高考物理复习计算题专题

合集下载

2全国第三批新高考2024-2024年物理高频考点压轴计算题汇编

2全国第三批新高考2024-2024年物理高频考点压轴计算题汇编

2全国第三批新高考2024-2024年物理高频考点压轴计算题汇编一、单项选择题(本题包含8小题,每小题4分,共32分。

在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题一种可调压变压器原理图如图所示,为交变电压输入端,为自耦调压器,P为调压滑动触头;为升压变压器,为终端输出电压给负载R供电。

忽略其他电阻与感抗等因素影响,调压器与变压器均视为理想变压器。

在端输入电压不变的情况下,当滑动触头P向下移动,则( )A.电流表示数变大B.电流表示数变小C.端获得的电压变大D.端获得的功率不变第(2)题下列物理量单位中不是国际制基本单位的是( )A.千克B.米C.秒D.牛顿第(3)题关于静电场,下列说法中正确的是( )A.元电荷实际上是指电子和质子本身B.在匀强电场中,电势降低的方向一定就是电场线的方向C.在电场中移动电荷,若电场力对该电荷做负功,则该电荷的电势能一定增加D.由真空中点电荷的电场强度公式可知,当r趋近于0时,将无穷大第(4)题下列说法中正确的是A.物体温度改变时,物体分子的平均动能一定改变B.物体吸收热量后,温度一定升高C.布朗运动就是液体分子的热运动D.当分子间的距离变小时,分子间作用力一定减小第(5)题如图所示,悬挂在O点的三个小球a、b、c由轻细线相连,它们的重力大小均为G。

当大小为G的水平拉力作用在b上时,a、b间的细线与水平方向的夹角为;当大小为G的水平拉力作用在c上时,a、b间的细线与水平方向的夹角为,则为( )A.B.C.D.第(6)题匀速运行的列车经过钢轨接缝处时,车轮就会受到一次冲击。

由于每一根钢轨长度相等,所以这个冲击力是周期性的,列车受到周期性的冲击做受迫振动。

如图所示,为某同学设计的“减震器”原理示意图,他用弹簧连接一金属球组成“弹簧振子”悬挂在车厢内,金属球下方固定一块强磁铁(不考虑磁铁对金属球振动周期的影响)。

当列车上下剧烈振动时,该“减震器”会使列车振幅减小。

2025届高考物理一轮复习专题练: 匀变速直线运动(含解析)

2025届高考物理一轮复习专题练: 匀变速直线运动(含解析)

2025届高考物理一轮复习专题练: 匀变速直线运动一、单选题1.关于匀变速直线运动,下列说法中正确的是( )A.匀变速直线运动的速度变化量是一个恒量B.在相等时间内,匀变速直线运动的位移相等C.加速度大小不变的运动就是匀变速直线运动D.匀变速直线运动的速率可能先减小后增大2.舞狮作为中国传统节目,在中国广受人们欢迎。

某次舞狮表演中,两位表演者需先后从高台跃下,为保证舞狮道具不因拉扯而损坏,要求两位表演者默契配合,在一定时间间隔内相继跳下。

已知高台距离地面,两人之间的舞狮道具长,表演者可认为由静止下落,设表演者落地后速度为零,不计空气阻力,重力加速度。

完成该表演动作(从第一位表演者开始跳下到第二位表演者落地)经历的总时间最长为( )A.1.0sB.1.2sC.1.4sD.1.6s3.地铁刹车后匀减速进站,晓燕同学利用照相机拍下了地铁停下前最后2 s 初和最后2 s 末的照片,如图所示。

已知地铁相邻两车门之间的距离为4.5 m ,地铁刹车前的速度为15 m/s ,则地铁刹车后行驶的路程为( )A.45 mB.50 mC.60 mD.70 m4.子弹以初速度垂直射入叠在一起的相同木板,穿过第20块木板后的速度变为0,可以把子弹视为质点,已知木板的长、厚度均为d,认为子弹在各块木板中运动的5m h = 1.8m L =210m/s g =0v加速度大小都相同,则下列说法正确的是( )5.飞机着陆后以的加速度做匀减速直线运动,若其着陆时的速度大小为60 m/s ,则它着陆后12 s 末的速度为( )A.12 m/sB.-12 m/sC.132 m/sD.06.关于匀变速直线运动,下列说法中正确的是( )A.匀变速直线运动是相等时间内通过的位移相等的运动B.匀减速直线运动的加速度一定为负C.匀减速直线运动的速度和加速度的方向一定是相反的D.在匀减速直线运动中,速度和位移一定都随时间的增加而减小7.2024年3月30日,我国自主研制的AS700“祥云”载人飞艇完成首次转场飞行.假设该飞艇从地面由静止升起,先加速再减速,减速到0后悬停在空中.在整个过程中,加速时可认为飞艇做匀加速直线运动,加速度大小为,减速时可认为飞艇做匀减速直线运动,加速度大小为,若飞艇在该过程中运动的总时间为t ,则飞艇减速运动的时间为( )8.一质点沿直线运动,它的位移x 与时间t 的关系为(各物理量均采用国际单位制单位),下列说法正确的是( )A.该质点的初速度大小为B.该质点的加速度大小为C.该质点末的速度大小为D.该质点第内的平均速度为9.火车以的初速度在平直轨道上匀加速行驶,加速度,当时火车的速度为( )A. B. C. D.23m/s 11m/s 5m/s010m/s v =20.2m/s a =25s t =15m/s 14m/s 10m/s 026m /s 1a 2a 232x t t =+2m/s2s 2s 8m/s10.电子设备之间在一定距离范围内可以通过蓝牙连接进行数据交换,已经配对过的两电子设备,当距离小于某一值时,会自动连接;一旦超过该值时,蓝牙信号便会立即中断,无法正常通讯。

2025届高考物理一轮复习专题卷: 安培力与洛伦兹力(含解析)

2025届高考物理一轮复习专题卷: 安培力与洛伦兹力(含解析)

2025届高考物理一轮复习专题卷: 安培力与洛伦兹力一、单选题1.如图所示,一带负电的粒子(不计重力)进入磁场中,图中的磁场方向、速度方向及带电粒子所受的洛伦兹力方向标示正确的是( )A.B.C.D.2.速度选择器是质谱仪的重要组成部分,工作时电场和磁场联合作用,从各种速率的带电粒子中选择出具有一定速率的粒子。

下列结构能成为速度选择器的是( )A. B.C. D.3.图是简化的某种旋转磁极式发电机原理图。

定子是仅匝数n 不同的两线圈,,二者轴线在同一平面内且相互垂直,两线圈到其轴线交点O 的距离相等,且均连接阻值为R 的电阻,转子是中心在O 点的条形磁铁,绕O 点在该平面内匀速转动时,两线圈输出正弦式交变电流。

不计线圈电阻、自感及两线圈间的相互影响,下列说法正确的是( )12n nA.两线圈产生的电动势的有效值相等B.两线圈产生的交变电流频率相等C.两线圈产生的电动势同时达到最大值D.两电阻消耗的电功率相等4.某同学搬运如图所示的磁电式电流表时,发现表针晃动剧烈且不易停止。

按照老师建议,该同学在两接线柱间接一根导线后再次搬运,发现表针晃动明显减弱且能很快停止。

下列说法正确的是( )A.未接导线时,表针晃动过程中表内线圈不产生感应电动势B.未接导线时,表针晃动剧烈是因为表内线圈受到安培力的作用C.接上导线后,表针晃动过程中表内线圈不产生感应电动势D.接上导线后,表针晃动减弱是因为表内线圈受到安培力的作用5.如图所示,为高中物理实验室常用的磁电式电流表的内部结构,基本组成部分是磁体和放在磁体两极之间的线圈,其物理原理就是通电线圈因受安培力而转动。

电流表的两磁极装有极靴,极靴中间还有一个用软铁制成的圆柱。

关于磁电式电流表,下列说法正确的是( )A.铁质圆柱内部磁感应强度为零B.线圈的磁通量始终为零C.线圈转动时,螺旋弹簧变形,反抗线圈转动D.电流不为零,线圈停止转动后不再受到安培力6.如图所示,一段长方体金属导电材料,左右两端面的边长为a 和b 内有带电量为的自由电子,已知该导电材料单位体积内自由电子数为n ;导电材料置于方向垂直于其前表面向里的匀强磁场中,内部磁感应强度为B 。

高考复习(物理)专项练习:计算题专项练【含答案及解析】(三)

高考复习(物理)专项练习:计算题专项练【含答案及解析】(三)

计算题专项练(三)(满分:46分时间:45分钟)1.(7分)(2021广东肇庆高三三模)一列简谐横波沿x轴正向传播,M、P、N是x轴上沿正向依次分布的三个质点,M、N两质点平衡位置间的距离为1.3 m,P质点平衡位置到M、N两质点平衡位置的距离相等。

M、N两质点的振动图像分别如图甲、乙所示。

(1)求P质点的振动周期。

(2)求这列波的波长。

2.(9分)(2021山东高三二模)某兴趣小组设计了一种检测油深度的油量计,如图甲所示,油量计固定在油桶盖上并使油量计可以竖直插入油桶,不计油量计对油面变化的影响。

图乙是油量计的正视图,它是由透明塑料制成的,它的下边是锯齿形,锯齿部分是n个相同的等腰直角三角形,腰长为√2d,相邻两2个锯齿连接的竖直短线长度为d,最右边的锯齿刚好接触到油桶的底部,油面不会超过图乙中的虚线2Ⅰ,塑料的折射率小于油的折射率。

用一束单色平行光垂直照射油量计的上表面时,观察到有明暗区域。

(1)为了明显观察到明暗区域,求透明塑料的折射率的最小值。

(2)当油面在图丙所示虚线Ⅱ位置时,请在图丙上画出明暗交界处的光路图并标注出明暗区域。

若某次测量最左边亮区域的宽度为l,求此时油的深度。

3.(14分)(2021浙江6月真题)一种探测气体放电过程的装置如图甲所示,充满氖气(Ne)的电离室中有两电极与长直导线连接,并通过两水平长导线与高压电源相连。

在与长直导线垂直的平面内,以导线为对称轴安装一个用阻值R0=10 Ω的细导线绕制、匝数n=5×103的圆环形螺线管,细导线的始末两端c、d与阻值R=90 Ω的电阻连接。

螺线管的横截面是半径a=1.0×10-2 m的圆,其中心与长直导线的距离r=0.1 m。

气体被电离后在长直导线回路中产生顺时针方向的电流I,其I-t图像如图乙所示。

,其中k=2×10-7 T·m/A。

为便于计算,螺线管内各处的磁感应强度大小均可视为B=kIr甲乙(1)求0~6.0×10-3 s内通过长直导线横截面的电荷量Q。

2025年高考物理计算题题型练

2025年高考物理计算题题型练

2025年高考物理计算题题型练1.(8分)在驻波声场作用下,水中小气泡周围液体的压强会发生周期性变化,使小气泡周期性膨胀和收缩,气泡内气体可视为质量不变的理想气体,其膨胀和收缩过程可简化为如图所示的p﹣V 图像,气泡内气体先从压强为p0、体积为V0、温度为T0的状态A等温膨胀到体积为5V0、压强为p B的状态B,然后从状态B绝热收缩到体积为V0、压强为1.9p0、温度为T C的状态C,B到C过程中外界对气体做功为W。

已知p0、V0、T0和W。

求:(1)p B的表达式;(2)T C的表达式;(3)B到C过程,气泡内气体的内能变化了多少?2.(11分)某兴趣小组设计的连锁机械游戏装置如图所示。

左侧有一固定的四分之一圆弧轨道,其末端B水平,半径为3L;在轨道末端等高处有一质量为m的“”形小盒C(可视为质点),小盒C与大小可忽略、质量为3m的物块D通过光滑定滑轮用轻绳相连,左侧滑轮与小盒C之间的绳长为2L;物块D压在质量为m的木板E左端,木板E上表面光滑,下表面与水平桌面间动摩擦因数μ=0.5(最大静摩擦力等于滑动摩擦力),木板E右端到桌子右边缘固定挡板(厚度不计)的距离为L;质量为m且粗细均匀的细杆F通过桌子右边缘的光滑定滑轮用轻绳与木板E相连,木板E与定滑轮间轻绳水平,细杆F下端到地面的距离也为L;质量为0.25m的圆环(可视为质点)套在细杆F上端,环与杆之间滑动摩擦力和最大静摩擦力相等,大小为0.5mg。

开始时所有装置均静止,现将一质量为m的小球(可视为质点)从圆弧轨道顶端A处由静止释放,小球进入小盒C时刚好能被卡住(作用时间很短可不计),此时物块D对木板E的压力刚好为零。

木板E 与挡板相撞、细杆F与地面相撞均以原速率反弹,最终圆环刚好到达细杆的底部。

不计空气阻力,重力加速度为g,求:(1)小球与小盒C相撞后瞬间,小盒C的速度;(2)小球在四分之一圆弧轨道上克服摩擦力所做的功;(3)木板E与挡板碰后,向左返回的最大位移;(4)细杆F的长度。

高考物理计算题专题复习《动能定理综合题》(解析版)

高考物理计算题专题复习《动能定理综合题》(解析版)

《动能定理综合题》一、计算题1.我国将于2022年举办冬奥运会,跳台滑雪是其中最具观赏性的项目之一,如图所示,质量的运动员从长直轨道AB的A处由静止开始以加速度匀加速下滑,到达助滑道末端B时速度,A与B的竖直高度差。

为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C处附近是一段以O为圆心的圆弧,助滑道末端B与滑道最低点C的高度差,运动员在B、C间运动时阻力做功,取。

求运动员在AB段下滑时受到阻力的大小;若运动员能承受的最大压力为其所受重力的6倍,则C点所在圆弧的半径R至少应为多大。

2.如图所示,水平传送带的左端与一倾角的粗糙斜面平滑连接,一个小滑块可视为质点从斜面上的A点由静止释放,沿斜面滑下并冲上传送带,传送带以恒定速率逆时针转动.已知小滑块的质量,斜面上A点到斜面底端的长度,传送带的长度为,小滑块与斜面的动摩擦因数,小滑块与传送带间动摩擦因数,求:小滑块到达斜面底端P的速度大小;判断冲上传送带的小滑块是否可以运动到传送带的右端Q;若小滑块可以运动到Q,试求小滑块从P点运动到Q点的过程中摩擦力分别对小滑块和传送带做的功;若小滑块不能达到Q,试求小滑块从P点开始再次运动到P 点过程中摩擦力分别对小滑块和传送带做的功;小滑块在斜面和传送带上运动的整个过程中,小滑块相对于地面的总路程.3.如图所示装置由AB、BC、CD三段轨道组成,轨道交接处均由很小的圆弧平滑连接,其中轨道AB、CD段是光滑的,水平轨道BC的长度,轨道CD足够长且倾角,A、D两点离轨道BC的高度分别为、现让质量为m的小滑块自A点由静止释放.已知小滑块与轨道BC间的动摩擦因数,重力加速度g取,、求:小滑块第一次到达D点时的速度大小;小滑块第一次与第二次通过C点的时间间隔;小滑块最终停止的位置距B点的距离.4.风洞是研究空气动力学的实验设备.如图,将刚性杆水平固定在风洞内距地面高度处,杆上套一质量,可沿杆滑动的小球.将小球所受的风力调节为,方向水平向左.小球以速度向右离开杆端,假设小球所受风力不变,取求:小球落地所需时间和离开杆端的水平距离;小球落地时的动能.小球离开杆端后经过多少时间动能为78J?5.轻质弹簧原长为2l,将弹簧竖直放置在地面上,在其顶端将一质量为5m的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为现将该弹簧水平放置,一端固定在A点,另一端与物块P接触但不连接.AB是长度为5l的水平轨道,B端与半径为l的光滑半圆轨道BCD相切,半圆的直径BD竖直,如图所示.物块P与AB间的动摩擦因数用外力推动物块P,将弹簧压缩至长度l,然后释放,P开始沿轨道运动,重力加速度大小为g.若P的质量为m,求P到达B点时速度的大小,以及它离开圆轨道后落回到AB 上的位置与B点间的距离;若P能滑上圆轨道,且仍能沿圆轨道滑下,求P的质量的取值范围.6.如图所示,木板A质量,足够长的木板B质量,质量为的木块C置于木板B上,水平地面光滑,B、C之间存在摩擦.开始时B、C均静止,现使A以的初速度向右运动,与B碰撞后以速度弹回.g取,求:运动过程中的最大速率.碰撞后C在B上滑行距离,求B、C间动摩擦因数.7.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一。

高考物理计算题复习《汽车过桥问题》(解析版)

高考物理计算题复习《汽车过桥问题》(解析版)

《汽车过桥问题》一、计算题1.如图所示,一辆质量为1000kg的汽车驶上半径为50m的圆形拱桥,g取10m/s2。

求:(1)若汽车到达桥顶是的速度为1m/s,桥面对汽车的支持力多大?(2)若汽车到达桥顶时恰好对桥面无压力,此时汽车的速度为多大?(可能用到的值:√3=1.73,√5=2.24)(结果保留小数点后一位)2.一辆质量为800kg的汽车在圆弧半径为50m的拱桥上行驶。

(g取10m/s2)(1)若汽车到达桥顶时速度为v 1=5m/s,此时汽车对桥面的压力为多大?(2)汽车以多大速度经过桥顶时,恰好对桥面没有压力?3.一辆质量m=2.0t的汽车驶过半径R=90m的一段圆弧形桥面,取g=10m/s2。

(1)若桥面为凹形,则汽车以20m/s的速度通过桥面最低点时对桥面的压力是多大?(2)若桥面为凸形,则汽车以10m/s的速度通过桥面最高点时对桥面的压力是多大?(3)汽车以多大的速度通过凸形桥面最高点时,对桥面刚好没有压力?4.如图所示,质量m=2.0×104kg的汽车以不变的速率先后驶过凹形桥面和凸形桥面,两桥面的圆弧半径均为60m,如果桥面承受的压力不得超过3.0×105N。

则:(1)汽车允许的最大速率是多少?(2)若以所求速度行驶,汽车对桥面的最小压力是多少?(g取10m/s2)5.质量m=1000kg的汽车通过圆形拱形桥时的速率恒定,拱形桥的半径R=5m。

试求:(1)汽车在最高点对拱形桥的压力为零时汽车的速度;(2)汽车在最高点,速度为4m/s时,对桥的压力。

(重力加速度g取10m/s2)6.汽车若在起伏不平的公路上行驶时,应控制车速,以避免造成危险.如图所示为起伏不平的公路简化的模型图:设公路为若干段半径r为50m的圆弧相切连接,其中A、C为最高点,B、D为最低点,一质量为2000kg的汽车(作质点处理)行驶在公路上,(g=10m/s2)试求:(1)当汽车保持大小为20m/s的速度在公路上行驶时,路面的最高点和最低点受到压力各为多大(2)速度为多大时可使汽车在最高点对公路的压力为零(3)简要回答为什么汽车通过拱形桥面时,速度不宜太大.7.某游乐场里的赛车场地为圆形,半径为100m.一赛车和乘客的总质量为100kg,车轮胎与地面间的最大静摩擦力为600N.(1)若赛车的速度达到72km/ℎ,这辆车在运动过程中会不会发生侧移?(2)若将场地建成外高内低的圆形,且倾角为30°,并假设车轮和地面之间的最大静摩擦力不变,为保证赛车的行驶安全,赛车最大行驶速度应为多大?8.一辆质量m=2000kg的汽车驶过半径R=50m的一段圆弧形桥面,取g=10m/s2,求:(1)若桥面为凹形,则汽车以20m/s的速度通过桥面最低点时对桥面的压力F1;(2)若桥面为凸形,则汽车以10m/s的速度通过桥面最高点时对桥面的压力F2;(3)汽车以多大速度v通过凸形桥面最高点时,对桥面刚好没有压力。

高考物理历年真题-力学综合计算题10道及答案解析

高考物理历年真题-力学综合计算题10道及答案解析

高考物理历年真题-力学综合计算题10道及答案解析
- 题目一:
一个圆柱体半径R和质量m用绳子连接到一条竖直支架上,
该支架上仍有另一端的绳子,使用Newton定律可以知道,当
绳子拉长的距离为L时,它的线速度v及角速度ω分别为多少?
解:
根据牛顿定律,在围绕支架旋转的圆柱体m的力F = ma,其
中m是质量,a是圆柱体的加速度。

而加速度的表达式可以写成:a = v2/r,其中r是竖直支架的半径。

于是,有:F = mv2/r。

根据力的定义F = mω2L,可以得到:ω2 = F/mL = v2/rL。

于是,就可以得到绳子拉长距离为L时,线速度v及角速度ω
分别为:v = √(rF/m),ω = √(F/(mL)).
- 题目二:
一个质量为m2的圆柱体在水中自由落体,同时,一个质量
为m1的球体在水面上以初速度V移动,请问,当他们相遇时,球体的速度V'是多少?
解:
由于在物体相遇时,动能守恒,所以原球体速度V应该等于
最终球体速度V'。

水的阻力力大小可以用系数k表示,有F_water = kv (即
F_water = -kmv)。

令变量x表示球体的速度变化量,有:V = V + x,V' = V - x
根据动能守恒定律,有:m1V^2 / 2 + m2v^2/2 = m1(V + x)^2 / 2 + m2(V - x)^2 / 2
代入m1V^2 / 2、m2v^2/2以及F_water,则可以求得最终球体速度V':
V' = V - (k/2)(m1 + m2)V。

高考物理计算题专题复习《热力学定律综合题》(解析版)

高考物理计算题专题复习《热力学定律综合题》(解析版)

《热力学定律综合题》一、计算题1.如图所示图中,一定质量的理想气体由状态A经过ACB过程至状态B,气体对外做功280J,放出热量410J;气体又从状态B经BDA过程回到状态A,这一过程中气体对外界做功200J.求:过程中气体的内能是增加还是减少?变化量是多少?过程中气体是吸热还是放热?吸收或放出的热量是多少?2.图中A、B气缸的长度和截面积分别为30cm和,C是可在气缸内无摩擦滑动的、体积不计的活塞,D为阀门。

整个装置均由导热材料制成。

起初阀门关闭,A内有压强帕的氮气。

B内有压强帕的氧气。

阀门打开后,活塞C向右移动,最后达到平衡。

假定氧气和氮气均为理想气体,连接气缸的管道体积可忽略。

求:活塞C移动的距离及平衡后B中气体的压强;活塞C移动过程中A中气体是吸热还是放热简要说明理由。

3.薄膜材料气密性能的优劣常用其透气系数来加以评判.对于均匀薄膜材料,在一定温度下,某种气体通过薄膜渗透过的气体分子数,其中t为渗透持续时间,S为薄膜的面积,d为薄膜的厚度,为薄膜两侧气体的压强差.k称为该薄膜材料在该温度下对该气体的透气系数.透气系数愈小,材料的气密性能愈好.图为测定薄膜材料对空气的透气系数的一种实验装置示意图.EFGI为渗透室,U 形管左管上端与渗透室相通,右管上端封闭;U形管内横截面积实验中,首先测得薄膜的厚度,再将薄膜固定于图中处,从而把渗透室分为上下两部分,上面部分的容积,下面部分连同U形管左管水面以上部分的总容积为,薄膜能够透气的面积打开开关、与大气相通,大气的压强,此时U形管右管中气柱长度,关闭、后,打开开关,对渗透室上部分迅速充气至气体压强,关闭并开始计时.两小时后,U形管左管中的水面高度下降了实验过程中,始终保持温度为求该薄膜材料在时对空气的透气系数.本实验中由于薄膜两侧的压强差在实验过程中不能保持恒定,在压强差变化不太大的情况下,可用计时开始时的压强差和计时结束时的压强差的平均值来代替公式中的普适气体常量,.4.地面上放一开口向上的气缸,用一质量为的活塞封闭一定质量的气体,不计一切摩擦,外界大气压为活塞截面积为重力加速度g取,则活塞静止时,气体的压强为多少?若用力向下推活塞而压缩气体,对气体做功为,同时气体通过气缸向外传热,则气体内能变化为多少?5.一定质量的理想气体从状态A变化到状态B再变化到状态C,其图象如图所示。

2024年高考物理一轮复习专题17机械能守恒定律及其应用限时训练含解析

2024年高考物理一轮复习专题17机械能守恒定律及其应用限时训练含解析

专题17 机械能守恒定律及其应用(限时:45min)一、选择题(共11小题)1.(2024·天津高考)滑雪运动深受人民群众宠爱。

某滑雪运动员(可视为质点)由坡道进入竖直面内的圆弧形滑道AB ,从滑道的A 点滑行到最低点B 的过程中,由于摩擦力的存在,运动员的速率不变,则运动员沿AB 下滑过程中( )A .所受合外力始终为零B .所受摩擦力大小不变C .合外力做功肯定为零D .机械能始终保持不变【答案】C【解析】运动员从A 点滑到B 点的过程做匀速圆周运动,合外力指向圆心,不做功,故A 错误,C 正确。

如图所示,沿圆弧切线方向运动员受到的合力为零,即F f =mg sin α,下滑过程中α减小,sin α变小,故摩擦力F f 变小,故B 错误。

运动员下滑过程中动能不变,重力势能减小,则机械能减小,故D 错误。

2.如图所示,在水平桌面上的A 点有一个质量为m 的物体,以初速度v 0被抛出,不计空气阻力,当它到达B 点时,其动能为( )A.12mv 02+mgHB.12mv 02+mgh 1 C .mgH -mgh 2 D.12mv 02+mgh 2 【答案】B【解析】由机械能守恒,mgh 1=12mv 2-12mv 02,到达B 点的动能12mv 2=mgh 1+12mv 02,B 正确。

3.如图所示,具有肯定初速度的物块,沿倾角为30°的粗糙斜面对上运动的过程中,受一个恒定的沿斜面对上的拉力F 作用,这时物块的加速度大小为4 m/s 2,方向沿斜面对下,那么,在物块向上运动的过程中,下列说法正确的是( )A .物块的机械能肯定增加B .物块的机械能肯定减小C .物块的机械能可能不变D .物块的机械能可能增加也可能减小 【答案】A【解析】机械能改变的缘由是非重力、弹力做功,题中除重力外,有拉力F 和摩擦力F f 做功,则机械能的改变取决于F 与F f 做功大小关系。

由mg sin α+F f -F =ma 知:F -F f =mg sin 30°-ma >0,即F >F f ,故F 做正功多于克服摩擦力做功,故机械能增加,A 项正确。

高考物理计算题汇总200条

高考物理计算题汇总200条

1、单位时间内流过管道横截面的液体体积叫做液体的体积流量(以下简称流量)。

有一种利用电磁原理测量非磁性导电液体(如自来水、啤酒等)流量的装置,称为电磁流量计。

它主要由将流量转换为电压信号的传感器和显示仪表两部分组成。

传感器的结构如图所示,圆筒形测量管内壁绝缘,其上装有一对电极a 和c,a,c 间的距离等于测量管内径D ,测量管的轴线与a 、c 的连接方向以及通电线圈产生的磁场方向三者相互垂直。

当导电液体流过测量管时,在电极a 、c 间出现感应电动势E ,并通过与电极连接的仪表显示出液体流量Q 。

设磁场均匀恒定,磁感应强度为B 。

(1) 已知330.40, 2.510,0.12/D m B T Q m s -==⨯=,设液体在测量管内各处流速相同,试求E 的大小(π去3.0)(2) 一新建供水站安装了电磁流量计,在向外供水时流量本应显示为正值。

但实际显示却为负值。

经检查,原因是误将测量管接反了,既液体由测量管出水口流入,从入水口流出。

因水已加压充满管道,不便再将测量管拆下重装,请你提出使显示仪表的流量指示变为正值的简便方法;(3) 显示仪表相当于传感器的负载电阻,其阻值记为R 。

a 、c 间导电液体的电阻r随液体电阻率的变化而变化,从而会影响显示仪表的示数。

试以E 、R 、r 为参量,给出电极a 、c 间输出电压U 的表达式,并说明怎样可以降低液体电阻率变化对显示仪表示数的影响。

解:(1)导电液体通过测量管时,相当于导线做切割磁感线的运动,在电极a 、c 间切割感应线的液柱长度为D ,设液体的流速为v ,则产生的感应电动势为E=BDv ①由流量的定义,有 Q=Sv=v D 42π ②①、②式联立解得 D BQDQ BD E ππ442==代入数据得 V V E 33100.14.0312.0105.24--⨯=⨯⨯⨯⨯=(2)能使仪表显示的流量变为正值的方法简便,合理即可,如:改变通电线圈中电流的方向,是磁场B 反向;或将传感器输出端对调接入显示仪表。

高考物理二轮专题复习:能量守恒定律综合计算题(word版含答案)

高考物理二轮专题复习:能量守恒定律综合计算题(word版含答案)

能量守恒定律综合计算专题复习1.如图,光滑水平面上静止一质量m1=1.0kg、长L=0.3m的木板,木板右端有质量m2=1.0kg的小滑块,在滑块正上方的O点用长r=0.4m的轻质细绳悬挂质量m=0.5kg的小球。

将小球向右上方拉至细绳与竖直方向成θ=60°的位置由静止释放,小球摆到最低点与滑块发生正碰并被反弹,碰撞时间极短,碰撞前后瞬间细绳对小球的拉力减小了4.8N,最终小滑块恰好不会从木板上滑下。

不计空气阻力,滑块、小球均可视为质点,重力加速度g取10m/s2。

求:(1)小球碰前瞬间的速度大小;(2)小球碰后瞬间的速度大小;(3)小滑块与木板之间的动摩擦因数。

2.如图所示,ABCD为固定在竖直平面内的轨道,其中ABC为光滑半圆形轨道,半径为R,CD为水平粗糙轨道,一质量为m的小滑块(可视为质点)从圆轨道中点B由静止释放,滑至D点恰好静止,CD 间距为4R。

已知重力加速度为g。

(1)求小滑块与水平面间的动摩擦因数(2)求小滑块到达C点时,小滑块对圆轨道压力的大小(3)现使小滑块在D点获得一初动能,使它向左运动冲上圆轨道,恰好能通过最高点A,求小滑块在D点获得的初动能3.如图甲,倾角α=37︒的光滑斜面有一轻质弹簧下端固定在O点,上端可自由伸长到A点。

在A点放一个物体,在力F的作用下向下缓慢压缩弹簧到B点(图中未画出),该过程中力F随压缩距离x的变化如图乙所示。

重力加速度g取10m/s2,sin37︒=0.6,cos37︒=0.8,求:(1)物体的质量m;(2)弹簧的最大弹性势能;(3)在B点撤去力F,物体被弹回到A点时的速度。

4.如图所示,长为L的轻质木板放在水平面上,左端用光滑的铰链固定,木板中央放着质量为m的小物块,物块与板间的动摩擦因数为μ.用力将木板右端抬起,直至物块刚好沿木板下滑.最大静摩擦力等于滑动摩擦力,重力加速度为g。

(1)若缓慢抬起木板,则木板与水平面间夹角θ的正切值为多大时物块开始下滑;(2)若将木板由静止开始迅速向上加速转动,短时间内角速度增大至ω后匀速转动,当木板转至与水平面间夹角为45°时,物块开始下滑,则ω应为多大;(3)在(2)的情况下,求木板转至45°的过程中拉力做的功W。

高考物理复习 容易、中档计算题专题(考前34题)

高考物理复习 容易、中档计算题专题(考前34题)

高考物理复习 容易、中档计算题专题(考前34题)1.如图(a )轻绳AD 跨过固定在水平横梁BC 右端的定滑轮挂住一个质量为M 1 的物体.∠ACB =30º;图(b )中轻杆HG 一端用铰链固定在竖直墙上,另一端G 通过细绳EG 拉住,EG 与水平方向也成30º,轻杆的G 点用细绳GF 拉住一个质量为M 2的物体,求细绳AC 段的张力T AC 与细绳EG 的张力T EG 之比?2.如图所示,A 、B 两物体叠放在水平地面上,已知A 、B 的质量分别为m A =10kg ,m B =20kg ,A 、B 之间,B 与地面之间的动摩擦因数为μ=0.5。

一轻绳一端系住物体A ,另一端系于墙上,绳与竖直方向的夹角为37°今欲用外力将物体B 匀速向右拉出,求所加水平力F 的大小,并画出A 、B 的受力分析图。

取g=10m/s 2,sin37°=0.6,cos37°=0.8。

3、有一半径r 为0. 2m 的圆柱体绕竖直轴00´以角速度ω为9rad/s 匀速转动,今用水平力F 把质量m 为lkg 的物体A 压在圆柱体的侧面。

由于受挡板上竖直的光滑槽的作用,物体A 在水平方向上不能随圆柱体转动,而以0v 为2.4m/s 的速率匀速下滑,如图所示。

若物体A 与圆柱体间的动摩擦因数μ为0.25,g 取lOm/s 2,试求: (1)水平推力F 的大小,(2) 若水平推力F 及物体A 的速度不变, 角速度的大小突然变为16rad/s, 试求物体A的加速度的大小和方向。

4.如图所示,一质量为M 的塑料球形容器,在A 处与水平面接触。

它的内部有一直立的轻质弹簧,弹簧下端固定于容器内部底部,上端系一带正电、质量为m 的小球在竖直方向振动,当加一向上的匀强电场后,弹簧正好在原长时,小球恰好有最大速度。

在振动过程中球形容器对桌面的最小压力为O ,求小球振动的最大加速度和容器对桌面的最大压力。

高考理综物理必备复习资料-各大类经典计算题(附答案)

高考理综物理必备复习资料-各大类经典计算题(附答案)

1.(18分)如图所示, ABCDE 是由三部分光滑轨道平滑连接在一起组成的,AB 为水平轨道, BCD 是半径为R 的半圆弧轨道, DE 是半径为2R 的圆弧轨道, BCD 与 DE相切在轨道最高点D ,R =0.6m .质量为M =0.99 kg 的小物块,静止在AB 轨道上,一颗质量为m =0.01kg 子弹水平射入物块但未穿出,物块与子弹一起运动,恰能贴着轨道内侧通过最高点从E 点飞出.取重力加速度g =10m/s 2,求: (1)物块与子弹一起刚滑上圆弧轨道B(2)子弹击中物块前的速度;(3)系统损失的机械能.2、某游乐场过山车模型简化为如图所示,光滑的过山车轨道位于竖直平面内,该轨道由一段斜轨道和与之相切的圆形轨道连接而成,圆形轨道的半径为R 。

可视为质点的过山车从斜轨道上某处由静止开始下滑,然后沿圆形轨道运动。

(1)若要求过山车能通过圆形轨道最高点,则过山车初始位置相对于圆形轨道底部的高度h 至少要多少?(2)考虑到游客的安全,要求全过程游客受到的支持力不超过自身重力的7倍,过山车初始位置相对于圆形轨道底部的高度h 不得超过多少?3.(18分)如图所示,一个半径R=0.80m的四分之一光滑圆形轨道固定在竖直平面内,底端切线水平,距地面高度H=1.25m。

在轨道底端放置一个质量m B=0.30kg的小球B。

另一质量m A=0.10kg的小球A(两球均视为质点)由圆形轨道顶端无初速释放,运动到轨道底端与球B发生正碰,碰后球B水平飞出,其落到水平地面时的水平位移S=0.80m。

忽略空气阻力,重力加速度g取10m/s2,求:(1)A、B碰前瞬间,A球对轨道压力大小和方向(2)B球离开圆形轨道时的速度大小(3)A球与B球碰撞后瞬间,A球速度的大小和方向参考答案:1、(1)由物块与子弹一起恰能通过轨道最高点D ,得:2()()2D v M m g M m R+=+ (3分) 又由物块与子弹上滑过中根据机械能守恒得:2211()()2()22D BM m v M m g R M m v +++⋅=+ (3分)代入数据解得:6/B v m s == (2分)(2)由动量守恒 ()B mv M m v =+ (3分)600/v m s = (2分)(3)根据能的转化和守恒定律得 2211()22B E mv M m v ∆=-+ (3分) 代入数据得:1782E J ∆= (2分)2、解:(1)设过山车总质量为M ,从高度h 1处开始下滑,恰能v 1过圆周轨道最高点。

2023届高考物理一轮复习综合训练:热学 计算题

2023届高考物理一轮复习综合训练:热学 计算题

高考一轮复习选择性必修三综合练习(计算题)1.热等静压设备广泛用于材料加工中。

该设备工作时,先在室温下把惰性气体用压缩机压入到一个预抽真空的炉腔中,然后炉腔升温,利用高温高气压环境对放入炉腔中的材料加工处理,改部其性能。

一台热等静压设备的炉腔中某次放入固体材料后剩余的容积为013 m3,炉腔抽真空后,在室温下用压缩机将10瓶氩气压入到炉腔中。

已知每瓶氩气的容积为 3.2×10-2 m3,使用前瓶中气体压强为1.5×107 Pa,使用后瓶中剩余气体压强为2.0×106 Pa;室温温度为27 ℃。

氩气可视为理想气体。

(i)求压入氩气后炉腔中气体在室温下的压强;(i i)将压入氩气后的炉腔加热到1 227 ℃,求此时炉腔中气体的压强。

(2)(10分)如图,一容器由横截面积分别为2S和S的两个汽缸连通而成,容器平2.放在地面上,汽缸内壁光滑。

整个容器被通过刚性杆连接的两活塞分隔成三部分,分别充有氢气、空气和氮气。

平衡时,氮气的压强和体积分别为p0和V0,氢气的体积为2V0,空气的压强为p。

现缓慢地将中部的空气全部抽出,抽气过程中氢气和氮气的温度保持不变,活塞没有到达两汽缸的连接处,求:(i)抽气前氢气的压强;(ii)抽气后氢气的压强和体积。

3.如图,一粗细均匀的细管开口向上竖直放置,管内有一段高度为2.0 cm的水银柱,水银柱下密封了一定量的理想气体,水银柱上表面到管口的距离为2.0 cm。

若将细管倒置,水银柱下表面恰好位于管口处,且无水银滴落,管内气体温度与环境温度相同。

已知大气压强为76 cmHg,环境温度为296 K。

(i)求细管的长度;(i)若在倒置前,缓慢加热管内被密封的气体,直到水银柱的上表面恰好与管口平齐为止,求此时密封气体的温度。

4.如题13A-2图所示,一定质量理想气体经历A →B 的等压过程,B →C 的绝热过程(气体与外界无热量交换),其中B→C 过程中内能减少900 J .求A →B →C 过程中气体对外界做的总功.5.如图,容积为V 的汽缸由导热材料制成,面积为S 的活塞将汽缸分成容积相等的上下两部分,汽缸上部通过细管与装有某种液体的容器相连,细管上有一阀门K 。

备战高考物理计算题专题复习《向心力的计算》(解析版)

备战高考物理计算题专题复习《向心力的计算》(解析版)

《向心力的计算》一、计算题1.如图所示,长为L的细绳一端与一质量为m的小球可看成质点相连,可绕过O点的水平转轴在竖直面内无摩擦地转动.在最低点a处给一个初速度,使小球恰好能通过最高点完成完整的圆周运动,求:小球过b点时的速度大小;初速度的大小;最低点处绳中的拉力大小.2.如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径,物块A以的速度滑入圆轨道,滑过最高点Q,再沿圆轨道滑出后,与直轨上P处静止的物块B碰撞,碰后粘在一起运动。

P点左侧轨道光滑,右侧轨道呈粗糙段,光滑段交替排列,每段长度都为。

物块与各粗糙段间的动摩擦因数都为,A、B的质量均为重力加速度g 取;A、B视为质点,碰撞时间极短。

求A滑过Q点时的速度大小V和受到的弹力大小F;若碰后AB最终停止在第k个粗糙段上,求k的数值;求碰后AB滑至第n个光滑段上的速度与n的关系式。

3.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B点脱离后做平抛运动,经过秒后又恰好垂直与倾角为的斜面相碰到。

已知圆轨道半径为,小球的质量为,g取求小球在斜面上的相碰点C与B点的水平距离小球经过圆弧轨道的B点时,受到轨道的作用力的大小和方向?小球经过圆弧轨道的A点时的速率。

4.如图所示,倾角为的粗糙平直导轨与半径为R的光滑圆环轨道相切,切点为B,整个轨道处在竖直平面内。

一质量为m的小滑块从轨道上离地面高为的D处无初速下滑进入圆环轨道,接着小滑块从圆环最高点C水平飞出,恰好击中导轨上与圆心O等高的P点,不计空气阻力。

求:小滑块在C点飞出的速率;在圆环最低点时滑块对圆环轨道压力的大小;滑块与斜轨之间的动摩擦因数。

5.如图,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动。

现测得转台半径,离水平地面的高度,物块平抛落地过程水平位移的大小。

备战高考物理计算题专题复习《功和能综合计算》(解析版)

备战高考物理计算题专题复习《功和能综合计算》(解析版)

《功和能综合计算》一、计算题1.如图所示,水平传送带长,且以的恒定速率顺时针转动,光滑曲面与传送带的右端B点平滑链接,有一质量的物块从距传送带高的A点由静止开始滑下已知物块与传送带之间的滑动摩擦因数,重力加速度g 取,求:物块距传送带左端C的最小距离。

物块再次经过B点后滑上曲面的最大高度。

在整个运动过程中,物块与传送带间因摩擦而产生的热量。

2.光滑水平面上,用弹簧相连接的质量均为2kg的A、B两物体,都以的速度向右运动,弹簧处于原长;质量为4kg的物体C静止在前方,如图所示,B与C发生碰撞后碰撞时间极短粘合在一起运动,在以后的运动中,求:弹性势能最大值为多少?当A的速度为零时,弹簧的弹性势能为多少?3.一轻质细绳一端系一质量为的小球A,另一端挂在光滑水平轴O上,O到小球的距离为,小球跟水平面接触,但无相互作用,在球的两侧等距离处分别固定一个光滑的斜面和一个挡板,如图所示水平距离,动摩擦因数为。

现有一滑块B,质量也为,从斜面上高度处滑下,与小球发生弹性正碰,与挡板碰撞时不损失机械能。

若不计空气阻力,并将滑块和小球都视为质点,取,结果用根号表示,试问:求滑块B与小球第一次碰前的速度以及碰后的速度;求滑块B与小球第一次碰后瞬间绳子对小球的拉力;滑块B与小球碰撞后,小球在竖直平面内做圆周运动,求小球做完整圆周运动的次数。

4.如图所示,粗糙水平地面与半径为的粗糙半圆轨道BCD相连接,且在同一竖直平面内,O是BCD的圆心,BOD在同一竖直线上.质量为的小物块在水平恒力的作用下,从A点由静止开始做匀加速直线运动,当小物块运动到B点时撤去F,小物块沿半圆轨道运动恰好能通过D点,已知A、B间的距离为3m,小物块与地面间的动摩擦因数为,重力加速度g取求:小物块运动到B点时对圆轨道B点的压力大小.小物块离开D点后落到地面上的点与B点之间的距离.5.如图所示,质量为5kg的木板B静止于光滑水平面上,物块A质量为5kg,停在B的左端质量为1kg的小球用长为的轻绳悬挂在固定点O上,将轻绳拉直至水平位置后,由静止释放小球,小球在最低点与A发生碰撞后反弹,反弹所能达到的最大高度为,物块与小球可视为质点,不计空气阻力已知A、B间的动摩擦因数为,为使A、B达到共同速度前A不滑离木板,重力加速度,求:碰撞后瞬间物块A的速度大小为多少;木板B至少多长;从小球释放到A、B达到共同速度的过程中,小球及A、B组成的系统损失的机械能.6.如图所示,BCDG是光滑绝缘的圆形轨道,位于竖直平面内,轨道半径为R,下端与水平绝缘轨道在B点平滑连接,整个轨道处在水平向左的匀强电场中现有一质量为m、带正电的小滑块可视为质点置于水平轨道上,滑块受到的电场力大小为,滑块与水平轨道间的动摩擦因数为,重力加速度为若滑块从水平轨道上距离B点的A点由静止释放,求滑块到达与圆心O 等高的C点时对轨道的作用力大小.为使滑块恰好始终沿轨道滑行,求滑块在圆轨道上滑行过程中的最小速度大小.7.汽车的质量为,额定功率为30kW,运动中阻力大小恒为车重的倍。

高考物理计算题真题及答案

高考物理计算题真题及答案

高考物理计算题真题及答案真题一:动力和牛顿第三定律在某实验中,一个质量为2kg的物体通过一根弹簧施加垂直向上的力,使其下沉0.5m。

在过程中,物体始终保持静止。

问题:求弹簧的弹性系数。

解析:根据弹簧弹性力学公式:F = kx由题意可知,物体受到向上弹性力和重力的合力为0,即 F = mg 弹簧的弹性系数 k = mg / x代入已知数据可以得到:k = 2kg × 9.8m/s² / 0.5m = 39.2 N/m真题二:动能和功率一个物体质量为0.5kg,从地面抛出,初速度为10m/s。

物体上升到高度为20m的位置时,它的速度是多少?假设重力加速度为10m/s²,并忽略空气阻力。

问题:求物体在高度20m位置的速度。

解析:根据机械能守恒定律:物体在高度H的位置具有势能和动能之和等于起始时的总机械能,即 mgh + 1/2mv² = mgh0 + 1/2mv0²代入已知数据可以得到:0.5kg × 10m/s² × 20m + 1/2 × 0.5kg × v² = 0.5kg × 10m/s² × 0m + 1/2 × 0.5kg × (10m/s)²化简后得到:v = √(2gh) = √(2 × 10m/s² × 20m) ≈ 20m/s真题三:电路中的电阻和电流一个电路中有两个电阻R1和R2,串联连接在电源上。

电源电压为12V,电阻R1为8Ω,电阻R2为12Ω。

问题1:求电路中的总电阻。

解析:电阻之和与串联电路的总电阻相等,即 Rt = R1 + R2代入已知数据可以得到:Rt = 8Ω + 12Ω = 20Ω问题2:求电路中的总电流。

解析:根据欧姆定律:I = V / Rt代入已知数据可以得到:I = 12V / 20Ω = 0.6A问题3:求电阻R1上的电压。

1全国第三批新高考2024-2024年物理高频考点压轴计算题汇编

1全国第三批新高考2024-2024年物理高频考点压轴计算题汇编

1全国第三批新高考2024-2024年物理高频考点压轴计算题汇编一、单选题 (共7题)第(1)题1861年,英国科学家开尔文发明了一种滴水起电机,实验装置如图1所示,滴水装置左右相同的两管口形成的水滴分别穿过距管口较近的铝环A、B后滴进铝筒C、D,铝环A用导线与铝筒D相连,铝环B用导线与铝筒C相连,导线之间彼此绝缘,整个装置与外界绝缘。

由于某种偶然的原因,C筒带上微量的负电荷,则与之相连的B环也带有负电荷,由于静电感应B环上方即将滴落的水滴下端会带正电荷,上端带负电荷,如图3所示。

水滴在落下瞬间,正负电荷分离,如图2所示,带正电荷的水滴落下滴入D筒。

随着水滴的下落,两铝筒间的电势差不断增大。

为了研究问题方便,假设每滴水滴质量相同,忽略筒内液面高度的变化,下列说法正确的是( )A.起电过程中,A环带负电B.水滴下落到筒内的时间恒定C.每滴水穿过B后,做匀加速运动落入DD.在起电的过程中,每滴水下落后增加的电势能越来越大第(2)题玩“打水漂”时,使用的小石片质量为,水平初速度为,在水面上滑行时受到水的阻力恒为,小石片每次接触水面后弹起,弹起时竖直方向的速度与此时沿水平面滑行的速度之比为,弹跳数次后速度减为零,然后沉入水底,不计空气阻力的影响,,则下列说法正确的是( )A.小石片从接触水面开始至沉入水底,在水面弹起的次数为4次B.小石片从接触水面开始至沉入水底,在水面弹起的次数为5次C.小石片从接触水面开始至沉入水底,在空中运动的总时间为D.小石片从接触水面开始至沉入水底,在空中运动的总时间为第(3)题已知均匀带电的无穷大平面在真空中激发电场的场强大小为,其中为平面上单位面积所带的电荷量,为常量。

如图所示的平行板电容器,极板正对面积为S,其间为真空,带电荷量为Q。

不计边缘效应时,极板可看作无穷大导体板,则极板间的电场强度大小和两极板间相互的静电引力大小分别为A.和B.和C.和D.和第(4)题如图所示为某变压器的工作示意图,额定电压为的灯泡正常发光,电阻R的阻值跟灯泡正常发光时的阻值一样,理想变压器原、副线圈匝数之比为,则输入电压U为( )A.B.C.D.第(5)题如图所示是一列沿轴正方向传播的机械波在时的波形图,由于某种原因,中间有一部分无法看清,已知该波的波速,下列说法正确的是( )A.此波的波长为B.时刻,处的质点振动方向沿轴正方向C.时间内,处的质点通过的路程为D.再经过,处的质点传播到处第(6)题如图所示,动摩擦因数均为的高度相同、倾角不同的固定斜面与动摩擦因数为的水平面均通过一段长度不计的光滑弧形轨道连接。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理复习计算题专题例1. 如图所示,在空间中存在垂直纸面向里的匀强磁场,其竖直边界AB 、CD 的宽度为d ,在边界AB 左侧是竖直向下、场强为E 的匀强电场。

现有质量为m 、带电量为+q 的粒子(不计重力)从P 点以大小为V 0的水平初速度射入电场,随后与边界AB 成45°射入磁场。

若粒子能垂直CD 边界飞出磁场,穿过小孔进入如图所示两竖直平行金属板间的匀强电场中减速至零且不碰到正极板。

⑴.请画出粒子上述过程中的运动轨迹,并求出粒子进入磁场时的速度大小V ;⑵.求匀强磁场的磁感应强度B ; ⑶.求金属板间的电压U 的最小值。

解:⑴. 轨迹如图所示;000V 245sin V V ==(2)粒子在匀强磁场中做匀速圆周运动其轨道半径R 由几何关系可知:d 245sin dR 0==R V m BqV 2= 解得:qdmV B 0=(3)粒子进入板间电场至速度减为零的过程,由动能定理有: 2m V 210qU -=- -解得:qmV U 20=例2.如图,在平面直角坐标系xOy 内,第Ⅰ象限存在沿y 轴负方向的匀强电场,第Ⅳ象限以ON 为直径的半圆形区域内,存在垂直于坐标平面向外的匀强磁场,磁感应强度为B 。

一质量为m 、电荷量为q 的带正电的粒子,从y 轴正半轴上y = h 处的M 点,以速度V 0垂直于y 轴射入电场,经x 轴上x = 2h 处的P 点进入磁场,最后以垂直于y 轴的方向射出磁场。

不计粒子重力。

求 ⑴.电场强度大小E ;⑵.粒子在磁场中运动的轨道半径r ;⑶.粒子从进入电场到离开磁场经历的总时间t 。

解:粒子的运动轨迹如右图所示⑴.设粒子在电场中运动的时间为t 1:粒子在x 方向上有:10t V h 2=;粒子在y 方向有:21at 21h =根据牛顿第二定律有:ma Eq = 求得:qh2mV E 20=⑵.根据动能定理粒子离开电场时的速度V 为: 202m V 21m V 21Eqh -=PO45°V 0V 0RBDEB- +d小孔U则粒子进入磁场后的运动半径r 为: r V mBqV 2=, 求得:BqmV 2r 0= ⑶. 粒子在电场中运动的时间t 1为:由水平方向的分运动10t V h 2=得:01V h 2t = 粒子在磁场中运动的周期Bqm2V r 2T π=π=, 设粒子在磁场中运动的时间为t 2 ,由图知粒子在磁场中转过的圆心角为)2(8343135π=π==θ , Bq4m38T 3t 2π==故运动的总时间Bq4m3V h 2t t t 021π+=+=。

例3、如图所示,第四象限内有互相正交的匀强电场E 与匀强磁场B 1,E 的大小为0.5×103V/m, B 1大小为0.5T ;第一象限的某个矩形区域内,有方向垂直纸面向里的匀强磁场B 2,磁场的下边界与x 轴重合.一质量m=1×10-14kg 、电荷量q=1×10-10C 的带正电微粒以某一速度v 沿与y 轴正方向60°角从M 点沿直线运动,经P 点即进入处于第一象限内的磁场B 2区域.一段时间后,小球经过y 轴上的N 点并与y 轴正方向成60°角的方向飞出。

M 点的坐标为(0,-10),N 点的坐标为(0,30),不计粒子重力, g 取10m/s 2. (1). 请分析判断匀强电场E 1的方向并求出微粒的运动速度V ; (2). 匀强磁场B 2的大小为多大?; (3). B 2磁场区域的最小面积为多少?解析:⑴. 由于重力忽略不计,微粒在第四象限内仅受电场力和洛伦兹力,且微粒做直线运动,若速度变化则会引起洛仑兹力的变化,所以微粒必做匀速直线运动。

这样,电场力和洛仑兹力大小相等,方向相反,电场E 的方向与微粒运动的方向垂直,即与y 轴负方向成30°角斜向下. 由力的平衡有:BqV Eq =∴s /m 1000s /m 5.0500B E V 1===⑵.画出微粒的运动轨迹如图.由几何关系可知粒子在第一象限内做圆周运动的半径为m 153R =因其中:MO=10cm ,cm 310OP JM ==,cm 10NJ =R 3AP =R 3cm 201030NJ NO OJ AP ==-=-==,∴cm 153R =因微粒做匀速圆周运动的向心力由洛仑兹力提供,即有:R V mqV B 22= 解得:T 2310153100010Rq m V B 10142=⨯⨯==-- ⑶.由图可知,磁场B 2的最小区域应该分布在图示的矩形PACD 内.由几何关系易得cm 30360cos R R P D =-= ;m 5.060sin R 2AP == 所以,所求磁场的最小面积为S 为:2m 1503PD PA S =⨯=例4. 如图所示,MN 、PQ 两平行光滑水平导轨分别与半径r = 0.5m 的相同竖直半圆导轨在N 、Q 端平滑连接,M 、P 端连接定值电阻R ,质量M=2㎏的cd 绝缘杆垂直静止在水平导轨上,在其右侧至PQacN 、Q 端的区域内充满竖直向上的匀强磁场。

现有质量m=1kg 的ab 金属杆以初速度V 0=12s /m 水平向右与cd 绝缘杆发生正碰后,进入磁场并最终未滑出,cd 绝缘杆则恰好能通过半圆导轨最高点,不计其它电阻和摩擦,ab 金属杆始终与导轨垂直且接触良好,取2s /m 10g =,求:⑴. cd 绝缘杆通过半圆导轨最高点时的速度大小V ; ⑵. 电阻R 产生的焦耳热Q 。

解:⑴. cd 绝缘杆通过半圆导轨最高点时,由牛顿第二定律有:rV M Mg 2=解得:s /m 5V =⑵. 碰撞后cd 绝缘杆滑至最高点的过程中,由动能定理有:222MV 21MV 21r 2Mg -=⋅- 解得碰撞后cd 绝缘杆的速度:s /m 5V 2= 两杆碰撞过程,动量守恒,有: 210MV m V m V +=解得碰撞后ab 金属杆的速度:s /m 2V 1= ab 金属杆进入磁场后由能量守恒定律有:Q m V 2121= 解得:J 2Q =。

例5. 如图所示,高H=1.6m 的赛台ABCDE 固定于地面上,其上表面ABC 光滑;质量M=1kg 、高h = 0.8m 、长L=1m 的小车Q 紧靠赛台右侧CD 面(不粘连),放置于光滑水平地面上.质量m =1kg 的小物块P 从赛台顶点A由静止释放,经过B点的小曲面无损失机械能地滑上BC 水平面,再滑上小车的左端.已知小物块与小车上表面的动摩擦因数μ=0.3,g 取10m/s 2.⑴. 求小物块P 滑上小车左端时的速度V 1.⑵. 小物块P 能否从小车Q的右端飞出吗?若能,求小物块P 落地时与小车右端的水平距离S 。

解:⑴. 小物块P从A滑到B 点的过程中,根据机械能守恒定律,有:2B m V 21)h H (m g =-,⇒得:s /m 4)h H (g 2V B =-= 由题意可知小物块P从B滑上小车右端过程中机械能没有损失,故小物块P 滑上小车左端时的速度⑵. 小物块P在小车Q 的上表面滑动的过程中,都受滑动摩擦力作用,P 作减速运动,Q 作加速运动,设P 滑至小车右端时的速度为P V ,小车的速度为Q V ,相对运动过程中P 、Q 构成的系统所受合外力为零,动量守恒,有:Q P 1MV m V m V +=……………①;由相对运动过程中系统的能量守恒,有:m gL MV 21m V 21m V 212Q2P 21μ++=………②由①②得:s /m 3V P =,s /m 1V Q = 和s /m 1V P =,s /m 3V Q = 不合理,因Q P V V >,故小物块P 能从小车Q的右端飞出小物块P 从小车Q的右端飞出即做平抛运动,根据平抛运动的规律,在竖直方向上,有;2gt 21h =⇒s 4.0t =在水平方向上,有:m 2.14.03t V S P P =⨯==在小物块做平抛运动的时间内小车向右的位移m 4.04.01t V S Q Q =⨯==由此可得小物块P 落地时与小车右端的水平距离m 8.0S S S Q P =-=例6.如图所示,PR 是一长为L=0.64m 的绝缘平板,固定在水平地面上,挡板R 固定在平板的右端。

整个空间有一个平行于PR 的匀强电场E ,在板的右半部分有一垂直于纸面向里的匀强磁场,磁场的宽度d=0.32m 。

一个质量m=0.50×10-3kg 、带电荷量为q=5.0×10-2C 的小物体,从板的P 端由静止开始向右做匀加速运动,从D 点进入磁场后恰能做匀速直线运动。

.当物体碰到挡板R 后被弹回,若在碰撞瞬间撤去电场(不计撤去电场对原磁场的影响),物体返回时在磁场中仍作匀速运动,离开磁场后做减速运动,停在C 点,PC=L/4。

若物体与平板间的动摩擦因数μ=0.20,g 取10m/s 2。

(保留2位有效数字)⑴.判断电场的方向及物体带正电还是带负电; ⑵.求磁感应强度B 的大小;⑶.求物体与挡板碰撞过程中损失的机械能。

解: ⑴. 物体由静止开始向右做匀加速运动,说明电场力向右且大于摩擦力,进入磁场后做匀速直线运动,说明它受的摩擦力增大,证明它受的洛仑兹力方向向下,由左手定则判知物体带负电。

物体带负电而所受电场力向右,说明电场方向向左。

⑵. 设物体被挡板弹回后做匀速直线运动的速度为V 2,从离开磁场到停在C 点的过程中,根据动能定理有: 22m V 2104L m g -=μ-⇒22m V 210464.0m g 2.0-=-⇒ 得s /m 8.0V 2= 物体在磁场中作匀速直线运动,受力平衡有2BqV mg =⇒得:T 13.0B = ⑶. 设从D 点进入磁场时的速度为V 1,根据动能定理有: 21m V 21L 21m g L 21qE =μ-;物体从D 到R 作匀速直线运动,由受力平衡有:)BqV m g (Eq 1+μ= 解得:s /m 6.1V 1=小物块撞击挡板损失的机械能为:2221m V 21m V 21E -=∆ 解得:J 108.4E 4-⨯=∆例7:传送带以恒定速度V= 4m /s 顺时针运行,传送带与水平面的夹角θ=37°。

现将质量m=2kg 的小物品轻放在其底端(小物品可看成质点),平台上的人通过一根轻绳用恒力F=20N 拉小物品,经过一段时间物品被拉到离地高为H =1.8m 的平台上,如图所示。

已知物品与传送带之间的动摩擦因数μ=0.5,设最大静摩擦力等于滑动摩擦力,g 取l0m /s 2,已知sin37°=0.6,cos37°=0,8。

求: ①.物品从传送带底端运动到平台上所用的时间是多少? ②.若在物品与传送带达到同速瞬间撤去恒力F ,求物品还需多少时间离开皮带?解:①.物品在达到与传送带速度V = 4s /m 相等前作加速运动的加速度a 1为:1m a 37sin m g 37cos m g F =-μ+ ⇒得:21s /m 8a =物品加速运动的时间t 1为:s 5.084a V t 11===物品加速运动过程中的位移为:m 1t a 5.0S 2111== 物品达到与传送带速度后运动过程中的加速度a 2为:2m a 37sin m g 37cos m g F =-μ- ⇒得:0a 0=即物品随传送带匀速运动,达顶端还要的时间t 2为:21Vt S 37sin H += ⇒2t 4137sin 8.1+=⇒得s 5.0t 2=物品从传送带底端运动到平台上所用的总时间为:s 15.05.0t t t 21=+=+=②. 在物品与传送带达到同速瞬间撤去恒力F ,物品向上运动的加速度a 3为: 3m a 37sin m g 37cos m g =-μ ⇒得:23s /m 2a -=,即物品向上作减速运动,设物品还能向上运动到速度减为零而运动的距离X 为:X a 2V 32-=⇒得m 2Vt m 4X 2=>=,即物品速度还未减为零即滑出了顶端,即还要运动的时间t 2为:23332t a 21Vt Vt +=⇒233t )2(21t 45.04-+⨯=⨯⇒s )22(t 3-= 和s )22(t 3+=舍去。

相关文档
最新文档