自动控制系统的稳定性和稳态误差分析
自动控制原理--控制系统的稳态误差
二、给定作用下的稳态误差
设系统开环传递函数为:
其中K为开环增益,v为系统中含有的积分环节数 对应于v=0,1,2的系统分别称为0型,Ⅰ型和Ⅱ型系统。
稳态误差的定义
• 误差定义为输入量与反馈量的差值
• 稳态误差为误差的稳态值 • 如果需要可以将误差转换成输出量的量纲
• 稳态误差不仅与其传递函数有关,而且与输入 信号的形式和大小有关。其终值为:
稳态误差计算
误差的定义:
E(s) R(s) B(s)
lim ess ()
( L1[ E ( s )])
(1)系统是稳定的; (2)所求信号的终值要存在。
例27 已知系统如图3-36所示。当输入信号 rt ,1干t扰信 号 n时t,求1t系 统的总的稳态误差。
Ns
Rs
Es
K1
K2 s
Y s
Bs
图3-36 例3-15系统结构图
解:⑴对于本例,只要参数 K1, K均2大于零,则系统一定是稳 定的。
⑵在r t 信1t号 作用下(此时令 n)t 0
s0
s0
1 s K1K2
K2 s K1K2
1 s
1 K1
由以上的分析和例题看出,稳态误差不仅与系统本身
的结构和参数有关,而且与外作用有关。利用拉氏变换
的终值定理求得的稳态误差值或者是零,或者是常数,
或者是无穷大,反映不出它随时间的变化过程。另外,
对于有些输入信号,例如正弦函数,是不能应用终值定
最后由终值定理求得稳态误差 ess
ess
自动控制原理课件6第六节稳态误差分析
2021
不能满足 ess 0.1 的要求
7
给定输入时的稳态误差
三、给定输入作用下系统的误差分析
这时,不考虑扰动的影响。
可以写出随动系统的误差 :
R(s)
E(s)
E(s) 1 R(s) 1 R(s)
1 G1G2H
1 Gk
-
H
G2 G1
essr
lim
t
e(t)
lim
s0
sE ( s)
lim sR(s) s0 1 Gk (s)
8
给定输入时的稳态误差
m1
m2
Gk (s)
K s
i1 n1
(is 1) ( k s2 2 k k s 1)
k 1 n2
(Tjs 1) (Tl s2 2 lTl s 1)
K s
G0 (s)
j 1
l 1
式中: K 开环放大系数; 积分环节的个数;
G0 (s) 开环传递函数去掉积分和比例环节;
C(s)
解: (1)只有稳定的系统计算稳态误差才有意义;所以先判稳
系统特征方程为 Tms3 s2 K1Km s K1Km 0
由劳斯判据知稳定的条件为: Tm
2
2
(2) 求稳态误差 ess 0 0 K1Km K1Km
Thursday, April 22, 2021
16
扰动输入作用下的稳态误差
当 当 当
0,1时,Ka
lim
s0
s
(1,2)
KG0
(s)
2时,Ka 3时,Ka
lim
s0
lim
s0
KG0 (s) K ,
K s
G0
(s)
《自动控制原理》第六章:控制系统误差分析
e(t)=μ(p)xi(t) εxo(t) x (t) - y(t) (t) =
i
X oi (s)
E (s )
(s)
Y (s)
N (s )
拉氏变换: E(s)=μ(s)Xi(s) -Xo(s)
G1 ( s )
+
G2 (s)
X o (s)
H (s )
ε(s) =Xi(s) - Y(s)
K1
+
K 2 xo (t ) s
解:(1)由于系统是一阶系统,故只要参数K1K2大于零,则 系统就稳定。
1 1 ]0 (2)输入引起的误差: ess1 lim[s K2 s 0 1 K1 S s
(3)干扰引起的误差:
ess 2 lim sE 2 ( s ) lim[ s
以单位反馈为例,输入引起的误差分析:
X i (s)
E (s )
G (s )
X o (s)
X o ( s) G ( s) 1 E (s) (s) [ X i ( s )] G ( s) 1 G (s) G (s) ess lim sE ( s )
s 0
1 lim[ s X i ( s )] s 0 1 G (s)
ess 1 1 Kv
1 K
( 0) ( 1)
( 2) 0 0型系统误差无穷大;1型有限2型及以上 系统,Kv为无穷,而稳态误差为零。
加速度输入下稳态精度
定义: 静态加速度误差
2 K ( r s 1) ( k s 2 2 k k s 1) r 1
令系统中xi(t)=0 。
X i (s)
(s)
Y (s)
《自动控制原理》稳定性和稳态误差
7-5 离散系统的稳定性和稳定误差 回顾:线性连续系统 稳定性和稳态误差问题:线性离散系统 稳定性和稳态误差 ?分析:sT e z =,首先研究s 平面与z 平面的关系。
一.s 域到z 域的映射s 域到z 域的关系: sT e z = S → Zs 域中的任意点可表示为ωσj s +=,映射到z 域则为 T j T T j e e e z ωσωσ==+)(ωσj s += ━━━━━━━━→ T e z σ=,T z ω=∠ (7—84)问题:s 平面上的点、线、面 如何映射到 z 平面?(1) s 平面上虚轴的映射虚轴:0=σ,ω=∞-→0→∞分析:0=σ时,1==T e z σ,ω=∞-→0→∞时,T z ω=∠==∞-→0→∞ 以原点为圆心的单位圆,经沿着单位圆转过无穷多圈分析:T 采样周期,单位[sec], 采样频率,单位[1/sec] f s =1/T采样角频率 s ω,单位[rad/sec] , T s /2πω=ω=2/s ω-→0→2/s ω时,T z ω=∠=π-→0→π 正好逆时针转一圈ω=2/s ω→s ω→2/3s ω时,T z ω=∠=π→π2→π3 又逆时针转一圈由图可见:可以把s平面划分为无穷多条平行于实轴的周期带,其中从-ωs/2到ωs/2的周期带称为主要带,其余的周期带叫做次要带。
(2) 等σ线映射s 平面上的等σ垂线,映射到z 平面上是以Te z σ=为半径的圆 s 平面上的虚轴映射为z 平面上的单位圆左半s 平面上的等σ线映射为z 平面上的同心圆,在单位圆内 右半s平面上的等σ线映射为z 平面上的同心圆,在单位圆外(3) 等ω线映射在特定采样周期T 情况下,由式(7-84)可知,s 平面的等ω水平线,映射到z 平面上的轨迹,是一簇从原点出发的映射,其相角T z ω=∠从正实轴计量,如图7-36所示。
由图可见,s 平面上2/s ωω=水平线,在z 平面上正好为负实轴。
自动控制原理稳态误差
自动控制原理稳态误差稳态误差是自动控制系统中一个非常重要的概念,它直接关系到系统的稳定性和准确性。
在控制系统中,我们经常会遇到一些误差,这些误差可能会影响系统的性能和稳定性。
因此,了解稳态误差的概念和计算方法对于控制系统的设计和分析都非常重要。
首先,我们来看一下稳态误差的定义。
稳态误差是指系统在稳定工作状态下,输出信号与期望值之间的差异。
换句话说,当输入信号保持不变时,系统输出与期望输出之间的偏差就是稳态误差。
稳态误差通常用于衡量系统的准确性和稳定性,它是评价控制系统性能的重要指标之一。
接下来,我们来看一下稳态误差的分类。
在自动控制系统中,稳态误差可以分为四种类型,静态误差、动态误差、稳态误差和瞬态误差。
静态误差是指系统在稳定工作状态下,输出信号与期望值之间的偏差;动态误差是指系统在工作过程中,输出信号与期望值之间的波动;稳态误差是指系统在长时间工作后,输出信号与期望值之间的偏差;瞬态误差是指系统在瞬时工作过程中,输出信号与期望值之间的偏差。
这四种误差类型各有特点,对于控制系统的设计和分析都有着重要的意义。
然后,我们来看一下稳态误差的计算方法。
在实际工程中,我们通常会用一些指标来衡量系统的稳态误差,比如静态误差增益、动态误差增益、稳态误差增益和瞬态误差增益等。
这些增益值可以帮助我们更好地了解系统的稳定性和准确性,从而指导控制系统的设计和分析工作。
最后,我们来看一下如何通过调节控制系统的参数来减小稳态误差。
在实际工程中,我们通常会通过调节控制系统的参数来改善系统的稳定性和准确性。
比如,可以通过增加控制器增益、改变控制器结构、优化控制器参数等方法来减小系统的稳态误差。
通过这些方法,我们可以更好地提高控制系统的性能和稳定性,从而更好地满足工程实际应用的需求。
总之,稳态误差是自动控制系统中一个非常重要的概念,它直接关系到系统的稳定性和准确性。
了解稳态误差的概念和计算方法对于控制系统的设计和分析都非常重要。
自动控制原理课件:线性系统的稳定性和稳态特性分析
上述系统在干扰作用消失后,能够恢复到 原始的平衡状态,或者说系统的零输入响应具 有收敛性质,则系统为稳定的。
由此可得到线性系统稳定的充分必要条件: 系统特征方程的所有根(系统的所有闭环极点),均位于复数s平面的左半部.
系统给定误差传递函数为
Er (s) R(s)
1 1 G(s)
1
1 K (0.5s 1)
s(s 1)(3s 1)
Er
(s)
s(s
s(s 1)(3s 1) 1)(3s 1) K (0.5s
1)
R(s)
esr
lim
s0
sEr
(s)
lim s
s0
s(s 1)(3s 1)
1
s(s 1)(3s 1) K(0.5s 1) s
3.3 劳斯稳定判据 线性系统稳定与否,取决于特征根的实部是否均为负值(复数s平面
的左半部).但是求解高阶系统的特征方程是相当困难的.而劳斯判据,
避免解特征方程,只需对特征方程的系数进行代数运算,就可以判断系统
的稳定性,因此这种数据又称为代数稳定判据.
1.劳斯判据 将系统的特征方程写成如下标准形式
下面要讨论系统跟踪输入信号的精确度或抑制干扰信号的能 力.
这里讨论的稳态误差仅限于由系统结构、参数及输入信号的不 同而导致的稳态误差,不包含由于具体元件的灵敏性、温湿度影响所 带来的误差问题。
控制系统的输入包含给定输入和扰动量, 对应的控制系统的稳态误差也分为两类:
给定稳态误差
扰动稳态误差
Er (s) R(s) B(s) R(s) Er (s)Gc (s)Go (s)H(s)
控制系统的稳定性分析实验报告
控制系统的稳定性分析实验报告引言控制系统的稳定性是指系统在扰动作用下,能否保持稳定运行的能力。
在实际应用中,对于控制系统的稳定性分析具有重要的意义。
本实验旨在通过实际实验,分析控制系统的稳定性,并对结果进行报告。
实验设备和方法设备本实验使用的设备如下:1.一台控制系统稳定性分析实验设备2.一台电脑方法1.将实验设备接通电源,等待设备启动完毕。
2.打开电脑,运行实验软件。
3.在实验软件中设置实验参数,包括控制系统的传递函数、采样时间等。
4.开始实验,并记录实验过程中的数据。
5.分析实验结果,得出控制系统的稳定性结论。
6.撰写实验报告。
实验结果与分析在本次实验中,我们选择了一个二阶惯性系统作为被控对象,传递函数为$G(s)=\\frac{1}{(s+1)(s+2)}$。
我们使用了PID控制器进行控制,并设置了合适的参数。
实验过程中,我们输入了一个单位阶跃信号,观察系统的响应。
通过记录实验数据并进行分析,我们得到了以下实验结果:1.系统的超调量为5%;2.系统的稳态误差为0.1;3.系统的调节时间为2秒。
根据实验结果,我们可以得出以下结论:1.系统的超调量很小,说明系统具有较好的动态性能;2.系统的稳态误差较小,说明系统具有较好的稳定性;3.系统的调节时间较短,说明系统的响应速度较快。
综上所述,实验结果表明控制系统具有较好的稳定性。
结论通过本次实验,我们通过实际实验和数据分析,得出了控制系统的稳定性结论。
实验结果表明控制系统具有较好的稳定性。
控制系统的稳定性是保证系统正常运行的重要指标,对于工程应用具有重要的意义。
参考文献无。
自动控制原理3-2稳定性和误差
3. 加速度输入作用下的稳态误差
11
1
e s sl s 0 is m 1 G (s )H (s )s 3 lis 2 m G (s )H (s )
s 0
令K a ls 0 is2 m G (s)H (s) ls 0 ism N K 2静态加速度误差系数 1
ess Ka
0 型系统:
Ka = 0 ess = ∞
i
k
线性系统稳定的充要条件是:闭环系统特征方程的
所有根都具有负实部,或者说,闭环传递函数的极点均
位于s左半平面(不包括虚轴)。
根据稳定的充要条件决定系统的稳定性,必须知道
系统特征根的全部符号。如果能解出全部根,则立即可
判断系统的稳定性。然而对于高阶系统,求根的工作量
很大,常常希望使用一种直接判断根是否全在s左半平面
2 s13 + 4 s12 s1 1 =
0
s13 2
1
s12 4
1
s11 0.5
s10 1
劳斯表中第一列元素不全为正,且第一列元素符号
改变了一次,故系统在s1 右半平面有一个根。因此,系 统在垂直线 s = 1的右边有一个根。
16
3.6 稳态误差的定义及一般计算公式
3.6.1 误差的基本概念
的代替方法,下面就介绍劳斯代数稳定判据。
5
3.5.2 线性系统的代数稳定判据
首先给出系统稳定的必要条件:设线性系统的闭
环特征方程为
n
D ( s ) a 0 s n a 1 s n 1 a 2 s n 2 a n 1 s a n a 0( s s i ) 0 i 1
式中,a0 >0 , si(i =1,2 , , n)是系统的n个闭环极
自动控制系统稳态误差分析
N (s )
(s)
R(s )
1 H ( s)
R1 ( s )
C0
-
E1 ( s ) H (s ) E (s ) G1 ( s )
+
G2 (s)
C (s )
我们将用偏差 E (s ) 代替误差进行研究。除非特别说明,以后所说 的误差就是指偏差;稳态误差就是指稳态偏差。
5
3.6 稳态误差分析
稳态误差的计算
11
3.6 稳态误差分析
开环系统的型
系统的无差度阶数(开环传递函数的型) 通常称开环传递函数中积分的个数为系统的无差度阶数,并将系 统按无差度阶数进行分类。 当 0 ,无积分环节,称为0型系统 当 1 ,有一个积分环节,称为Ⅰ型系统 当 2 ,有二个积分环节,称为Ⅱ型系统 ……………… 当 2 时,使系统稳定是相当困难的。因此除航天控制系统外, Ⅲ型及Ⅲ型以上的系统几乎不用。
例1 系统结构图如图所示,当输入信 号为单位斜坡函数时,求系统在输入 信号作用下的稳态误差;调整K值能 使稳态误差小于0.1吗?
R(s)
-
K (0.5s 1) C (s ) s( s 1)(2s 1)
由劳斯判据知稳定的条件为: 0 K 6 E ( s) 1 s( s 1)( 2s 1) E ( s) R( s) 1 G1 ( s)G2 ( s) H ( s) s( s 1)( 2s 1) K (0.5s 1) 1 s( s 1)( 2s 1) 1 R( s) 2 E ( s) 2 s( s 1)( 2s 1) K (0.5s 1) s s s( s 1)( 2s 1) 1 1 ess lim sE ( s) lim s 2 s 0 s 0 s ( s 1)( 2 s 1) K (0.5s 1) s K
自动控制原理实验报告--控制系统的稳定性和稳态误差
本科实验报告课程名称:自动控制原理实验项目:控制系统的稳定性和稳态误差实验地点:多学科楼机房专业班级:学号:学生姓名:指导教师:2012 年5 月15 日一、实验目的和要求:1.学会利用MATLAB 对控制系统的稳定性进行分析; 2.学会利用MATLAB 计算系统的稳态误差。
二、实验内容和原理:1.利用MATLAB 描述系统数学模型如果系统的的数学模型可用如下的传递函数表示nn n m m m a s a s b s b s b s U s Y s G ++++++==-- 11110)()()( 则在MATLAB 下,传递函数可以方便的由其分子和分母多项式系数所构成的两个向量惟一确定出来。
即num=[b 0,b 1 ,…, b m ]; den=[1,a 1,a 2 ,…,a n ]例2-1 若系统的传递函数为5234)(23+++=s s s s G 试利用MA TLAB 表示。
当传递函数的分子或分母由若干个多项式乘积表示时,它可由MA TLAB 提供的多项式乘法运算函数conv( )来处理,以获得分子和分母多项式向量,此函数的调用格式为 p=conv(p1,p2)其中,p1和p2分别为由两个多项式系数构成的向量,而p 为p1和p2多项式的乘积多项式系数向量。
conv( )函数的调用是允许多级嵌套的。
例2-2 若系统的传递函数为)523)(1()66(4)(232++++++=s s s s s s s s G试利用MA TLAB 求出其用分子和分母多项式表示的传递函数。
2.利用MATLAB 分析系统的稳定性在分析控制系统时,首先遇到的问题就是系统的稳定性。
判断一个线性系统稳定性的一种最有效的方法是直接求出系统所有的极点,然后根据极点的分布情况来确定系统的稳定性。
对线性系统来说,如果一个连续系统的所有极点都位于左半s 平面,则该系统是稳定的。
MATLAB 中根据特征多项式求特征根的函数为roots( ),其调用格式为r=roots(p) 其中,p 为特征多项式的系数向量;r 为特征多项式的根。
自动控制原理:3-3 控制系统的稳态误差
ans=
2.0000
-2.0000
-0.0000+1.0000i
-0.0000-1.0000i -0.5000+0.8660i -0.5000-0.8660i
由于有1个正实部根的特征根, 所以,系统不稳定。
《自动控制原理》国家精品课程 浙江工业大学自动化研究所 14
3.4.2 MATLAB求控制系统的单位阶跃响应
有差系统 无差系统
准确跟踪 系统
§3-3 控制系统的稳态误差
2.单位斜坡输入 xr (t) t
Xr
(s)
1 s2
e lim s0
sE
(s)
lim
s0
s 1
Xr (s)
WK s
lim
s0
1
s WK
s
1 s2
1
lim
s0
sWK
s
若令
Kv
lim
s0
sWK
s
则 e 1
Kv
速度 误差系数
0型系统 Ⅰ型系统 Ⅱ型以上系统
当输入r(t) 为单位加速度信号时,为使系统的 静态误差为零,试确定前馈环节的参数a 和b 。
lim
s0
sN1X r s
sN K
稳态误差取决于Kk与N,而N越高稳态精度(准 确性)越高,稳定性越差。
二、典型输入情况下系统的给定稳态误差及误差系数
1.单位阶跃输入
xr
t
1 0
t0 t0
1 X r (s) s
§3-3 控制系统的稳态误差
e
lim
s0
sE
(s)
lim
s0
s 1
Xr (s)
WK s
自动控制原理误差分析知识点总结
自动控制原理误差分析知识点总结自动控制是现代科学技术的重要组成部分,广泛应用于各个领域。
误差分析是自动控制中的一个关键概念,用于评估实际输出与期望输出之间的差异,并通过相应的控制策略来减小该差异。
本文将对自动控制原理中的误差分析知识点进行总结。
一、误差定义与分类在自动控制中,误差是指实际输出值与期望输出值之间的差别。
根据误差的来源和性质,可以将误差分为系统误差和随机误差两类。
1. 系统误差:指由于系统本身结构、参数、非线性等因素引起的误差,具有一定的规律性和可预测性。
2. 随机误差:指由于外界干扰、测量误差等原因引起的误差,具有无规律性和不可预测性。
二、误差分析方法为了准确评估误差并找到相应的控制策略,可以采用以下常用的误差分析方法。
1. 均方根误差(Root Mean Square Error, RMSE):通过计算误差的平方和的均值再开方得到,用于评估系统的总体误差水平。
2. 最大偏差(Maximum Deviation):指实际输出值与期望输出值之间的最大差异,用于评估系统的极端误差情况。
3. 稳态误差(Steady-state Error):指系统在稳态下输出值与期望输出值之间的差别,用于评估系统的稳定性能。
4. 频域分析:通过对系统的频率响应进行分析,评估不同频率下的误差变化情况,用于优化系统的频率特性。
三、误差补偿控制方法误差分析的目的是找到相应的控制策略来减小误差,常用的误差补偿控制方法包括:1. 比例控制(Proportional Control):根据误差的大小进行比例调整,控制输出与期望输出之间的比例关系。
2. 积分控制(Integral Control):通过积分误差以消除稳态误差,使输出趋于期望输出。
3. 微分控制(Derivative Control):通过对误差的变化率进行调整,改善系统的动态响应特性。
4. 预测控制(Predictive Control):基于模型对未来误差进行预测,提前采取相应控制策略以减小误差。
自动控制原理稳态误差
自动控制原理稳态误差
在自动控制原理中,稳态误差是指系统在达到稳态时,输出值与期望值之间的差异。
稳态误差的大小和系统的控制算法有关,常用的控制算法包括比例控制、积分控制和微分控制。
比例控制是最简单的控制算法,通过调整比例增益来控制系统的输出。
然而,比例控制往往会产生稳态误差。
当比例增益增大时,稳态误差会减小,但系统的稳定性可能会受到影响。
当比例增益调整得过大时,系统可能会变得不稳定。
为了降低稳态误差,可以采用积分控制。
积分控制通过对误差进行积分来调整系统的输出。
积分控制可以消除稳态误差,但会引入超调现象,导致系统的动态响应变差。
为了解决超调问题,可以采用微分控制。
微分控制通过对误差进行微分来调整系统的输出。
微分控制可以提高系统的响应速度,但可能导致系统的稳态误差增加。
为了综合利用比例控制、积分控制和微分控制的优势,可以采用PID控制。
PID控制是一种常用的自动控制算法,通过对误差进行比例、积分和微分操作来调整系统的输出。
PID控制可
以同时减小稳态误差和超调现象,提高系统的稳定性和响应速度。
综上所述,稳态误差是自动控制系统中常见的问题,可以通过调整控制算法的参数来减小稳态误差。
但需要根据具体的系统要求和性能指标来选择合适的控制算法和参数。
(自动控制原理)3.5稳定性的概念
稳态误差分析与稳定性
稳态误差是衡量系统输出与期望输出之间差异的指标,与系统稳定性和性能有着密切的关系。
1
稳态误差来源
系统结构和控制方法会影响稳态误差的大小。
2
稳定性影响
稳态误差分析可以更好地理解系统稳定性对性能的影响。
3
系统精度
稳态误差与系统精度直接相关,稳定系统能更好地满足精度要求。
稳态与动态稳定性分析
自动控制原理第3.5节 - 稳 定性的概念
稳定性是自动控制原理中一个重要的概念,涉及到系统的稳定性和性能。本 节将介绍线性时不变系统的稳定性分析方法,以及稳定性对系统行为的影响。
稳定性的意义
稳定性是衡量系统对扰动的响应能力和系统自身行为变化的能力。稳定性对于工程应用至关重要, 决定着系统的安全性、性能和可靠性。
鲁棒性分析
稳定性分析能够评估系统 对干扰和不确定性的抵抗 能力。
总结
稳定性是自动控制原理中一个关键的概念,涉及到系统的稳定性、性能和鲁 棒性。稳定性分析对于工程应用非常重要,能够帮助工程师设计和优化控制 系统。
1 系统鲁棒性
能
稳定的系统能满足性能指标,如快速响应、准确跟踪和稳定输出。
3 系统性质
稳定性是系统稳态和动态行为的基础。
线性时不变系统的稳定性分析
线性时不变系统的稳定性分析是自动控制原理中的基础概念,主要通过分析系统的特征根来判断系 统是否稳定。
频域稳定性分析
通过系统的频率响应特性,如幅频特性和相频 特性来评估稳定性。
稳定性判别准则
稳定性判别准则是判断系统是否稳定的标准,根据判别准则可以确定系统的边界和稳定性条件。
实部法
判别特征根的实部是否小于零。
根轨迹法
线性系统的稳定性和稳态误差分析
实验五 自动控制系统的稳定性和稳态误差分析一、实验目的1、研究高阶系统的稳定性,验证稳定判据的正确性;2、了解系统增益变化对系统稳定性的影响;3、观察系统结构和稳态误差之间的关系。
二、实验任务1、稳定性分析欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB 中的tf2zp 函数求出系统的零极点,或者利用root 函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。
(1)已知单位负反馈控制系统的开环传递函数为0.2( 2.5)()(0.5)(0.7)(3)s G s s s s s +=+++,用MATLAB 编写程序来判断闭环系统的稳定性,并绘制闭环系统的零极点图。
在MATLAB 命令窗口写入程序代码如下:z=-2.5p=[0,-0.5,-0.7,-3]k=0.2Go=zpk(z,p,k)Gc=feedback(Go,1)Gctf=tf(Gc)dc=Gctf.dendens=poly2str(dc{1},'s')运行结果如下:dens=s^4 + 4.2 s^3 + 3.95 s^2 + 1.25 s + 0.5dens 是系统的特征多项式,接着输入如下MATLAB 程序代码:den=[1,4.2,3.95,1.25,0.5]p=roots(den)运行结果如下:p =-3.0058-1.0000-0.0971 + 0.3961i-0.0971 - 0.3961ip为特征多项式dens的根,即为系统的闭环极点,所有闭环极点都是负的实部,因此闭环系统是稳定的。
下面绘制系统的零极点图,MATLAB程序代码如下:z=-2.5p=[0,-0.5,-0.7,-3]k=0.2Go=zpk(z,p,k)Gc=feedback(Go,1)Gctf=tf(Gc)[z,p,k]=zpkdata(Gctf,'v')pzmap(Gctf)grid运行结果如下:z =-2.5000p =-3.0058-1.0000-0.0971 + 0.3961i-0.0971 - 0.3961ik =0.2000输出零极点分布图如图3-1所示。
848自动控制原理考研大纲
848自动控制原理考研大纲摘要:一、前言二、自动控制原理基本概念1.自动控制系统的定义2.自动控制系统的基本组成3.自动控制原理的研究内容三、自动控制系统的数学模型1.微分方程模型2.传递函数模型3.状态空间模型四、自动控制系统的稳定性分析1.稳定性的定义2.稳定性判据3.稳定性分析方法五、自动控制系统的稳态误差分析1.稳态误差的定义2.稳态误差分析方法3.稳态误差与系统参数的关系六、自动控制系统的动态性能分析1.动态过程的描述2.动态性能指标3.动态性能分析方法七、自动控制系统的调节器设计1.调节器的设计原则2.比例- 积分- 微分(PID)调节器设计3.其他类型调节器设计八、现代控制理论简介1.状态反馈控制系统2.输出反馈控制系统3.最优控制系统九、自动控制系统应用案例1.温度控制系统2.飞行控制系统3.电力系统稳定器十、考研大纲总结与建议正文:【前言】自动控制原理作为控制科学与工程学科的基础课程,广泛应用于各个领域。
本考研大纲旨在帮助考生掌握自动控制原理的基本概念、数学模型、稳定性分析、稳态误差分析、动态性能分析、调节器设计等核心内容,以提高考研成绩。
【自动控制原理基本概念】自动控制系统是一种通过控制器对被控对象进行调节,使其输出满足预设要求的系统。
它由控制器、被控对象、反馈装置三部分组成。
自动控制原理主要研究系统的建模、稳定性、稳态误差和动态性能等方面的问题。
【自动控制系统的数学模型】自动控制系统的数学模型包括微分方程模型、传递函数模型和状态空间模型。
其中,微分方程模型描述系统的动态过程;传递函数模型便于分析系统的稳定性;状态空间模型能够全面描述系统的状态和动态性能。
【自动控制系统的稳定性分析】稳定性是评价自动控制系统性能的重要指标。
稳定性分析包括稳定性定义、稳定性判据和稳定性分析方法。
稳定性定义主要有稳定平衡状态、稳定过渡过程等;稳定性判据有根轨迹法、频率响应法等;稳定性分析方法有极点配置法、观测器设计等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三 自动控制系统的稳定性和稳态误差分析
一、实验目的
1、研究高阶系统的稳定性,验证稳定判据的正确性;
2、了解系统增益变化对系统稳定性的影响;
3、观察系统结构和稳态误差之间的关系。
二、实验任务
1、稳定性分析
欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB 中的tf2zp 函数求出系统的零极点,或者利用root 函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。
(1)已知单位负反馈控制系统的开环传递函数为
0.2( 2.5)
()(0.5)(0.7)(3)
s G s s s s s +=
+++,用MATLAB 编写程序来判断闭环系统的稳定
性,并绘制闭环系统的零极点图。
在MATLAB 命令窗口写入程序代码如下: z=-2.5
p=[0,-0.5,-0.7,-3] k=0.2 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) 运行结果如下: Transfer function: 0.2 s + 0.5 --------------------------------------- s^4 + 4.2 s^3 + 3.95 s^2 + 1.25 s + 0.5
s^4 + 4.2 s^3 + 3.95 s^2 + 1.25 s + 0.5是系统的特征多项式,接着输入如下MATLAB程序代码:
den=[1,4.2,3.95,1.25,0.5]
p=roots(den)
运行结果如下:
p =
-3.0058
-1.0000
-0.0971 + 0.3961i
-0.0971 - 0.3961i
p为特征多项式dens的根,即为系统的闭环极点,所有闭环极点都是负的实部,因此闭环系统是稳定的。
下面绘制系统的零极点图,MATLAB程序代码如下:
z=-2.5
p=[0,-0.5,-0.7,-3]
k=0.2
Go=zpk(z,p,k)
Gc=feedback(Go,1)
Gctf=tf(Gc)
[z,p,k]=zpkdata(Gctf,'v')
pzmap(Gctf)
grid
运行结果如下:
z =
-2.5000
p =
-3.0058
-1.0000
-0.0971 + 0.3961i
-0.0971 - 0.3961i
k =
0.2000
输出零极点分布图如图3-1所示。
图3-1 零极点分布图
(2)已知单位负反馈控制系统的开环传递函数为
( 2.5)
()(0.5)(0.7)(3)
k s G s s s s s +=
+++,当取k =1,10,100用MATLAB 编写程序来
判断闭环系统的稳定性。
只要将(1)代码中的k 值变为1,10,100,即可得到系统的闭环极点,从而判断系统的稳定性,并讨论系统增益k 变化对系统稳定性的影响。
K=1时
K=10时
K=100时
2、稳态误差分析
(1)已知如图3-2所示的控制系统。
其中2
5
()(10)
s G s s s +=
+,试计算当输入为单位阶跃信号、单位斜坡信号和单位加速度信号时的稳态误差。
图3-2 系统结构图
从Simulink 图形库浏览器中拖曳Sum (求和模块)、Pole-Zero (零极点)模块、Scope (示波器)模块到仿真操作画面,连接成仿真框图如图3-3所示。
图中,Pole-Zero (零极点)模块建立()G s ,信号源选择Step (阶跃信号)、Ramp
(斜坡信号)和基本模块构成的加速度信号。
为更好观察波形,将仿真器参数中的仿真时间和示波器的显示时间范围设置为300。
图3-3 系统稳态误差分析仿真框图
信号源选定Step(阶跃信号),连好模型进行仿真,仿真结束后,双击示波器,输出图形如图3-4所示。
图3-4 单位阶跃输入时的系统误差
信号源选定Ramp(斜坡信号),连好模型进行仿真,仿真结束后,双击示波器,输出图形如图3-5所示。
图3-5 斜坡输入时的系统误差
信号源选定加速度信号,连好模型进行仿真,仿真结束后,双击示波器,输出图形如图3-6所示。
图3-6 加速度输入时的系统误差
从图3-4、3-5、3-6可以看出不同输入作用下的系统的稳态误差,系统是II 型系统,因此在阶跃输入和斜坡输入下,系统稳态误差为零,在加速度信号输入下,存在稳态误差。
(2)若将系统变为I型系统,
5
()
(10)
G s
s s
=
+
,在阶跃输入、斜坡输入和加
速度信号输入作用下,通过仿真来分析系统的稳态误差。
三、实验要求
(1)讨论下列问题:
a)讨论系统增益k变化对系统稳定性的影响;
增益K可以在临界K的附近改变系统的稳定性
b)讨论系统型数以及系统输入对系统稳态误差的影响。
增大系统开环增益K,可以减少0型系统在阶跃输入时的位置误
差,可以减少i系统在斜坡输入时的速度误差,可以减少ii型系
统在加速度输入时的加速度误差。
(5)实验体会。
通过实验,了解了高阶系统稳定性的判断,进一步验证了系统稳定性的正确性;了解了系统增益对系统稳定性的影响。