有趣的斐波那契数列例子

合集下载

斐波那契数列题目[集锦]

斐波那契数列题目[集锦]

斐波那契数列问题。

(专业C++作业ch4-1)题目描述著名意大利数学家斐波那契(Fibonacci)1202年提出一个有趣的问题。

某人想知道一年内一对兔子可以生几对兔子。

他筑了一道围墙,把一对大兔关在其中。

已知每对大兔每个月可以生一对小兔,而每对小兔出生后第三个月即可成为“大兔”再生小兔。

问一对小兔一年能繁殖几对小兔?提示:由分析可以推出,每月新增兔子数Fn={1,1,2,3,5,8,13,21,34,…}(斐波那契数列),可归纳出F1=1,F2=1,……,Fn=Fn-2+Fn-1。

仿照课本P128页的“2.基本题(1)”进行编程。

注意,(1)课本上的程序显示出数列的前16项的所有数值,这里要求只显示第n项数值;(2)课本上的程序在每次循环时显示数列中的两个数值(i=3时,显示了数列的第3项和第4项)。

输入描述一个正整数n,表示求第n个月的新增的兔子数。

输出描述对输入的n,求第n个月的新增的兔子数。

输入样例16输出样例9872. (18分)求阶乘和。

(专业C++作业ch4-2)题目描述编程求出阶乘和1!+2!+3!+…+n!。

注意:13!=6 227 020 800已经超出unsigned long的范围,故程序中不宜采用整型数据类型,而应使用双精度类型存放结果。

输入描述一个正整数n,n的值不超过18。

输出描述对输入的n,求阶乘和1!+2!+3!+…+n!。

(输出结果时,可以用输出格式控制“cout<<setprecision(17)”来控制双精度类型的结果按17个有效数字的方式显示)输入样例10输出样例40379133. (18分)除法问题。

(专业C++作业ch4-3)题目描述编写一个函数原型为int f(int n);的函数,对于正整数n计算并返回不超过n 的能被3除余2,并且被5除余3,并且被7出余5的最大整数,若不存在则返回0。

应编写相应的主函数调用该函数,在主函数中接受用户输入的正整数n。

关于数列的趣味故事

关于数列的趣味故事

关于数列的趣味故事在数学领域里,数列是一个非常重要且有趣的概念。

数列是按照一定规律排列的一系列数的集合,它们可以呈现出不同的特征和规律,给人们带来了许多乐趣和挑战。

下面我们来分享一些关于数列的趣味故事,让我们一起领略数学的魅力。

第一个故事讲述的是著名数学家斐波那契和他发现的斐波那契数列。

斐波那契数列是一个非常有趣的数列,它的前两项是0和1,从第三项开始,每一项都是前两项之和。

这个数列的特点是每一项都等于前面两项之和,看似简单的规律却蕴含着许多奥秘。

斐波那契数列在数学和自然界中都有着重要的应用,如黄金分割、植物的生长规律等,让人不禁感叹数学之美。

第二个故事讲述的是数学界的一个传奇人物——高斯。

高斯是一位拥有惊人数学天赋的数学家,他在很小的时候就展现出了非凡的才华。

有一次,老师给同学们布置了一道题目,要求他们计算1到100相加的和。

其他同学都在认真地将数字相加,而高斯却在很短的时间内给出了答案。

原来,高斯发现这些数可以两两配对,每一对的和都是101,一共有50对,所以答案是5050。

这个故事展示了高斯的聪明才智和对数学的热爱,也启发了我们用更巧妙的方法解决问题。

第三个故事讲述的是一个关于等差数列的趣事。

等差数列是最容易理解和计算的数列之一,它的每一项与前一项之间的差都相等。

有一天,小明在学校里学习等差数列的知识,他突然惊喜地发现,自己每天放学回家的路上,所走的步数正好构成了一个等差数列。

他开始思考每天走的步数之间的规律,发现自己的步幅和路程都在一个良好的数学关系中,这让他对数学产生了更深的兴趣。

通过以上这些有趣的数列故事,我们不仅可以感受到数学的魅力,也可以体会到数学在生活中的应用和乐趣。

数列作为数学中重要的概念之一,不仅让人们感受到数学的奥秘和美妙,也为我们展示了数学与现实世界之间的千丝万缕的联系。

希望每个人都能发现身边隐藏的数学之美,享受数学带来的乐趣和启发。

趣味数学故事(1)

趣味数学故事(1)

趣味数学故事引言数学作为一门科学,往往被认为是一门枯燥乏味的学科。

然而,数学也可以是充满趣味和想象力的。

在本文中,我将分享一些有趣的数学故事,带你进入一个奇妙的数学世界。

斐波那契数列斐波那契数列是一个非常有趣的数学序列。

从1和1开始,每个数都是由前两个数相加得到的。

例如,斐波那契数列的前几个数字是1、1、2、3、5、8、13、21、34…这个数列在数学中有着许多有趣的特性。

首先,它以指数的方式增长,所以数字之间的比例将越来越接近黄金比例,即1.618。

这个黄金比例在自然界中也广泛存在,被认为是一种审美上的完美比例。

斐波那契数列还有一个神奇的性质,就是任意两个相邻的数字的比例,都接近于黄金比例。

这一性质使得斐波那契数列在建筑、美术和音乐等领域得到广泛的应用。

无限小数的奇妙你是否曾经思考过无限小数的奇妙之处?让我们来看一个简单的例子:1/3。

当我们将1除以3时,我们得到一个无限循环的小数0.33333…。

这意味着我们永远无法精确地表示1/3这个数。

类似地,许多常见的分数,如1/7和1/9,也都有无限循环的小数表示。

这些无限循环小数在数学上被称为循环小数。

有趣的是,循环小数可以通过一些巧妙的数学技巧转化为分数。

例如,我们可以通过将无限循环的部分记作变量x,并解方程x=0.33333…,得到x=1/3的结果。

这种转化循环小数为分数的方法在数学上被称为“模运算”。

它是数学中一个非常有趣且实用的概念,被广泛应用于密码学和计算机科学等领域。

计数的奥秘在日常生活中,我们经常使用十进制系统进行计数,即使用0到9这十个数字进行计数。

然而,你是否知道,还有其他方式可以进行计数呢?其中一个有趣的计数系统是二进制系统,它只使用0和1这两个数字进行计数。

在二进制系统中,数字的值是通过每一位的权重来确定的。

例如,0110表示6,其中最高位的权重是2的三次方,次高位的权重是2的二次方,依次类推。

除了二进制系统,还有其他进制系统,如八进制和十六进制。

斐波那契数列有趣小故事

斐波那契数列有趣小故事

斐波那契数列有趣小故事
高中我们学习了两类特殊数列,今天我们来看自然界普遍存在的数列:斐波那契数列指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……在数学上,斐波那契数列以如下被以递推的方法定义:F(0)=0,F(1)=1, F(n)=F(n - 1)+F(n - 2)(n ≥ 2,n ∈ N*):
雄蜂家谱
蜜蜂有一个家庭。

在蜂巢中,有三种类型的蜂:不工作的雄蜂,工作的雌蜂(称为工蜂),还有蜂王。

雄蜂从未受精的卵孵化,这意味着他只有一个母亲而没有父亲(但确实有一个祖父),而雌蜂从受精的卵孵化,因此需要一个母亲(蜂王)和一个父亲(一个雄蜂)。

我们从名为“阿蜂”的雄蜂,开始追踪其祖先。

“阿蜂”是雄蜂,来自未受精的卵,因此只需要雌蜂就可以生他,其父辈只有一个母亲,所以第二行的雄性0,雌性1,总数是1。

但是,产卵的雌性一定有一个母亲和一个父亲,“阿蜂”的祖父辈,是“阿蜂”的母亲的双亲,因此,第三行的雄性1,雌性1,总数是2。

“阿蜂”的曾祖父辈,总数是3(外祖母有有双亲,外祖父只有一个母亲),第四行的雄性1,雌性2,总数是3。

然后继续这种模式:每个雄性的直接祖先是一个雌性,而一个雌性的祖先是一个雄性和一个雌性。

在图1右边是每行蜜蜂数量的摘要。

令人惊奇的是,在右边
的每一列中,都出现斐波那契数列。

斐波那契数列有趣小故事

斐波那契数列有趣小故事

斐波那契数列有趣小故事在数学界,许多人都熟悉斐波那契数列,它是由意大利数学家莱昂哥纳多斐波那契(Leonardo Fibonacci)发现的数字序列。

斐波那契数列可以用一个递推公式描述:Fn = Fn-1 + Fn-2,其中Fn表示第n个斐波那契数,F0 = 0,F1 = 1。

斐波那契数列也被广泛应用在许多领域,如医学、经济学、心理学等,而关于它的趣事也有很多。

据传,斐波那契的名字源于他的祖先,即西西里的费斐斐波那契(Filippo Fibonacci)。

在当时,费斐斐波那契经常参加商业贸易,其中最为重要的是和外国商人进行货币交易。

他需要一种方便的记账方法来记录收入和支出,他想到了斐波那契数列,他发现斐波那契数列可以用来表示他所持有的上次交易后剩余的货币量,具体说就是根据第n次交易后结果来计算第n+1次交易前剩余货币量。

这样,通过使用斐波那契数列,费斐斐波那契可以更快速、更有效率地管理他的财务。

此外,斐波那契数列也在植物的生长过程中出现。

根据植物学家发现,植物叶子的生长与斐波那契数列有着很相似的模式,它们都按照斐波那契数列的模式来变化。

比如,根据研究发现,植物的叶子的生长模式如下:它们的第一片叶子按照F0=0的斐波那契数来生长;其第二片叶子按照F1=1的斐波那契数来生长;第三片叶子按照F2=1的斐波那契数来生长,以此类推。

在艺术界,斐波那契数列也有它的体现。

著名的法国画家阿尔贝夏布丽乌斯梵高(Albert Champs de la Tour)曾经创作过以斐波那契数列为主题的著名画作《葡萄树》(The vine),这幅画作中闪烁着金黄色的叶子,把斐波那契数列的精华完美地表现出来。

此外,斐波那契数列还被用于多种技术,比如图像处理、搜索引擎算法等。

例如,在搜索引擎算法中,斐波那契数列的递推公式可以用来快速地计算出一个给定的页面的网页排名,这样可以极大地节省计算机的处理时间。

总之,斐波那契数列不仅在数学领域被广泛使用,它也可以用来表示植物的生长模式、医学的规律以及计算机技术的发展,它真是一种神奇的数字。

有关斐波那契数列的趣味数学题

有关斐波那契数列的趣味数学题

有关斐波那契数列的趣味数学题一、斐波那契数列是什么斐波那契数列,那可是数学世界里超级有趣的一个存在哟!它是这样一组数字:0、1、1、2、3、5、8、13、21、34、55、89、144……从第三个数开始,每个数都是前两个数的和。

是不是感觉有点神奇呀?二、有趣的题目来啦1. 小兔子问题假设小兔子长大需要一个月,然后每个月都能生下一对小兔子。

开始有一对小兔子,那么 12 个月后总共有多少对兔子?这其实就是斐波那契数列的应用哦。

2. 爬楼梯有一个 10 级的楼梯,每次你可以走 1 级或者 2 级。

问:走到第 10 级有多少种不同的走法?哈哈,这也和斐波那契数列有关呢!3. 花朵排列在一个花园里,按照斐波那契数列的数字来摆放花朵,第一排 0 朵,第二排 1 朵,第三排 1 朵,第四排 2 朵……第十排应该有多少朵花?三、答案与解析1. 小兔子问题答案第 1 个月:1 对;第 2 个月:1 对;第 3 个月:2 对;第 4 个月:3 对;第 5 个月:5 对;第 6 个月:8 对;第 7 个月:13 对;第 8 个月:21 对;第 9 个月:34 对;第 10 个月:55 对;第11 个月:89 对;第 12 个月:144 对。

这就是斐波那契数列的魔力,每个月的兔子对数就是斐波那契数列中的数。

解析:每个月的兔子对数都是由上个月的兔子对数加上新生的兔子对数组成,新生的兔子对数就是两个月前的兔子对数,因为小兔子长大需要一个月,所以正好符合斐波那契数列的规律。

2. 爬楼梯答案89 种。

解析:走到第 1 级楼梯有 1 种走法,走到第 2 级楼梯有 2 种走法(一步走两级或者分两步走)。

走到第 3 级楼梯可以从第 1 级走 2 步上来,或者从第 2 级走 1 步上来,所以有 1 + 2 = 3 种走法。

以此类推,走到第 n 级楼梯的走法数就是走到第 n 1 级楼梯的走法数加上走到第 n 2 级楼梯的走法数,这就是斐波那契数列啦。

生活中的斐波那契数例子

生活中的斐波那契数例子

生活中的斐波那契数例子
在生活中,我们可以找到许多关于斐波那契数的例子。

斐波那契数列是一个以0和1开始,并且后面每一项都是前面两项的和的数列。

这个数列在现实生活中有许多有趣的应用。

一个常见的例子是植物的生长模式。

许多植物的花朵、果实或叶子的排列方式都符合斐波那契数列。

例如,我们可以观察到一朵花的花瓣数目通常是斐波那契数列中的某一项。

这种排列方式使得植物看起来更加美观和和谐。

另一个例子是音乐的节奏。

斐波那契数列的节奏被广泛应用于音乐中,特别是在古典音乐和现代音乐中。

这种节奏模式给音乐带来了一种特殊的韵律感,使得音乐听起来更加动听和引人入胜。

斐波那契数也可以在建筑设计中找到。

一些著名的建筑物,如比萨斜塔和埃菲尔铁塔,都使用了斐波那契数列来确定其高度和宽度的比例。

这种比例被认为是视觉上最具吸引力和平衡感的比例之一,因此被广泛应用于建筑设计中。

此外,斐波那契数还在金融市场和股票交易中起到一定的作用。

一些交易策略和技术分析使用斐波那契数列来预测价格的变化和市场趋势。

虽然这种方法并非总是准确,但许多交易员和投资者仍然使用它作为辅助工具来做出决策。

总之,斐波那契数在生活中无处不在,从植物的生长到音乐的节奏,从建筑设计到金融市场。

它的神奇性质使得它成为了许多领域的研究和应用的对象。

我们无需深入数学和理论,就能够在日常生活中体会到斐波那契数的美妙之处。

生活中的数学斐波那契数列作文800字

生活中的数学斐波那契数列作文800字

生活中的数学斐波那契数列作文800字全文共6篇示例,供读者参考篇1数学真神奇!今天老师给我们讲了一个有趣的东西——斐波那契数列。

听起来很高深吧?其实它就藏在我们身边。

斐波那契数列长这样:0、1、1、2、3、5、8、13、21、34……你有没有发现一个规律?对了,从第三个数字开始,每个数字都是前两个数字的和。

很简单吧?可是,它们居然和自然界有着千丝万缕的联系!比如说,小草会像斐波那契数列一样生长。

春天的时候,我们学校操场上长出了一簇绿油油的小草。

刚开始只有1株,过了一阵子变成了1株。

再过一段时间,就长成了2株了。

之后的日子里,草的数量变成了3、5、8、13……和斐波那契数列一模一样!真不可思议!动物界也有斐波那契数列的影子。

你知道兔子家族有多多呀?据说,有一对刚出生的小兔子,从第三个月开始,每个月都会生一对新的小兔子。

如果小兔子们都按时生育,那么第三个月的时候就有两对兔子,第四个月有3对,第五个月有5对……完完全全就是斐波那契数列!连植物也不例外,向日葵的种子和花瓣排列也遵循着斐波那契数列。

你要是数一数花盘上的花瓣,一定会发现斐波那契数列的影子。

最神奇的是,这个数列甚至在星系运行轨迹中也能看到!天上那些亮晶晶的星星们都是按照这个顺序排列的。

看到这里,你是不是觉得数学特别神奇?斐波那契数列无处不在,像一个精灵,悄悄潜伏在我们生活的方方面面。

它教会了我们大自然的奥秘,启发我们用数学的眼光看这个世界。

我打算把它介绍给更多人,让大家一起发现数学的魅力!篇2斐波那契数列在生活中随处可见大家好,我是小明。

今天老师布置了一个特别有意思的作文题目——"生活中的数学斐波那契数列"。

一开始我还有点儿不太理解,不过仔细想想,原来斐波那契数列真的无处不在呢!首先,我们来看看到底什么是斐波那契数列。

斐波那契数列是这样一个数列:1、1、2、3、5、8、13、21、34……从第三个数字开始,每个数字都是前两个数字的和。

生活中的斐波那契数例子

生活中的斐波那契数例子

生活中的斐波那契数例子
在生活中,存在许多与斐波那契数列相关的例子。

以下是一些常见的例子:
1. 花瓶花朵的数量:当一朵花开放时,通常会留下数朵花蕾,每个花蕾又会继续开放并留下更多的花蕾。

这种花朵数量的增长方式符合斐波那契数列。

2. 兔子的繁殖:据说一对兔子每个月能够繁殖一对新的兔子,而新出生的兔子从第3个月开始也可以繁殖。

假设最一开始没有兔子,那么按照斐波那契数列的规律,兔子的数量会以斐波那契数列的方式递增。

3. 植物的叶子排列:一些植物的叶子排列方式遵循斐波那契数列。

例如,菊花的花瓣、凤梨的叶子以及松树的枝叶都呈现出斐波那契数列的分布模式。

4. 螺旋形:一些自然界中的旋周期物体呈现出斐波那契数列的特征。

例如,贝壳、旋子植物以及食草动物的牙齿都展现着斐波那契数列的螺旋形状。

5. 音乐的节奏:某些音乐中的节奏模式也可以归类为斐波那契数列。

例如,贝多芬的第五交响曲开头的节奏就具有斐波那契数列的特征。

虽然这些例子并不是完全严格的斐波那契数列,但它们的增长方式和布局模式都与斐波那契数列相关。

斐波那契数列蜂巢型例题

斐波那契数列蜂巢型例题

斐波那契数列蜂巢型例题斐波那契数列与蜂巢型结构相结合的问题可以有很多有趣的例子。

这里有一个简单的例子:问题描述:假设有一个蜂巢形状的斐波那契数列,每一层的蜂巢数量是前两层的蜂巢数量之和。

第一层有1个蜂巢,第二层有2个蜂巢,以此类推。

求第n层蜂巢的数量。

解题思路:这个问题可以通过求解斐波那契数列的通项公式来解决。

斐波那契数列是一个典型的递推数列,其通项公式为:F(n) = (φ^n - (-φ)^-n) / √5其中,φ = (1 + √5) / 2 是黄金分割比。

在这个问题中,我们需要求解第n层蜂巢的数量,即求解斐波那契数列的第n项。

通过将n代入通项公式,我们可以得到第n层蜂巢的数量。

代码实现:以下是一个使用Python实现的代码示例:python复制代码import mathdef fibonacci(n):phi = (1 + math.sqrt(5)) / 2 # 黄金分割比return (math.pow(phi, n) - math.pow(-1/phi, n)) / math.sqrt(5)# 计算第n层蜂巢的数量n = 10 # 例如求第10层的蜂巢数量bee_hives = fibonacci(n)print("第", n, "层蜂巢的数量为:", int(bee_hives))这个代码示例使用了Python的math库来计算黄金分割比和指数函数。

通过调用fibonacci函数并传入第n层(例如第10层),我们可以得到该层的蜂巢数量。

在示例中,我们计算了第10层的蜂巢数量,并将其打印输出。

有趣斐波那契数列例子

有趣斐波那契数列例子

斐波那契数列斐波那契数列的明者,是意大利数学家列昂多·斐波那契〔Leonardo Fibonacci,生于公元1170年,卒于1240年,籍大概是比〕。

他被人称作“比的列昂多〞。

1202 年,他撰写了?珠算原理? (Liber Abacci)一。

他是第一个研究了印度和阿拉伯数学理的欧洲人。

他的父被比的一家商体聘任外交事,派地点相当于今日的阿及利地区,列昂多因此得以在一个阿拉伯老的指下研究数学。

他曾在埃及、叙利、希腊、西西里和普旺斯研究数学。

斐波那契数列指的是一个数列:1、1、2、3、5、8、13、21、⋯⋯个数列从第三开始,每一都等于前两之和。

斐波那契数列通公式通公式( )〔又叫“比内公式〞,是用无理数表示有理数的一个范例。

〕注:此a1=1,a2=1,an=a(n-1)+a(n-2) 〔n>=3,n∈N*〕通公式的推斐波那契数列:1、1、2、3、5、8、13、21、⋯⋯如果F(n)数列的第n (n∈N+)。

那么句可以写成如下形式:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n ≥2),然是一个性推数列。

方法一:利用特征方程〔性代数解法〕性推数列的特征方程:X^2=X+1解得X1=(1+√5)/2,,X2=(1-√5)/2。

F(n)=C1*X1^n+C2*X2^n 。

∵F(1)=F(2)=1。

∴C1*X1+C2*X2。

C1*X1^2+C2*X2^2。

解得C1=1/√5,C2=-1/√5。

∴F(n)=(1/√5)*{[ (1+√5)/2]^(n+1)-[(1-√5)/2]^(n+1)}〔√5表示根号5〕。

方法二:待定系数法构造等比数列1〔初等待数解法〕常数r,s。

使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。

r+s=1,-rs=1。

n≥3,有。

F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。

F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]。

斐波那契数列的例子

斐波那契数列的例子

斐波那契数列的例子
1. 嘿,你知道不,斐波那契数列在向日葵种子的排列中就有体现呢!向日葵的种子螺旋排列得多么神奇,这不就像斐波那契数列那奇妙的规律在大自然中展现一样吗?
2. 哇塞,斐波那契数列在鹦鹉螺的壳上也能找到呢!那美丽的螺旋花纹,难道不是斐波那契数列给予的独特装饰吗?
3. 你看那树枝的分岔,哈哈,那也是斐波那契数列的例子呀!大自然怎么就这么巧妙地运用了它呢?
4. 哎呀呀,很多植物的花瓣数量也遵循着斐波那契数列呢!像雏菊那可爱的花瓣,是不是很让你惊讶?
5. 斐波那契数列在股票的波动中也有人研究呢,就好像它在悄悄告诉我们一些秘密,这多有意思啊!
6. 听好啦,兔子繁殖的模型也跟斐波那契数列有关哦!兔子们可真是斐波那契数列的生动例子呀!
7. 还有还有,一些艺术作品的构图中也藏着斐波那契数列呢!你想想,这数列可真是无所不在呀!
我觉得斐波那契数列真的太神奇了,在这么多地方都能看到它的身影,它就像一个隐藏在世间万物背后的神秘密码,等待着我们去发现和解读。

自然界中的斐波那契数列现象

自然界中的斐波那契数列现象

自然界中的斐波那契数列现象
斐波那契数列是一种可以在自然界中看到的数学现象。

下面是一些例子:
1. 植物的生长规律。

许多植物在生长过程中都会遵循斐波那契数列的规律。

例如,植物的根系、枝条、叶子和花序的数量都通常是斐波那契数列中相邻两个数的比例。

这种规律可以在许多有机体中看到,包括叶绿体和蛋白质的编码序列。

2. 蜗牛的壳。

蜗牛的壳也呈现出斐波那契数列的规律。

每一个螺旋线上的颗粒数量都是前一个和后一个颗粒数量的和。

3. 黄金比例。

黄金比例是斐波那契数列的一个重要特征,也是自然界中许多美学和设计原则的基础。

黄金比例被认为是最好的比例,因为它具有一种特殊的美学和视觉吸引力。

4. 雪花的形状。

雪花的形状也有斐波那契数列的特征。

每个雪花都有六个分支,每个分支的角度都是60度。

这种形状可以通过斐波那契数列中的数字来解释和预测。

5. 海贝壳的形状。

海贝壳的形状也有斐波那契数列的规律。

每个海贝壳都由相邻的分支线形成,这些线的长度和角度都遵循斐波那契数列的特征。

有趣的斐波那契数列

有趣的斐波那契数列

有趣的斐波那契数列
1 1
2
3 5 8 13 21 3
4 5
5 89……
上面是一个斐波那契数列,它还存在着这样的规律:
我们用第一个数除以第二个数1÷1=1,
再用第二个数除以第三个数1÷2=0.5,
第三个数除以第四个数2÷3=0.666
……
继续下去
3÷5=0.6,
5÷8=0.625,
…………,
55÷89=0.617977…,
……
144÷233=0.618025
……
46368÷75025=0.6180339886…...
越到后面,这些比值越接近一个小数(0.618).
而0.618就是著名的黄金分割数。

为了便于大家阅读,补充了上一期的文章:
800年前,居住在意大利小镇比萨,上苍安排,两件奇特的事在同时代发生了:一件是塔身开始倾斜;另一件是斐波纳契发现了他那著名的数列,数列是这样的:
1 ,1, 2, 3, 5, 8,13,(),()
你知道接下来的两个数是多少吗?先要找到这列数的规律,1+1=2;1+2=3;2+3=5;3+5=8;5+8=13;所以接下来是8+13=21;13+21=34;从第三个数开始,每个数都是它前面两个数的和。

1 ,1, 2, 3, 5, 8,13,(21 ),( 34)
斐波纳契数列是一个奇妙的数列,有很多神奇的特点。

你瞧,如下的正方形,里边标的数字是它们各自所在正方形的边长。

取两个边长是1的,可以拼成长方形(红色),再多取一个边长2的,也可以拼成一个长方形(红色+绿色),再多取一个边长3的也可以拼成一个正方形(红色+绿色+黄色)……。

斐波那契螺旋线在生活中的应用

斐波那契螺旋线在生活中的应用

斐波那契螺旋线在生活中的应用:
斐波那契螺旋线在生活中有一些有趣的应用,尽管它可能不像其他数学原理那样直接或广泛应用。

以下是一些例子:
1.设计和艺术:斐波那契螺旋线的美学吸引力使得它常常出现在设计、艺术作
品和建筑中。

例如,许多建筑和艺术品都使用了斐波那契螺旋线的比例关系,因为这种比例被认为具有审美上的吸引力。

2.生物学:斐波那契螺旋线在生物学中也有一些应用。

它在一些动植物身上的
生长规律中有所体现,例如,一些植物的叶子排列方式以及一些动物的角度和构造都遵循着斐波那契数列的规律。

3.计算机图形学:斐波那契螺旋线常常被用于计算机图形学中的纹理创建、动
画设计等方面。

它的特殊几何属性使得它在图形学中有一定的应用。

总的来说,斐波那契螺旋线虽然不像某些数学原理那样直接应用广泛,但它在设计、艺术、生物学和计算机图形学等领域中都有一些有趣的应用。

斐波那契数列的生活应用

斐波那契数列的生活应用

斐波那契数列的生活应用斐波那契数列是一种非常经典的数列,它的应用非常广泛,不仅在数学领域有重要的意义,还在生活中有很多应用。

斐波那契数列的定义如下:F(0) = 0F(1) = 1F(n) = F(n-1) + F(n-2), n >= 2下面就让我们来看看斐波那契数列在生活中的一些具体应用。

1.自然界中的斐波那契数列:斐波那契数列在自然界中有很多应用。

例如,植物的叶子排列常常遵循斐波那契数列规律。

一些植物的叶子排列成螺旋状,每个叶子的位置和角度都紧密地遵循着斐波那契数列。

这种排列方式可以提供最大的光照度,并提高植物的光合作用效率。

2.经济学中的斐波那契数列:斐波那契数列在经济学中也有重要应用。

例如,研究经济金字塔结构时,斐波那契数列可以用来描述不同层级之间的比例关系。

同时,斐波那契数列也可以用于预测股市的走势。

一些技术分析方法中使用斐波那契数列来确定支撑和阻力位,从而预测价格的上涨和下跌。

3.计算机科学中的斐波那契数列:斐波那契数列在计算机科学中有着广泛的应用。

例如,在算法设计中,斐波那契数列可以被用来解决一些问题。

其算法复杂度为O(n),是一个非常高效的算法。

此外,斐波那契数列也可以用来生成随机数序列。

通过将斐波那契数列的每一项取余得到一个随机数序列,可以用于密码学和随机数生成。

4.艺术中的斐波那契数列:斐波那契数列在艺术中也有很多应用。

例如,建筑设计中常常使用斐波那契数列的比例作为设计原则。

许多著名的建筑物都采用了斐波那契数列的比例关系,使得建筑物更加美观和和谐。

此外,斐波那契数列还被应用在音乐中。

一些音乐作曲家使用斐波那契数列的节奏和音符长度比例来创作音乐,使得音乐曲线更加优雅。

5.生物学中的斐波那契数列:斐波那契数列在生物学中也有一些应用。

例如,一些生物的繁殖规律可以用斐波那契数列来描述。

兔子繁殖问题就是斐波那契数列的一个经典案例。

兔子每个月会产生一对新的兔子,新生兔子在两个月后才能开始繁殖。

生活中的斐波那契数例子

生活中的斐波那契数例子

生活中的斐波那契数例子
摘要:
一、斐波那契数列的定义及特点
二、生活中斐波那契数列的例子
1.植物的生长
2.动物的繁殖
3.金融领域的应用
4.艺术与建筑领域的应用
三、斐波那契数列在生活中的启示
1.反映自然界的规律
2.对科学技术的指导作用
3.激发艺术创作的灵感
正文:
斐波那契数列是一个在数学上非常重要的数列,它具有许多独特的性质和特点。

在生活中,斐波那契数列也有着广泛的应用,成为了许多领域中的重要参考。

首先,斐波那契数列在植物的生长过程中有着明显的体现。

例如,植物的花瓣和叶子数量可能就是斐波那契数列中的数字。

这种现象可以通过数学模型进行预测和解释,为植物生长研究提供了重要的理论依据。

其次,斐波那契数列在动物的繁殖过程中也有一定的应用。

例如,一些动物的繁殖过程中,后代的数量可能符合斐波那契数列。

这种现象反映出自然界
的一种规律,为动物繁殖研究提供了有益的启示。

此外,斐波那契数列在金融领域也有着广泛的应用。

在投资领域,斐波那契数列可以用来预测股票价格的走势,为投资者提供决策依据。

在信贷领域,斐波那契数列也可以用来预测债务的增长,为金融机构的风险管理提供参考。

在艺术与建筑领域,斐波那契数列同样具有重要的应用价值。

许多著名的艺术作品和建筑结构都蕴含了斐波那契数列的原理,使得这些作品具有优美的比例和和谐的视觉效果。

斐波那契在生活中的应用

斐波那契在生活中的应用

斐波那契的生活应用:1、斐波那契数列中的斐波那契数会经常出现在生活中,比如松果、凤梨、树叶的排列、某些花朵的花瓣数(典型的有向日葵花瓣)、蜂巢、蜻蜓翅膀、超越数e(可以推出更多)、黄金矩形、黄金分割、等角螺线、十二平均律等。

2、斐波那契数还可以在植物的叶、枝、茎等排列中发现。

例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子,直到到达与那些叶子正对的位置,则其间的叶子数多半是斐波那契数。

叶子从一个位置到达下一个正对的位置称为一个循回。

二、矩形面积的价值体现在很多方面,比如:斐波那契数列与矩形面积的生成相关,由此可以导出一个斐波那契数列的一个性质。

斐波那契数列前几项的平方和可以看做不同大小的正方形,由于斐波那契的递推公式,它们可以拼成一个大的矩形,这样所有小正方形的面积之和等于大矩形的面积。

三、在科学领域没有被广泛应用。

扩展资料1、“斐波那契数列”的定义:斐波那契数列指的是这样一个数列1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368等等。

这个数列从第3项开始,每一项都等于前两项之和。

2、“斐波那契数列”的发现者:斐波那契数列的定义者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci),生于公元1170年,卒于1250年,籍贯是比萨,他被人称作“比萨的列昂纳多”。

1202年,他撰写了《算盘全书》一书。

他是第一个研究了印度和阿拉伯数学理论的欧洲人。

他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点于阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。

他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯等地研究数学。

有趣的斐波那契数列例子

有趣的斐波那契数列例子

斐波那契数列斐波那契的发明者,是数学家Leonardo Fibonacci,生于公元1170年,卒于1240年,籍贯大概是;他被人称作“比萨的列昂纳多”;1202年,他了珠算原理Liber Abacci一书;他是第一个研究了和数学理论的人;他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学;他还曾在、、、和研究;斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、……这个数列从第三项开始,每一项都等于前两项之和;斐波那契数列通项公式通项公式见图又叫“比内公式”,是用表示的一个范例;注:此时a1=1,a2=1,an=an-1+an-2n>=3,n∈N通项公式的推导斐波那契数列:1、1、2、3、5、8、13、21、……如果设Fn为该数列的第n项n∈N+;那么这句话可以写成如下形式:F0 = 0,F1=1,Fn=Fn-1+Fn-2 n≥2,显然这是一个递推数列;方法一:利用特征方程线性代数解法线性递推数列的特征方程为:X^2=X+1解得X1=1+√5/2,,X2=1-√5/2;则Fn=C1X1^n + C2X2^n;∵F1=F2=1;∴C1X1 + C2X2;C1X1^2 + C2X2^2;解得C1=1/√5,C2=-1/√5;∴Fn=1/√5{1+√5/2^n+1 - 1-√5/2^n+1}√5表示5;方法二:待定系数法构造等比数列1初等待数解法设常数r,s;使得Fn-rFn-1=sFn-1-rFn-2;则r+s=1, -rs=1;n≥3时,有;Fn-rFn-1=sFn-1-rFn-2;Fn-1-rFn-2=sFn-2-rFn-3;Fn-2-rFn-3=sFn-3-rFn-4;……F3-rF2=sF2-rF1;联立以上n-2个式子,得:Fn-rFn-1=s^n-2F2-rF1;∵s=1-r,F1=F2=1;上式可化简得:Fn=s^n-1+rFn-1 ;那么:Fn=s^n-1+rFn-1;= s^n-1 + rs^n-2 + r^2Fn-2;= s^n-1 + rs^n-2 + r^2s^n-3 + r^3Fn-3;……= s^n-1 + rs^n-2 + r^2s^n-3 +……+ r^n-2s + r^n-1F1;= s^n-1 + rs^n-2 + r^2s^n-3 +……+ r^n-2s + r^n-1;这是一个以s^n-1为首项、以r^n-1为末项、r/s为公比的的各项的和;=s^n-1-r^n-1r/s/1-r/s;=s^n - r^n/s-r;r+s=1, -rs=1的一解为s=1+√5/2,r=1-√5/2;则Fn=1/√5{1+√5/2^n+1 - 1-√5/2^n+1};方法三:待定系数法构造等比数列2初等待数解法已知a1=1,a2=1,an=an-1+an-2n>=3,求数列{an}的通项公式;解:设an-αan-1=βan-1-αan-2;得α+β=1;αβ=-1;构造方程x^2-x-1=0,解得α=1-√5/2,β=1+√5/2或α=1+√5/2,β=1-√5/2;所以;an-1-√5/2an-1=1+√5/2an-1-1-√5/2an-2=1+√5/2^n-2a2-1-√5/2a1`````````1;an-1+√5/2an-1=1-√5/2an-1-1+√5/2an-2=1-√5/2^n-2a2-1+√5/2a1`````````2;由式1,式2,可得;an=1+√5/2^n-2a2-1-√5/2a1``````````````3;an=1-√5/2^n-2a2-1+√5/2a1``````````````4;将式31+√5/2-式41-√5/2,化简得an=1/√5{1+√5/2^n - 1-√5/2^n};与黄金分割的关系有趣的是:这样一个完全是的数列,通项公式却是用无理数来表达的;而且当n时an-1/an越来越逼近数;1÷1=1,2÷1=2,3÷2=,5÷3=...,8÷5=,…………,89÷55=…,…………233÷144=…75025÷46368=…;..越到后面,这些比值越接近黄金比.证明:an+2=an+1+an;两边同时除以an+1得到:an+2/an+1=1+an/an+1;若an+1/an的极限存在,设其极限为x,则limn->∞an+2/an+1=limn->∞an+1/an=x;所以x=1+1/x;即x&sup2;=x+1;所以极限是黄金分割比;奇妙的属性斐波那契数列中的斐波那契数会经常出现在我们的眼前——比如松果、凤梨、树叶的排列、某些花朵的花瓣数、黄金矩形、黄金分割、等角螺线等,有时也可能是我们对斐波那契额数过于热衷,把原来只是巧合的东西强行划分为斐波那契数;比如钢琴上白键的8,黑键上的5都是斐波那契数,因该把它看做巧合还是规律呢随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值……从第二项开始,每个奇数项的都比前后两项之积多1,每个项的平方都比前后两项之积少1;注:奇数项和偶数项是指项数的奇偶,而并不是列的本身的奇偶,比如第四项3是奇数,但它是偶数项,第五项5是奇数,它是奇数项,如果认为数字3和5都是奇数项,那就误解题意,怎么都说不通多了的一在哪如果你看到有这样一个题目:某人把一个88的方格切成四块,拼成一个513的,故作惊讶地问你:为什么64=65其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到;斐波那契数列的第n项同时也代表了{1,2,...,n}中所有不相邻正的个数;斐波那契数列fn,f0=0,f1=1,f2=1,f3=2……的其他性质:0+f1+f2+…+fn=fn+2-1;1+f3+f5+…+f2n-1=f2n;2+f4+f6+…+f2n =f2n+1-1;4.f0^2+f1^2+…+fn^2=fn·fn+1;0-f1+f2-…+-1^n·fn=-1^n·fn+1-fn+1;m+n-1=fm-1·fn-1+fm·fn;利用这一点,可以用程序编出时间复杂度仅为Olog n的程序;怎样实现呢伪代码描述一下7.fn^2=-1^n-1+fn-1·fn+1;2n-1=fn^2-fn-2^2;n=fn+2+fn-2;2n-2m-2f2n+f2n+2=f2m+2+f4n-2m n〉m≥-1,且n≥1斐波那契数列2n+1=fn^2+fn+1^2.在杨辉三角中隐藏着斐波那契数列将杨辉三角依次下降,成如图所示排列,将同一行的数加起来,即得一数列1、1、2、3、5、8、……公式表示如下:f1=C0,0=1 ;f2=C1,0=1 ;f3=C2,0+C1,1=1+1=2 ;f4=C3,0+C2,1=1+2=3 ;f5=C4,0+C3,1+C2,2=1+3+1=5 ;f6=C5,0+C4,1+C3,2=1+4+3=8 ;F7=C6,0+C5,1+C4,2+C3,3=1+5+6+1=13 ;……Fn=Cn-1,0+Cn-2,1+…+Cn-1-m,m m<=n-1-m斐波那契数列的整除性与素数生成性每3个数有且只有一个被2整除,每4个数有且只有一个被3整除,每5个数有且只有一个被5整除,每6个数有且只有一个被8整除,每7个数有且只有一个被13整除,每8个数有且只有一个被21整除,每9个数有且只有一个被34整除,.......我们看到第5、7、11、13、17、23位分别是素数:5,13,89,233,1597,28657第19位不是斐波那契数列的素数无限多吗斐波那契数列的个位数:一个60步的循环11235,83145,94370,77415,,99875,27965,16730,33695,49325,72910…斐波那契数与植物花瓣3………………………百合和蝴蝶花5………………………蓝花耧斗菜、、飞燕草、毛茛花8………………………翠雀花13………………………金盏和玫瑰21………………………紫宛34、55、89……………雏菊斐波那契数还可以在植物的叶、枝、茎等排列中发现;例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子假定没有折损,直到到达与那息叶子正对的位置,则其间的叶子数多半是斐波那契数;叶子从一个位置到达下一个正对的位置称为一个循回;叶子在一个循回中的圈数也是斐波那契数;在一个循回中叶子数与叶子旋转圈数的比称为源自希腊词,意即叶子的排列比;多数的叶序比呈现为斐波那契数的比;斐波那契—卢卡斯数列与广义斐波那契数列黄金特征与孪生斐波那契—卢卡斯数列斐波那契—卢卡斯数列的另一个共同性质:中间项的平方数与前后两项之积的差的是一个恒值,斐波那契数列:|11-12|=|22-13|=|33-25|=|55-38|=|88-513|=…=1卢卡斯数列:|33-14|=|44-37|=…=5F1,4数列:|44-15|=11F2,5数列:|55-27|=11F2,7数列:|77-29|=31斐波那契数列这个值是1最小,也就是前后项之比接近最快,我们称为黄金特征,黄金特征1的数列只有斐波那契数列,是独生数列;卢卡斯数列的黄金特征是5,也是独生数列;前两项的独生数列只有斐波那契数列和卢卡斯数列这两个数列;而F1,4与F2,5的黄金特征都是11,是孪生数列;F2,7也有孪生数列:F3,8;其他前两项互质的斐波那契—卢卡斯数列都是孪生数列,称为孪生斐波那契—卢卡斯数列; 广义斐波那契数列斐波那契数列的黄金特征1,还让我们联想到佩儿数列:1,2,5,12,29,…,也有|22-15|=|55-212|=…=1该类数列的这种称为勾股特征;数列Pn的递推规则:P1=1,P2=2,Pn=Pn-2+2Pn-1.据此类推到所有根据前两项导出第三项的通用规则:fn = fn-1 p + fn-2 q,称为广义斐波那契数列;当p=1,q=1时,我们得到斐波那契—卢卡斯数列;当p=1,q=2时,我们得到佩尔—勾股弦数跟边长为整数的有关的数列集合;当p=-1,q=2时,我们得到等差数列;其中f1=1,f2=2时,我们得到自然数列1,2,3,4…;自然数列的特征就是每个数的平方与前后两数之积的差为1等差数列的这种差值称为;具有类似黄金特征、勾股特征、自然特征的广义斐波那契数列p=±1;当f1=1,f2=2,p=2,q=1时,我们得到等比数列1,2,4,8,16……相关的数学问题1.排列组合有一段楼梯有10级台阶,规定每一步只能跨一级或两级,要登上第10级台阶有几种不同的走法这就是一个斐波那契数列:登上第一级台阶有一种登法;登上两级台阶,有两种登法;登上三级台阶,有三种登法;登上四级台阶,有五种登法……1,2,3,5,8,13……所以,登上十级,有89种走法;类似的,一枚均匀的硬币掷10次,问不连续出现正面的可能情形有多少种答案是1/√5{1+√5/2^10+2 - 1-√5/2^10+2}=144种;2.数列中相邻两项的前项比后项的极限当n趋于无穷大时,Fn/Fn+1的极限是多少这个可由它的通项公式直接得到,极限是-1+√5/2,这个就是黄金分割的数值,也是代表的和谐的一个数字;3.求递推数列a1=1,an+1=1+1/an的通项公式由可以得到:an=Fn+1/Fn,将斐波那契数列的通项式代入,化简就得结果;3.兔子繁殖问题关于斐波那契数列的别名斐波那契数列又学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“”;一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来;如果所有兔都不死,那么一年以后可以繁殖多少对兔子我们不妨拿新出生的一对小兔子分析一下:第一个月小兔子没有繁殖能力,所以还是一对两个月后,生下一对小兔民数共有两对三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对------依次类推可以列出下表:经过月数0 1 2 3 4 5 6 7 8 9 10 11 12幼仔0 0 1 1 2 3 5 8 13 21 34 55 89成兔对数0 1 1 2 3 5 8 13 21 34 55 89 144 总体对数 1 1 2 3 5 8 13 21 34 55 89 144 233 幼仔对数=前月成兔对数成兔对数=前月成兔对数+前月幼仔对数总体对数=本月成兔对数+本月幼仔对数可以看出幼仔对数、成兔对数、总体对数都构成了一个数列;这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项;这个数列是意大利数学家斐波那契在<算盘全书>中提出的,这个的通项公式,除了具有an+2=an+an+1的性质外,还可以证明通项公式为:an=1/√5{1+√5/2^n-1-√5/2^n}n=1,2,3.....数学游戏一位拿着一块边长为8英尺的地毯,对他的地毯匠朋友说:“请您把这块地毯分成四小块,再把它们缝成一块长13英尺,宽5英尺的长方形地毯;”这位匠师对魔术师之差深感惊异,因为两者之间面积相差达一平方英尺呢可是魔术师竟让匠师用图2和图3的办法达到了他的目的这真是不可思议的事亲爱的读者,你猜得到那神奇的一平方英尺究竟跑到哪儿去呢实际上后来缝成的地毯有条细缝,面积刚好就是一平方英尺;自然界中的巧合斐波那契数列在自然科学的其他分支,也有许多应用;例如,树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,而后才能萌发新枝;所以,一株树苗在一段间隔,例如一年,以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则次年“休息”;这样,一株树木各个年份的枝桠数,便构成斐波那契数列;这个规律,就是生物学上着名的“鲁德维格定律”;另外,观察延龄草、野玫瑰、南美血根草、大波斯菊、金凤花、耧斗菜、百合花、蝴蝶花的花瓣,可以发现它们花瓣数目具有斐波那契数:3、5、8、13、21、……斐波那契螺旋:具有13条顺时针旋转和21条逆时针旋转的螺旋的的头部这些植物懂得斐波那契数列吗应该并非如此,它们只是按照自然的规律才进化成这样;这似乎是植物排列种子的“优化方式”,它能使所有种子具有差不多的大小却又疏密得当,不至于在圆心处挤了太多的种子而在圆周处却又稀稀拉拉;叶子的生长方式也是如此,对于许多植物来说,每片叶子从中轴附近生长出来,为了在生长的过程中一直都能最佳地利用要考虑到叶子是一片一片逐渐地生长出来,而不是一下子同时出现的,每片叶子和前一片叶子之间的角度应该是度,这个角度称为“黄金角度”,因为它和整个圆周360度之比是……的,而这种生长方式就决定了斐波那契螺旋的产生;向日葵的种子排列形成的斐波那契螺旋有时能达到89,甚至144条;数字谜题三角形的三边关系和斐波那契数列的一个联系:现有长为144cm的铁丝,要截成n小段n>2,每段的长度不小于1cm,如果其中任意三小段都不能拼成三角形,则n的最大值为多少分析:由于形成三角形的是任何两边之和大于第三边,因此不构成三角形的条件就是任意两边之和不超过最大边;截成的铁丝最小为1,因此可以放2个1,第三条就是2为了使得n最大,因此要使剩下来的铁丝尽可能长,因此每一条线段总是前面的相邻2段之和,依次为:1、1、2、3、5、8、13、21、34、55,以上各数之和为143,与144相差1,因此可以取最后一段为56,这时n达到最大为10;我们看到,“每段的长度不小于1”这个条件起了控制全局的作用,正是这个最1产生了斐波那契数列,如果把1换成其他数,递推关系保留了,但这个数列消失了;这里,三角形的三边关系定理和斐波那契数列发生了一个联系;在这个问题中,144>143,这个143是斐波那契数列的前n项和,我们是把144超出143的部分加到最后的一个数上去,如果加到其他数上,就有3条线段可以构成三角形了;影视作品中的斐波那契数列斐波那契数列在欧美可谓是尽人皆知,于是在电影这种通俗艺术中也时常出现,比如在风靡一时的里它就作为一个重要的符号和情节线索出现,在魔法玩具城里又是在店主招聘会计时随口问的问题;可见此数列就像黄金分割一样流行;可是虽说叫得上名,多数人也就背过前几个数,并没有深入理解研究;在电视剧中也出现斐波那契数列,比如:日剧考试之神第五回,义嗣做全国模拟考试题中的最后一道~社会文明中的斐波那契数列艾略特波浪理论1946年,艾略特完成了关于波浪理论的集大成之作,自然法则——宇宙的秘密;艾略特坚信,他的波浪理论是制约人类一切活动的普遍自然法则的一部分;波浪理论的优点是,对即将出现的顶部或底部能提前发出警示信号,而传统的技术分析方法只有事后才能验证;艾略特波浪理论对市场运作具备了全方位的透视能力,从而有助于解释特定的形态为什么要出现,在何处出现,以及它们为什么具备如此这般的预测意义等等问题;另外,它也有助于我们判明当前的市场在其总体周期结构中所处的地位;波浪理论的数学基础,就是在13世纪发现的费氏数列;波浪理论数学结构8浪循环图·8浪循环图说明·波浪理论的推动浪,浪数为51、2、3、4、5,调整浪的浪数为3a\b\c,合起来为8;·8浪循环中,前5段波浪构成一段明显的上升浪,其中包括3个向上的冲击波及两个下降的调整波;在3个冲击波之后,是由3个波浪组成的一段下跌的趋势,是对前一段5浪升势的总调整;这是艾略特对波浪理论的基本描述;而在这8个波浪中,上升的浪与下跌的浪各占4个,可以理解为艾略特对于股价走势对称性的隐喻;·在波浪理论中,最困难的地方是:波浪等级的划分;如果要在特定的周期中正确地指认某一段波浪的特定属性,不仅需要形态上的支持,而且需要对波浪运行的时间作出正确的判断;·换句话说,波浪理论易学难精,易在形态上的归纳、总结,难在价位及时间周期的判定;波浪理论的数字基础:斐波那契数列波浪理论数学结构——斐波那契数列与黄金分割率·这个数列就是斐波那契数列;它满足如下特性:每两个相连数字相加等于其后第一个数字;前一个数字大约是后一个数字的倍;前一个数字约是其后第二个数字的倍;后一个数字约是前一个数字的倍;后一个数字约是前面第二个数字的倍;·由此计算出常见的黄金分割率为和外:、、、、、、、、、·黄金分割比率对于股票市场运行的时间周期和价格幅度模型具有重要启示及应用价值;黄金分割比率在时间周期模型上的应用·未来市场转折点=已知时间周期×分割比率·已知时间周期有两种:1循环周期:最近两个顶之间的运行时间或两个底之间的运行时间2趋势周期:最近一段升势的运行时间或一段跌势的运行时间·一般来讲,用循环周期可以计算出下一个反向趋势的终点,即用底部循环计算下一个升势的顶,或用顶部循环计算下一个跌势的底;而用趋势周期可以计算下一个同方向趋势的终点或是下一个反方向趋势的终点;时间循环周期模型预测图时间趋势周期模型预测图时间周期与波浪数浪的数学关系·一个完整的趋势推动浪3波或调整浪3波,运行时间最短为第一波1浪或A浪的倍,最长为第一波的倍;如果第一波太过短促,则以第一个循环计算A浪与B浪或1浪与2浪;·及的周期一旦成立,则出现的行情大多属次级趋势,但行情发展迅速;·同级次两波反向趋势组成的循环,运行时间至少为第一波运行时间的倍;·一个很长的跌势或升势结束后,其右底或右顶通常在前趋势的或倍时间出现;黄金分割比率在价格幅度模型上的应用·如果推动浪中的一个子浪成为延伸浪的话,则其他两个推动浪不管其运行的幅度还是运行的时间,都将会趋向于一致;也就是说,当推动浪中的浪3在走势中成为延伸浪时,则浪1与浪5的升幅和运行时间将会大致趋同;假如并非完全相等,则极有可能以的关系相互维系;·浪5最终目标,可以根据浪1浪底至浪2浪顶距离来进行预估,他们之间的关系,通常亦包含有神奇数字组合比率的关系;·对于ABC调整浪来说,浪C的最终目标值可能根据浪A的幅度来预估;浪C的长度会经常是浪A的倍;当然我们也可以用下列公式预测浪C的下跌目标:浪A浪底减浪A乘;·在对称三角形内,每个浪的升跌幅度与其他浪的比率,通常以的神奇比例互相维系;黄金分割比率在价格幅度模型上的应用·:浪4常见的回吐比率、部份浪2的回吐比率、浪B的回吐比率;·:大部份浪2的调整幅度、浪5的预期目标、浪B的调整比率、三角形内浪浪之间比率;·:常见是浪B的调整幅度;·:浪3或浪4的回吐比率,但不多见;·与:·:浪3与浪1、浪C与浪A的比率关系;推动浪形态·推动浪有五浪构成;第一浪通常只是由一小部分交易者参与的微弱的波动;一旦浪1结束,交易者们将在浪2卖出;浪2的卖出是十分凶恶的,最后浪2在不创新低的情况下,市场开始转向启动下一浪波动;浪3波动的初始阶段是缓慢的,并且它将到达前一次波动的顶部浪1的顶部;推动浪浪5未能创新高低,市场将会出现大逆转推动浪的变异形态——倾斜三角形·倾斜三角形为推动浪中的一种特殊型态比较少见,主要出现在第5浪的位置;艾略特指出,在股市中,一旦出现一段走势呈现快速上升或赶底的状况,其后经常会出现倾斜三角形型态调整浪形态·调整是十分难以掌握的,许多艾略特交易者在推动模式阶段上赚钱而在调整阶段再输钱;一个推动阶段包括五浪;调整阶段由三浪组成,但有一个三角形的例外;一个推动经常伴随着一个调整的模式;·调整模式可以被分成两类:·简单的调整:之字型调整N字型调整·复杂的调整:平坦型、不规则型、三角形型调整浪的简单与复杂调整的交替准则调整浪的变异形态:强势三角形调整浪的变异形态:前置三角形各段波浪的特性·在8浪循环中,每段波浪都有不同的特点,熟知这些特点,对波浪属性的判断极有帮助,·第1浪:大部分第1浪属于营造底部形态的一部份,相当于形态分析中头肩底的底部或双底的右底,对这种类型的第1浪的调整第2浪幅度通常较大,理论上可以回到第1浪的起点;小部份第1浪在大型调整形态之后出现,形态上呈V形反转,这类第1浪升幅较为可观;在K线图上,经常出现带长下影线的大阳线;从波浪的划分来说,在5-3-5的调整浪当中,第1浪也可以向下运行,通常第1浪在分时图上应该显示明确的5浪形态;·第2浪:在强势调整的第2浪中,其回调幅度可能达到第1浪幅度的或,在更多的情况下,第2浪的回调幅度会达到100%,形态上经常表现为头肩底的右底,使人误以为跌势尚未结束;在第2浪回调结束时,指标系统经常出现超卖、背离等现象;第2浪成交量逐渐缩小,波幅较细,这是卖力衰竭的表现;出现传统系统的转向信号,如头肩底、双底等;·第3浪:如果运行时间较短,则升速通常较快;在一般情况下为第1浪升幅的倍;如果第3浪升幅与第1浪等长,则第5浪通常出现扩延的情况;在第3浪当中,唯一的操作原则是顺势而为;因为第3浪的升幅及时间经常会超出分析者的预测;通常第3浪运行幅度及时间最长;属于最具爆发性的一浪;大部分第3浪成为扩延浪;第3浪成交量最大;出现传统图表的突破信号,如跳空缺口等;·第4浪:如果第4浪以平坦型或N字型出现,a小浪与c小浪的长度将会相同;第4浪与第2浪经常是交替形态的关系,即单复式交替或平坦型、曲折型或三角形的交替;第4浪的低点经常是其后更大级数调整浪中A浪的低点;经常以较为复杂的形态出现,尤其以三角形较为多见;通常在第3浪中所衍生出来的较低一级的第4浪底部范围内结束;第4浪的底不会低于第1浪的顶;·第5浪:除非发生扩延的情况,第5浪的成交量及升幅均小于第3浪;第5浪的上升经常是在指标出现顶背离或钝化的过程中完成;在第5浪出现衰竭性上升的情况下,经常出现上升楔形形态;这时,成交量与升幅也会出现背离的情况;如果第1、3浪等长,则第5浪经常出现扩延;如果第3浪出现扩延浪,则第5浪幅度与第1浪大致等长;市场处于狂热状态;·第6浪A浪:A浪可以为3波或者5波的形态;在A浪以3波调整时,在A浪结束时,市场经常会认为整个调整已经结束;在多数情况下,A浪可以分割为5小浪;市场人士多认为市场并未逆转,只视为一个较短暂的调整;图表上,阴线出现的频率增大;·第7浪B浪:在A浪以3波形态出现的时候,B浪的走势通常很强,甚至可以超越A浪的起点,形态上出现平坦型或三角形的概率很大;而A浪以5波运行的时候,B浪通常回调至A浪幅度的至;升势较为情绪化,维持时间较短;成交量较小;·第8浪C浪:除三角形之外,在多数情况下,C浪的幅度至少与A浪等长;杀伤力最强;与第3浪特性相似,以5浪下跌;股价全线下挫;人类文明的斐波那契演进古老的<马尔萨斯理论>已经显灵马尔萨斯认为:每当社会财富快速积累,人口快速增长,就会出现:战争、瘟疫、饥荒、自然灾害来削减人口;2000年科技泡沫达到繁荣的极限,到处都是财富神话然后盛极而衰,全球经济急转直下转入衰退、长期萧条;于是:911、阿富汗战争、伊拉克战争、SARS、印度洋海啸、飓风袭击美利坚、禽流感、寒流袭击欧罗巴;这一切集中在一起接二连三地发生2000年是自上世纪30年代全球经济大萧条后,一个长达约70年的经济增长周期的结束点,后面将是一个长期萧条周期;上世纪30年代全球经济大萧条导致了二次世界大战,被艾略特称之为:底部战争;现在又是一个与上世纪30年代全球经济大萧条同级别的经济萧条周期,2000年来的经济萧条将持续至2021年才会结束预测附在下面;后面是否又会发生被艾略特称之为的:底部战争至少有不良苗头:哈马斯执政、伊朗核问题纠缠,世界将走向何方是否还记得那个着名的:1999年7月之上误差了2年恐怖大王从天而降911使安哥鲁摩阿大王为之复活美国发动反恐战争这期间由马尔斯借幸福之名统治四方唯一待验证社会群体心理、群体行为、群体价值观,乃至国际政治、经济、军事,一切皆是自相似系统分形几何运行阶段的反映和结果;1、自2000年来的全球经济萧条将持续至2021年,说明未来将是长期萧条;2、之前会有若干次小级别、温和的经济扩张和收缩,2010、2011、2018年是拐点;3、2021年是一个黑暗的年份,人们悲观、恐惧、绝望的情绪会达到一个极点;到时绝大多数经济学家会一致悲观接着柳岸花明经济开始复苏,经济学家们又挨了一记大耳光;首先,列出一组计算公式:公元1937年–公元1932年X + 公元1982年= 公元2000年公元1966年–公元1942年/ + 公元1982年= 公元1999年公元1837年–公元1789年X + 公元1932年= 公元1998年公元1325年–公元950年X –公元1650年–公元1490年+ 公元1789年–公元1650年+ 公元1789年= 公元2000年其中:公元950年商业革命的起点公元1325年商业革命的结束点公元1490年资本主义革命的起点公元1650年资本主义革命的结束点公元1789年工业革命的起点公元1837年公元1789年后第一轮经济扩张的结束点公元1932年自公元1929年资本主义世界股灾的结束点公元1937 年公元1929年股灾后第一轮经济扩张的结束点公元1942年公元1929年股灾后第二轮经济扩张的起点公元1966年公元1929年股灾后第二轮经济扩张的结束点公元1982年70年代全球经济滞胀的结束点、、是斐波那契比率,来源于斐波那契数列前2个计算公式的含义:自上世纪30年代资本主义世界经济大萧条以来,新的一个自公元1932年开始的上升5浪的经济扩张周期已经结束,结束点为公元2000年;那么接着是一个调整期经济。

关于数列的趣味故事

关于数列的趣味故事

关于数列的趣味故事在一个远古的小村庄里,住着一个叫小明的聪明而好奇的小男孩。

他一直对数学特别感兴趣,尤其是数列。

他喜欢研究数列的规律,并且探索它们背后的趣味故事。

一天,小明听说了一个关于数列的有趣故事。

据说,在一个古老的王国里,有一个贪婪的国王。

这个国王迷恋上了一种特殊的数列,叫作斐波那契数列。

斐波那契数列的规律是,从第三项开始,每一项都是前两项的和。

这个国王听说这个数列有神奇的性质,于是他决定通过斐波那契数列来预测未来。

国王召集了王国里最聪明的数学家,并命令他们研究斐波那契数列的奥秘。

数学家们花了很长时间才发现了这个规律,他们告诉国王,斐波那契数列可以无限延伸下去。

而且,这个数列中有很多有趣的性质。

小明听了这个故事后,决定自己也去研究一下斐波那契数列。

他想看看这个数列到底有多神奇。

于是,他开始列举斐波那契数列的前几项:1,1,2,3,5,8,13,...小明发现,这个数列的每一项都可以通过前两项相加得到。

比如,第三项2就是1加上1得到的;第四项3是1加上2得到的;第五项5是2加上3得到的,依此类推。

小明还发现,斐波那契数列的比值也很有意思。

他计算了相邻数列项之间的比值,发现这些比值逐渐接近一个特殊的常数,约等于 1.618。

这个常数被称为黄金分割,也是斐波那契数列的一个重要性质。

随着小明对斐波那契数列的研究深入,他发现了更多有趣的特性。

比如,如果把相邻的斐波那契数列项求商,得到的结果会无限接近黄金分割。

而且,这种趋势不仅在斐波那契数列中成立,还在自然界的很多事物中也存在,比如动植物的生长规律、音乐的节奏等等。

小明对这些发现充满了好奇,他开始思考斐波那契数列背后的意义。

他意识到,斐波那契数列的规律是自然界中普遍存在的一种模式,它代表了一种有序、和谐的变化过程。

这种模式不仅在数学中成立,在生活中也存在着。

无论是大自然的生态系统,还是人类的社会组织,都遵循着这种有序变化的规律。

通过对斐波那契数列的研究,小明也发现了数学的美妙之处。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
……
F(3)-r*F(2)=s*[F(2)-r*F(1)]。
联立以上n-2个式子,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]。
∵s=1-r,F(1)=F(2)=1。
上式可化简得:
F(n)=s^(n-1)+r*F(n-1)。
那么:
F(n)=s^(n-1)+r*F(n-1)。
157

F[1,3]n
1
3
4
7
11
18
29
47
76
123

F[1,4]n-F[1,3]n
0
1
1
2
3
5
8
13
21
34

F[1,4]n+F[1,3]n
2
7
9
16
25
41
66
107
173
280

②任何一个斐波那契—卢卡斯数列都可以由斐波那契数列的有限项之和获得,如
n
1
2
3
4
5
6
7
8
9
10

F[1,1](n)
1
1
2
3
5
8
13
21
34
55

F[1,1](n-1)
0
1
1
2
3
5
8
13
21
34

F[1,1](n-1)
0
1
1
2
3
5
8
13
21
34

F[1,3]n
1
3
4
7
11
18
29
47
76
123

黄金特征与孪生斐波那契—卢卡斯数列
斐波那契—卢卡斯数列的另一个共同性质:中间项的平方数与前后两项之积的差的是一个恒值,
斐波那契数列:|1*1-1*2|=|2*2-1*3|=|3*3-2*5|=|5*5-3*8|=|8*8-5*13|=…=1
越到后面,这些比值越接近黄金比.
证明:
a[n+2]=a[n+1]+a[n]。
两边同时除以a[n+1]得到:
a[n+2]/a[n+1]=1+a[n]/a[n+1]。
若a[n+1]/a[n]的极限存在,设其极限为x,
则lim[n->∞](a[n+2]/a[n+1])=lim[n->∞](a[n+1]/a[n])=x。
11235,83145,94370,77415,,
99875,27965,16730,33695,49325,72910…
斐波那契数与植物花瓣
3………………………百合和蝴蝶花
5………………………蓝花耧斗菜、、飞燕草、毛茛花
8………………………翠雀花
13………………………金盏
和玫瑰
21………………………紫宛
从第二项开始,每个奇数项的都比前后两项之积多1,每个项的平方都比前后两项之积少1。(注:奇数项和偶数项是指项数的奇偶,而并不是列的本身的奇偶,比如第四项3是奇数,但它是偶数项,第五项5是奇数,它是奇数项,如果认为数字3和5都是奇数项,那就误解题意,怎么都说不通)
多了的一在哪
如果你看到有这样一个题目:
34、55、89……………雏菊
斐波那契数还可以在植物的叶、枝、茎等排列中发现。例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子(假定没有折损),直到到达与那息叶子正对的位置,则其间的叶子数多半是斐波那契数。叶子从一个位置到达下一个正对的位置称为一个循回。叶子在一个循回中的圈数也是斐波那契数。在一个循回中叶子数与叶子旋转圈数的比称为(源自希腊词,意即叶子的排列)比。多数的叶序比呈现为斐波那契数的比。
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)。
(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公比的的各项的和)。
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)。
=(s^n - r^n)/(s-r)。
设常数r,s。
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。
则r+s=1,-rs=1。
n≥3时,有。
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]。
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]。
斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、……
这个数列从第三项开始,每一项都等于前两项之和。
斐波那契数列通项公式
通项公式
(见图)(又叫“比内公式”,是用表示的一个范例。)
注:此时a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3,n∈N*)
通项公式的推导
斐波那契数列:1、1、2、3、5、8、13、21、……
公式表示如下:
f(1)=C(0,0)=1。
f(2)=C(1,0)=1。
f(3)=C(2,0)+C(1,1)=1+1=2。
f(4)=C(3,0)+C(2,1)=1+2=3。
f(5)=C(4,0)+C(3,1)+C(2,2)=1+3+1=5。
f(6)=C(5,0)+C(4,1)+C(3,2)=1+4+3=8。
如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:
F(0) = 0,F(1)=1,F(n)=F(n-1)+F(n-2) (n≥2),
显然这是一个递推数列。
方法一:利用特征方程(线性代数解法)
线性递推数列的特征方程为:
X^2=X+1
解得
X1=(1+√5)/2,,X2=(1-√5)/2。
解:设an-αa(n-1)=β(a(n-1)-αa(n-2))。
得α+β=1。
αβ=-1。
构造方程x^2-x-1=0,解得α=(1-√5)/2,β=(1+√5)/2或α=(1+√5)/2,β=(1-√5)/2。
所以。
an-(1-√5)/2*a(n-1)=(1+√5)/2*(a(n-1)-(1-√5)/2*a(n-2))=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)`````````1。
r+s=1,-rs=1的一解为s=(1+√5)/2,r=(1-√5)/2。
则F(n)=(1/√5)*{[(1+√5)/2]^(n+1) - [(1-√5)/2]^(n+1)}。
方法三:待定系数法构造等比数列2(初等待数解法)
已知a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3),求数列{an}的通项公式。
所以x=1+1/x。
即x&sup2;=x+1。
所以极限是黄金分割比。
奇妙的属性
斐波那契数列中的斐波那契数会经常出现在我们的眼前——比如松果、凤梨、树叶的排列、某些花朵的花瓣数、黄金矩形、黄金分割、等角螺线等,有时也可能是我们对斐波那契额数过于热衷,把原来只是巧合的东西强行划分为斐波那契数。比如钢琴上白键的8,黑键上的5都是斐波那契数,因该把它看做巧合还是规律呢
an=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)``````````````4。
将式3*(1+√5)/2-式4*(1-√5)/2,化简得an=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。
与黄金分割的关系
有趣的是:这样一个完全是的数列,通项公式却是用无理数来表达的。而且当n时(an-1)/an越来越逼近数。
n
1
2
3
4
5
6
7
8
9
10

斐波那契数列F(n)
1
1
2
3
5
8
13
21
34
55

卢卡斯数列L(n)
1
3
4
7
11
18
29
47
76
123

F(n)*L(n)13来自82155
144
377
987
2584
6765

类似的数列还有无限多个,我们称之为。
如1,4,5,9,14,23…,因为1,4开头,可记作F[1,4],斐波那契数列就是F[1,1],卢卡斯数列就是F[1,3],斐波那契—卢卡斯数列就是F[a,b]。
斐波那契—卢卡斯数列之间的广泛联系
①任意两个或两个以上斐波那契—卢卡斯数列之和或差仍然是斐波那契—卢卡斯数列。
如:F[1,4]n+F[1,3]n=F[2,7]n,F[1,4]n-F[1,3]n=F[0,1]n=F[1,1](n-1),
n
1
2
3
4
5
6
7
8
9
10

F[1,4]n
1
4
5
9
14
23
37
60
97
= s^(n-1) + r*s^(n-2) + r^2*F(n-2)。
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)。
相关文档
最新文档