷油器。根据驱动方式不同,可分为机械式和电动式两种类型。 机械式燃油泵由发动机凸轮轴驱动,而电动式燃油泵则由电机驱动。现代汽车多采用电动式燃油泵,具有结构紧 凑、工作可靠、噪音小等优点。
在检查过程中,如发现滤清器表面有较多灰 尘或杂质,可使用压缩空气从内向外吹拂清 洁,注意不可使用水或其他液体清洗。
03
进气管路与节气门体
进气管路设计
进气管路布局
合理的进气管路布局可以 降低进气阻力,提高发动 机的充气效率。
管径与长度
进气系统基本知识介绍讲诉
1. 改变凸轮轴与曲轴的相对转角的可变配气 相位机构该机构 凸轮型线是固定的而凸轮轴相对曲轴的转角 是可变的。 2. 改变凸轮与气门之间连接的可变配气相位 机构如挺柱、摇 臂或推杆的结构,间接的实现改变凸轮型线 作用。缺点是机构 从动件多,结构复杂,气门系存在冲击。
Page 31
谢
谢!
Page 32
中性气道 切向气道
Page 19
配气系统的作用
配气系统的作用让发动机呼吸。进气阀让燃料和空气进入气 缸,排气阀的作用是让燃烧后的废气排出气缸。
Page 20
配气系统的基本参数
1. 气门开启相位 2. 气门开启持续角度 (气门保持升起所 持续的曲轴转角)
Page 21
可变配气相位及其作用机理
气门开启相位、气门开启持续角度(气门保持升起所持续的 曲轴转角)和气门升程三个特性参数对发动机的性能、油耗和排 放有重要影响。通常将气门开启相位和气门开启持续角度通称为 气门正时。随着发动机负荷和转速的改变,这三个特性参数(特 别是进气门开启相位和开启持续角度)的最佳选择是根本不同的。 进气门开启相位提前,一方面为进气过程提供了较多的时间, 特别是有利于解决高转速时进气时间不足的问题。另一方面,气 门叠开角增大,有更多的废气进入进气管,随后又同新鲜充量一 起返回气缸,造成了较高的内部排气再循环率,可降低NOx排放, 但同时也导致启动困难,怠速不稳定和低速工作粗暴。
Page 6
现代轿车电喷发动机带进气谐振腔,为了增强发动机的进气谐振效 果,空气滤清器的进气导流管需要有较大的容积,但是导流管不能太粗 ,以保证一定的空气流速,因此,进气导流管只能做得很长。进气导管 尽量从车外吸气。因为车外空气温度一般比发动机罩下的温度约低30℃ ,所以从车外吸入的空气密度可增加10%左右,燃油消耗率可降低3%。
进气系统的组成与作用
频率信号(数字信号,直接给ECU)
卡门旋涡式空气流量计
继续加油!
谢谢!
(2)空气流量计的类型
空气流量计
体积型空气计
叶片式空气流量计(应用在早期产品上比较普遍) 卡门旋涡式空气流量计(应用在个别车型上)
质量型空气流量计
热线和热膜式空气流量计(主流产品,现在大部分车型)
空气流量计输 出信号形式
电压信号(模拟信号,A/D转换给ECU)
叶片式空气流量计 热线和热膜式空气流量计
进气系统的组成与作用
❖2.1进气系统的组成
进气系统的组成
每循环充气量的传感方法 可以分为间接法和直接法 两种。
1.空气密度法(直接检测方法) 2.速度密度法(间接检测方法)
L型
D型
L型和D型发动机的结构示意
1.空气密度法(直接检测方法):采用该种方法直接利用空气流 量(MAF)传感器所提供的信号来代表进气量 ,采用这种方法 检测进气量的发动机称为L型电控发动机。
D型 EFI空气供给系统:
1-空气滤清器; 2-稳压箱; 3-节气门体; 4-进气控制阀; 5-进气室; 6-真空罐; 7-电磁真空阀; 8-真空驱动器; 9-怠速控制阀。
L型 EFI空气供给系统:
1-空气滤清器; 2-空气流量计; 3-进气连接管 4-节气门体; 5-进气室。
❖2.2 空气流量传感器 1、空气流量计的类型 (1)空气流量计的安装位置
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Page 28
变换凸轮型线的可变配气相位机构
该机构可以提供两种以上凸轮型线,在不同转速和负荷下, 采用不同的凸轮型线驱动气门。本田的VTEC机构属于改类型。
Page 29
低速工作时,发动机处于单进 双排工作状态。
高速工作时,发动机处于双进 双排工作状态。
Page 30
其它结构的可变配气相位机构
4 、辅助其他系统的安装。进气系统是发动机的的主要 真空源,为真空助力、 CBR 系统、 EGR 系统、二次空气系统 等的正常工作提供必要的真空。
Page 3
空气滤清器
燃油燃烧需要大量的空气。普通轿车每消耗1L汽油 需要消耗5000-10000L空气,若不滤除其中的杂质,必 然加速气缸的磨损。实践证明,发动机机不安装空气滤 清器,其寿命将缩短2/3。 空气滤清器的功用主要是滤除空气中的杂质或灰尘, 让洁净的空气进入气缸,另外,空气滤清器也有消减进 气噪声的作用。设计优良的空气滤清器还能连同进气管 路一起,利用谐振原理起到增压效果,以提高充量系数 。
Page 6
现代轿车电喷发动机带进气谐振腔,为了增强发动机的进气谐振效 果,空气滤清器的进气导流管需要有较大的容积,但是导流管不能太粗 ,以保证一定的空气流速,因此,进气导流管只能做得很长。进气导管 尽量从车外吸气。因为车外空气温度一般比发动机罩下的温度约低30℃ ,所以从车外吸入的空气密度可增加10%左右,燃油消耗率可降低3%。
Page 24
可变配气相位及其作用机理
固定的气门正时终究只能设计成对某一个转速或狭小的转速 范围最有利。基于这样的情况,设计了气门特性参数可变的进排 气系统,以便优化各个工况的进排气。成为可变气门正时VVT( Variable Valve Timing)。其效果有: 1、提高了标、提高怠速稳定性 5、提高燃油经济性 6、降低排放
Page 22
配气系统的基本参数
3. 气门升程
Page 23
可变配气相位及其作用机理
进气门关闭相位推迟,一方面在高转速时有利于利用高速气 流的惯性提高充气效率,另一方面在低转速时又会将已经吸入气 缸的新鲜充量重又推回到进气管中。 气门升程增大,一方面在高负荷时有利于提高充气效率,另 一方面在低负荷时又不得不将节气门关得更小,造成更大的泵气 损失和节流损失。 在传统的发动机中,由于这三个特性参数在运行过程中不能 改变,所以只能根据对性能要求的不同侧重面进行折中。过去往 往将气门正时设计成对高速全负荷工况最为有利,以便求得最大 的标定功率。近年因为更注重油耗和排放,所以将气门正时的优 化策略改成对低速工况更为有利。
进气岐管
滤芯
Page 2
进气系统的功用
1、保护外界杂质和不需要的成分对发动机的损坏。空气滤清 器总成阻止外界杂质进入汽缸,从而防止发动机磨损,可以提 供发动机的可靠性,进气口设计同时要避免水、雪等进入进气 系统。 2、降低进气噪声。进气系统是汽车主要噪声源之一,进气系 统一般都安有消声元件,如扩张式消声器(空滤)、赫姆赫兹 消声器、四分之一波长管等。 3、 减少发动机的功率损失。进气系统在满足噪声和过滤 杂质前提下要保证空气的流通顺畅,较大的空气压降会降低发 动机功率。
Page 7
空气滤清器的作用
①除掉吸入空气中的灰尘,防止发动机磨损; ②起消声降噪作用 ③连同进气管路一起,利用谐振原理起到增压效果,以 提高充量系数。
Page 8
空气滤的结构和分类
1. 空气滤清器由滤芯和壳体等零件组成。滤芯一般采用 可更换和可清理结构,从滤芯的性质分类有干式和湿 式两种。湿式空滤芯(又称油浴式)目前只有少数重 型车使用;广泛使用的干式滤芯多用特种纸和无纺布 (化纤、毛毡等)做成,而无纺布又多用于安全滤芯 。 2. 纸质滤芯目前被广泛采用,有各种规格,可滤除不同 大小颗粒的灰尘,须定期进行清理或更换。 3. 空滤器按结构分为盘式和桶式两种。前者多用于化油 器式发动机,将其直接装在化油器上,后者多用于多 点喷射式汽油机和柴油机上。空滤器多安装在车体上 ,通过管路与节气门体或进气管相连,安装应牢固可 靠并便于装拆和清理。
Page 16
谐振进气系统
另一种可变进气支 管结构如图所示,每个 进气支管都有两个进气 通道。低速时,旋转阀 将短进气通道关闭,此 时,空气只能经长进气 通道进入气缸 ;高速时, 旋转阀将短进气通道打 开,同时,将长进气通 道部分短路,此时,空 气经两个短进气通道进 入气缸。
Page 17
可控燃烧速率-CBR
Page 18
滑板式CBR
低转速时,真空执行器通过摆臂机构拉动滑板沿图示方向移动,中性气道基本被 关闭(只保留右上角的缺口)。主要靠切向气道提供的进气涡流来加速油雾和空 气的混合,从而改善燃烧状况。 高转速时,CBR控制阀切断给真空执行器的真空,在弹簧的作用下,滑板回位到 图示位置,中性气道也被打开,增加进气滚流,从而提高最大功率。
用发动机一般都是变工况工作的,不同的工况对进入发动机 的气流也有不同的要求。传统发动机每缸只有一个进气道,不能兼 顾发动机的不同工况。 CBR (Controlled Burn Rate) —可控燃烧速率,它是通过控 制进气气流的组织形式(涡流和滚流)来改善燃烧,降低排放, 提高燃油经济性的一种新技术。
中性气道 切向气道
Page 19
配气系统的作用
配气系统的作用让发动机呼吸。进气阀让燃料和空气进入气 缸,排气阀的作用是让燃烧后的废气排出气缸。
Page 20
配气系统的基本参数
1. 气门开启相位 2. 气门开启持续角度 (气门保持升起所 持续的曲轴转角)
Page 21
可变配气相位及其作用机理
气门开启相位、气门开启持续角度(气门保持升起所持续的 曲轴转角)和气门升程三个特性参数对发动机的性能、油耗和排 放有重要影响。通常将气门开启相位和气门开启持续角度通称为 气门正时。随着发动机负荷和转速的改变,这三个特性参数(特 别是进气门开启相位和开启持续角度)的最佳选择是根本不同的。 进气门开启相位提前,一方面为进气过程提供了较多的时间, 特别是有利于解决高转速时进气时间不足的问题。另一方面,气 门叠开角增大,有更多的废气进入进气管,随后又同新鲜充量一 起返回气缸,造成了较高的内部排气再循环率,可降低NOx排放, 但同时也导致启动困难,怠速不稳定和低速工作粗暴。
Page 10
进气岐管
Page 11
进气岐管
进气歧管的作用:1、把空气、燃料、曲轴箱通风的油气和 EGR(排气再循环)的废气均匀的分配给各缸;2、利用进气歧管 和稳压箱的形状和长度提高充量系数。 为了均匀分配到各个气缸,进气岐管内的气体流道长度应尽 可能相等。为了减小气体流动阻力,提高进气能力,进气岐管的 内壁应该光滑。 一般发动机的进气岐管由合金铸铁制造,轿车发动机多用铝 合金制造(重量轻,导热性好)。现代轿车多为多点喷射发动机, 近年来也有用复合塑料进气岐管的,这种进气岐管质量极轻,内 壁光滑,无需加工。
Page 4
空气滤清器
轿车用发动机空气 滤清器常用干式纸质滤 芯或无纺布滤芯,带进 气导流管。滤芯需定期 清洁或更换,若空气滤 清器滤芯堵塞,发动机 气缸内进气不畅,怠速 容易熄火,油门响应性 变差(油门加大时,发 动机功率变化不连续, 导致车子一冲一冲的) 。为节省空间增加过滤 面积,滤芯被折叠成各 种各样的形状,以增大 过滤面积。
Page 9
空气滤清器的设计要点
1. 空滤器芯孔径及过滤面积取决于发动机排量、使用环 境、更换周期及进气阻力等因素。 2. 空滤器的安装尺寸及壳体形状取决于整车布置要求, 但也应注意降噪和谐振增压。 3. 空滤器壳体和连通管路和设计应尽量避免气流产生急 转弯,并使气体通过滤芯全面积。 4. 设计时还应注意降噪和进气阻力与管路直径、长度的 关系,在管路和滤清器上设置谐振器是降噪的有效方 法。
Page 25
Page 26
Page 27
无凸轮轴可变配气相位机构
该类机构没有凸轮轴,直接对气门进行控制。其优 点是能对 气门正时的所有因素进行控制,在各种工况下获取最佳 气门正时; 另外,还能关闭部分气缸的气门,实现可变排量。该机 构一般为 电磁控制气门机构,需要消耗能量,如何降低消耗是必 须解决的 问题。
Page 12
谐振进气系统
进气过程具有间歇性和周期性,因此进气支管内产生一定幅 度的压力波,此压力波以当地声速在进气系统内传播和往复反射 。如果利用一定长度和直径的进气岐管与一定容积的谐振室组成 谐振进气系统,并使其自振频率与气门的进气周期调谐,那么在 特定的转速下,就会在进气门关闭之前,在进气岐管内产生大幅 度的压力波,使进气岐管的压力增高,从而增加进气量。这种效 应称作进气波动效应。 谐振进气系统的优点是没有运动件,工作可靠,成本低。但 只能增加特定转速下的进气量和发动机转矩。
Page 5
空气滤清器的设计
空滤器的容积,过滤面积及滤芯孔径取决于发动机排量、使 用环境、更换周期及进气阻力等因素。空滤器的安装尺寸及壳体 形状取决于整车布置要求,但也应注意降噪和谐振增压。空滤器 壳体和连通管路的设计应尽量避免气流产生急转弯,并使气体通 过滤芯全面积。设计时还应注意降噪与谐振,在管路和滤清器上 设置谐振箱能增强降噪与谐振效果。
1. 改变凸轮轴与曲轴的相对转角的可变配气 相位机构该机构 凸轮型线是固定的而凸轮轴相对曲轴的转角 是可变的。 2. 改变凸轮与气门之间连接的可变配气相位 机构如挺柱、摇 臂或推杆的结构,间接的实现改变凸轮型线 作用。缺点是机构 从动件多,结构复杂,气门系存在冲击。
Page 31
谢
谢!
Page 32
Page 13
谐振进气系统
Page 14
可变进气岐管
长度一定的进气管只能在某一转速区域得到最佳充量系数。 传统的发动机进气系统不能兼顾高低速性能,即只能在某一狭窄 的转速范围内得到较高的充量系数,而在其他转速范围内充量系 数则要降低。 低速小负荷工况,进气量少,应减小进气道空气流通截面来 提高进气流速,增大进气惯性以提高充气效率。