材料力学重难点分析

合集下载

(完整版)材料力学重点总结

(完整版)材料力学重点总结

(完整版)材料力学重点总结材料力学阶段总结一. 材料力学的一些基本概念 1. 材料力学的任务:解决安全可靠与经济适用的矛盾. 研究对象:杆件强度:抵抗破坏的能力 刚度:抵抗变形的能力稳定性:细长压杆不失稳。

2. 材料力学中的物性假设连续性:物体内部的各物理量可用连续函数表示。

均匀性:构件内各处的力学性能相同。

各向同性:物体内各方向力学性能相同。

3。

材力与理力的关系, 内力、应力、位移、变形、应变的概念材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。

内力:附加内力。

应指明作用位置、作用截面、作用方向、和符号规定。

应力:正应力、剪应力、一点处的应力。

应了解作用截面、作用位置(点)、作用方向、和符号规定。

正应力⎩⎨⎧拉应力压应力应变:反映杆件的变形程度⎩⎨⎧角应变线应变变形基本形式:拉伸或压缩、剪切、扭转、弯曲。

4. 物理关系、本构关系 虎克定律;剪切虎克定律:⎪⎩⎪⎨⎧==∆=Gr EA Pl l E τεσ夹角的变化。

剪切虎克定律:两线段——拉伸或压缩。

拉压虎克定律:线段的适用条件:应力~应变是线性关系:材料比例极限以内。

5。

材料的力学性能(拉压):一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:b s pσσσ、、,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。

拉压弹性模量E ,剪切弹性模量G ,泊松比v ,)(V EG +=126. 安全系数、 许用应力、工作应力、应力集中系数安全系数:大于1的系数,使用材料时确定安全性与经济性矛盾的关键。

过小,使构件安全性下降;过大,浪费材料。

许用应力:极限应力除以安全系数.塑性材料[]ssn σσ=s σσ=0脆性材料[]bbn σσ=b σσ=07. 材料力学的研究方法1) 所用材料的力学性能:通过实验获得。

2) 对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用的未来状态。

3) 截面法:将内力转化成“外力”。

《材料力学》课程教案1

《材料力学》课程教案1

《材料力学》课程教案1(一)轴向拉伸或压缩时的变形教学安排 ● 新课引入工程当中的构件要满足强度、刚度和稳定性的要求。

之前学习了轴向拉伸或压缩时杆的内力,应力,也就是强度问题。

今天转而讨论刚度问题。

工程当中构件因不满足刚度要求而失效的例子比比皆是,所谓刚度就是构件抵抗变形的能力,即一根杆件在设计好了之后,在正常的使用情况下,不能发生太大的弹性变形。

要想限制变形,首先应计算出变形。

如何计算?● 新课讲授一、纵向变形 (一)实验:杆件在受轴向拉伸时,在产生纵向变形的同时也产生横向变形。

纵向尺寸有所增大,横向尺寸有所减少。

思考:如图所示,杆件的纵向变形(axial deformation )的大小? 实验结论:F l ∝∆、l l ∝∆、A l 1∝∆AlF l ⋅∝∆⇒ 需引入比例常数,方可写成等式。

比例常数? (二)推导:杆件原长为l ,受轴向拉力F 之后,杆件长度由l 变成l 1,杆件纵向的绝对变形l l l -=∆1。

为了消除杆件长度对变形的影响,引入应变的概念ε。

当变形是均匀变形时,应变等于平均应变等于单位长度上的变形量,因此l l∆=ε。

学过的有关于ε的知识,即拉伸压缩的胡克定律(Hook’s law ):当应力不超过材料的比例极限时,应力与应变成正比,写成表达式即:εσ⋅=E )(p σσ<,σ(stress),ε(strain)。

杆件横截面上的应力:AF A F N ==σ 将应力和应变两式代入胡克定律中,得到:l lE AF ∆⋅=结论:纵向变形l ∆的表达式:EAFll =∆ )(p σσ< ——胡克定律(重点)含义:①E ——弹性模量,反映材料软硬的程度。

单位MPa 。

②在应力不超过比例极限时,杆件的伸长量l ∆与拉力F 成正比,与杆件的原长l 成正比,与弹性模量E 和横截面积A 成反比。

EA ——抗拉刚度,EA 越大,变形越小。

③两个胡克定律,一个是描述应力和应变的关系,一个是表示力和变形的关系,但本质上都是一样的。

(备份)材料力学复习重点难点

(备份)材料力学复习重点难点

6 塑性材料在拉伸试验的过程中,其 — 曲

7 若传动轴所传递的功率为 P 千瓦,转速为 n 转/分,则外力偶矩的计算公式为

8 根据梁的支座简化情况,可将工程中的梁分为三种基本形




9 若某坐标轴通过截面图形的形心,则截面图形对该轴的静矩必为
面图形对某坐标轴的静矩为零,则该坐标轴必通过截面图形的
10 有剪力无弯矩的弯曲为
; 既有剪力又有弯矩的弯曲为
11 中性轴一定通过截面

12 梁的合理强度设计措施主要有:


; 反之,若截 。


13 受力构件内的点在不同方位截面上应力的集合,称为点的__________。
14 切应力为零的平面称为__________,主平面上的正应力称为__________。
7 在梁某一段内作用有向下的均布力 q(x)时,则在该段内弯矩图是一条(
)。
A. 上凸曲线 B. 下凸曲线 C. 带有拐点的曲线 D. 斜直线
8 图示截面图形对形心轴 z 的惯性矩 Iz=(
)。
A. D4 dD3 32 12
B. D4 d 3D 32 12
C. D4 dD3 64 12
D. D4 d 3D 64 12
A
C
B
l
4 如图所示,长为 L 的简支梁承受均布载荷 q 的作用,作出其弯矩图。
5 图示传动轴,主动轮 C 上的外力偶矩为 3000N•
m,从动轮 B、C、D 上的外力偶矩分别为 500N•m、 1000 N•m 和 1500N•m。试作轴的扭矩图。
6 图示传动轴,主动轮 A 上的外力偶矩为 200N•m,从 动轮 B 和 C 上的外力偶矩为 150N•m 和 50N•m。试作 轴的扭矩图。

材料力学七大问题总结

材料力学七大问题总结

材料力学七大问题总结目录一、关于拉伸力-伸长曲线和应力-应变曲线的问题 (2)二、关于弹性变形的问题 (2)三、关于塑形变形的问题 (3)四、关于金属的韧度断裂问题 (4)五、关于硬度的问题 (6)六、关于金属在冲击载荷下的力学性能 (7)七、关于金属疲劳的问题 (8)一、关于拉伸力-伸长曲线和应力-应变曲线的问题低碳钢的应力-应变曲线a、拉伸过程的变形:弹性变形,屈服变形,加工硬化(均匀塑性变形),不均匀集中塑性变形。

b、相关公式:工程应力ζ=F/A0 ;工程应变ε=ΔL/L0;比例极限ζP;弹性极限ζε;屈服点ζS;抗拉强度ζb;断裂强度ζk。

真应变 e=ln(L/L0)=ln(1+ε) ;真应力 s=ζ(1+ε)= ζ*eε指数e为真应变。

c、相关理论:真应变总是小于工程应变,且变形量越大,二者差距越大;真应力大于工程应力。

弹性变形阶段,真应力—真应变曲线和应力—应变曲线基本吻合;塑性变形阶段两者出线显著差异。

二、关于弹性变形的问题a、相关概念弹性:表征材料弹性变形的能力刚度:表征材料弹性变形的抗力弹性模量:反映弹性变形应力和应变关系的常数, E=ζ/ε;工程上也称刚度,表征材料对弹性变形的抗力。

弹性比功:称弹性比能或应变比能,是材料在弹性变形过程中吸收变形功的能力,评价材料弹性的好坏。

包申格效应:金属材料经预先加载产生少量塑性变形,再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。

滞弹性:(弹性后效)是指材料在快速加载或卸载后,随时间的延长而产生的附加弹性应变的性能。

弹性滞后环:非理想弹性的情况下,由于应力和应变不同步,使加载线与卸载线不重合而形成一封闭回线。

金属材料在交变载荷作用下吸收不可逆变形功的能力,称为金属的循环韧性,也叫内耗b、相关理论:弹性变形都是可逆的。

理想弹性变形具有单值性、可逆性,瞬时性。

但由于实际金属为多晶体并存在各种缺陷,弹性变形时,并不是完整的。

《结构力学》内容总结及难点分析

《结构力学》内容总结及难点分析

黑龙江教育·理论与实践2016.11《结构力学》是土木工程专业的一门重要专业基础课,要求学生掌握杆件体系内力与位移计算。

学习该课程不能靠死记硬背,必须在吃透概念的基础上熟练掌握结构的分析能力。

下面归纳总结各部分内容的基本概念、重点和难点,希望能对学生的学习起指导作用。

一、结构的几何组成分析总体上,可通过下面两种方法来分析平面体系的几何组成特点。

(一)通过计算自由度来进行几何组成分析需要提醒W≤0只是保证平面体系为几何不变的必要条件,此时确定体系是否几何不变,尚需运用几何组成规则进行进一步分析。

同时要注意:当只考虑结构体系本身,不存在或不考虑结构的支座时,则体系为几何不变的必要条件是W≤3。

(二)运用几何不变体系的组成规则进行几何组成分析要掌握并能灵活运用三个组成规则。

实际上三规则为同一规则(铰结三角形规律),只是表述方式不同。

对体系进行几何组成分析时,要注意:1.三个组成规则对应的限制条件;2.刚片可以是单个杆件,也可以是一几何不变结构部分;3.特别注意复铰、虚铰及无穷远虚铰的特性。

二、静定结构的内力和位移计算静定结构的内力分析和位移计算是超静定结构及其他问题的分析和计算基础。

(一)静定梁及钢架1.内力及内力图。

要求熟练计算内力,并掌握用分段叠加法快速绘制内力图。

因为这也是结构的强度计算、位移计算、超静定问题的求解、结构的动力计算等方面的基础。

要学会分段叠加法,必须根据荷载和内力间的微分关系,熟练掌握每种典型荷载(无荷载、均布荷载、集中力及集中力偶)作用下的梁段内力图特征。

弯矩图要画在杆件受拉纤维的一侧,不标注正负号;而剪力图和轴力图可画在杆件任一侧,但必须标注正负号。

尤其要熟练掌握弯矩图的绘制,因为根据静力平衡条件,若取杆件为隔离体,由弯矩图可求出剪力并作剪力图;而由剪力图可求出轴力并作轴力图,所以作内力图(桁架结构除外)最终可归结为作弯矩图。

另外,内力求解时要注意定向支座的特性。

2.位移计算。

材料力学重难点分布

材料力学重难点分布

材料力学重难点分布1.《材料力学》教材知识点梳理2.《材料力学》课后习题讲解3.《材料力学学习与考研指导书》中考研重难点知识点贯通4.历年真题解析附:重难点分布1、《材料力学上册》:80%章节章节名称重点难点必考点考试题分值型3第1章结论及基本概念×××选择题(最多一道)第2章轴向拉伸和压缩××√选择题6第3章扭转×√√选择题10-15或计算题一道第4章弯曲应力√√√必考计20-30算题一道第5章梁弯曲时的位移√√×一般会考一道计算题15-20第6章简单的超静定问题×√×有可能会考计算题一道,选择题出现的可能性很大10-15第7章应力状态与强度理论√√√必考至少一道计算题,选择题也必有20-30第8章组合变形及连接部分的计算×√√选择题必有,有时会有一道大题15-20第9章压杆稳定√√√必有计算题,会15-20有选择题2、《材料力学下册》:20%章节章节名称重点难点必考点考试题型分值第1章弯曲问题的进一步研究×××选择题3第2章考虑材料塑性的极限分析×××选择题3第3章能量法√√√至少计一15-20道算题、会有选择题第4章压杆稳定问题的进一步研究×××10-15第5章应变分析·电子应变片基础√×√可能会考到大题,但是选择题必有15-20第6章动荷载·交变应力√√√必考一大题第7章材料力学性能的进一步研究×××不考上课使用讲义专业课指定教材1. 孙训方等《材料力学》(第5版),高等教育出版社,2008年2. 胡增强等《材料力学学习指导书》,高等教育出版社,2005年3. 江晓禹等《材料力学考研与学习指导书》,西南交通大学出版社,2008年4. 郭维林等《材料力学(第五版)同步辅导及习题全解》,中国水利水电出版社,2011年本课程使用的讲义主要有:考试指定参考教材(如上所述),近10年真题和答案、近5年专业课讲义、西南交通大学材料力学教研室材料力学课件等(出题老师给本科生上课时的课件)。

材料力学重点归纳

材料力学重点归纳

材料力学考试重点一、。

课程的性质、任务材料力学是变形体力学的最基础课程。

固体力学(即变形体力学)是研究固体材料的变形、流动和断裂的一门科学。

它是材料科学专业的一门理论性较强的重要的技术基础课程。

本课程的基本任务是为了提高材料工程类专业学生的力学基础素养,使之掌握该专业所必需的固体力学基本概念、基本方法和基础理论,培养学生具备一定的力学分析计算能力和基本的力学实验技能,为学习后续专业课程奠定必要的力学基础。

教学的同时注意结合本课程的特点培养学生的辩证唯物主义观点。

二、课程的基本要求通过本课程的教学,应使学生达到下列基本要求:1.理论力学静力学是系统学习力学课程的必要基础。

因此要求学生理解并掌握理论力学静力学的有关概念和理论。

了解几种常见的约束类型的性质及静力学基本公理。

较熟练地掌握对物体进行受力分析的方法。

2.了解静力学的基本任务。

理解并掌握力线的平移定理。

熟悉各类平面力系的简化方法和结果。

掌握各类平面力系的平衡条件,并能熟练地应用它们去求解物体(或物体系)的平衡问题。

简单了解空间力系的简化结果、力对轴之矩的概念及重心的概念。

3.理解并掌握固体力学的有关基本概念:对固体力学分析问题、解决问题的基本方法和思路有明确的认识。

4.掌握一维工程构件三种基本变形的内力、应力和变形的分布变化规律、基本分析方法以及计算方法。

5.清楚了解研究测试固体材料力学性质的意义和方法,对常见固体材料(典型的金属材料和岩石)的力学性质和测定方法有基本认识和掌握。

了解电测应力方法的基本原理。

6.对应力、应力状态、应变、应变、应变状态的概念有较明确的认识。

较熟练掌握应力分析理论和应变分析理论。

7.理解和掌握固体材料弹性变形和塑性变形的主要特征,对屈服函数、主应力空间、屈服面、屈服曲线、屈服条件等概念有较明确认识。

熟悉掌握强度理论:最大拉应力理论、最大剪应力理论、形状改变比能理论、莫尔强度理论和库仑-纳维叶剪切强度准则的基本观点、适用范围、表达形式和工程应用。

材料力学知识点总结(重、难点部分)

材料力学知识点总结(重、难点部分)

第一章 绪 论一、基本要求(1)了解构件强度、刚度和稳定性的概念,明确材料力学课程的主要任务。

(2)理解变形固体的基本假设、条件及其意义。

(3)明确内力的概念、初步掌握用截面法计算内力的方法。

(4)建立正应力、剪应力、线应变、角应变及单元体的基本概念。

(5)了解杆件变形的受力和变形特点。

二、重点与难点1.外力与内力的概念外力是指施加到构件上的外部载荷(包括支座反力)。

在外力作用下,构件内部两部分间的附加相互作用力称为内力。

内力是成对出现的,大小相等,方向相反,分别作用在构件的两部分上,只有把构件剖开,内力才“暴露”出来。

2.应力,正应力和剪应力在外力作用下,根据连续性假设,构件上任一截面的内力是连续分布的。

截面上任一点内力的密集程度(内力集度),称为该点的应力,用p 表示0lim A P dP p A dA→∆==∆ P ∆为微面积A ∆上的全内力。

一点处的全应力可以分解为两个应力分量。

垂直于截面的分量称为正应力,用符号σ表示;和截面相切的分量称为剪应力,用符号τ表示。

应力单位为Pa 。

1MPa=610Pa, 1GPa=910Pa 。

应力的量纲和压强的量纲相同,但是二者的物理概念不同,压强是单位面积上的外力,而应力是单位面积的内力。

3.截面法截面法是求内力的基本方法,它贯穿于“材料力学”课程的始终。

利用截面法求内力的四字口诀为:切、抛、代、平。

一切:在欲求内力的截面处,假想把构件切为两部分。

二抛:抛去一部分,留下一部分作为研究对象。

至于抛去哪一部分,视计算的简便与否而定。

三代:用内力代替抛去部分队保留部分的作用力。

一般地说,在空间问题中,内力有六个分量,合力的作用点为截面形心。

四平:原来结构在外力作用下处于平衡,则研究的保留部分在外力与内力共同作用也应平衡,可建立平衡方程,由已知外力求出各内力分量。

4.小变形条件在解决材料力学问题时的应用由于大多数材料在受力后变形比较小,即变形的数量远小于构件的原始尺寸。

材料力学章节重点和难点

材料力学章节重点和难点

材料力学章节重点和难点第一章绪论1.主要内容:材料力学的任务;强度、刚度和稳定性的概念;截面法、内力、应力,变形和应变的基本概念;变形固体的基本假设;杆件的四种基本变形。

2.重点:强度、刚度、稳定性的概念;变形固体的基本假设、内力、应力、应变的概念。

3.难点:第二章杆件的内力1.主要内容:杆件在拉压、扭转和弯曲时的内力计算;杆件在拉压、扭转和弯曲时的内力图绘制;平面弯曲的概念。

2.重点:剪力方程和弯矩方程、剪力图和弯矩图。

3. 难点:绘制剪力图和弯矩图、剪力和弯矩间的关系。

第三章杆件的应力与强度计算1.主要内容:拉压杆的应力和强度计算;材料拉伸和压缩时的力学性能;圆轴扭转时切应力和强度计算;梁弯曲时正应力和强度计算;梁弯曲时切应力和强度计算;剪切和挤压的实用计算方法;胡克定律和剪切胡克定律。

2.重点:拉压杆的应力和强度计算;材料拉伸和压缩时的力学性能;圆轴扭转时切应力和强度计算;梁弯曲时正应力和强度计算。

3.难点:圆轴扭转时切应力公式推导和应力分布;梁弯曲时应力公式推导和应力分布;第四章杆件的变形简单超静定问题1.主要内容:拉(压)杆的变形计算及单超静定问题的求解方法;圆轴扭转的变形和刚度计算;积分法和叠加法求弯曲变形;用变形比较法解超静定梁。

2.重点:拉(压)杆的变形计算;;圆轴扭转的变形和刚度计算;叠加法求弯曲变形;用变形比较法解超静定梁。

3.难点:积分法和叠加法求弯曲变形;用变形比较法解超静定结构。

第五章应力状态分析? 强度理论1.主要内容:应力状态的概念;平面应力状态分析的解析法和图解法;广义胡克定律;强度理论的概念及常用的四种强度理论。

2.重点:平面应力状态分析的解析法和图解法;广义虎克定律;常用的四种强度理论。

3.难点:主应力方位确定。

第六章组合变形1.主要内容:拉伸(压缩)与弯曲、斜弯曲、扭转与弯曲组合变形的强度计算;2.重点: 弯扭组合变形。

3.难点:截面核心的概念第七章压杆稳定1.主要内容:压杆稳定的概念;各种支座条件下细长压杆的临界载荷;欧拉公式的适用范围和经验公式;压杆的稳定性校核。

《材料力学》课程教案2

《材料力学》课程教案2

《材料力学》课程教案2(二)拉伸、压缩的超静定问题程过主要内容和教学步骤教学反思教学安排•新课引入如图所示的两杆组成的桁架结构受力,由于是平面汇交力系,可由静力平衡方程求出两杆内力。

如果为了提高构件安全性,再加一个杆,三杆内力还能由静力平衡方程求出吗?•新课讲授一、静定结构(一)提出问题1和2两杆组成桁架结构受力如图所示,角度己知,两杆抗拉刚度相同,ElA=E2A2,求两杆中内力的大小。

(二)分析:求内力n截面法(1截2代3列平衡方程)Σx=O=>FNISEa-FN*。

1。

=0Ey=On F Nl Cosa+F N2Cosa+F N3-F=0两个方程,两个未知数,可以求解。

引出静定结构:约束反力(轴力)可以由静力平衡方程完全求出。

二、超静定结构和超静定次数(一)继续提问在现实中为了增加构件的安全性,往往可以多加一个杆,在问题一的基础上在中间再加一个3杆,抗拉刚度为E t A3,如图所示,求3杆中内力的大小。

(二)分析:求内力n截面法(1截2代3列平衡方程)①静平衡方程:平面汇交力系,只能列两个平衡方程点=On F N]Sina-F N2Sina=0Ey=O=F N∖&«。

+FNICOSa+%3-尸=°两个方程,三个未知数,解不出。

引出超静定结构:约束反力(轴力)不能由静力平衡方程完全求出。

超静定次数:约束反力(轴力)多余平衡方程的个数。

上述问题属于一次超静定问题。

三、超静定结构的求解方法(一)继续提问,引导学生深入思考:超静定到底能不能求解?实际上F-定,作用于每个杆上的力都是确定的。

还需再找一个补充方程,材料力学是变形体,受力会引起变形,力和力的关系看不出,先把变形关系找到,再转化成力的关系。

(重点)②几何方程一一变形协调方程:要找变形关系,关键是画变形图(难点)。

节点在中间杆上,左右两杆抗拉刚度相同,角度相同,即对称,因此中间杆仅沿竖直方向产生伸长,确定最终位置。

最新材料力学常规实验中存在问题及不足探究论文

最新材料力学常规实验中存在问题及不足探究论文

摘要:本文简要介绍了材料力学常规实验中存在的一些问题及不足,探索了一些解决问题的方法,并简要介绍自己动手改造实验设备,提高教学水平的心得。

关键词:材料力学;实验;改进;材料力学是机电、建筑、水利等工科专业重要的基础课之一,它主要研究材料受力后的变形和破坏规律,为构件选择适当的材料,确定合理的形状和尺寸,提供必要的理论基础和计算方法,使构件达到既安全又经济的要求。

它和实际工程联系性强,对于刚从中学进入大学一年多的学生来说,有些理论和概念光靠讲解很难真正理解。

因此,实验对于学生进一步掌握和领悟所学的课堂内容有着非常重要的作用。

特别是材料力学的理论是建立在将真实材料理想化,实际构件典型化,公式推导假设化基础之上的,它的结论是否正确以及能否在工程中应用,都只有通过实验验证才能断定。

所以,实验在材料力学的教学过程中占有非常重要的位置。

常规传统的材料力学基本实验包括材料拉伸实验、压缩实验、弹性模量的测试等。

这些实验都需要在万能材料试验机上进行。

我们在教学中发现,由于学生在此之前从未接触过该类设备,操作比较生疏,再加上有的学生上课之前没有好好预习,实验时边看书边操作,即使老师讲解过一遍也不熟悉,容易出现操作故障,实验数据有时也不准确,使学生对实验产生畏难情绪,失去对实验的兴趣。

为了克服这种现象,我们经过探讨实践,主要采取了以下几个方面的措施:一、充分发挥实验教学的直观性促使学生把实验观察到的现象和实验结果与书本的理论和分析联系起来,从而加深对课堂所学的知识的理解与掌握。

如材料拉伸实验,学生在比较低碳钢和铸铁破坏后的断口形貌时,往往就光是直观的看到低碳钢断裂时有颈缩现象,铸铁则没有。

再引导学生仔细观察,就会发现低碳钢断口四周有塑性破坏产生的小光亮斜面,而中心部分组织较为粗糙,并且和试件轴线几乎是垂直的,这主要是拉断的。

然后再让学生讨论试件的断裂过程是怎样的。

由于断裂发生在试件内部,直观上是看不到的,只有通过对断口形貌的分析并联系以前学过的知识,才能得出结论。

材料力学最难的知识点总结

材料力学最难的知识点总结

材料力学最难的知识点总结弹性力学弹性力学是材料力学中的一个重要分支,它研究材料在外力作用下的弹性变形规律。

在弹性力学中,最困难的知识点之一是材料的应力-应变关系。

材料的应力-应变关系是指在材料受到外力作用时,应力与应变之间的关系。

这一关系在工程实践中是非常重要的,因为它可以帮助工程师预测和分析材料的性能。

材料的应力-应变关系通常可以用弹性模量来描述,弹性模量是材料在弹性变形阶段的应力-应变关系的斜率。

然而,在实际工程中,材料的应力-应变关系往往是复杂的,因为材料在受到外力作用下可能发生塑性变形或者断裂。

此外,不同类型的材料,如金属、聚合物和陶瓷,它们的应力-应变关系也有所不同。

在学习材料的应力-应变关系时,学生需要掌握材料的本构方程和屈服准则。

材料的本构方程描述了材料的应力-应变关系,在不同的外力作用下,材料的应力-应变关系可能会发生变化。

屈服准则则是用来描述材料在何种条件下会发生塑性变形的规律。

这些知识点需要学生具备扎实的数学和物理基础,以及对材料学的深刻理解,才能够正确地理解和应用。

另一个困难的知识点是材料的疲劳和断裂。

材料在长期的外力作用下会发生疲劳破坏,这是工程实践中经常会遇到的问题。

疲劳破坏的机制非常复杂,涉及到材料的微观结构和外力的作用方式,因此很难进行准确的预测和分析。

疲劳破坏可以通过疲劳强度和疲劳寿命来描述,而这两个参数又与材料的强度、韧性、变形能力等相关联,因此学生需要全面了解材料的性能和疲劳破坏的机理,才能够正确地理解和分析疲劳现象。

断裂是材料工程中另一个重要的问题。

在很多情况下,材料的强度很难满足工程要求,导致断裂问题成为制约产品寿命和安全性的重要因素。

断裂现象也涉及到材料的微观结构和外力的作用方式,因此很难进行准确的预测和分析。

在学习断裂现象时,学生需要掌握裂纹扩展的机理和规律,同时也需要了解不同类型的断裂模式,如脆性断裂和韧性断裂。

这些都需要学生具备扎实的材料力学和材料学知识,才能够正确地理解和分析断裂现象。

材料力学构件内力分析

材料力学构件内力分析

中所示以截面形心为简化中心的主矢和主矩。

与几种基本变形对应的是主矢和主矩在确定的坐标方向上的分量。

图中所示的和分别为主矢和主矩在或称为轴力,它与杆产生的轴向变形(伸长或缩短)相对应。

、称为剪力,二者均与杆件产生的剪切变形相对应。

称为扭矩、称为弯矩轴力或————无论作用在哪一侧截面上,使杆件受拉者为正;受压者为负。

剪力或————使杆件截开部分产生顺时针方向转动者为正;逆时针方向转动者为负。

弯矩或————作用在左侧面上使截开部分逆时针方向转动;扭矩————扭矩矢量方向与截面外法线方向一致者为正;反之为负。

通常将截面上的分布内力用位于该截面形(空间任意力系)、、和、、来表示,如图、和间的微分关系,将进一步揭示载荷、剪力图和弯矩图三者间存在的某些规律,在所示的梁上作用的分布载荷集度是的连续函数。

设分布载荷向上为正,反之为负,并以为原点,取轴向右为正。

用坐标分别为和的两个横截面从梁上截出长为的微段,其受力(2-1)略去二阶微量解得 (2-2)(2-3)就是荷载集度、剪力和弯矩间的微分关系。

由此可知和分别是剪力图处为固定端约束,作用有约束力。

由0截面:截面:例2-2 图2-7(a)所示的传动轴的转速=300r/min,主动轮A的功率=400kW,3个从动轮输出功率分别为=120kW,=120kW,=160kW,试求指定截面的扭矩(N•m)图2-7解由,得=kN•m=kN•mkN•m如图2-7(b)。

由Σ,解得 kN•m如图2-7(c)。

由Σ,解得kN•m如图2-7(d)。

由Σ,解得kN•m由上述扭矩计算过程推得:任一截面上的扭矩值等于对应截面一侧所有外力偶矩的代数和,且外力偶矩应用右手螺旋定则背离该截面时为正,反之为负。

例2-3 试作出例7-2中传动轴的扭矩图。

图2-8解BC段:kN·mkN·mCA段: kN·mkN·mAD段: kN·mkN·m根据、、、、、的对应值便可作出图 7-17(c)所示的扭矩图。

材料力学电子教案

材料力学电子教案

材料力学电子教案第一章:材料力学概述1.1 课程介绍介绍材料力学的基本概念、研究对象和内容强调材料力学在工程领域的重要性1.2 材料的力学性能介绍材料的弹性、塑性、韧性、硬度等力学性能解释各种力学性能指标的定义和意义1.3 应力与应变定义应力、应变、泊松比等基本概念解释应力-应变关系的图形和特点第二章:弹性变形2.1 弹性理论基础介绍弹性模量、剪切模量等基本弹性参数解释弹性矩阵和弹性方程的定义和应用2.2 拉伸和压缩分析拉伸和压缩试验的应力-应变关系计算拉伸强度、压缩强度等指标2.3 弯曲和扭转分析弯曲和扭转试验的应力-应变关系计算弯曲强度、扭转刚度等指标第三章:塑性变形3.1 塑性理论基础介绍塑性变形的基本概念和特点解释塑性极限、塑性应变等参数的定义和计算方法3.2 拉伸和压缩塑性变形分析拉伸和压缩试验的应力-应变关系计算屈服强度、伸长率等指标3.3 弯曲和扭转塑性变形分析弯曲和扭转试验的应力-应变关系计算屈服强度、挠度等指标第四章:材料的高温力学性能4.1 高温弹性变形介绍高温下材料的弹性性能变化分析高温下弹性模量的变化规律和影响因素4.2 高温塑性变形介绍高温下材料的塑性性能变化分析高温下塑性极限、屈服强度等指标的变化规律和影响因素4.3 高温韧性介绍高温下材料的韧性变化分析高温下韧性的评价方法和指标第五章:材料的疲劳与断裂5.1 疲劳基础介绍疲劳现象和疲劳寿命的概念解释疲劳循环应力、疲劳极限等参数的定义和意义5.2 疲劳强度计算介绍疲劳强度的计算方法和疲劳寿命的预测模型分析影响疲劳寿命的因素和提高疲劳强度的方法5.3 断裂力学基础介绍断裂力学的基本概念和断裂韧性解释应力强度因子、裂纹扩展速率等参数的定义和计算方法第六章:材料力学在结构分析中的应用6.1 梁的弯曲介绍梁的弯曲理论,包括剪力、弯矩和曲率的关系分析梁的弯曲强度和稳定性问题6.2 杆件的拉伸和压缩分析杆件在拉伸和压缩状态下的应力分布计算杆件的拉伸强度和压缩强度6.3 平面应力问题和空间应力问题解释平面应力问题和空间应力问题的概念分析应力转换和应力解的基本原理第七章:材料力学在材料设计中的应用7.1 材料设计的基本原则介绍材料设计的目标和基本原则解释材料设计的基本流程和方法7.2 材料的力学性能设计分析材料的力学性能对材料设计的影响介绍提高材料力学性能的设计方法和策略7.3 新型材料的力学性能研究介绍新型材料的研究和发展趋势分析新型材料在材料力学性能方面的优势和应用前景第八章:实验技能与数据分析8.1 实验设备与方法介绍材料力学实验设备的使用和操作方法解释实验数据的采集和处理流程8.2 材料力学实验项目分析常见的材料力学实验项目及其目的和意义介绍实验结果的评估和分析方法8.3 数据分析与处理介绍数据分析的基本方法和技巧解释数据处理在材料力学研究中的应用和重要性第九章:材料力学在工程中的应用9.1 土木工程中的应用分析材料力学在土木工程中的应用案例介绍材料力学在结构设计、桥梁工程等方面的应用9.2 机械工程中的应用分析材料力学在机械工程中的应用案例介绍材料力学在机械零件设计、材料选择等方面的应用9.3 航空航天工程中的应用分析材料力学在航空航天工程中的应用案例介绍材料力学在飞行器结构设计、航天材料选择等方面的应用第十章:材料力学的未来发展10.1 新型材料的研究与发展介绍新型材料的研究方向和发展趋势分析新型材料在材料力学性能方面的创新和突破10.2 材料力学与其他学科的交叉研究介绍材料力学与其他学科的交叉研究领域分析交叉研究对材料力学发展的影响和意义10.3 材料力学的挑战与机遇分析材料力学面临的挑战和问题探讨材料力学的未来机遇和发展方向重点和难点解析1. 弹性变形和塑性变形的理解和区分。

材料力学实验课程教学大纲

材料力学实验课程教学大纲

材料力学实验课程教学大纲课程名称:材料力学/ Mechanics of Materials课程代码:05123122课程类别:专业/必修学时数:12学分:1.0先修课程:高等数学、理论力学等开课单位:建筑工程学院适用专业:土木工程;土木类(中德联合培养)一、课程的性质、目的和任务材料力学实验是材料力学教学中的一个重要环节,对于提高学生的综合素质、培养学生的实践能力与创新精神具有极其重要的作用。

通过材料力学实验不仅丰富了学生的书本知识,而且增强了学生的实践能力;更重要的是,提高了学生应用实验的手段与方法去分析、研究和解决工程问题的能力;提高了学生建立或者修正完善力学模型的能力。

通过力学实验还可以培养学生对一些新材料和新结构的研究能力。

通过实验课的系统训练,学生应掌握材料力学实验的基本知识,熟练掌握实验报告的书写方法,掌握简单设计性实验报告的书写方法,掌握实验数据处理及误差分析方法;了解实验设备、仪器的基本工作原理,掌握它们的操作方法;掌握材料力学实验中的基本实验方法,能应用材料力学知识解释、分析拉伸、扭转、弯曲等实验中所发生的应力和应变变化的规律;初步具备对材料力学实验过程的设计能力,即能独立完成实验的全过程,具有一定的动手能力和思维判断能力。

二、教学内容、教学基本要求及教学重点与难点1.万能试验机操作及拉伸示范实验、拉伸试验了解万能试验机的构造原理和使用方法,结合具体机型认识主要部件及其作用;了解游标卡尺原理及能正确使用游标卡尺。

正确测定低碳钢的P s,P b值,准确测量试验前后的l0,d0,l,d;根据试验测定值计算σs,σb,ψ,δ。

教学重点与难点:了解试验设备——万能材料试验机的构造和工作原理,掌握其操作规程及使用时的注意事项;观察低碳钢在拉伸过程中的各种现象(包括屈服、强化、强化、颈缩及断裂);测定低碳钢的强度和塑性指标:屈服极限σs、强度极限σb、伸长率δ和截面收缩率ψ;观察材料在拉伸过程中的各种现象,并利用自动绘图装置绘制拉伸图(P─ΔL曲线)。

材料力学总复习重点 刘鸿文版本共47页

材料力学总复习重点 刘鸿文版本共47页

第4章 弯曲内力
4.1 弯曲
以轴线变弯为主要变形特征的变形形式称为弯曲,以弯曲为 主要变形的杆件称为梁。
4.2 梁的计算简图与分类
(1)在分析梁的内力与变形时,通常以梁的轴线代替梁。 (2)梁承受的载荷通常有哪些? (3)梁的支座通常可以简化为哪三种形式? (4)支座反力可以由静力平衡方程求解的梁称为静定梁,静定 梁的基本形式哪三类? (5)静不定梁的定义?
σ
y
x 2 y x 2 y c2 o x s s y2 i n
α
τxy
σ
x
x2 ys2 i n xc y o 2 s
图解法求斜截面上的应力
1、绘制应力圆的方法
y
y
B
σx
A
x
O
c
a(x ,x)
b(y ,y) R
xC
2、根据三个对应关系求出方位角为α的斜截面上的应力 。
式中C、D为积分常数,由梁的边界和连续条件确定。
练习:确定图示简支梁的边界条件与连续条件
M
A
B
C
l/2
l/2
x0 xl
x l/2
wA 0
wB 0
w w C , A C
C ,CB
W’C,AC=W’C,CB
边界条件 连续条件
6.4 计算梁与刚架位移的叠加法(非考试重点)
(1)载荷叠加法:在线弹性与小变形条件下,结构作用多个载 荷时,任意横截面的总位移,等于各载荷单独作用时在该截面 引起的位移的代数和或矢量和。
7.3 极值应力与主应力 (1)平面应力状态的极值应力 ①最大与最小正应力分别为:
②最大与最小应力所在截面方位角:
③最大与最小切应力分别为:
(2)主应力、主平面及主单元体的概念 主平面? 主应力? 主单元体?

材料力学重点总结-材料力学重点

材料力学重点总结-材料力学重点

材料力学重点总结-材料力学重点在材料力学中,研究方法包括获得所用材料的力学性能、对构件的力学要求进行实验和建立理论以预测理论应用的未来状态。

此外,还有平面假设,以寻找应力的分布规律。

最后,我们需要注意,在求解梁的内力方程时,需要将梁的坐标原点放在梁的左端(或右端),并使后一段的弯矩方程中总包括前面各段。

此外,四个积分常数A、B、C、D可以通过边界条件来确定。

Internal force is a function of the beam section position, and the internal force equation is a piecewise function that has the concentrated force and moment as the breakpoints for the distributed force;1) At the concentrated force, the shear force changes abruptly by the value of the concentrated force, while the bending moment remains unchanged;2) At the concentrated moment, the shear force remains unchanged, and the bending moment changes abruptly by the value of the concentrated moment;3) The shear force is equal to the algebraic sum of the external forces leaving the beam section. The sign of the external force outside the section at the other end is the same as the sign of the shear force. Other external forces with the same direction have the same sign, while those with opposite directions have opposite signs;4) The bending moment is equal to the algebraic sum of the external force and external moment leaving the body, with respect to the centroid of the cross-section. The sign of the external moment and external force depends on the bending moment sign rule.The steps to solve for the beam internal force and internal force diagram are:1) Establish the coordinates and calculate the constraint reactions;2) Divide the internal force equation into sections;3) Write the internal force equation according to the internal force equation rule;4) Use the relationship between the distributed load q, shear force Q, and bending moment M to draw the internal force diagram;5) Draw the shear force and bending moment diagrams:- For a beam section without a distributed load, the shear force is constant, and the bending moment is a straight line. Q>, the M diagram has a positive slope (﹨); Q<, the M diagram has a negative slope (/);- For a beam section with a constant distributed load, the shear force diagram is a straight line, and the bending moment diagram is a parabola. q<, the Q diagram has a negative slope (﹨), and the M diagram is concave downward (︶); q>, the Q diagram has a positive slope (/), and the M diagram is convex upward (︵);- At the section where Q=0, the bending moment can be a maximum or minimum;- At the section where the concentrated force acts, the shear force diagram changes abruptly by the value of the concentrated force, and the slope of the bending moment diagram also changes abruptly, creating a sharp corner;- At the section where the concentrated moment acts, the shear force diagram remains unchanged, and the bending moment diagram changes abruptly by the value of the moment;- At the section where the shear force is zero, changes sign, and where the concentrated moment acts (including the fixed end of the beam), the maximum bending moment (Mmax) is determined;- The shear force at a specified section is equal to the sum of the shear force at the previous section and the area of the distributed load diagram between the two sections. The bending moment at a specified section is equal to the sum of the bending moment at the previous section and the area of the shear force diagram between the two sections.The conjugate beam method is used to calculate the beam deflection and slope:Instructions and notes:1) First, determine the support conditions of the conjugate beam based on the support conditions of the real beam;2) Draw the bending moment diagram of the real beam, which serves as the distributed load diagram of the conjugate beam. Note that when the bending moment of the real beam is positive, thedirection of the distributed load of the conjugate beam is upward, and vice versa;3) The unit of the distributed load q(x)of the conjugate beam is the same as the unit of the bending momentM(x) of the real beam.3. 在主轴方向上,我们可以使用以下公式进行计算:- σ1 = E1ε1- ε1 = (σ1 - v(σ2 + σ3))/E- σ2 = 2231E(1+v)(1-2v) 或1/E(ε2 - v(ε1 + ε3))- ε2 = (σ2 - v(σ1 + σ3))/(E(1-v))- σ3 = 3E3(1+v)(1-2v) 或1/E(ε3 - v(ε1 + ε2))对于非主轴方向,我们可以使用以下公式进行计算:- εx = E(σx - v(σy + σz))- εy = E(σy - v(σz + σx))同时,我们还可以使用以下公式计算体积应变:4. 强度理论可以写成如下统一形式:- σr ≤ [σ], 其中:- σr:相当应力,由三个主应力根据各强度理论按一定形式组合而成。

西南交大材料力学教案

西南交大材料力学教案

西南交大材料力学教案一、引言1. 课程背景材料力学是工程专业的一门重要基础课程,主要研究材料在外力作用下的力学行为,包括弹性、塑性、断裂等现象。

通过对材料力学的学习,使学生掌握材料的基本力学性质,能够分析评价材料的力学性能,为工程设计和施工提供理论依据。

2. 课程目标(1)理解材料力学的基本概念、原理和公式;(2)掌握材料力学性能的测试方法和技术;(3)能够运用材料力学知识分析和解决实际工程问题。

二、弹性理论1. 弹性与弹性形变介绍弹性的概念,解释弹性形变、弹性模量、泊松比等基本概念,并通过实例说明弹性形变在实际工程中的应用。

2. 应力与应变讲解应力、应变的概念及计算方法,分析拉压杆、扭转、弯曲等基本受力状态下的应力与应变关系,引导学生运用弹性理论分析实际问题。

3. 弹性方程与弹性能量推导弹性方程,讲解位移场、应力张量等概念,介绍弹性能量的表达式,探讨弹性能量在工程中的应用。

三、塑性理论1. 塑性与塑性变形介绍塑性的概念,分析塑性变形的特点,讲解塑性变形的测量方法,以及塑性变形在工程中的应用。

2. 塑性准则与屈服条件介绍屈服的概念,讲解塑性准则(包括屈服强度、极限强度等),分析不同加载路径下的屈服条件。

3. 塑性变形的基本方程推导塑性变形的基本方程,讲解应力增量、应变增量等概念,引导学生运用塑性理论分析实际问题。

四、断裂与疲劳1. 断裂力学基础介绍断裂力学的概念,讲解断裂韧度、裂纹扩展速率等基本参数,分析断裂力学在工程中的应用。

2. 疲劳与疲劳寿命讲解疲劳现象,分析疲劳寿命的影响因素,介绍疲劳强度设计方法,探讨疲劳损伤在工程中的应用。

3. 断裂与疲劳的防治措施分析断裂与疲劳产生的原因,讨论防治措施,如材料选择、结构设计优化、焊接技术等。

五、材料力学实验1. 实验目的与意义讲解材料力学实验在教学和科研中的重要性,明确实验目标,使学生了解实验方法和技巧。

2. 实验设备与方法介绍实验设备、实验原理及实验方法,如拉伸试验、压缩试验、弯曲试验等,引导学生动手进行实验操作。

《材料力学》课程教学大纲

《材料力学》课程教学大纲

《材料力学》课程教学大纲了解材料力学的基本理论、基本概念和基本分析方法。

使学生能科学地辨认材料力学中的各种概念、原理、专业术语,使学生知道材料力学中各种构件的分类、受力过程和变化倾向。

理解材料力学中杆件和梁的几种变形形式。

使学生能用自己的语言对各种理论知识加以叙述、解释和归纳,并且能够指出各部分知识之间的内在联系和相互区别。

熟悉各种概念、原理和定律,掌握其计算与应用的方法。

具体反映在:1. 对材料力学的基本理论、基本概念和基本分析方法有明确的认识。

2. 掌握一般杆类零件和构件的受力与变形原理,具有绘出其合理的力学计算简图的初步能力。

3. 能够熟练地分析与计算杆件在拉、压、剪、扭、弯时的内力,绘制相应的内力图。

4. 能够熟练地分析与计算杆件在基本变形下的应力和变形,并进行相应的强度和刚度计算。

5. 对应力状态理论与强度理论有明确的认识,并能够将其应用于组合变形情况下的强度计算。

对应变状态有关概念有一定了解和认识。

6. 熟练地掌握简单超静定问题的求解方法。

7. 能够熟练地分析与计算理想中心受压杆件的临界荷载和临界应力,并对国家现行钢结构设计规范所规定工程压杆的稳定计算方法,有深入地了解和认识,并能够熟练地进行压杆的稳定性计算。

8. 对杆件的应变能有关概念、基本原理和基本定理有一定认识和掌握,并能够熟练地用来计算简单梁、扭转圆轴和简单拉压杆结构的位移,进而计算简单超静定问题的内力。

9.对于常用材料的基本力学性能及其测试方法有初步认识。

10. 对于电测实验应力分析的基本原理和方法有初步认识。

三、教学内容与教学要求1.绪论内容要求:了解材料力学的任务、变形固体的概念;理解变形固体的基本假设;熟悉杆件变形的基本形式分类。

重点:杆件的四种基本变形。

难点:理解变形固体的四个基本假设。

2.轴向拉伸和压缩内容要求:①了解轴向拉伸和压缩的概念、内力的概念及其分类。

②掌握轴向拉压内力的计算方法及内力图的绘制;理解应力的概念及其分布规律;正确计算横截面、斜截面的应力及变形计算。

材料力学重难点分析

材料力学重难点分析

一、基本变形部分:重点、难点:教学重点为:(1)内力与外力的基本概念,内力的分析;(2)正应力、切应力和线应变、切应变的概念;(3)材料力学基本假设及其物理意义,小变形条件的含义;(4)轴向拉压杆、受扭轴、受弯梁的内力、横截面上的应力、变形分析;(5)材料的机械性能及相关实验分析;(6)超静定问题的认识,简单超静定问题的求解;(7)剪切与挤压的认识;(8)平面弯曲的概念;(9)弯曲中心的概念;(10)弯曲变形和位移,挠曲线的近似微分方程,边界条件、连续条件,叠加法。

教学难点为:(1)正应力、切应力和线应变、切应变的概念;(2)轴向拉压杆、受扭轴、受弯梁的内力、横截面上的应力、变形分析;(3)平面弯曲的概念;(4)弯曲中心的概念。

解决方案:根据学生学习过程中,常沿用《理论力学》的习惯思维的特点,分析理力与材力的基本模型的区别,帮助学生建立正确的基本概念,明确在两门课程中的异同点。

明确“能量守恒,力的平衡,位移协调”仍是材料力学中建立关系的主要依据,但要根据材料力学的特点进一步明确能量、力和位移的具体内容。

充分利用多媒体,演示物体受力的变形过程,建立正应力、切应力和线应变、切应变等概念。

结合相关实验现象,分析新概念的物理意义;以概念群为重点,切实掌握概念;精选例题,启发思维,培养基本解题能力。

在讲清楚基本概念的基础上,重点突出基本分析方法的讲解:1)结合介绍工程中的力学问题和力学问题的工程背景,讲授力学建模的基本方法。

学习如何“出题”;2)构件内力分析的基本方法(截面法);3)应力计算公式推导的基本方法(利用平衡原理、物理关系和变形几何关系);4)构件变形计算的基本方法(利用应变积分求和、叠加求和等)。

5)利用多媒体教学手段,结合构件失效原因剖析的实际例子,介绍材料力学研究方法的实用价值。

6)结合光弹性实验、有限元分析,展示构件内部应力分布规律,开展形象化教学,介绍材料力学公式的实用范围。

二、应力应变分析、强度理论和组合变形重点、难点:教学重点为:(1)应力状态的概念;(2)平面应力状态的分析;(3)三向应力状态下的概念;(4)广义虎克定律;(5)平面应变分析;(6)强度理论的概念及常用的四个强度理论;(7)组合变形和截面核心的概念,特别是扭转和弯曲的组合变形分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料力学重难点分析 Prepared on 24 November 2020
一、基本变形部分:
重点、难点:
教学重点为:
(1)内力与外力的基本概念,内力的分析;(2)正应力、切应力和线应变、切应变的概念;(3)材料力学基本假设及其物理意义,小变形条件的含义;(4)轴向拉压杆、受扭轴、受弯梁的内力、横截面上的应力、变形分析;(5)材料的机械性能及相关实验分析;(6)超静定问题的认识,简单超静定问题的求解;(7)剪切与挤压的认识;(8)平面弯曲的概念;(9)弯曲中心的概念;(10)弯曲变形和位移,挠曲线的近似微分方程,边界条件、连续条件,叠加法。

教学难点为:
(1)正应力、切应力和线应变、切应变的概念;(2)轴向拉压杆、受扭轴、受弯梁的内力、横截面上的应力、变形分析;(3)平面弯曲的概念;(4)弯曲中心的概念。

解决方案:
根据学生学习过程中,常沿用《理论力学》的习惯思维的特点,分析理力与材力的基本模型的区别,帮助学生建立正确的基本概念,明确在两门课程中的异同点。

明确“能量守恒,力的平衡,位移协调”仍是材料力学中建立关系的主要依据,但要根据材料力学的特点进一步明确能量、力和位移的具体内容。

充分利用多媒体,演示物体受力的变形过程,建立正应力、切应力和线应变、切应变等概念。

结合相关实验现象,分析新概念的物理意义;以概念群为重点,切实掌握概念;精选例题,启发思维,培养基本解题能力。

在讲清楚基本概念的基础上,重点突出基本分析方法的讲解:
1)结合介绍工程中的力学问题和力学问题的工程背景,讲授力学建模的基本方法。

学习如何“出题”;
2)构件内力分析的基本方法(截面法);
3)应力计算公式推导的基本方法(利用平衡原理、物理关系和变形几何关系);
4)构件变形计算的基本方法(利用应变积分求和、叠加求和等)。

5)利用多媒体教学手段,结合构件失效原因剖析的实际例子,介绍材料力学研究方法的实用价值。

6)结合光弹性实验、有限元分析,展示构件内部应力分布规律,开展形象化教学,介绍材料力学公式的实用范围。

二、应力应变分析、强度理论和组合变形
重点、难点:
教学重点为:
(1)应力状态的概念;(2)平面应力状态的分析;(3)三向应力状态下的概念;(4)广义虎克定律;(5)平面应变分析;(6)强度理论的概念及常用的
四个强度理论;(7)组合变形和截面核心的概念,特别是扭转和弯曲的组合变形分析。

教学难点为:
(1)应力状态的概念;(2)平面应力状态的分析;(3)广义虎克定律及其应用;(4)平面应变分析;(5)组合变形下危险截面、危险点的确定;(6)弯扭组合中两个平面弯曲的组合及弯矩的合成。

解决方案:
充分利用多媒体,形象直观地显示点的应力状态、平面应变分析、多个方向的应力作用下的变形等内容,深入浅出地介绍有关概念。

讨论单元体的截取,方向面的选择,分析构件的复杂受载情况与点的应力状态间的关系,注意不要孤立地分析点的应力状态。

总结关于正负号的规定,使得学生准确掌握平面应力和应变分析的方法。

联系工程实际结构,讲授强度理论。

明确组合变形中的“分解”与“叠加”的概念,综合运用前面有关章节中关于构件的内力、基本变形、应力计算、应力分析和确定理论等知识,启发学生开动脑筋,探索外力分解或向截面形心简化的方法,分析构件上的基本变形,综合比较构件不同截面上的内力分量,寻找危险截面;综合运用不同的内力分量所对应的应力分布规律,确定危险点;根据应力分析、强度理论等知识,分析危险点的危险程度。

精心设计教学过程,充分调动学生的积极性,适时提出问题,引导学生积极思考,综合运用已掌握知识,参加讨论,实施研究性学习。

这样既使得学生切实掌握有关组合变形的知识,又很好地复习和总结了前面的相关内容,还提高了自行解决较复杂问题的能力。

在讲清楚基本概念的基础上,重点突出以下几点的讲解:
1)危险截面危险点的确定方法;
2)单元体的截取原则和应力的表示方法;
3)应力状态的定义;
4)组合变形问题研究的叠加原理;
5)强度理论分析复杂问题的基本思想。

三、能量法与超静定问题
重点、难点:
教学重点为:
(1)不同基本变形下杆件的变形能表达式;(2)功的互等定理和位移互等定理;(3)卡氏定理;(4)虚功原理和莫尔积分;(5)单位载荷法及图乘法;(6)超静定的概念和力法正则方程;(7)结构对称和反对称分析。

教学难点为:
(1)功的互等定理和位移互等定理;(2)卡氏定理;(3)虚功原理和莫尔积分;(4)单位载荷法及图乘法;(5)超静定的概念和力法正则方程;(6)结构对称和反对称分析。

解决方案:
结合材料的机械性能,引导学生分析不同基本变形下杆件的变形能。

着重分析不同能量方法的基本概念、物理含义和数学分析方法,重点掌握其中一至两种。

通过典型例题讲解解题步骤,特别是莫尔积分的图乘法,使得学生掌握能量法求位移的解题步骤。

分析超静定问题的物理含义,掌握力法正则方程的原理及应用,重点引导学生讨论基本静定系的选取和变形协调条件的建立。

掌握结构和载荷的对称性和反对称性分析。

在讲清楚基本概念的基础上,重点突出以下几点的讲解:
1)能量法研究力学问题的特点和对后续课程学习的影响;
2)超静定结构受力特点与突出与静定结构受力的区别;
3)超静定问题分析方法及分析步骤,基本静定系统的选取方法;
4)对称性和反对称性在建立基本静定系统时的作用。

四、动载荷与压杆稳定
重点、难点:
教学重点为:
(1)动载荷的概念及其作用介绍;(2)冲击动荷系数;(3)压杆稳定的概念;(4)临界应力的概念,柔度的概念,不同约束杆件的分类,临界应力总图;(5)稳定计算。

教学难点为:
(1)冲击动荷系数;(2)压杆稳定的概念;(3)临界应力的概念,柔度的概念,不同约束杆件的分类,临界应力总图。

解决方案:
通过航空航天和土木工程中的实例,介绍动载荷的作用过程和构件失稳的危害,帮助学生建立准确的基本概念;
设计问题,动静对比,使得学生明确动载荷的作用的特殊性;
以冲击动荷系数为重点,介绍冲击问题的分析方法;
从压杆稳定的实例出发,阐明稳定失效的特征,讲解稳定的基本概念的物理意义,分析不同约束条件对杆件稳定性的影响。

以临界应力总图为中心,讨论不同柔度压杆的临界应力及稳定性问题分析的基本步骤。

五、材料力学实验
重点、难点:
教学重点为:
(1)材料的机械性能;(2)电测技术基础;(3)光测技术基础;(4)实验数据处理及误差分析。

教学难点为:
(1)布片方案及组桥技术;(2)实验技术及动手能力;(3)创新思维的培养。

解决方案:通过基本型实验,深入理解力学基本概念、了解力学实验技术基础、培养学生基本力学实验技能。

并加强实验的思考性和启发性,增加学生动手、动脑的机会。

通过综合设计型实验,培养学生综合能力,设计实验的能力以及在实验中学习,在实验中研究的能力,增强学生通过实验发现问题、研究问题的能力。

通过研究创新型实验,开阔学生眼界,培养其应用高新技术发挥创造性的能力。

相关文档
最新文档