芳香烃结构及芳香性
05芳香烃
University of South China
AlCl3
Organic Chemistry
酰基化反应不异构化、不多元取代。 如果想得到正丙苯:
3
Clemmenson¼ ¼¼
O O AlCl Zn-Hg/HCl 3 C-CH2CH CH -CH 3 2 2CH3 + CH CH -C-Cl
2
O C-CH2CH3 ?
CH2CN
CH2COOH
Organic Chemistry
University of South China
6.苯环侧链上的取代反应
在光或热催化下,烷基苯侧链上α氢原子可被卤素取代。
CH3
CH2ClCHCl2Βιβλιοθήκη CCl3Cl2 光
Cl2 光
Cl2 光
甲苯
苯一氯甲烷
苯二氯甲烷
苯三氯甲烷
CH2CH3
Br CHCH3
E
σ配合物 -H+ 快
2. H+离去, 形成取代产物,这时中心碳由sp3又转为 + sp2,恢复芳香结构。 -H H+ 快 - 快
E E
E E
Organic Chemistry
University of South China
(1) 硝化反应:
+ HNO3 (浓)
o
无 H2SO4时反应很慢
H2SO4 (浓) 55~60 C NO2
CH2Cl + 3H O 2
ZnCl2
CH2Cl
氯甲基化反应在有机合成上很重要,因为-CH2Cl(氯甲基)很容易转化为:
-CH 2OH 羟甲基 -CH 2CN 氰甲基
NaOH/H2O
-CH 2COOH 羧甲基
有机化学第六章芳香烃
Y
可见,凯库勒式并不能确切地反映苯的真实情况
现代物理方法(射线法、光谱法、偶极距的测定)表明,苯分子是 一个平面正六边形构型,键角都是120°,碳碳键长都是0.1397nm。图 示如下:
杂化轨道理论解释
苯分子中的碳原子都是以sp2杂化轨道互相沿对称轴方向重叠形成6个C-Cσ键组成一个 正六边形,每个C各以一个sp2杂化轨道分别与H的1s轨道沿对称的方向重叠,形成六 个C-Hσ键,由于是sp2杂化,所以键角都是120。所有原子均在同一平面上。 每个C还有一个未参与杂化的垂直于与碳环平面σ键的P轨道,彼此侧面重叠,形成一 个封闭的共轭体系,每个P轨道上有一个P电子,组成了π66大π键。由于共轭效应使π 电子高度离域,电子云完全平均化,故无单双键之分。 因此,苯的电子云是一个整体,分布在环的上、下方,并且是完全平均的,所以苯分 子中每个C-C键都有π键的性质,并且是完全相同的,故邻位二元取代物也应当只有一 种。 应当注意且要牢记,苯环中并没有一般的C-C单键和C=C双键。
( 2 )体系能量降低,氢化热(208.5 kJ·mol-1)比环己烯氢 化热的三倍低得多( 3×119.3-208.5 = 149.4 kj·mol-1 ),这 149.4 kj·mol-1即为苯的共轭能。
苯现在的表达方式
价键式
分子轨道离域式
共振式
自旋偶合价键理论 (1986年Copper等提出)
+ Cl2 + Br2
Fe 或 FeCl3 55~60℃
Fe 或 FeBr3 55~60℃
+ 2Cl2 Fe 或 FeCl3
反应历程:
Cl
+ HCl
Br
+ HBr
Cl
+
有机化学-芳香烃
CH3
HNO3
HOAc
CH3
CH3 CH3
NO2 +
+
NO2
NO2
63% 34% 3%
Cl
Cl
Cl
Cl
HNO3
H2SO4
NO2 +
+ NO2
30%
NO2
69% 1%
(2) 第二类定位基─间位定位基
使新进入苯环的取代基主要进入它的 间位,并使苯环致钝。
例如: −CF3, −N(CH3)3+, −NO2, −CN, −SO3H, −CHO, −COCH3, −COOH, −COOCH3, −CONH2, −NH3+。
NO2
NO2
CH3 C CH3 CH3 无 α-H
KMnO4 H+
COOH
氧化剂: KMnO4 铬酸等
4.2.4 苯环上亲电取代反应的定位规则
Y
一取代苯:
芳环上的取代基既影响亲电 取代反应的速率又决定着亲电试 剂进入芳环的位置。
1. 两类定位基
芳环上的取代基分为两类:
(1)第一类定位基 ─ 邻、对位定位基 使得新进入苯环的取代基主要进入它的
均化,闭合共轭
苯
苯的分子结构 体系(环状大π键)
6 个C–C σ键: sp2–sp2相互交盖,6 个C –H σ键: sp2–1s 相互交盖。 6 个2p 轨道的对称轴垂直于环所在平面, 彼此相互平行,两侧进行侧面交盖,形成闭合的π轨道。 6个π电子离域在六个C原子上。由此形成一个闭合的
共轭体系。
2. 苯的构性相关分析
CH3
CH3
CH3
CH3
1,2-二甲苯 邻二甲苯 o-二甲苯
芳香烃,芳香性讲解
CH3
CH3
(1)单环芳烃
CH3
(2)多环芳烃 (3)稠环芳烃
苯
连苯
甲苯
间二甲苯
C
H 三苯甲烷
萘
蒽
菲5
5.1 芳烃的构造异构和命名
5.1.1 构造异构
苯及其同系物的通式为:CnH2n-6。
例如苯有六个碳和六个氢,其六个碳和六个氢 是等同的;
结构异构:
一元取代:只有一种
CH3
二元取代:有三种 三元取代:有三种
CH3
CH3 CH3
CH3
CH3
H3C CH CH3
CH CH2
CH3
H3C
CH3CH3
CH3
CH3
CH3
CH3
CH3 CH63
5.1.2 命名
(1)当苯环上所连烃基较简单时,以苯环为母体 来命名,叫做“ 某烷(基)苯 ”。如:
((m2-))、苯C对H环3(p上-连)表有示两C取H个2代C取H基3代的H基3相C时对C,H位可置C以H。3用邻(o-)、间
法制备。
39%
Cl
55%
6B%r
20
32.9%
65.8%
1.3%
(1)亲电取代反应
(b) 硝化
苯与混酸(浓硫酸与浓硝酸的混合物)于50~60℃下反应, 则环上的一个氢原子被硝基(-NO2)取代,生成硝基苯。 这类反应被称为硝化反应。
+
浓HNO3
浓H2SO4,50~60oC 75%~85%
NO2 + H2O
❖ 沸点 比相应的烷、烯烃要高,随分子量增加而有规律地变化,每 增加一个系差,则沸点增加30℃左右。苯的沸点为80℃。
❖ 溶解度 苯及同系物难溶于水,易溶于有机溶剂(二甘醇、环丁砜等 特殊溶剂),苯本身就是极好的有机溶剂。如:苯和乙酸异戊酯的混合 液,俗称“ 香蕉水 ”,是油漆的良好溶剂。
第五章 芳香烃
0℃ SO3H
4-甲基-1-萘磺酸
80%
SO3H HNO3-H2SO4
NO2 SO3H
SO3H
NO2
5-硝基-2-萘磺酸
8-硝基-2-萘磺酸
②加成反应
H2,Ni 140~160℃,3MPa
四氢化萘
H2,Ni 200℃,10~30MPa
十氢化萘
③氧化反应
V2O5 O2 (空气) 460℃
O
C O
C
邻甲苯磺酸
(4)付氏反应(付列德尔-克拉夫茨)
(A)烷基化反应(引入烷基的反应)
无水AlCl3
CH3 CH2 Br
80 ℃
CH2CH3 HBr
乙苯
常用催化剂:AlCl3、FeCl3、SnCl4、SbCl3、ZnCl2等 路易斯酸和HF、H2SO4、H3PO4等质子酸
常用烷化剂:卤烷、烯烃、醇
CH2
Cl
+0.043 +0.116 +0.028
O
CH3
NH2
NO
思考题:下列一取代苯在进行硝化反应时,将 主要得到什么产物:
+
Cl
COOH NH3
NH COCH3 NH CH3 2
O CH3
CONH2
O O CCH3
O C OCH3
(二)二取代苯的定位效应
引入第三个取代基的情况: ①两个取代基的定位效应一致
Cl
Cl
实验结果表明,苯环上原有的取代基按其 进行亲电取代时的定位效应,大致分为两类:
(1)邻对位定位基(第一类定位基)
-N(CH3)2 -NH2 -OH -OCH3 -NH-C-CH3
甲氧基
O 乙酰氨基
第五章芳香烃
+I CH3- +C
(σ-π)
-I -OH
+C
(P-π)
-I -Cl
+C
(P-π)
-I -NO2 -C
(π-π)
活性:致活
+C>-I致活 -I >+C致钝 致钝
定位:+C
+C
(邻/对位) (邻/对位)
+C (邻/对位)
-C (间位)
(四)二取代苯的取代定位规律(不作要求) (五)苯环上定位规律的应用(不作要求) 五、苯及其主要同系物(自学)
间二硝基苯
4、苯环上有-OH、-NH2、-SO3H、-CHO、-COOH 时, 则以这些官能团作为母体。
OH
NH2
COOH
SO3H
CHO
苯酚 苯胺 苯甲酸 苯磺酸 苯甲醛
❖ 芳香烃分子中的一个氢原子被去掉后,所余下的 原子团称为芳基,常用Ar-表示。
❖ 苯基可用Ph-(Phenyl)或Ф表示 ❖ 常见的芳基:
a、烷基化反应
❖ C+在进攻苯环之前会发生重排成稳定的C+(三个C以上) ❖ C+的稳定性:叔C+ >仲C+ >伯C+ > CH3+
>
❖ 烷基化反应的缺点是副反应的发生
b、酰基化反应
❖常用的酰基化试剂是酰卤,此外还可以用酸酐。
❖优点是产物较纯,若要得到丙苯可用该方法。
2. 氧化反应
❖ 苯环很难被氧化 ❖ 烷基苯侧链上只要有α-H,无论多长都被氧化为-
CH2
苯基
苯甲基(苄基)
三 、苯及同系物的性质(了解)
基础有机化学(邢其毅、第三版)第七章PPT
邻对位致 钝定位基
特点:
a. 都是邻对位定位基;
b.含有氧、氮原子,虽然电负性较大,产 生吸电 子的诱导效应,但是孤对电子可 以通过共轭效应共轭到环上,环上电子 云密度加大,亲电反应活性提高;
c.卤素等电负性太大,使环上电子云密度 下降,亲电反应活性下降, 但在反应过 程中可以通过共轭效应将孤对电子共轭 到环上而稳定中间体,仍是邻对位定位基
AlCl3
CH2
2
+ CH2Cl2
AlCl3
CH
3
+ CHCl3
AlCl3
C
4
+ CCl4
Cl
e. 质子酸可以催化烯烃或醇 进行付氏烷基化反应 H2SO4 + CH3CH=CH2
O O + CH3CH2CH2OHH2SO4
CHCH3 CH3
f. 如果苯环上有比卤素更强的吸电子基团,不反应
COCH3
CH2CH2CH2CH3
CH3
CHCH2CH3
CH3 C - CH3 CH3
c. 易发生多烷基化,反应不易停留在一取代 在强催化剂条件下可以发生歧化反应;
CH3
CH3
AlCl3 + CH3Br
0C
AlCl3, 0 C
CH3
2 CH3Br
CH3
CH3
CH3
CH3
CH3
2
AlCl3
CH3
+ CH3
d.多芳基化:—与多卤代烷的反应;
CH3
CH3
CH3
CH3
CH3
CH3
b.p. 144 C
139 C
138 C 偶极矩μo>μm>μp
有机化学 第六章 芳香烃
(一) 芳烃的构造异构和命名 (二) 苯的结构 (三) 单环芳烃的来源 (四) 单环芳烃的物理性质 (五) 单环芳烃的化学性质 (六) 苯环上取代反应的定位规则 (七) 稠环芳烃 (八) 芳香性 (九) 富勒烯
第六章 芳烃 芳香性
• 芳烃——芳香族碳氢化合物。含有苯环的一 大类C、H化合物。 “芳香”二字的含义:
1,2,4,5-四甲苯
(2) 命名
命名时,一般以芳环为取代基,也可以芳环为母体。具
体情况,具体对待:
CH=CH2
CH=CH2
苯乙烯
对二乙烯基苯 CH=CH2
CH2Cl
CH2OH
苯氯甲烷 氯苄
苯甲醇 苄醇
• C6H5- 苯基(Ph-) ;
C6H5CH2- 苄基 ;
Ar- 芳基(芳环上去掉一个氢后,所剩下的原子团);
O
慢
H
SO3-
快 HSO4-
+
σ-络合物
SO3- 快
H3O+
SO3H + H2O
(丁) 烷基化反应机理
苯环烷基化反应中,AlCl3的作用是与卤烷起反应, 加速R+的生成:
RCl + AlCl3
R+ + AlCl4-
亲电试剂
+ R+
R
+H
σ-络合物
AlCl4-
R + HCl + AlCl3
苯环烷基化反应时,产生异构化的原因:
Br
p-二溴苯
注意:第二个卤素原子进入第一个卤素原子的邻、对位。
(乙) 硝化
+ HNO3
浓H2SO。4
50-60 C
芳香烃
CH3 Br +
CH3
32.9 %
Br 65.8%
2. 硝化:
+ 例: NO2 + 浓 HNO3 浓 H2SO4 100~110。 C 93% NO2 NO2 浓 HNO3 浓 H2SO4 。 50~60 C NO2
3. 磺化:
。 浓 H2S O4 , 25 C 。 或 发烟 H2S O4 , 45 C 例: C H3 浓 H2S O4 回流 C H3 S O3H + S O3H S O3H + 浓 H2S O4 + H2O C H3 反应温度 ,有利于 对位产物的生成。 S O3H 。 发烟 H2S O4 , 90 C S O3H S O3H
2 3
定位规律的应用
1. 预测反应产物:
(1) 环上原有两个取代基对引入第三个取代基定位作用不一致, 有两种情况: A. 原有两个取代基为同一类定位基:由定位能力强的定位基 决定。如:
定位能力: OCH 3 CH3
OCH 3 C H3
定位能力: NO2 COOH
NO2 COOH
B. 原有两个取代基为不同类定位基:由第一类定位基决定。
4. Friedel – Crafts反应
(1) F – C 烷基化反应:
+ R X
AlX3
R
+
HX
常用的cat. :无水AlCl3、FeCl3、ZnCl2、BF3、H2SO4等。
常用的烷基化试剂: R X 、 C =C
、 R O H。
+ CH3CH=CH2
AlCl3
CH3 CH CH3
CH3 CH CH3
磺 化:
+
H2SO4
第七章芳香烃
7.1.2 按苯环数目和结合方式分类
按苯环数目分类:单环芳烃、 多环芳烃 、非苯芳烃
CH(CH3)2
CH3
苯
间甲基异丙苯
萘
菲
蒽
芘
苯并芘 (强效致癌物质)
3
联苯 三苯基甲烷
反-二苯乙烯
[18]-轮烯 富勒烯 (非苯芳烃)
4
7.2 苯的结构 7.2.1 苯的结构研究历史
1825年,Faraday从路灯照明燃气凝结液中 分离出来,测定实验式CH。 1833年,确定分子式C6H6,有下列反应。
OCH3 CH3
主要产物
COOH NO2
主要产物
CH3 CI
混合物
36
(3)苯环上原有两个取代基对引入第三个取代基的定 位作用不一致,两个取代基属不同类定位基时,这时 第三个取代基进入苯环的位置主要由第一类定位基定 位:
NHCOCH3 COOH O2N CH3
在考虑第三个取代基进入苯环的位置时,除考虑 原有两个取代基的定位作用外,还应该考虑空间位 阻,如 3-乙酰氨基苯甲酸的 2 位取代产物很少。
Ⅰa
CH3
+
H E
+
CH3
Ⅰc
Ⅰb
+
H E
CH3
CH3 或 H E
+
进攻对位:
CH3
+
CH3 H E
Ⅱc
+
H E
Ⅱ
H E
Ⅱb
Ⅱa
CH3
CH3
+
CH3
+
进攻间位:
+ H或 E
CH3 H +E
Ⅲc
H
E
芳香烃知识点总结
芳香烃知识点总结一、定义芳香烃是一类具有芳香性的碳氢化合物,其分子中含有一个或多个芳环。
芳香环是由连续的六个碳原子构成的环,每个碳原子上带有一个π键,环上的所有键角都是120度,因此芳香环是一个非常稳定的结构。
芳香烃具有特殊的物理和化学性质,可以发生芳烃的特有反应,如芳烃的亲电取代反应等。
芳香烃分为单环芳烃和多环芳烃两大类,单环芳烃是指分子中只含有一个芳香环,如苯、甲苯、二甲苯等;多环芳烃是指分子中含有两个以上的芳香环,如萘、菲、蒽等。
二、结构特点1.芳香环的稳定性芳香环具有高度的稳定性,这是由于芳香环中的所有碳原子都处于sp2杂化状态,环上每个碳原子都可以提供一个p轨道,形成一个大的π电子共轭体系。
π电子的共轭结构赋予芳香环很高的稳定性,从而使得芳香环中的碳-碳键相对稳定,不容易发生加成反应和饱和反应。
2.苯环的特殊结构苯是最简单的芳香烃,其分子中含有一个六元环苯环。
苯环具有一定的杂化,分子平面上存在4个等价的σ键和6个等价的π键,由于π键的存在,使得苯环的每个碳原子上都有1个p轨道未配对。
苯环中的所有碳-碳键长度均相等,为1.39Å,远高于正构烷烃的碳-碳键长,并且苯环是平面的,有4n+2个π电子,这是苯环能够表现出很强的芳香性和稳定性的重要原因。
3.芳香烃的共轭体系芳香烃的分子中存在大的π电子共轭体系,由于芳香环上的所有碳原子都可以提供一个p 轨道,形成一个广阔的π电子共轭体系,导致芳香环具有很高的稳定性和芳香性。
共轭体系的存在也赋予芳香烃一些特殊的物理和化学性质,如颜色的吸收和发射、光学活性、电子云密度的分布等。
三、性质1.化学性质芳香烃具有一些特殊的化学性质,如芳香性、共轭结构、亲电取代反应等。
芳香烃具有很强的芳香性,能够发生典型的亲电取代反应,如硝基取代、氯取代、甲基取代等,这些反应也是芳香烃的重要合成反应。
芳香烃还可以发生醌和亚硝基化合物的加成反应,这是由于芳香环具有平面结构和大的π电子共轭体系所决定的。
芳香烃
H = –120kJ/mol
+ 3 H2
H = –208kJ/mol
苯的结构
苯分子是正六边形结构,六个碳原子和六个氢原子 在同一平面上,相邻的碳碳键之间的夹角是120, 碳碳键的键长都是0.139nm。 六个碳原子都是s p2杂化,所有的 键都在同一平 面上。每个碳原子都有一个未参加杂化的P轨道, 并且都垂直于键所构成的平面,六个p轨道侧面 相互重叠形成一个闭合的大 键共轭体系。大 键的电子云就象两个救生圈分布在分子平面的上下 方。 由于 电子的充分离域,离域能大,体系的势能就 低,因此,苯环就特别稳定。由于苯分子中所有的 碳碳键完全相同,为此,常常用正六边形内加一个 圆圈来表示苯的结构。
甲苯
乙苯
丙苯
异丙苯
单环芳香烃的异构和命名
苯的二元取代物有三种异构体。 例如:
C H3 C H3 C H3 C H3 C H3 C H3
1,2-二甲苯 1,3-二甲苯 1,4-二甲苯 (邻二甲苯或o-二甲苯) ( 间二甲苯或m-二甲苯) (对二甲苯或p-二甲苯)
单环芳香烃的异构和命名
取代基相同的三元取代物有三种异构体。 例如:
C H3 H3 C C H3 C H3 C H3 H3 C C H3 C H3 C H3
1,2,3-三甲苯 (连三甲苯)
1,2,4-三甲苯 (偏三甲苯)
1,3,5-三甲苯 (均三甲苯)
苯基
苯分子上去掉一个氢原子剩下的基团 C6H5—叫做苯基。可简写作Ph-。
甲苯基和苯甲基
甲苯分子中苯环上去掉一个氢原子, 得到甲苯基,
苯的共振能
+ 3 H2
150.0(共振能)
化学芳香烃的分类、结构和性质
3、三元取代物
CH3 CH3 CH3
1,2,3-三甲苯 连三甲苯
CH3
CH3 CH3
CH3
1,2,4-三甲苯 偏三甲苯
H3C
CH3
1,3,5-三甲苯
均三甲苯
侧链较复杂时选侧链为母体 ,苯作为取代基。
CH CH2
苯乙烯
CH2 CH CH2
3-苯基丙烯
苯基:苯分子去掉一个氢原子得到的基团。以ph-表示。
Cl
C Cll +
Cl
50%
45%
+Br2
FeBr3 55~60℃
Br+HBr
CH3+Cl2
FeCl3 25℃
CH3 C ClH3+
Cl
59%
40%
卤代反应历程:
Br Br+FeBr3 Br++[FeBr4]-
慢 +B r+
HB r 快
+ [FeBr4]-
B r +H B r+F e B r3
+ E+
化学芳香烃的分类 、结构和性质
一、芳香烃的分类
1. 单环芳烃
CH3
2. 多环芳烃
H
C • 多苯代脂烃
• 联苯
联苯
三苯甲烷
• 稠环芳烃
萘
蒽
菲
二、苯的结构
1、苯的环状结构——凯库勒式
分子式: C6H6
H C HC CH HC CH C H
研究表明, 凯库勒的结构式基本上是正确的。 但它不能解释苯的全部性能.
CH3
2 1
苯基
2-甲苯基 邻甲苯基
芳香烃的性质与反应
在燃料领域的应用
柴油添加剂:芳香烃可以提 高柴油的燃烧效率,减少尾 气排放。
汽油添加剂:芳香烃可以提 高汽油的辛烷值,改善汽油 的性能。
燃料油:芳香烃可以作为燃 料油的主要成分,提供能量。
生物燃料:某些芳香烃可以 作为生物燃料,具有可持续
性和环保性。
感谢您的观看
汇报人:XX
烷基化反应的机理特点:反应速率快、选择性高、操作简便,是芳香烃衍生物合成的重要方法 之一。
酰基化反应机理
添加标 题
添加标 题
添加标 题
添加标 题
定义:酰基化反应 是芳香烃与酰氯或 酸酐在催化剂作用 下生成芳香酮的反
应
反应机理:芳香烃 的活性氢与酰氯或 酸酐中的碳氧双键 发生亲电加成,生 成碳正离子中间体, 然后发生电子转移, 最后发生质子化反
应用:可用于合成多种有机化合物, 如染料、香料、药物等
稠环芳香烃
定义:稠环芳香烃是指具有两个或多个苯环相互稠合的芳香烃。 分类:根据苯环数目的不同,稠环芳香烃可以分为二环、三环、四环等类型。 结构特点:稠环芳香烃的碳原子之间通过单键或双键相互连接,形成闭合的环状结构。 性质与反应:稠环芳香烃具有芳香性,可以发生亲电取代、加成等反应。
芳香烃的结构特点
含有苯环
碳原子之间以单 键和双键连接
芳香烃具有芳香 性
芳香烃的稳定性 较高
芳香烃的物理性质
沸点:芳香烃的沸点较高,且 随分子量的增加而升高。
熔点:芳香烃的熔点也较高, 且随分子量的增加而升高。
溶解性:芳香烃通常不溶于水, 但可溶于有机溶剂。
密度:芳香烃的密度一般比水 小,且随分子量的增加而减小。
特点:结构简单,性质稳定,是芳 香烃中最常见的一类
有机化学基础知识点整理芳香烃的结构与性质
有机化学基础知识点整理芳香烃的结构与性质有机化学基础知识点整理芳香烃的结构与性质在有机化学中,芳香烃是一类具有稳定的共轭π键系统的有机化合物。
它们具有独特的结构和性质,对于深入理解有机化学的基础知识非常重要。
本文将对芳香烃的结构和性质进行整理和总结。
一、芳香烃的结构芳香烃的结构是由苯环组成的,苯环是一个由六个碳原子构成的环状结构,每个碳原子上都有一个氢原子。
芳香烃可以包含一个或多个苯环,多个苯环可以通过共享碳原子而连接在一起。
1. 单环芳香烃最简单的芳香烃是苯,它由一个苯环组成,化学式为C6H6。
苯具有强烈的香味,因此得名。
除了苯,还有一些其他的单环芳香烃,如甲苯、苯酚等。
2. 多环芳香烃多环芳香烃由两个或更多个苯环连接而成。
它们通常具有更复杂的结构和性质。
常见的多环芳香烃有萘、菲、蒽等。
多环芳香烃可以通过加热、氧化或还原等反应得到。
二、芳香烃的性质芳香烃具有一些独特的性质,下面将对其进行详细介绍。
1. 香味芳香烃得名的原因之一是它们通常具有明显的香味。
这是由于芳香烃分子中的共轭π键系统的存在,使得电子能级分布特殊,对电子的吸收和释放有所影响,从而产生香味。
2. 共轭体系芳香烃的共轭π键系统使其具有稳定的电子结构。
共轭体系中,电子可以自由运动,共享在整个分子上,增加了芳香烃的稳定性。
这也意味着芳香烃具有较大的共轭能力和较低的离化能力。
3. 染料性质由于芳香烃分子中的共轭π键系统,它们对光的吸收和发射能力较强,具有良好的染料性质。
很多芳香烃被广泛应用于染料、颜料和墨水等领域。
4. 反应性芳香烃的反应性主要体现在芳香取代反应和芳香核聚合反应两个方面。
芳香取代反应是芳香烃中一个或多个氢原子被取代成其他官能团的反应。
常见的芳香取代反应有烷基化、卤代反应等。
芳香烃的芳香环具有电子亲和性,可以被取代基团带来的电子亲合性影响。
芳香环上的取代基团对于芳香烃的性质和反应有重要影响。
芳香核聚合反应是多个芳香烃分子通过亲电或自由基反应进行共价键形成的反应。
芳香烃结构及芳香性
13
芳香烃结构与芳香性(休克尔规则的理论解释)
反键
成键 环戊二烯负离子
14
反键
成键 环庚三烯负离子
§5 杂环芳烃
N
S
O
N
吡咯
噻吩
呋喃
吡啶
孤对电子参与共轭 π电子数为4n+2,接近平面,有芳性
15
§6 稠环芳烃
萘
蒽
菲
奥
结构特征:总π电子数为4n+2,平面,环状。
16
芳香烃结构与芳香性
平面 环状共轭 4n + 2 芳香烃结构,芳香性
描述并不准确,有很多例外。
HO
N
+3 H 2
N
N
吡啶 有芳香性 奇臭无比
4-松油醇 无芳香性 茶树香油
反应条件只需要 Na + C2H5OH
2
§2 近代芳香理论
* 芳香烃有环状结构,芳环主体是平面的
* π电子形成环状共轭体系 * 环上的每一个原子必须是SP2(或SP)杂化 * 参与共轭的π电子数为4n+2 * 体系能量特别低 * 能检测到反磁环流
7
§3 轮烯
环辛四烯三种构象
π电子数为4n,扭转张力使之偏离平面,电子云不能互 相交盖,无反芳性,属于非芳香性
8
芳香烃结构与芳香性(休克尔规则的理论解释)
反键 非键
成键 环辛四烯
两个电子在非键轨道上 非键轨道参与环状共轭
9
§3 轮烯
构象1
构象2Biblioteka 构象3环葵五烯 π电子数为4n+2,扭转张力使之偏离平面,电子云互 相交盖程度小,表现微弱芳香性。
10
§3 轮烯
平面
有机化学 第4章芳香烃
卤代反应
NO2
SO 3 H
R
酰基化 反应* 反应
硝化反应
磺化反应
烷基化反应
1.卤代反应 1.卤代反应
+ Br 2 Fe 或 FeBr 3 Br + HBr
卤代反应机制: 卤代反应机制: (1)产生亲电试剂Br+: 产生亲电试剂Br
Fe + Br2 FeBr 3 + Br2 FeBr 3 Br + FeBr 4
4. 烷基化反应
H + CH 3CH2 Cl
无水AlC l 3
25 ℃
CH 2 CH 3 + HCl
此反应又称付瑞德尔-克拉夫茨 此反应又称付瑞德尔-克拉夫茨(Friedel付瑞德尔 Crafts)烷基化反应,简称“付-克”烷基化反应。 烷基化反应,简称“ 烷基化反应 烷基化反应。 在“付-克”烷基化反应中,当烷基大于2 烷基化反应中,当烷基大于2 个碳原子时,则发生碳链异构化作用。例如: 个碳原子时,则发生碳链异构化作用。例如:
CH3 + HNO 3
H2 SO 4 30℃ ℃
CH3 NO2
CH3
CH3
+
NO2
+
NO 2
(59%) %
(37%) %
(4%)
硝基苯硝化时,须提高温度, 硝基苯硝化时,须提高温度,并增加硝酸的浓 主产物为间-二硝基苯。 度,主产物为间-二硝基苯。
NO2 + HNO 3
H2 SO 4 95~100℃ ℃
1. 一烷基苯 一烷基苯命名时,多以苯为母体, 一烷基苯命名时,多以苯为母体,烷基为取 代基,称为“某苯” 例如: 代基,称为“某苯”。例如:
第五章芳香烃ppt课件
所以,也可用下式表示苯的结构:
6
第二节 单环芳烃的异构与命名
1.一元取代苯“某苯”
甲苯
乙苯
(toluene)
( ethylbenzene
) 有些取代基,有专门名称,将取代基和苯一 起作为母体。如苯酚 苯胺 苯甲酸 苯磺酸
7
2.二元取代苯的命名
邻二甲苯(1,2 间二甲苯(1,3 对二甲苯(1,4
一、取代反应
1. 卤代反应
16
烷基苯的卤代
苯氯甲烷 苯二氯甲烷 苯三氯甲烷
反应条件不同,产物也不同。原因是两者 反应历程不同,前者(铁粉或FeCl3作催化剂) 为离子型取代反应,光照卤代为自由基历程。
17
侧链较长的芳烃 ,光照卤代主要发生
在α碳原子上。
18
✓自由基的稳定性增加顺序:
<
<
(甲基自由基 < 伯自由基 < 仲自由
间位定位基则对苯环起吸电子作用,使苯 环电子云密度降低,因而不利于苯环的亲电取 代反应,即起钝化作用。
38
三、取代定位效应的应用 1. 指导选择合成路线
例1:
必须先氧化后硝化
39
例2:
40
例3:
41
第六节 稠环芳香烃
一、结构和命名 稠环芳香烃是由两个或两个以上苯环共用 两个邻位碳原子稠合而成的多环芳香烃。
蒽
菲
48
第三节 芳香性:4n+2规则
判断芳香性的规律:在一单环多烯化合物 中,具有共平面的离域体系,其 π 电子数等于 4n+2(n=0,1,2,3…) ,此化合物就具有芳香性。 此 规律称为Hückel 规律,又叫做4n+2规则。
π 电子数 4
芳香烃结构及芳香性
芳香性与非芳香性
总结词
芳香性化合物和非芳香性化合物的结构特征 和性质存在显著差异。芳香性化合物具有特 殊的稳定性、反应性和电子云分布,而非芳 香性化合物则不具备这些特性。
详细描述
芳香性化合物和非芳香性化合物的结构特征 和性质存在显著差异。芳香性化合物具有特 殊的稳定性,其分子中的π电子可以自由移动, 形成大π键,使得分子更加稳定。此外,芳香 性化合物在化学反应中表现出特殊的反应性, 如亲电取代反应、加成反应等。而非芳香性
芳香烃的核心结构是苯环 ,由六个碳原子以sp²杂 化形成的闭合环。
取代基
苯环上可以连接不同的取 代基,如烷基、卤素、羟 基等。
键长和键角
苯环上的碳碳键长和键角 相对固定,分别为1.40埃 和120°。
芳香烃的来源
天然来源
一些芳香烃如苯、甲苯等存在于天然物质中,如石油、煤焦 油等。
合成来源
许多芳香烃是通过化学合成方法制备的,如通过烷基化、酰 化等反应合成。
05 芳香烃的应用
工业应用
燃料添加剂
芳香烃可作为燃料添加剂, 提高燃料的燃烧效率,减 少污染物排放。
高分子材料
芳香烃是合成高分子材料 如聚乙烯、聚丙烯等的单 体,广泛应用于塑料、合 成纤维等领域。
橡胶工业
芳香烃可用于合成橡胶, 如丁苯橡胶、丁腈橡胶等, 提高橡胶的性能。
医药应用
药物合成
芳香烃在药物合成中具有重要作用,可用于合成 多种药物,如抗生素、镇痛药等。
苯的衍生物
总结词
苯的衍生物是指分子中苯环被其他基团取代或苯环上增加其他环系的化合物,其结构特点是具有更复 杂的分子结构。
有机化学 第四章 芳香烃
第四章 芳香烃具有“芳香性”的碳氢化合物称芳香烃。
芳香性:难加成,难氧化,易取代;平面环p;特征光谱单环芳烃苯型芳烃多环芳烃非苯型芳烃芳烃3第一节 苯及其同系物一、苯的结构(一) 苯的 Kekulé 结构式简写为:H HH HHHH H碳为4有人提出质疑: 按照这个结构, 苯的二溴代物应有两种.结构式溴BrBrBr Br和但实际上只得到一种!预期的1,3,5-环己三烯键长数据134pm147pm(二) 苯分子结构的现代解释苯分子中6个C 都是sp 2杂化, 每个C 都以3个sp 2杂化轨道分别与2个相邻的C 和1个H 形成3个σ键,构成平面正六边形碳环结构。
每个C 还有1个未杂化的p 轨道,均垂直于碳环平面而相互平行。
每个p 都可与2个相邻C 的p 侧面重叠,形成一个包含6个原子6个π电子的闭合“大π键”。
o结构及性质特征:所有原子共平面; 形成环状大π键 碳碳键长全相等;环稳定、难加成、 难氧化、易取代虽然苯的结构在今天已得到完全阐明,但苯的结构式仍然采用当初Kekulé提出的式子。
或用圆圈代表环闭大π键的苯结构式。
苯的结构也可以用两个Kekulé 结构式的共振式或共振杂化体表示。
个共振式共振杂化体二、苯及其同系物的命名苯环上的氢原子被烃基取代后,所得产物为苯的同系物。
可分为一烃基苯、二烃基苯和多烃基苯等。
命名时,一般以苯作母体,将其它烃基作为取代基,称“某苯”。
3H 3C 3甲苯(toluene) 异丙苯(isopropylbenzene)二烃基苯有三种异构体,用邻或1,2-;间或1,3-;对或 1,4- 表示;间-二甲苯1,3-二甲苯m -二甲苯m -xylene对-二甲苯1,4-二甲苯p -二甲苯p -xylene 邻-二甲苯1,2-二甲苯o -二甲苯o -xylene CH 3CH 3CH 3CH 3CH 33具有三个相同烃基的取代苯也有三种异构体。
如:连-三甲苯1,2,3-三甲苯偏-三甲苯1,2,4-三甲苯均-三甲苯1,3,5-三甲苯CH 3CH 3CH 3CH 3CH 33CH 3H 3CCH 3(1,2,3-trimethylbenzene)若苯环上连接不同的烷基时,烷基名称的排列顺序按“优先基团”后列出的原则,其位置的编号应将简单的烷基所连的碳原子定为1-位,并以位号总和最小为原则来命名。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
芳香烃结构与芳香性(休克尔规则的理论解释)
反键
反键
成键 环戊二烯负离子
成键 环庚三烯负离子
§5
杂环芳烃
N
S
O
N
吡咯
噻吩
呋喃
吡啶
孤对电子参与共轭 π电子数为4n+2,接近平面,有芳性
§6
稠环芳烃
萘
蒽
菲
奥
结构特征:总π电子数为4n+2,平面,环状。
芳香烃结构与芳香性
平面
环状共轭
4n + 2
芳香烃结构,芳香性
反芳香性的判断
平面 环状共轭 4n 反芳香性,稳定性比同 类开链烃小
+ +
>
>
非芳香性的判断
不共平面或电子数为奇数 环状共轭 非芳香性,稳定性与同类开链烃类似
C6H6
肉桂香成分
描述并不准确,有很多例外。
HO
+ 3 H2
N
N N
吡 啶 有芳香性 奇臭无比
4-松油醇
无芳香性 茶树香油
反应条件只需要 Na + C2H5OH
§2
近代芳香理论
* 芳香烃有环状结构,芳环主体是平面的
* π 电子形成环状共轭体系
* 环上的每一个原子必须是SP2(或SP)杂化
* 参与共轭的π 电子数为4n+2 * 体系能量特别低
* 能检测到反磁环流
苯在外加磁场作用下的感应磁场
芳香烃结构与芳香性
§3 轮烯
环丁二烯
平面、环状共轭 π电子数为4n 反芳香性
环己三烯
平面、环状共轭 π电子数为4n+2 芳香性
芳香烃结构与芳香性(休克尔规则的理论解释)
反键
环己三烯
成键 环丙烯正离子
一对电子在成键轨道上
借空轨道形成环状共轭
三对电子在成键轨道上
成键轨道参与环状共轭
§3 轮烯
环辛四烯三种构象
π电子数为4n,扭转张力使之偏离平面,电子云不 能互相交盖,无反芳性,属于非芳香性
芳香烃结构与芳香性(休克尔规则的理论解释)
反键 非键
成键 环辛四烯
两个电子在非键轨道上 非键轨道参与环状共轭
§3 轮烯
构象1
构象2 环葵五烯
构象3
π电子数为4n+2,扭转张力使之偏离平面,电子云 互相交盖程度小,表现微弱芳香性。
第四章
芳香烃结构与芳香性
芳香烃结构与芳香性
§1 早期对芳香化合物的认识
来源于动植物,有特殊的芳香气味。
有特别的稳定性,结构在反应中不容易被破坏。 碳氢比十分接近,分子高度不饱和。 主要发生取代反应,一般不发生加成反应。
CH=CHCHO
NO2
肉桂香成分
杏仁香味
C6H6
CH=CHCHO
芳香烃结构与芳香性
§3
轮烯
平面 环状共轭 π电子数为4n+2
18-轮烯 有芳香性
§4
带电芳烃
环丙烯 正离子
环戊二烯 负离子
环庚三烯 正离子
π电子数为4n+2,平面,有芳性
芳香烃结构与芳香性(休克尔规则的理论解释)
反键 非键
反键
成键 环丙烯正离子
成键 环丁二烯
一对电子在成键轨道上
借空轨道形成环状共轭
两个电子在非键轨道上