高中数学(人教A版,必修四) 第二章 平面向量 2.3.1 课时作业(含答案)
第二章平面向量课时作业人教A版必修四第2章2.3.2、2.3.3课时作业
基础达标1.给出下面几种说法:①相等向量的坐标相同;②平面上一个向量对应于平面上唯一的坐标;③一个坐标对应于唯一的一个向量;④平面上一个点与以原点为始点,该点为终点的向量一一对应.其中正确说法的个数是( ).A .1 B.2 C .3 D.4解析 由向量坐标的定义不难看出一个坐标可对应无数个相等的向量,故③错误.答案 C2.已知向量OA →=(3,-2),OB →=(-5,-1),则向量12AB →的坐标是( ).A.⎝ ⎛⎭⎪⎫-4,12 B.⎝ ⎛⎭⎪⎫4,-12 C .(-8,1) D.(8,1)解析 AB →=OB →-OA →=(-5,-1)-(3,-2)=(-8,1),∴12AB →=12(-8,1)=⎝ ⎛⎭⎪⎫-4,12. 答案 A3.在平行四边形ABCD 中,AC 为一条对角线.若AB →=(2,4),AC →=(1,3),则BD →等于( ).A .(-2,-4)B.(-3,-5) C .(3,5) D.(2,4)解析 ∵AC →=AB →+AD →,∴AD →=AC →-AB →=(-1,-1).∴BD →=AD →-AB →=(-3,-5).答案 B4.a =(4,6),且a =2b ,那么b 的坐标是________.解析 ∵a =2b ,∴b =12a =12(4,6)=(2,3).答案 (2,3)5.已知M (3,-2),N (-5,-1),MP →=12MN →,则P 点的坐标为________.解析 设P (x ,y ),则由MP →=12MN →得,(x -3,y +2)=12(-8,1),所以P 点的坐标为⎝ ⎛⎭⎪⎫-1,-32. 答案 ⎝ ⎛⎭⎪⎫-1,-32 6.已知AB →=(x ,y ),B 的坐标是(-2,1),那么OA →的坐标为________.解析 ∵B 的坐标是(-2,1),∴OB →=(-2,1),∴OA →=O B →+BA →=(-2,1)+(-x ,-y )=(-2-x,1-y ).答案 (-2-x,1-y )7.如图,已知四边形ABCD 为平行四边形,O 为对角线AC ,BD 的交点,AD →=(3,7),AB →=(-2,1).求OB →的坐标.解 DB →=AB →-AD →=(-2,1)-(3,7)=(-5,-6),∴OB →=12DB →=12(-5,-6)=⎝ ⎛⎭⎪⎫-52,-3. 能力提升8.已知向量集M ={a |a =(1,2)+λ(3,4),λ∈R },N ={a |a =(-2,-2)+λ(4,5),λ∈R },则M ∩N 等于( ).A .{(1,1)}B.{(1,1),(-2,-2)} C .{(-2,-2)} D.∅解析 设a =(x ,y ),对于M ,(x ,y )=(1,2)+λ(3,4),(x -1,y -2)=λ(3,4),⎩⎨⎧ x -1=3λ,y -2=4λ,∴x -13=y -24.对于N ,(x ,y )=(-2,-2)+λ(4,5),(x +2,y +2)=λ(4,5),⎩⎨⎧ x +2=4λ,y +2=5λ,∴x +24=y +25,解得x =-2,y =-2. 答案 C9.(2012·洛阳高一检测)设m =(a ,b ),n =(c ,d ),规定两向量之间的一个运算为m ⊗n =(ac -bd ,ad +bc ),若已知p =(1,2),p ⊗q =(-4,-3),则q =________.解析 设q =(x ,y ),则由题意可知 ⎩⎨⎧ x -2y =-4,y +2x =-3,解得⎩⎨⎧ x =-2,y =1,所以q =(-2,1). 答案 (-2,1)10.已知向量u =(x ,y )与向量v =(y,2y -x )的对应关系用v =f (u )表示.(1)证明:对任意向量a ,b 及常数m ,n ,恒有f (m a +n b )=mf (a )+nf (b )成立;(2)设a =(1,1),b =(1,0),求向量f (a )及f (b )的坐标;(3)求使f (c )=(p ,q )(p ,q 是常数)的向量c 的坐标.(1)证明 设a =(a 1,a 2),b =(b 1,b 2),则m a +n b =(ma 1+nb 1,ma 2+nb 2),∴f (m a +n b )=(ma 2+nb 2,2ma 2+2nb 2-ma 1-nb 1),mf (a )+nf (b )=m (a 2,2a 2-a 1)+n (b 2,2b 2-b 1),=(ma 2+nb 2,2ma 2+2nb 2-ma 1-nb 1).∴f (m a +n b )=mf (a )+nf (b )成立.(2)解 f (a )=(1,2×1-1)=(1,1),f (b )=(0,2×0-1)=(0,-1).(3)解 设c =(x ,y ),则f (c )=(y,2y -x )=(p ,q ),∴y =p,2y -x =q ,∴x =2p -q ,即向量c =(2p -q ,p ).。
高中数学(人教A版)必修四配套活页训练第二章 平面向量 课时作业
基础达标1.若|a |=4,|b |=3,a ·b =-6,则a 与b 夹角为( ). A .150° B.120° C .60°D.30°解析 ∵a ·b =|a ||b |cos θ,∴cos θ=a ·b |a ||b |=-64×3=-12,又θ∈[0°,180°],∴θ=120°. 答案 B2.(2012·北京海淀区一模)在四边形ABCD 中,AB →=DC →,且AC →·BD →=0,则四边形ABCD 是( ). A .矩形 B.菱形 C .直角梯形D.等腰梯形 解析 ∵AB →=DC →即一组对边平行且相等,AC →·BD →=0即对角线互相垂直,∴四边形ABCD 为菱形. 答案 B3.已知平面上三点A 、B 、C 满足|AB →|=3,|BC →|=4,|CA →|=5,则AB →·BC →+BC →·CA →+CA →·AB →的值等于( ). A .-25 B.-20 C .-15D.-10解析 ∵AB →+BC →+CA →=0,∴|AB →+BC →+CA →|2=|AB →|2+|BC →|2+|CA →|2+2AB →·BC →+2BC →·CA →+2AB →·CA →=9+16+25+2(AB →·BC →+BC →·CA →+AB →·CA →)=0,∴AB →·BC →+BC →·CA →+CA →·AB →=-25. 答案 A4.已知|a |=8,e 为单位向量,a 与e 的夹角为150°,则a 在e 方向上的投影为________.解析 a 在e 方向上的投影为|a |cos 150°=8×⎝ ⎛⎭⎪⎫-32=-4 3.答案 -4 35.已知向量a ,b 的夹角为120°,|a |=1,|b |=3,则|5a -b |=________. 解析|5a -b |=|5a -b |2=(5a -b )2=25a 2+b 2-10a ·b =25+9-10×1×3×⎝ ⎛⎭⎪⎫-12=7.答案 76.已知a +b =2i -8j ,a -b =-8i +16j ,i ,j 为相互垂直的单位向量,那么a ·b =________.解析 将两已知等式相加得,2a =-6i +8j ,所以a =-3i +4j .同理将两已知等式相减得,b =5i -12j ,而i ,j 是两个互相垂直的单位向量,所以a ·b =(-3i +4j )·(5i -12j )=-3×5+4×(-12)=-63. 答案 -637.(2012·金华一中高一期中)已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61. (1)求|a +b |;(2)求向量a 在向量a +b 方向上的投影. 解 (1)∵(2a -3b )·(2a +b )=61, ∴4|a |2-4a ·b -3|b |2=61. ∵|a |=4,|b |=3,∴a ·b =-6,∴|a +b |=|a |2+|b |2+2a ·b =42+32+2×(-6)=13. (2)∵a ·(a +b )=|a |2+a ·b =42-6=10,∴向量a 在向量a +b 方向上的投影为a ·(a +b )|a +b |=1013=101313.能力提升8.已知|a |=2|b |≠0,且关于x 的方程x 2+|a |x +a ·b =0有实根,则a 与b 的夹角的取值范围是( ). A.⎣⎢⎡⎦⎥⎤0,π6 B.⎣⎢⎡⎦⎥⎤π3,π C.⎣⎢⎡⎦⎥⎤π3,2π3 D.⎣⎢⎡⎦⎥⎤π6,π 解析 设a ,b 的夹角为α.方程有实根,∴Δ=|a |2-4a ·b ≥0,即|a |2-4|a |·|b |·cos α≥0,∴cos α≤12,∴α∈⎣⎢⎡⎦⎥⎤π3,π.答案 B9.已知a ,b ,c 为单位向量,且满足3a +λb +7c =0,a 与b 的夹角为π3,则实数λ=________.解析 由3a +λb +7c =0,可得7c =-(3a +λb ),即49c 2=9a 2+λ2b 2+6λa ·b ,而a ,b ,c 为单位向量,则a 2=b 2=c 2=1,则49=9+λ2+6λcos π3,即λ2+3λ-40=0,解得λ=-8或λ=5. 答案 -8或510.设向量a ,b 满足|a |=1,|b |=1,且a 与b 具有关系|k a +b |=3|a -k b |(k >0). (1)a 与b 能垂直吗?(2)若a 与b 夹角为60°,求k 的值. 解 (1)∵|k a +b |=3|a -k b |, ∴(k a +b )2=3(a -k b )2, 且|a |=|b |=1.即k 2+1+2k a ·b =3(1+k 2-2k a ·b ), ∴a ·b =k 2+14k .∵k 2+1≠0, ∴a ·b ≠0,即a 与b 不垂直.(2)∵a 与b 夹角为60°,且|a |=|b |=1, ∴a ·b =|a ||b |cos 60°=12.∴k2+14k=12.∴k=1.。
高一数学人教A版必修四练习:第二章 平面向量2.3.1 含解析
(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题5分,共20分) 1.在菱形ABCD 中,∠A =π3,则AB →与AC →的夹角为( ) A .π6 B .π3 C .5π6D .2π3解析: 由题意知AC 平分∠BAD ,∴AB →与AC →的夹角为π6.答案: A2.设点O 是▱ABCD 两对角线的交点,下列的向量组中可作为这个平行四边形所在平面上表示其他所有向量的基底的是( )①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →. A .①② B .①③ C .①④D .③④解析: 寻找不共线的向量组即可,在▱ABCD 中,AD →与AB →不共线,CA →与DC →不共线;而DA →∥BC →,OD →∥OB →,故①③可作为基底.答案: B3.若AD 是△ABC 的中线,已知AB →=a ,AC →=b ,则以a ,b 为基底表示AD →=( ) A .12(a -b ) B .12(a +b ) C .12(b -a ) D .12b +a解析: 如图,AD 是△ABC 的中线,则D 为线段BC 的中点,从而BD →=DC →,即AD →-AB →=AC →-AD →,从而AD →=12(AB →+AC →)=12(a +b ).答案: B4.在矩形ABCD 中,O 是对角线的交点,若BC →=e 1,DC →=e 2,则OC →=( ) A .12(e 1+e 2) B .12(e 1-e 2) C .12(2e 2-e 1) D .12(e 2-e 1) 解析: 因为O 是矩形ABCD 对角线的交点,BC →=e 1,DC →=e 2,所以OC →=12(BC →+DC →)=12(e 1+e 2),故选A . 答案: A二、填空题(每小题5分,共15分)5.已知向量a ,b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为________.解析: ∵a ,b 是一组基底,∴a 与b 不共线, ∵(3x -4y )a +(2x -3y )b =6a +3b ,∴⎩⎪⎨⎪⎧3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3,∴x -y =3. 答案: 36.已知e 1,e 2是两个不共线向量,a =k 2e 1+(1-5k2)e 2与b =2e 1+3e 2共线,则实数k=________.解析: 由题设,知k 22=1-5k 23,∴3k 2+5k -2=0,解得k =-2或13.答案: -2或137.如下图,在正方形ABCD 中,设AB →=a ,AD →=b ,BD →=c ,则在以a ,b 为基底时,AC →可表示为________,在以a ,c 为基底时,AC →可表示为________.解析: 以a ,c 为基底时,将BD →平移,使B 与A 重合,再由三角形法则或平行四边形法则即得.答案: a +b 2a +c三、解答题(每小题10分,共20分)8.如图所示,设M ,N ,P 是△ABC 三边上的点,且BM →=13BC →,CN →=13CA →,AP →=13AB →,若AB →=a ,AC →=b ,试用a ,b 将MN →,NP →,PM →表示出来.解析: NP →=AP →-AN →=13AB →-23AC →=13a -23b , MN →=CN →-CM →=-13AC →-23CB →=-13b -23(a -b )=-23a +13b . PM →=-MP →=-(MN →+NP →)=13(a +b ).9.若点M 是△ABC 所在平面内一点,且满足:AM →=34AB →+14AC →.(1)求△ABM 与△ABC 的面积之比.(2)若N 为AB 中点,AM 与CN 交于点O ,设BO →=xBM →+yBN →,求x ,y 的值. 解析: (1)由AM →=34AB →+14AC →可知M ,B ,C 三点共线,如图,令BM →=λBC →⇒AM →=AB →+BM →=AB →+λBC →=AB →+λ(AC →-AB →)=(1-λ)AB →+λAC →⇒λ=14, 所以S △ABM S △ABC =14,即面积之比为1∶4.(2)由BO →=xBM →+yBN →⇒BO →=xBM →+y 2BA →,BO →=x 4BC →+yBN →,由O ,M ,A 三点共线及O ,N ,C 三点共线⇒⎩⎨⎧x +y 2=1,x 4+y =1⇒⎩⎨⎧x =47,y =67.能力测评10.(2015·新课标全国卷Ⅰ)设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A .AD →=-13AB →+43AC →B .AD →=13AB →-43AC →C .AD →=43AB →+13AC →D .AD →=43AB →-13AC →解析: 由题意得AD →=AC →+CD →=AC →+13BC →=AC →+13AC →-13AB →=-13AB →+43AC →.答案: A11.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,设AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=________.解析: 设AB →=a ,AD →=b ,那么AE →=12a +b ,AF →=a +12b .又∵AC →=a +b ,∴AC →=23(AE →+AF →),即λ=μ=23,∴λ+μ=43.答案: 4312.设e 1,e 2是不共线的非零向量,且a =e 1-2e 2,b =e 1+3e 2. (1)证明:a ,b 可以作为一组基底;(2)以a ,b 为基底,求向量c =3e 1-e 2的分解式; (3)若4e 1-3e 2=λa +μb ,求λ,μ的值.解析: (1)证明:若a ,b 共线,则存在λ∈R ,使a =λb , 则e 1-2e 2=λ(e 1+3e 2).由e 1,e 2不共线,得⎩⎪⎨⎪⎧λ=1,3λ=-2⇒⎩⎪⎨⎪⎧λ=1,λ=-23.∴λ不存在,故a 与b 不共线,可以作为一组基底.(2)设c =m a +n b (m ,n ∈R ),则3e 1-e 2=m (e 1-2e 2)+n (e 1+3e 2) =(m +n )e 1+(-2m +3n )e 2.∴⎩⎪⎨⎪⎧m +n =3,-2m +3n =-1⇒⎩⎪⎨⎪⎧m =2,n =1.∴c =2a +b . (3)由4e 1-3e 2=λa +μb ,得 4e 1-3e 2=λ(e 1-2e 2)+μ(e 1+3e 2) =(λ+μ)e 1+(-2λ+3μ)e 2.∴⎩⎪⎨⎪⎧λ+μ=4,-2λ+3μ=-3⇒⎩⎪⎨⎪⎧λ=3,μ=1.故所求λ,μ的值分别为3和1.13.如图,在△ABC 中,点M 是BC 的中点,点N 在边AC 上,且AN =2NC ,AM 与BN 相交于点P ,求AP ∶PM 的值.解析: 设BM →=e 1,CN →=e 2, 则AM →=AC →+CM →=-3e 2-e 1, BN →=BC →+CN →=2e 1+e 2.∵点A ,P ,M 和B ,P ,N 分别共线, ∴存在实数λ,μ使AP →=λAM →=-λe 1-3λe 2, BP →=μBN →=2μe 1+μe 2,故BA →=BP →-AP →=(λ+2μ)e 1+(3λ+μ)e 2. 而BA →=BC →+CA →=2e 1+3e 2, 由平面向量基本定理,得⎩⎪⎨⎪⎧λ+2μ=2,3λ+μ=3,解得⎩⎨⎧λ=45,μ=35.故AP →=45AM →,即AP ∶PM =4∶1.。
第一学期高二数学人教A版必修4第二章课时作业与课件(
平面向量
2.3 平面向量的基本定理及坐标表示
第23课时 平面向量基本定理
1 课堂对点训练 2 课后提升训练
课堂对点训练
知识点一
基底的概念
1.设 O 是▱ABCD 的对角线交点,下列各组向量:①A→D与A→B;
②D→A与B→C;③C→A与D→C;④O→D与O→B.其中可作为这个平行四边
形所在平面的所有向量的基底的是( )
答案:A
知识点三
用基底表示向量
5.如右图,平行四边形 ABCD 中, A→B=a,A→D=b,H、M 分别是 AD、DC 的中点,F 点在 BC 上,且 BF=13BC,以 a,b 为基底分解向量A→M与H→F.
解:由 H、M、F 所在的位置,得 A→M=A→D+D→M=A→D+12D→C=A→D+12A→B=b+12a. H→F=A→F-A→H=A→B+B→F-A→H=A→B+13B→C-12A→D=A→B+13 A→D-12A→D=a-16b.
课后提升训练
温馨提示:请点击按扭进入WORD文档作业
A.①②
B.①③
C.①④
D.③④
解析:∵A→D与A→B不共线,故可作为平面向量的一组基底, 排除 D;又D→A∥B→C,故②不可以作为基底,排除 A;C→A与D→C 不共线,故③可作为基底,选 B.
答案:B
2.下面三种说法:①一个平面内只有一对不共线向
量可作为表示该平面所有向量的基底;②一个平面内有无
解析:考虑向量 a,b 共线,则有 λ=12,故当{λ|λ≠12}时, 向量 a、b 不共线,可作为一组基底.
知识点二
向量夹角的概念
4.若向量a与b的夹角为60°,则向量-a与-b的夹角
是( )
高中数学人教A版必修4第二章平面向量2.2.1向量的加法(3) 答案和解析
高中数学人教A 版必修4第二章平面向量2.2.1向量的加法(3)学校:___________姓名:___________班级:___________考号:___________一、单选题1.()()11 284232⎡⎤+--⎢⎥⎣⎦a b a b 等于( ) A .2a -bB .2b -aC .b -aD .a -b2.已知m ,n 是实数,,a b 是向量,则下列命题中正确的为( )①m (a -b )=m a -m b ;②(m -n ) a =m a -n a ;③若m a =m b ,则a =b ;④若m a =n a ,则m =n .A .①④B .①②C .①③D .③④ 3.如图所示,向量OA 、OB 、OC 的终点A 、B 、C 在一条直线上,且AC =-3CB .设OA =p ,OB =q ,OC =r ,则以下等式中成立的是( )A .r =-1p 2+3q 2B .r =-p +2qC .r =3p 2-1q 2D .r =2p -q4.在ABC ∆中,点P 是AB 上一点,且2133CP CA CB =+,又AP t AB =,则t 的值为( )A .13B .23C .12D .53二、填空题5.在ABCD 中,,,3AB a AD b AN NC ===,M 为BC 的中点,则MN =_______.(用a b 、表示)三、解答题6.如图所示,已知▱ABCD 的边BC 、CD 的中点分别为K 、L ,且12,AK e AL e ==,试用12,e e 表示,BC CD参考答案1.B【解析】原式=16(2a +8b )-13 (4a -2b )=13a +43b -43a +23b =-a +2b =2b -a . 选B 2.B【解析】【详解】选B ①和②属于数乘对向量与实数的分配律,正确;③中,若m =0,则不能推出a b = ,错误;④中,若=0a ,则m ,n 没有关系,错误.3.A【解析】【分析】利用向量的减法,共线向量基本定理,化简可得结论.【详解】由AC =-3CB ,OA p =,OB q =,OC r =,得r p -=-3(q r -) ∴13r p q 22=-+, 故选A .【点睛】本题考查平面向量基本定理及其意义,由AC =-3CB 得r p -=-3(q r -)是解题的突破口.4.A【解析】分析:先由条件以及两个向量的加减法的原则,以及其几何意义,可得13AP AB =,从而得到答案.详解:由题意可得()21113333AP CP CA CA CB CA CB CA AB =-=+-=-=, 又AP t AB =,13t ∴=. 故选:A.点睛:向量的线性运算要满足三角形法则和平行四边形法则,做题时,要注意三角形法则与平行四边形法则的要素.向量加法的三角形法则要素是“首尾相接,指向终点”;向量减法的三角形法则要素是“起点重合,指向被减向量”;平行四边形法则要素是“起点重合”. 5.1144MN a b =-+ 【详解】解:343A =3()AN NC AN C a b ==+由得,12AM a b =+,所以3111()()4244MN a b a b a b =+-+=-+。
2019高中数学(人教A版,必修四) 第二章 平面向量 2.1 课时作业(含答案)
人教版高中数学必修精品教学资料第二章 平面向量§2.1 平面向量的实际背景及基本概念 课时目标 1.通过对物理模型和几何模型的探究,了解向量的实际背景,掌握向量的有关概念及向量的几何表示.2.掌握平行向量与相等向量的概念.1.向量:既有________,又有________的量叫向量.2.向量的几何表示:以A 为起点,B 为终点的向量记作________.3.向量的有关概念:(1)零向量:长度为__________的向量叫做零向量,记作______.(2)单位向量:长度为______的向量叫做单位向量.(3)相等向量:__________且__________的向量叫做相等向量.(4)平行向量(共线向量):方向__________的________向量叫做平行向量,也叫共线向量. ①记法:向量a 平行于b ,记作________.②规定:零向量与__________平行.一、选择题1.下列物理量:①质量;②速度;③位移;④力;⑤加速度;⑥路程;⑦密度;⑧功.其中不是向量的有( )A .1个B .2个C .3个D .4个2.下列条件中能得到a =b 的是( )A .|a |=|b |B .a 与b 的方向相同C .a =0,b 为任意向量D .a =0且b =03.下列说法正确的有( )①方向相同的向量叫相等向量;②零向量的长度为0;③共线向量是在同一条直线上的向量;④零向量是没有方向的向量;⑤共线向量不一定相等;⑥平行向量方向相同.A .2个B .3个C .4个D .5个4.命题“若a ∥b ,b ∥c ,则a ∥c ”( )A .总成立B .当a ≠0时成立C .当b ≠0时成立D .当c ≠0时成立5.下列各命题中,正确的命题为( )A .两个有共同起点且共线的向量,其终点必相同B .模为0的向量与任一向量平行C .向量就是有向线段D .|a |=|b |⇒a =b6.下列说法正确的是( )A .向量AB →∥CD →就是AB →所在的直线平行于CD →所在的直线B .长度相等的向量叫做相等向量C .零向量长度等于0D .共线向量是在一条直线上的向量题 号1 2 3 4 5 6 答 案二、填空题7.给出以下5个条件:①a =b ;②|a |=|b |;③a 与b 的方向相反;④|a |=0或|b |=0;⑤a 与b 都是单位向量.其中能使a ∥b 成立的是________.(填序号)8.在四边形ABCD 中,AB →=DC →且|AB →|=|AD →|,则四边形的形状为________.9.下列各种情况中,向量的终点在平面内各构成什么图形.①把所有单位向量移到同一起点;②把平行于某一直线的所有单位向量移到同一起点;③把平行于某一直线的一切向量移到同一起点.①__________;②____________;③____________.10.如图所示,E 、F 分别为△ABC 边AB 、AC 的中点,则与向量EF →共线的向量有________________(将图中符合条件的向量全写出来).三、解答题11. 在如图的方格纸上,已知向量a ,每个小正方形的边长为1.(1)试以B 为终点画一个向量b ,使b =a ;(2)在图中画一个以A 为起点的向量c ,使|c |=5,并说出向量c 的终点的轨迹是什么?12. 如图所示,△ABC 的三边均不相等,E 、F 、D 分别是AC 、AB 、BC 的中点.(1)写出与EF →共线的向量;(2)写出与EF →的模大小相等的向量;(3)写出与EF →相等的向量.能力提升13. 如图,已知AA ′→=BB ′→=CC ′→.求证:(1)△ABC ≌△A ′B ′C ′;(2)AB →=A ′B ′→,AC →=A ′C ′→.14. 如图所示,O 是正六边形ABCDEF 的中心,且OA →=a ,OB →=b ,OC →=c .(1)与a 的模相等的向量有多少个?(2)与a 的长度相等,方向相反的向量有哪些?(3)与a 共线的向量有哪些?(4)请一一列出与a ,b ,c 相等的向量.1.向量是既有大小又有方向的量,解决向量问题时一定要从大小和方向两个方面去考虑.2.向量不能比较大小,但向量的模可以比较大小.如a >b 没有意义,而|a |>|b |有意义.3.共线向量与平行向量是同一概念,规定:零向量与任一向量都平行.§2.1 平面向量的实际背景及基本概念答案知识梳理1.大小 方向 2.AB →3.(1)0 0 (2)1 (3)长度相等 方向相同 (4)相同或相反 非零 ①a ∥b ②任一向量 作业设计1.D 2.D3.A [②与⑤正确,其余都是错误的.]4.C [当b =0时,不成立,因为零向量与任何向量都平行.]5.B [由于模为0的向量是零向量,只有零向量的方向不确定,它与任一向量平行,故选B.]6.C [向量AB →∥CD →包含AB →所在的直线平行于CD →所在的直线和AB →所在的直线与CD →所在的直线重合两种情况;相等向量不仅要求长度相等,还要求方向相同;共线向量也称为平行向量,它们可以是在一条直线上的向量,也可以是所在直线互相平行的向量,所以A 、B 、D 均错.]7.①③④解析 相等向量一定是共线向量,①能使a ∥b ;方向相同或相反的向量一定是共线向量,③能使a ∥b ;零向量与任一向量平行,④成立.8.菱形解析 ∵AB →=DC →,∴AB 綊DC∴四边形ABCD 是平行四边形,∵|AB →|=|AD →|,∴四边形ABCD 是菱形.9.单位圆 相距为2的两个点 一条直线10.FE →,BC →,CB →解析 ∵E 、F 分别为△ABC 对应边的中点,∴EF ∥BC ,∴符合条件的向量为FE →,BC →,CB →.11.解 (1)根据相等向量的定义,所作向量与向量a 平行,且长度相等(作图略).(2)由平面几何知识可知所有这样的向量c 的终点的轨迹是以A 为圆心,半径为5的圆(作图略).12.解 (1)因为E 、F 分别是AC 、AB 的中点,所以EF 綊12BC .又因为D 是BC 的中点, 所以与EF →共线的向量有:FE →,BD →,DB →,DC →,CD →,BC →,CB →.(2)与EF →模相等的向量有:FE →,BD →,DB →,DC →,CD →.(3)与EF →相等的向量有:DB →与CD →.13.证明 (1)∵AA ′→=BB ′→,∴|AA ′→|=|BB ′→|,且AA ′→∥BB ′→.又∵A 不在BB ′→上,∴AA ′∥BB ′.∴四边形AA ′B ′B 是平行四边形.∴|AB →|=|A ′B ′→|.同理|AC →|=|A ′C ′→|,|BC →|=|B ′C ′→|.∴△ABC ≌△A ′B ′C ′.(2)∵四边形AA ′B ′B 是平行四边形,∴AB →∥A ′B ′→,且|AB →|=|A ′B ′→|.∴AB →=A ′B ′→.同理可证AC →=A ′C ′→.14.解 (1)与a 的模相等的向量有23个.(2)与a 的长度相等且方向相反的向量有OD →,BC →,AO →,FE →.(3)与a 共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →.(4)与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,F A →;与c 相等的向量有FO →,ED →,AB →.。
课时作业4:2.3.2 平面向量的正交分解及坐标表示
必修四第二章 平面向量2.3.2 平面向量的坐标运算1.已知向量(1,1),(2,),x ==a b 若a+b 与-4b 2a 平行,则实数x 的值是( )A .-2B .0C .1D .2 2.在ABCD 中,AB =a ,AD =b ,AN =3NC ,M 为BC 的中点,则MN =_______.(用a ,b 表示)3.已知a +b =2i -8j ,a -b =-8i +16j ,那么a ·b = .4.设m ,n 是两个单位向量,向量a =m -2n ,且a =(2,1),则m ,n 的夹角为 .5.已知向量a =(3,1),b =(0,-1),c =(k ,3).若a -2b 与c 共线,则k =________.6.设平面向量()()3,5,2,1a b ==-,则2a b -=( )A .()6,3B .()7,3C .()2,1D . ()7,27.如图,e 1,e 2为互相垂直的单位向量,则向量a -b 可表示为( )A .3e 2-e 1B .-2e 1-4e 2C .e 1-3e 2D .3e 1-e 28.点C 在线段AB 上,且AC CB =52,则AC =________AB ,BC =________AB . 9.给出下列命题:①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB =DC 是四边形ABCD 为平行四边形的充要条件; ③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a |=|b |且a ∥b ;⑤若a ∥b ,b ∥c ,则a ∥c .其中正确命题的序号是( )A .②③B .①②C .③④D .④⑤参考答案:1.【答案】D2.【答案】41 a +41b . 3.【答案】-634.【答案】90°5.【答案】16.【答案】B7.【答案】C8.【答案】57 -279.【答案】A。
【人教A版】高中数学必修4第二章课后习题解答
新课程标准数学必修4第二章课后习题解答第二章 平面向量2.1平面向量的实际背景及基本概念 练习(P77)1、略.2、AB ,BA . 这两个向量的长度相等,但它们不等.3、2AB =, 2.5CD =,3EF =,22GH =4、(1)它们的终点相同; (2)它们的终点不同. 习题2.1 A 组(P77) 1、(2). 3、与DE 相等的向量有:,AF FC ;与EF 相等的向量有:,BD DA ; 与FD 相等的向量有:,CE EB .4、与a 相等的向量有:,,CO QP SR ;与b 相等的向量有:,PM DO ; 与c 相等的向量有:,,DC RQ ST5、332AD =. 6、(1)×; (2)√; (3)√; (4)×. 习题2.1 B 组(P78)1、海拔和高度都不是向量.2、相等的向量共有24对. 模为1的向量有18对. 其中与AM 同向的共有6对,与AM 反向的也有6对;与AD 同向的共有3对,与AD 反向的也有64对;模为2的向量有2对2.2平面向量的线性运算 练习(P84)1、图略.2、图略.3、(1)DA ; (2)CB .4、(1)c ; (2)f ; (3)f ; (4)g .练习(P87)1、图略.2、DB ,CA ,AC ,AD ,BA .3、图略. 练习(P90) 1、图略.2、57AC AB =,27BC AB =-.说明:本题可先画一个示意图,根据图形容易得出正确答案. 值得注意的是BC 与AB 反向.3、(1)2b a =; (2)74b a =-; (3)12b a =-; (4)89b a =.4、(1)共线; (2)共线.5、(1)32a b -; (2)111123a b -+; (3)2ya . 6、图略.习题2.2 A 组(P91)1、(1)向东走20 km ; (2)向东走5 km ;(3)向东北走km ;(4)向西南走;(5)向西北走km ;(6)向东南走km. 2、飞机飞行的路程为700 km ;两次位移的合成是向北偏西53°方向飞行500 km. 3、解:如右图所示:AB 表示船速,AD 表示河水的流速,以AB 、AD 为邻边作□ABCD ,则AC 表示船实际航行的速度.在Rt △ABC 中,8AB =,2AD =,所以228AC AB AD =+==因为tan 4CAD ∠=,由计算器得76CAD ∠≈︒所以,实际航行的速度是km/h ,船航行的方向与河岸的夹角约为76°. 4、(1)0; (2)AB ; (3)BA ; (4)0; (5)0; (6)CB ; (7)0. 5、略6、不一定构成三角形. 说明:结合向量加法的三角形法则,让学生理解,若三个非零向量的和为零向量,且这三个向量不共线时,则表示这三个向量的有向线段一定能构成三角形.7、略.8、(1)略; (2)当a b ⊥时,a b a b +=-9、(1)22a b --; (2)102210a b c -+; (3)132a b +; (4)2()x y b -.10、14a b e +=,124a b e e -=-+,1232310a b e e -=-+. 11、如图所示,OC a =-,OD b =-,DC b a =-,BC a b =--.(第11题)12、14AE b =,BC b a =-,1()4DE b a =-,34DB a =,34EC b =,1()8DN b a=-,11()48AN AM a b ==+.13、证明:在ABC ∆中,,E F 分别是,AB BC 的中点,所以EF AC //且12EF AC =,即12EF AC =;同理,12HG AC =,所以EF HG =.习题2.2 B 组(P92)1、丙地在甲地的北偏东45°方向,距甲地1400 km.2、不一定相等,可以验证在,a b 不共线时它们不相等.3、证明:因为MN ANAM =-,而13AN AC =,13AM AB =, 所以1111()3333MN AC AB AC AB BC =-=-=.4、(1)四边形ABCD 为平行四边形,证略 (2)四边形ABCD 为梯形.证明:∵13AD BC =,∴AD BC //且AD BC ≠ ∴四边形ABCD 为梯形. (3)四边形ABCD 为菱形.证明:∵AB DC =,∴AB DC //且AB DC =∴四边形ABCD 为平行四边形 又AB AD =∴四边形ABCD 为菱形.5、(1)通过作图可以发现四边形ABCD 为平行四边形. 证明:因为OA OB BA -=,OD OC CD -= 而OA OC OB OD +=+所以OA OB OD OC -=- 所以BA CD =,即AB ∥. 因此,四边形ABCD 为平行四边形.(第12题)(第1题)(第4题(2))(第4题(3))(第5题)2.3平面向量的基本定理及坐标表示 练习(P100)1、(1)(3,6)a b +=,(7,2)a b -=-; (2)(1,11)a b +=,(7,5)a b -=-; (3)(0,0)a b +=,(4,6)a b -=; (4)(3,4)a b +=,(3,4)a b -=-.2、24(6,8)a b -+=--,43(12,5)a b +=.3、(1)(3,4)AB =,(3,4)BA =--; (2)(9,1)AB =-,(9,1)BA =-; (3)(0,2)AB =,(0,2)BA =-; (4)(5,0)AB =,(5,0)BA =-4、AB ∥CD . 证明:(1,1)AB =-,(1,1)CD =-,所以AB CD =.所以AB ∥CD .5、(1)(3,2); (2)(1,4); (3)(4,5)-.6、10(,1)3或14(,1)3- 7、解:设(,)P x y ,由点P 在线段AB 的延长线上,且32AP PB =,得32AP PB =-(,)(2,3)(2,A P x y x y =-=--,(4,3)(,)(4,3)PB x y x y =--=---∴3(2,3)(4,3)2x y x y --=---- ∴32(4)233(3)2x x y y ⎧-=--⎪⎪⎨⎪-=---⎪⎩∴815x y =⎧⎨=-⎩,所以点P 的坐标为(8,15)-.习题2.3 A 组(P101)1、(1)(2,1)-; (2)(0,8); (3)(1,2).说明:解题时可设(,)B x y ,利用向量坐标的定义解题. 2、123(8,0)F F F ++=3、解法一:(1,2)OA =--,(53,6(1))(2,7)BC =---=而AD BC =,(1,5)OD OA AD OA BC =+=+=. 所以点D 的坐标为(1,5). 解法二:设(,)D x y ,则((1),(2))(1,2)AD x y x y =----=++,(53,6(1))(2,7)BC =---=由AD BC =可得,1227x y +=⎧⎨+=⎩,解得点D 的坐标为(1,5).4、解:(1,1)OA =,(2,4)AB =-. 1(1,2)2A C A B ==-,2(4,8)AD AB ==-,1(1,2)2AE AB =-=-. (0,3)O C O A A C =+=,所以,点C 的坐标为(0,3); (3,9)O D O A A D =+=-,所以,点D 的坐标为(3,9)-; (2,1)O E O A A E =+=-,所以,点E 的坐标为(2,1)-. 5、由向量,a b 共线得(2,3)(,6)x λ=-,所以236x =-,解得4x =-. 6、(4,4)AB =,(8,8)CD =--,2CD AB =-,所以AB 与CD 共线. 7、2(2,4)OA OA '==,所以点A '的坐标为(2,4);3(3,9)O B O B '==-,所以点B '的坐标为(3,9)-; 故 (3,9)(2,4)(5,5)A B ''=--=- 习题2.3 B 组(P101) 1、(1,2)OA =,(3,3)AB =.当1t =时,(4,5)OP OA AB OB =+==,所以(4,5)P ; 当12t =时,13357(1,2)(,)(,)22222OP OA AB =+=+=,所以57(,)22P ; 当2t =-时,2(1,2)(6,6)(5,4)OP OA AB =-=-=--,所以(5,4)P --; 当2t =时,2(1,2)(6,6)(7,8)OP OA AB =+=+=,所以(7,8)P .2、(1)因为(4,6)AB =--,(1,1.5)AC =,所以4AB AC =-,所以A 、B 、C 三点共线; (2)因为(1.5,2)PQ =-,(6,8)PR =-,所以4PR PQ =,所以P 、Q 、R 三点共线; (3)因为(8,4)EF =--,(1,0.5)EG =--,所以8EF EG =,所以E 、F 、G 三点共线.3、证明:假设10λ≠,则由11220e e λλ+=,得2121e e λλ=-. 所以12,e e 是共线向量,与已知12,e e 是平面内的一组基底矛盾, 因此假设错误,10λ=. 同理20λ=. 综上120λλ==.4、(1)19OP = (2)对于任意向量12OP xe ye =+,,x y 都是唯一确定的,所以向量的坐标表示的规定合理.2.4平面向量的数量积练习(P106)1、1cos ,86242p q p q p q ⋅=⋅⋅<>=⨯⨯=. 2、当0a b ⋅<时,ABC ∆为钝角三角形;当0a b ⋅=时,ABC ∆为直角三角形.3、投影分别为0,-图略 练习(P107)1、2(3)5a =-,252b =+=35427a b ⋅=-⨯+⨯=-.2、8a b ⋅=,()()7a b a b +-=-,()0a b c ⋅+=,2()49a b +=.3、1a b ⋅=,13a =,74b =,88θ≈︒. 习题2.4 A 组(P108)1、63a b ⋅=-222()225a b a a b b +=+⋅+=-25a b +=-2、BC 与CA 的夹角为120°,20BC CA ⋅=-.3、22223a b a a b b +=+⋅+=,22235a b a a b b -=-⋅+=. 4、证法一:设a 与b 的夹角为θ.(1)当0λ=时,等式显然成立;(2)当0λ>时,a λ与b ,a 与b λ的夹角都为θ,所以 ()cos cos a b a b a b λλθλθ⋅== ()c o s a b a b λλθ⋅= ()cos cos a b a b a b λλθλθ⋅== 所以 ()()()a b a b a b λλλ⋅=⋅=⋅;(3)当0λ<时,a λ与b ,a 与b λ的夹角都为180θ︒-,则 ()cos(180)cos a b a b a b λλθλθ⋅=︒-=-()cos cos a b a b a b λλθλθ⋅==-()cos(180)cos a b a b a b λλθλθ⋅=︒-=- 所以 ()()()a b a b a b λλλ⋅=⋅=⋅; 综上所述,等式成立.证法二:设11(,)a x y =,22(,)b x y =,那么 11221212()(,)(,)a b x y x y x x y y λλλλλ⋅=⋅=+112212121212()(,)(,)()a b x y x y x x y y x x y y λλλλλ⋅=⋅=+=+11221212()(,)(,)a b x y x y x x y y λλλλλ⋅=⋅=+所以 ()()()a b a b a b λλλ⋅=⋅=⋅;5、(1)直角三角形,B ∠为直角.证明:∵(1,4)(5,2)(6,6)BA =---=--,(3,4)(5,2)(2,2)BC =-=-∴6(2)(6)20BA BC ⋅=-⨯-+-⨯=∴BA BC ⊥,B ∠为直角,ABC ∆为直角三角形(2)直角三角形,A ∠为直角证明:∵(19,4)(2,3)(21,7)AB =---=,(1,6)(2,3)(1,3)AC =-----=-∴2117(3)0AB AC ⋅=⨯+⨯-=∴AB AC ⊥,A ∠为直角,ABC ∆为直角三角形(3)直角三角形,B ∠为直角证明:∵(2,5)(5,2)(3,3)BA =-=-,(10,7)(5,2)(5,5)BC =-=∴35350BA BC ⋅=-⨯+⨯=∴BA BC ⊥,B ∠为直角,ABC ∆为直角三角形6、135θ=︒.7、120θ=︒.22(23)(2)44361a b a b a a b b -+=-⋅-=,于是可得6a b ⋅=-,1cos 2a ba bθ⋅==-,所以120θ=︒.8、23cos 40θ=,55θ=︒. 9、证明:∵(5,2)(1,0)(4,2)AB =--=-,(8,4)(5,2)(3,6)BC =--=,(8,4)(4,6)(4,2)DC =-=-∴AB DC =,43(2)60AB BC ⋅=⨯+-⨯= ∴,,,A B C D 为顶点的四边形是矩形.10、解:设(,)a x y =,则2292x y yx ⎧+=⎪⎨=⎪⎩,解得5x y ⎧=⎪⎪⎨⎪=⎪⎩x y ⎧=⎪⎪⎨⎪=⎪⎩.于是35(,55a =或35(55a =--. 11、解:设与a 垂直的单位向量(,)e x y =,则221420x y xy ⎧+=⎨+=⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩或x y ⎧=⎪⎪⎨⎪=⎪⎩.于是5(,55e =-或5(,55e =-. 习题2.4 B 组(P108)1、证法一:0()0()a b a c a b a c a b c a b c ⋅=⋅⇔⋅-⋅=⇔⋅-=⇔⊥- 证法二:设11(,)a x y =,22(,)b x y =,33(,)c x y =.先证()a b a c a b c ⋅=⋅⇒⊥-1212a b x x y y ⋅=+,1313a c x x y y ⋅=+由a b a c ⋅=⋅得12121313x x y y x x y y +=+,即123123()()0x x x y y y -+-= 而2323(,)b c x x y y -=--,所以()0a b c ⋅-= 再证()a b c a b a c ⊥-⇒⋅=⋅由()0a b c ⋅-=得 123123()()0x x x y y y -+-=, 即12121313x x y y x x y y +=+,因此a b a c ⋅=⋅2、cos cos cos sin sin OA OB AOB OA OBαβαβ⋅∠==+.3、证明:构造向量(,)u a b =,(,)v c d =.c o s ,u v u v u v ⋅=<>,所以,ac bd u v +=<>∴2222222222()()()cos ,()()ac bd a b c d u v a b c d +=++<>≤++4、AB AC ⋅的值只与弦AB 的长有关,与圆的半径无关.证明:取AB 的中点M ,连接CM ,则CM AB ⊥,12AM AB =又cos AB AC AB AC BAC ⋅=∠,而AM BAC AC∠=所以212AB AC AB AM AB ⋅==5、(1)勾股定理:Rt ABC ∆中,90C ∠=︒,则222CA CB AB +=证明:∵AB CB CA =-∴2222()2AB CB CA CB CA CB CA =-=-⋅+. 由90C ∠=︒,有CA CB ⊥,于是0CA CB ⋅= ∴222CA CB AB +=(2)菱形ABCD 中,求证:AC BD ⊥证明:∵AC AB AD =+,,DB AB AD =-∴22()()AC DB AB AD AB AD AB AD ⋅=+⋅-=-.∵四边形ABCD 为菱形,∴AB AD =,所以220AB AD -= ∴0AC DB ⋅=,所以AC BD ⊥(3)长方形ABCD 中,求证:AC BD =证明:∵ 四边形ABCD 为长方形,所以AB AD ⊥,所以0AB AD ⋅=∴222222AB AB AD AD AB AB AD AD +⋅+=-⋅+.∴22()()AB AD AB AD +=-,所以22AC BD =,所以AC BD =(4)正方形的对角线垂直平分. 综合以上(2)(3)的证明即可. 2.5平面向量应用举例 习题2.5 A 组(P113) 1、解:设(,)P x y ,11(,)R x y则1111(1,0)(,)(1,)RA x y x y =-=--,(,)(1,0)(1,0)AP x y x =-=-由2RA AP =得11(1,)2(1,)x y x y --=-,即11232x x y y =-+⎧⎨=-⎩(第4题)代入直线l 的方程得2y x =. 所以,点P 的轨迹方程为2、解:(1)易知,OFD ∆∽OBC ∆,12DF BC =, 所以23BO BF =. 2211()()3323AO BO BA BF a b a a a b =-=+=-+=+(2)因为1()2AE a b =+所以23AO AE =,因此,,A O E 三点共线,而且2AOOE = 同理可知:2,2BO CO OF OD ==,所以2AO BO COOE OF OD === 3、解:(1)(2,7)B A v v v =-=-; (2)v 在A v 方向上的投影为135A Av v v ⋅=. 4、解:设1F ,2F 的合力为F ,F 与1F 的夹角为θ,则31F =+,30θ=︒; 331F =+,3F 与1F 的夹角为150°.习题2.5 B 组(P113)1、解:设0v 在水平方向的速度大小为x v ,竖直方向的速度的大小为y v ,则0cos x v v θ=,0sin y v v θ=.设在时刻t 时的上升高度为h ,抛掷距离为s ,则001sin ,()2cos h v t gt g s v t θθ⎧=-⎪⎨⎪=⎩为重力加速度 所以,最大高度为220sin 2v gθ,最大投掷距离为20sin 2v gθ.2、解:设1v 与2v 的夹角为θ,合速度为v ,2v 与v 的夹角为α,行驶距离为d .则1sin 10sin sin v vvθθα==,0.5sin 20sin v d αθ==. ∴120sin d vθ=. 所以当90θ=︒,即船垂直于对岸行驶时所用时间最短. 3、(1)(0,1)-解:设(,)P x y ,则(1,2)AP x y =--. (2,AB =-.(第2题)(第4题)将AB 绕点A 沿顺时针方向旋转4π到AP ,相当于沿逆时针方向旋转74π到AP ,于是7777(2)(1,3)4444AP ππππ=+-=--所以1123x y -=-⎧⎨-=-⎩,解得0,1x y ==-(2)32y x=-解:设曲线C 上任一点P 的坐标为(,)x y ,OP 绕O 逆时针旋转4π后,点P 的坐标为(,)x y '' 则cos sin 44sincos44x x y y xy ππππ⎧'=-⎪⎪⎨⎪'=+⎪⎩,即)2)x x y y x y ⎧'=-⎪⎪⎨⎪'=+⎪⎩又因为223x y ''-=,所以2211()()322x y x y --+=,化简得32y x=-第二章 复习参考题A 组(P118)1、(1)√; (2)√; (3)×; (4)×.2、(1)D ; (2)B ; (3)D ; (4)C ; (5)D ; (6)B .3、1()2AB a b =-,1()2AD a b =+4、略解:2133DE BA MA MB a b ==-=-+2233AD a b =+,1133BC a b =+1133EF a b =--,1233FA DC a b ==-1233CD a b =-+,2133AB a b =-CE a b =-+5、(1)(8,8)AB =-,82AB =(2)(2,16)OC =-,(8,8)OD =-; (3)33OA OB ⋅=. 6、AB 与CD 共线.证明:因为(1,1)AB =-,(1,1)CD =-,所以AB CD =. 所以AB 与CD 共线. 7、(2,0)D -. 8、2n =. 9、1,0λμ=-=.10、34cos ,cos 0,cos 55A B C ===(第4题)11、证明:2(2)22cos6010n m m n m m -⋅=⋅-=︒-=,所以(2)n m m -⊥.12、1λ=-. 13、13a b +=,1a b -=. 14、519cos ,cos 820θβ==第二章 复习参考题B 组(P119)1、(1)A ; (2)D ; (3)B ; (4)C ; (5)C ; (6)C ; (7)D .2、证明:先证a b a b a b ⊥⇒+=-.222()2a b a b a b a b +=+=++⋅,222()2a b a b a b a b -=-=+-⋅. 因为a b ⊥,所以0a b ⋅=,于是22a b a b a b +=+=-.再证a b a b a b +=-⇒⊥.由于222a b a a b b +=+⋅+,222a b a a b b -=-⋅+ 由a b a b +=-可得0a b ⋅=,于是a b ⊥所以a b a b a b +=-⇔⊥. 【几何意义是矩形的两条对角线相等】 3、证明:先证a b c d =⇒⊥22()()c d a b a b a b ⋅=+⋅-=- 又a b =,所以0c d ⋅=,所以c d ⊥ 再证c d a b ⊥⇒=.由c d ⊥得0c d ⋅=,即22()()0a b a b a b +⋅-=-=所以a b = 【几何意义为菱形的对角线互相垂直,如图所示】4、12AD AB BC CD a b =++=+,1142AE a b =+而34EF a =,14EM a =,所以1111(4242AM AE EM a b a =+=++=5、证明:如图所示,12OD OP OP =+,由于1230OP OP OP ++=,所以3OP OD =-,1OD = 所以11OD OP PD == 所以1230OPP ∠=︒,同理可得1330OPP ∠=︒所以31260P PP ∠=︒,同理可得12360PP P ∠=︒,23160P P P ∠=︒,所以123PP P ∆为正三角形.(第3题)P 2(第5题)(第6题)6、连接AB .由对称性可知,AB 是SMN ∆的中位线,222MN AB b a ==-. 7、(18=(千米/时), 沿与水流方向成60°的方向前进; (2)实际前进速度大小为 沿与水流方向成90︒+的方向前进. 8、解:因为OA OB OB OC ⋅=⋅,所以()0OB OA OC ⋅-=,所以0OB CA ⋅= 同理,0OA BC ⋅=,0OC AB ⋅=,所以点O 是ABC ∆的垂心. 9、(1)2110200a x a y a y a x -+-=; (2)垂直;(3)当12210A B A B -=时,1l ∥2l ;当12120A A B B +=时,12l l ⊥,夹角θ的余弦cos θ=;(4)d =。
2018版数学人教A版必修四文档:第二章 平面向量2-2-3
2.2.3 向量数乘运算及其几何意义学习目标 1.了解向量数乘的概念,并理解这种运算的几何意义.2.理解并掌握向量数乘的运算律,会运用向量数乘运算律进行向量运算.3.理解并掌握两向量共线的性质及其判定方法,并能熟练地运用这些知识处理有关共线向量问题.知识点一 向量数乘的定义思考1 实数与向量相乘结果是实数还是向量? 答案 向量.思考2 向量3a ,-3a 与a 从长度和方向上分析具有怎样的关系? 答案 3a 的长度是a 的长度的3倍,它的方向与向量a 的方向相同. -3a 的长度是a 的长度的3倍,它的方向与向量a 的方向相反. 思考3 λa 的几何意义是什么?答案 λa 的几何意义就是将表示向量a 的有向线段伸长或压缩.当|λ|>1时,表示a 的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的|λ|倍. 梳理 向量数乘运算实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,其长度与方向规定如下: (1)|λa |=|λ||a |.(2)λa (a ≠0)的方向⎩⎪⎨⎪⎧当λ>0时,与a 方向相同,当λ<0时,与a 方向相反;特别地,当λ=0或a =0时,0a =0或λ0=0. 知识点二 向量数乘的运算律思考 类比实数的运算律,向量数乘有怎样的运算律? 答案 结合律,分配律. 梳理 向量数乘运算律 (1)λ(μa )=(λμ)a ; (2)(λ+μ)a =λa +μa ; (3)λ(a +b )=λa +λb . 知识点三 向量共线定理思考1 若b =2a ,b 与a 共线吗?答案 根据共线向量及向量数乘的意义可知,b 与a 共线.如果有一个实数λ,使b =λa (a ≠0),那么b 与a 是共线向量;反之,如果b 与a (a ≠0)是共线向量,那么有且只有一个实数λ,使得b =λa .思考2 若b 与非零向量a 共线,是否存在λ满足b =λa ?若b 与向量a 共线呢?答案 若b 与非零向量a 共线,存在λ满足b =λa ;若b 与向量a 共线,当a =0,b ≠0时,不存在λ满足b =λa . 梳理 (1)向量共线定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使b =λa . (2)向量的线性运算向量的加、减、数乘运算统称为向量的线性运算,对于任意向量a 、b ,以及任意实数λ、μ1、μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b .类型一 向量数乘的基本运算例1 (1)化简:14[2(2a +4b )-4(5a -2b )].解 14[2(2a +4b )-4(5a -2b )]=14(4a +8b -20a +8b ) =14(-16a +16b ) =-4a +4b .(2)已知向量为a ,b ,未知向量为x ,y ,向量a ,b ,x ,y 满足关系式3x -2y =a ,-4x +3y =b ,求向量x ,y .解 ⎩⎪⎨⎪⎧3x -2y =a , ①-4x +3y =b , ②由①×3+②×2,得x =3a +2b ,代入①得3×(3a +2b )-2y =a , 所以x =3a +2b ,y =4a +3b .反思与感悟 (1)向量的数乘运算类似于代数多项式的运算,例如实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在数与向量的乘积中同样适用,但是这里的“同类项”、“公因式”是指向量,实数看作是向量的系数.(2)向量也可以通过列方程和方程组求解,同时在运算过程中多注意观察,恰当的运用运算律,简化运算.跟踪训练1 (1)计算:(a +b )-3(a -b )-8a . 解 (a +b )-3(a -b )-8a =(a -3a )+(b +3b )-8a =-2a +4b -8a =-10a +4b .(2)若2⎝⎛⎭⎫y -13a -13(c +b -3y )+b =0,其中a ,b ,c 为已知向量,则未知向量y =________. 答案 29a -29b +19c解析 因为2⎝⎛⎭⎫y -13a -13(c +b -3y )+b =0, 3y -23a +23b -13c =0,所以y =29a -29b +19c .类型二 向量共线的判定及应用 命题角度1 判定向量共线或三点共线 例2 已知非零向量e 1,e 2不共线.(1)若a =12e 1-13e 2,b =3e 1-2e 2,判断向量a ,b 是否共线.解 ∵b =6a ,∴a 与b 共线.(2)若AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A 、B 、D 三点共线. 证明 ∵AB →=e 1+e 2,BD →=BC →+CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB →. ∴AB →,BD →共线,且有公共点B , ∴A 、B 、D 三点共线.反思与感悟 (1)向量共线的判断(证明)是把两向量用共同的已知向量来表示,进而互相表示,从而判断共线.(2)利用向量共线定理证明三点共线,一般先任取两点构造向量,从而将问题转化为证明两向量共线,需注意的是,在证明三点共线时,不但要利用b =λa (a ≠0),还要说明向量a ,b 有公共点.跟踪训练2 已知非零向量e 1,e 2不共线,如果AB →=e 1+2e 2,BC →=-5e 1+6e 2,CD →=7e 1-2e 2,则共线的三个点是________. 答案 A ,B ,D解析 ∵AB →=e 1+2e 2,BD →=BC →+CD → =-5e 1+6e 2+7e 1-2e 2=2(e 1+2e 2)=2AB →. ∴AB →,BD →共线,且有公共点B , ∴A ,B ,D 三点共线.命题角度2 利用向量共线求参数值例3 已知非零向量e 1,e 2不共线,欲使k e 1+e 2和e 1+k e 2共线,试确定k 的值. 解 ∵k e 1+e 2与e 1+k e 2共线, ∴存在实数λ,使k e 1+e 2=λ(e 1+k e 2),则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线,只能有⎩⎪⎨⎪⎧k -λ=0,λk -1=0,∴k =±1.反思与感悟 利用向量共线定理,即b 与a (a ≠0)共线⇔b =λa ,既可以证明点共线或线共线问题,也可以根据共线求参数的值.跟踪训练3 已知A ,B ,P 三点共线,O 为直线外任意一点,若OP →=xOA →+yOB →,则x +y =________. 答案 1解析 由于A ,B ,P 三点共线,则AB →,AP →在同一直线上,由向量共线定理可知,一定存在实数λ使得AP →=λAB →,即OP →-OA →=λ(OB →-OA →), ∴OP →=(1-λ)OA →+λOB →. ∴x =1-λ,y =λ,则x +y =1. 类型三 用已知向量表示其他向量例4 在△ABC 中,若点D 满足BD →=2DC →,则AD →等于( ) A.13AC →+23AB → B.53AB →-23AC →C.23AC →-13AB →D.23AC →+13AB → 答案 D解析 示意图如图所示,由题意可得AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →.反思与感悟 用已知向量表示未知向量的求解思路(1)先结合图形的特征,把待求向量放在三角形或平行四边形中.(2)然后结合向量的三角形法则或平行四边形法则及向量共线定理用已知向量表示未知向量. (3)当直接表示比较困难时,可以利用三角形法则和平行四边形法则建立关于所求向量和已知向量的等量关系,然后解关于所求向量的方程.跟踪训练4 如图,在△ABC 中,D ,E 为边AB 的两个三等分点,CA →=3a ,CB →=2b ,求CD →,CE →.解 ∵CA →=3a ,CB →=2b , ∴AB →=CB →-CA →=2b -3a ,又∵D ,E 为边AB 的两个三等分点, ∴AD →=13AB →=23b -a ,∴CD →=CA →+AD →=3a +23b -a =2a +23b ,CE →=CA →+AE →=3a +23AB →=3a +23(2b -3a )=a +43b .1.已知a =5e ,b =-3e ,c =4e ,则2a -3b +c 等于( ) A.5e B.-5e C.23e D.-23e答案 C解析 2a -3b +c =2×5e -3×(-3e )+4e =23e . 2.在△ABC 中,M 是BC 的中点,则AB →+AC →等于( ) A.12AM → B.AM → C.2AM → D.MA → 答案 C解析 如图,作出平行四边形ABEC ,M 是对角线的交点,故M 是BC 的中点,且是AE 的中点,由题意知,AB →+AC →=AE →=2AM →,故选C.3.设e 1,e 2是两个不共线的向量,若向量m =-e 1+k e 2 (k ∈R )与向量n =e 2-2e 1共线,则( )A.k =0B.k =1C.k =2D.k =12答案 D解析 当k =12时,m =-e 1+12e 2,n =-2e 1+e 2.所以n =2m ,此时,m ,n 共线.4.已知△ABC 的三个顶点A ,B ,C 及平面内一点P ,且P A →+PB →+PC →=AB →,则( ) A.P 在△ABC 内部 B.P 在△ABC 外部C.P 在AB 边上或其延长线上D.P 在AC 边上 答案 D解析 ∵P A →+PB →+PC →=PB →-P A →, ∴PC →=-2P A →,∴P 在AC 边上.5.如图所示,已知AP →=43AB →,用OA →,OB →表示OP →.解 OP →=OA →+AP →=OA →+43AB →=OA →+43(OB →-OA →)=-13OA →+43OB →.1.实数与向量可以进行数乘运算,但不能进行加减运算,例如λ+a ,λ-a 是没有意义的.2.λa 的几何意义就是把向量a 沿着a 的方向或反方向扩大或缩小为原来的|λ|倍.向量a|a |表示与向量a 同向的单位向量.3.向量共线定理是证明三点共线的重要工具.即三点共线问题通常转化为向量共线问题.4.已知O ,A ,B 是不共线的三点,且OP →=mOA →+nOB →(m ,n ∈R ),A ,P ,B 三点共线⇔m +n =1.课时作业一、选择题1.下列说法中正确的是( ) A.λa 与a 的方向不是相同就是相反 B.若a ,b 共线,则b =λa C.若|b |=2|a |,则b =±2a D.若b =±2a ,则|b |=2|a | 答案 D解析 显然当b =±2a 时,必有|b |=2|a |.2.在△ABC 中,如果AD ,BE 分别为BC ,AC 上的中线,且AD →=a ,BE →=b ,那么BC →等于( ) A.23a +43b B.23a -23b C.23a -43b D.-23a +43b答案 A解析 由题意,得BC →=BE →+EC →=b +12AC →=b +12(AD →+DC →)=b +12a +14BC →,即BC →=b +12a +14BC →,解得BC →=23a +43b .3.如图,AB 是⊙O 的直径,点C ,D 是半圆弧AB 上的两个三等分点,AB →=a ,AC →=b ,则AD →等于( )A.a -12bB.12a -b C.a +12bD.12a +b 答案 D解析 连接CD ,OD ,如图所示.∵点C ,D 是半圆弧AB 上的两个三等分点,∴AC =CD ,∠CAD =∠DAB =13×90°=30°.∵OA =OD ,∴∠ADO =∠DAO =30°. 由此可得∠CAD =∠ADO =30°,∴AC ∥DO . 由AC =CD ,得∠CDA =∠CAD =30°, ∴∠CDA =∠DAO , ∴CD ∥AO ,∴四边形ACDO 为平行四边形, ∴AD →=AO →+AC →=12AB →+AC →=12a +b .4.在△ABC 中,已知D 是AB 边上的一点,若CD →=13CA →+λCB →,则λ等于( )A.13B.23 C.12 D.34答案 B解析 ∵A ,B ,D 三点共线,∴13+λ=1,λ=23.5.设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →答案 A解析 ∵BC →=3CD →,∴AC →-AB →=3(AD →-AC →), 即4AC →-AB →=3AD →,∴AD →=-13AB →+43AC →.6.已知m ,n 是实数,a ,b 是向量,则下列命题中正确的是( ) ①m (a -b )=m a -m b ;②(m -n )a =m a -n a ; ③若m a =m b ,则a =b ;④若m a =n a ,则m =n . A.①④ B.①② C.①③ D.③④ 答案 B解析 ①和②属于数乘对向量与实数的分配律,正确;③中,若m =0,则不能推出a =b ,错误;④中,若a =0,则m ,n 没有关系,错误. 二、填空题7.已知AB →=a +5b ,BC →=-2a +8b ,CD →=3(a -b ),则________三点共线. 答案 A ,B ,D8.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=____________. 答案 12解析 ∵向量a ,b 不平行,∴a +2b ≠0,又∵向量λa +b 与a +2b 平行,则存在唯一的实数μ,使λa +b =μ(a +2b )成立,即λa +b =μa +2μb ,则⎩⎪⎨⎪⎧λ=μ,1=2μ,解得λ=μ=12.9.(a +9b -2c )+(b +2c )=________. 答案 a +10b10.在▱ABCD 中,AB →=a ,AD →=b ,AN →=3NC →,M 为BC 的中点,则MN →=________.(用a ,b 表示) 答案 14b -14a解析 如图,MN →=MB →+BA →+AN →=-12b -a +34AC →=-12b -a +34(a +b )=14(b -a ).三、解答题11.如图所示,设M ,N 为△ABC 内的两点,且AM →=14AB →+13AC →,AN →=25AB →+12AC →,求△ABM的面积与△ABN 的面积之比.解 如图所示,设AP →=14AB →,AQ →=13AC →,则AM →=AP →+AQ →.由平行四边形法则知,MQ ∥AB , ∴S △ABM S △ABC =|AQ →||AC →|=13. 同理S △ABN S △ABC =12.∴S △ABM S △ABN =23.12.若非零向量a 与b 不共线,k a +2b 与3a +k b 共线,试求实数k 的值. 解 ∵k a +2b 与3a +k b 共线,∴存在实数λ,使得k a +2b =λ(3a +k b ), ∴(k -3λ)a +(2-λk )b =0, ∴(k -3λ)a =(λk -2)b .∵a 与b 不共线,∴⎩⎪⎨⎪⎧k -3λ=0λk -2=0,∴k =±6.13.在平行四边形ABCD 中,M ,N 分别是DC ,BC 的中点,已知AM →=c ,AN →=d ,试用c ,d 表示AB →和AD →.解 如图,设AB →=a ,AD →=b . ∵M ,N 分别是DC ,BC 的中点,∴BN →=12b ,DM →=12a .∵在△ADM 和△ABN 中,⎩⎪⎨⎪⎧AD →+DM →=AM →,AB →+BN →=AN →,即⎩⎨⎧b +12a =c , ①a +12b =d . ②①×2-②,得b =23(2c -d ),②×2-①,得a =23(2d -c ).∴AB →=43d -23c ,AD →=43c -23d .四、探究与拓展14.已知向量a ,b 是两个不共线的向量,且向量m a -3b 与a +(2-m )b 共线,则实数m 的值为________.答案 -1或315.已知在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,求证:四边形ABCD为梯形.证明 如图所示.∵AD →=AB →+BC →+CD →=(a +2b )+(-4a -b )+(-5a -3b )=-8a -2b =2(-4a -b ),∴AD →=2BC →.∴AD →与BC →共线,且|AD →|=2|BC →|.又∵这两个向量所在的直线不重合,∴AD ∥BC ,且AD =2BC .∴四边形ABCD 是以AD ,BC 为两条底边的梯形.。
2021-2022年高中数学 第2章 第23课时 平面向量应用举例课时作业(含解析)新人教A版必修4
2021年高中数学第2章第23课时平面向量应用举例课时作业(含解析)新人教A版必修4∵∠A =120°,AB →·AC →=-2,则根据向量的数量积的定义可得, AB →·AC →=|AB →||AC →|cos120°=-2 设|AB →|=x ,|AC →|=y ∴|AB →||AC →|=4即xy =4. |AG →|=13|AB →+AC →|=13AB →+AC →2=13AB →2+AC →2+2AB →·AC →=13x 2+y 2-4 x 2+y 2≥2xy =8(当且仅当x =y 时取等号) ∴|AG →|≥23即|AG →|的最小值为23.故选C.答案:C5.已知作用在点A 的三个力f 1=(3,4),f 2=(2,-5),f 3=(3,1)且A (1,1),则合力f =f 1+f 2+f 3的终点坐标为( )A .(9,1)B .(1,9)C .(9,0)D .(0,9)解析:f =f 1+f 2+f 3=(3,4)+(2,-5)+(3,1)=(8,0),设合力f 的终点为P (x ,y ),则OP →=OA →+f =(1,1)+(8,0)=(9,1),故选A.答案:A6.在△ABC 中,AB →·AC →=7,|AB →-AC →|=6,则△ABC 面积的最大值为( ) A .24 B .16 C .12 D .8解析:设A 、B 、C 所对边分别为a ,b ,c , 由AB →·AC →=7,|AB →-AC →|=6,得bc cos A =7,a =6①,S △ABC =12bc sin A =12bc 1-cos 2A =12bc 1-49b 2c 2=12b 2c 2-49,由余弦定理可得b 2+c 2-2bc cos A =36②,由①②消掉cos A 得b 2+c 2=50,所以b 2+c 2≥2bc , 所以bc ≤25,当且仅当b =c =5时取等号,所以S △ABC =12b 2c 2-49≤12,故△ABC 的面积的最大值为12. 故选C. 答案:C7.2015·华东师大附中高一期末若O 是△ABC 所在平面内一点,且满足|OB →-OC →|=|OB →+OC →-2OA →|,则△ABC 的形状是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等边三角形解析:∵|OB →-OC →|=|CB →|=|AB →-AC →|,|OB →+OC →-2OA →|=|AB →+AC →|, ∴|AB →-AC →|=|AB →+AC →|,∴四边形ABDC 是矩形,且∠BAC =90°, ∴△ABC 是直角三角形,故选B. 答案:B8.一船向正北方向匀速行驶,看见正西方向两座相距53海里的灯塔恰好与该船在同一直线上,继续航行半小时后,看见其中一座灯塔在南偏西30°方向上,另一灯塔在南偏西60°方向上,则该船的速度是________海里/小时.解析:根据题意得:AB =53海里,∠ADC =60°,∠BDC =30°,DC ⊥AC , ∴∠DBC =60°,∠BDA =∠A =30°,∴BD =AB =53海里,∵DC ⊥AC ,∴在Rt △BDC 中,DC =BD ×sin∠DBC =53×32=152,∵从C 到D 行驶了半小时,∴速度为152÷12=10海里/小时.故答案为15.答案:159.设平面上有四个互异的点A 、B 、C 、D ,已知(DB →+DC →-2DA →)·(AB →-AC →)=0,则△ABC 的形状一定是__________.解析:∵(DB →+DC →-2DA →)·(AB →-AC →)=[(DB →-DA →)+(DC →-DA →)]·(AB →-AC →) =(AB →+AC →)·(AB →-AC →)=AB →2-AC →2=|AB →|2-|AC →|2=0, ∴|AB →|=|AC →|,∴△ABC 是等腰三角形. 答案:等腰三角形10.已知向量a =(2,0),b =(1,4). (1)求|a +b |的值;(2)若向量k a +b 与a +2b 平行,求k 的值;(3)若向量k a +b 与a +2b 的夹角为锐角,求k 的取值范围.解析:(1)依题意得a +b =(3,4),∴|a +b |=32+44=5. (2)依题意得k a +b =(2k +1,4),a +2b =(4,8), ∵向量k a +b 与a +2b 平行∴8×(2k +1)-4×4=0,解得k =12.(3)由(2)得k a +b =(2k +1,4),a +2b =(4,8) ∵向量k a +b 与a +2b 的夹角为锐角,∴4×(2k +1)+4×8>0,且8×(2k +1)≠4×4∴k >-92且k ≠12.B 组 能力提升11.2015·河北邯郸一中高一期末已知非零向量AB →与AC →满足⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0且AB →|AB →|·AC→|AC →|=12,则△ABC 的形状是( )A .三边均不相等的三角形B .直角三角形C .等腰(非等边)三角形D .等边三角形解析:由⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,得角A 的平分线垂直于BC .∴AB =AC ,而AB →|AB →|·AC →|AC →|=cos 〈AB →,AC →〉=12,又〈AB →,AC →〉∈[0°,180°],∴∠BAC =60°,故△ABC 为正三角形,故选D. 答案:D12.2015·河北衡水中学高二调研已知点O ,N ,P 在△ABC 所在平面内,且|OA →|=|OB →|=|OC →|,NA →+NB →+NC →=0,PA →·PB →=PB →·PC →=PC →·PA →,则点O ,N ,P 依次是△ABC 的( )A .重心、外心、垂心B .重心、外心、内心C .外心、重心、垂心D .外心、重心、内心解析:如图,∵NA →+NB →+NC →=0,∴NB →+NC →=-NA →.依向量加法的平行四边形法则,知|NA →|=2|ND →|,故点N 为△ABC 的重心.∵PA →·PB →=PB →·PC →, ∴(PA →-PC →)·PB →=CA →·PB →=0.同理AB →·PC →=0,BC →·PA →=0, ∴点P 为△ABC 的垂心. 由|OA →|=|OB →|=|OC →|,知点O 为△ABC 的外心,故选C. 答案:C13.2015·天津市南开中学高一期末质点P 在平面上作匀速直线运动,速度向量v =(4,-3)(即点P 的运动方向与v 相同,且每秒移动的距离为|v |个单位).设开始时点P 的坐标为(-10,10),则5秒后点P 的坐标为( )A .(-2,4)B .(-30,25)C .(10,-5)D .(5,-10)解析:设(-10,10)为A ,设5秒后P 点的坐标为A 1(x ,y ),则AA 1→=(x +10,y -10),由题意有AA 1→=5v .即(x +10,y -10)=(20,-15)⇒⎩⎪⎨⎪⎧ x +10=20,y -10=-15⇒⎩⎪⎨⎪⎧x =10,y =-5,故选C.答案:C14.2014·江苏泰州中学训练题如图,用两条同样长的绳子拉一物体,物体受到重力为G .两绳受到的拉力分别为F 1、F 2,夹角为θ.(1)求其中一根绳子受的拉力|F 1|与G 的关系式,用数学观点分析F 1的大小与夹角θ的关系;(2)求F 1的最小值;(3)如果每根绳子的最大承受拉力为|G |,求θ的取值范围.解析:(1)由力的平衡得F 1+F 2+G =0,设F 1,F 2的合力为F ,则F =-G ,由F 1+F 2=F且|F 1|=|F 2|,|F |=|G |,解直角三角形得cos θ2=12|F ||F 1|=|G |2|F 1|,∴|F 1|=|G |2cosθ2,θ∈[0°,180°],由于函数y =cos θ在θ∈[0°,180°]上为减函数,∴θ逐渐增大时,cos θ2逐渐减小,即|G |2cosθ2逐渐增大.∴θ增大时,|F 1|也增大.(2)由上述可知,当θ=0°时,|F 1|有最小值为|G |2.(3)由题意,|G |2≤|F 1|≤|G |,∴12≤12cosθ2≤1,即12≤cos θ2≤1. 由于y =cos θ在[0°,180°]上为减函数, ∴0°≤θ2≤60°,∴θ∈[0°,120°].15.附加题·选做2014·广东清远调考题若a =(cos α,sin α),b =(cos β,sin β),且|k a +b |=3|a -k b |(k >0).(1)用k 表示数量积a·b .(2)求a·b 的最小值,并求出此时a 与b 的夹角θ. 解析:(1)由|k a +b |=3|a -k b |得(k a +b )2=3(a -k b )2,。
新课标人教版高一数学必修4第二章平面向量练习题及答案全套
新课标⼈教版⾼⼀数学必修4第⼆章平⾯向量练习题及答案全套第⼆章平⾯向量 21 平⾯向量的实际背景及基本概念 1下列各量中不是向量的是com C位移 D密度 2下列说法中错误的是 A零向量是没有⽅向的 B零向量的长度为0 C零向量与任⼀向量平⾏ D零向量的⽅向是任意的 3把平⾯上⼀切单位向量的始点放在同⼀点那么这些向量的终点所构成的图形是 A⼀条线段B⼀段圆弧C圆上⼀群孤⽴点 D⼀个单位圆 4下列命题①⽅向不同的两个向量不可能是共线向量②长度相等⽅向相同的向量是相等向量③平⾏且模相等的两个向量是相等向量④若a≠b则a≠b 其中正确命题的个数是 A.1 B.2 C.3 D.45.下列命题中正确的是若则 B 若则 C 若则D 若则 6在△ABC中ABACDE分别是ABAC的中点则 A 与共线 B 与共线C 与相等D 与相等7已知⾮零向量a‖b若⾮零向量c‖a则c与b必定8已知ab是两⾮零向量且a与b不共线若⾮零向量c与a共线则c与b必定9已知1 2若∠BAC60°则 10在四边形ABCD中且则四边形ABCD是22 平⾯向量的线性运算 com 向量的加法运算及其⼏何意义 1.设分别是与向的单位向量则下列结论中正确的是 A. B. C. D. 2在平⾏四边形中ABCD则⽤ab表⽰的是 A.a+a B.bb C.0 D.a+b 3若则 A⼀定可以构成⼀个三⾓形 B⼀定不可能构成⼀个三⾓形 C都是⾮零向量时能构成⼀个三⾓形 D都是⾮零向量时也可能⽆法构成⼀个三⾓形 4⼀船从某河的⼀岸驶向另⼀岸船速为⽔速为已知船可垂直到达对岸则 AB C D 5若⾮零向量满⾜则comD 6⼀艘船从A点出发以的速度向垂直于对岸的⽅向⾏驶船的实际航⾏的速度的⼤⼩为求⽔流的速度 7⼀艘船距对岸以的速度向垂直于对岸的⽅向⾏驶到达对岸时船的实际航程为8km求河⽔的流速 8⼀艘船从A点出发以的速度向垂直于对岸的⽅向⾏驶同时河⽔的流速为船的实际航⾏的速度的⼤⼩为⽅向与⽔流间的夹⾓是求和 9⼀艘船以5kmh的速度在⾏驶同时河⽔的流速为2kmh则船的实际航⾏速度⼤⼩最⼤是kmh最⼩是kmh com 向量的减法运算及其⼏何意义 1在△ABC中 a b则等于 Aab B-a-bCa-b Db-a 2下列等式①a0a ②baab ③--aa ④a-a0 ⑤a-ba-b正确的个数是A2 B3 C4D5 3下列等式中⼀定能成⽴的是 A B -C D - 4化简-的结果等于 A B C D 5如图在四边形ABCD中根据图⽰填空 ab bc c-d abc-d 6⼀艘船从A点出发以2kmh的速度向垂直于对岸的⽅向⾏驶⽽船实际⾏驶速度的⼤⼩为4 kmh则河⽔的流速的⼤⼩为 7若ab共线且ab<a-b成⽴则a与b的关系为8在正六边形ABCDEF中 m n则 9已知ab是⾮零向量则a-bab时应满⾜条件 10在五边形ABCDE中设a b c d⽤abcd表⽰ com 向量数乘运算及其⼏何意义 1.下列命题中正确的是 A. B.C. D. 2.下列命题正确的是 A.单位向量都相等 B.若与是共线向量与是共线向量则与是共线向量C.则 D.若与是单位向量则 3 已知向量2若向量与共线则下列关系⼀定成⽴是 B C‖ D‖或 4对于向量和实数λ下列命题中真命题是 A若则或 B若则或 C若则或 D若则 5下列命题中正确的命题是 A且 B或 C若则 D若与不平⾏则 6已知是平⾏四边形O为平⾯上任意⼀点设则有 A B C D 7向量与都不是零向量则下列说法中不正确的是 A向量与同向则向量与的⽅向相同 B向量与同向则向量与的⽅向相同C向量与反向且则向量与同向D向量与反向且则向量与同向8若ab为⾮零向量且abab则有 Aa‖b且ab⽅向相同BabCa-bD以上都不对 9在四边形ABCD中--等于 AB C D 23平⾯向量的基本定理及坐标表⽰ com 平⾯向量基本定理 1若ABCD是正⽅形E是DC边的中点且则等于 AB C D 2 若O为平⾏四边形ABCD的中⼼ 4e1 6e2则3e2-2e1等于 A B C D 3 已知的三个顶点及平⾯内⼀点满⾜若实数满则的值为 A2 B C3 D6 4 在中若点满⾜则 A BC D 5 在平⾏四边形ABCD中M为BC的中点则 A B CD 6如图在平⾏四边形ABCD中EF分别是BCCD的中点 DE与AF相交于点H 设等于_____ 7已知为的边的中点所在平⾯内有⼀点满⾜设则的值为______ 8在平⾏四边形ABCD中E和F分别是边CD和BC的中点或其中R 则 _________ 9.在ABCD中设对⾓线试⽤表⽰10.设是两个不共线向量已知2k 3 2 若三点A B D共线求k的值 comcom 平⾯向量的正交分解和坐标表⽰及运算 1 若则A11 B-1-1 C37 D-3-7 2下列各组向量中不能作为平⾯内所有的向量的基底的⼀组是ABCD 3已知平⾯向量则向量ABCD 4若向量与向量相等则 Ax1y3 Bx3y1 Cx1y -5 Dx5y -1 5点B的坐标为12的坐标为mn则点A的坐标为 A B C D 6在平⾏四边形ABCD中AC为⼀条对⾓线若则 A.-2-4B.-3-5C.35D.24 7已知向量则_____________________ 8已知向量则的坐标是 9已知点O是平⾏四边形ABCD的对⾓线交点25-23则坐标为坐标为的坐标为10.已知x1y1x2y2线段AB的中点为C则的坐标为 com 平⾯向量共线的坐标表⽰ 1 已知平⾯向量且则= A B C D 2.已知向量且与共线则等于 A B 9 C D1 3.已知||||若与反向则等于 A-410 B4-10 C -1D 1 4.平⾏四边形ABCD的三个顶点为A-21B-13C34则点D的坐标是A21 B22 C 12 D23 5.与向量不平⾏的向量是 A B CD 6已知ab是不共线的向量=λa+b=a+µb λµ∈R 那么ABC三点时λµ满⾜的条件是 A.λ+µ=2 B.λ-µ=1 C.λµ=-1 D.λµ=1 7与向量同⽅向的单位向量是_______8设向量若向量与向量共线则9.已知A-1-2B48C5x如果ABC三点共线则x的值为 10.已知向量向量与平⾏||4求向量的坐标 24平⾯向量的数量积 com量的数量积的物理背景及其含义 1下列叙述不正确的是 A向量的数量积满⾜交换律 B向量的数量积满⾜分配律 C向量的数量积满⾜结合律 Da·b是⼀个实数 2已知a6b4a与b的夹⾓为60°则a2b·a-3b等于 A72 B-72 C36 D-36 3 已知向量121则向量与的夹⾓⼤⼩为 A B CD 4已知a1b且a-b与a垂直则a与b的夹⾓是A60°B30°C135°D45° 5若平⾯四边形ABCD满⾜则该四边形⼀定是A.正⽅形 B.矩形 C.菱形 D.直⾓梯形 6若向量则与⼀定满⾜ A与的夹⾓等于B C D 7下列式⼦中其中的abc为平⾯向量正确的是A.B.ab·c a·bcC.D. 8设a3b5且aλb与a-λb垂直则λ= 9已知ab2i-8ja-b-8i16j其中ij是直⾓坐标系中x轴y轴正⽅向上的单位向量那么a·b 10已知a⊥bc与ab的夹⾓均为60°且a1b2c3则a2b-c2=______ 11已知a1b1若a‖b求a·b2若ab的夹⾓为60°求。
人教版高中数学必修四2.3平面向量的基本定理及坐标表示2.3.2-2.3.3含答案
2.3.2 平面向量的正交分解及坐标表示2.3.3 平面向量的坐标运算 课时目标 1.掌握向量的正交分解,理解平面向量坐标的概念,会写出给定向量的坐标,会作出已知坐标表示的向量.2.掌握平面向量的坐标运算,能准确运用向量的加法、减法、数乘的坐标运算法则进行有关的运算.1.平面向量的坐标表示(1)向量的正交分解:把一个向量分解为两个__________的向量,叫作把向量正交分解.(2)向量的坐标表示:在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个____________i ,j 作为基底,对于平面内的一个向量a ,有且只有一对实数x ,y 使得a =____________,则________________叫作向量a 的坐标,________________叫作向量的坐标表示.(3)向量坐标的求法:在平面直角坐标系中,若A (x ,y ),则OA →=________,若A (x 1,y 1),B (x 2,y 2),则AB →=________________________.2.平面向量的坐标运算(1)若a =(x 1,y 1),b =(x 2,y 2),则a +b =________________,即两个向量和的坐标等于这两个向量相应坐标的和.(2)若a =(x 1,y 1),b =(x 2,y 2),则a -b =________________________,即两个向量差的坐标等于这两个向量相应坐标的差.(3)若a =(x ,y ),λ∈R ,则λa =________,即实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.一、选择题1.已知平面向量a =(1,1),b =(1,-1),则向量12a -32b 等于( ) A .(-2,-1) B .(-2,1)C .(-1,0)D .(-1,2)2.已知a -12b =(1,2),a +b =(4,-10),则a 等于( ) A .(-2,-2) B .(2,2)C .(-2,2)D .(2,-2)3.已知向量a =(1,2),b =(2,3),c =(3,4),且c =λ1a +λ2b ,则λ1,λ2的值分别为( )A .-2,1B .1,-2C .2,-1D .-1,24.已知M (3,-2),N (-5,-1)且MP →=12MN →,则点P 的坐标为( ) A .(-8,1) B.⎝⎛⎭⎫1,32 C.⎝⎛⎭⎫-1,-32 D .(8,-1) 5.在平行四边形ABCD 中,AC 为一条对角线.若AB →=(2,4),AC →=(1,3),则BD →等于( )A .(-2,-4)B .(-3,-5)C .(3,5)D .(2,4)6.已知四边形ABCD 为平行四边形,其中A (5,-1),B (-1,7),C (1,2),则顶点D 的坐标为( )A .(-7,0)B .(7,6)C .(6,7)D .(7,-6)题 号 1 2 3 4 5 6 答 案二、填空题7.已知平面上三点A (2,-4),B (0,6),C (-8,10),则12AC →-14BC →的坐标是________. 8.已知A (-1,-2),B (2,3),C (-2,0),D (x ,y ),且AC →=2BD →,则x +y =________.9.若向量a =(x +3,x 2-3x -4)与AB →相等,其中A (1,2),B (3,2),则x =________.10.函数y =x 2+2x +2按向量a 平移所得图象的解析式为y =x 2,则向量a 的坐标是________.三、解答题11.已知a =(-2,3),b =(3,1),c =(10,-4),试用a ,b 表示c .12.已知平面上三个点坐标为A (3,7),B (4,6),C (1,-2),求点D 的坐标,使得这四个点为构成平行四边形的四个顶点.能力提升13.已知P ={a |a =(1,0)+m (0,1),m ∈R },Q ={b |b =(1,1)+n (-1,1),n ∈R }是两个向量集合,则P ∩Q 等于( )A .{(1,1)}B .{(-1,1)}C .{(1,0)}D .{(0,1)}14.函数y =cos ⎝⎛⎭⎫2x +π6-2的图象F 按向量a 平移到F ′,F ′的函数解析式为y =f (x ),当y =f (x )为奇函数时,向量a 可以等于( )A.⎝⎛⎭⎫-π6,-2B.⎝⎛⎭⎫-π6,2 C.⎝⎛⎭⎫π6,-2 D.⎝⎛⎭⎫π6,21.在平面直角坐标系中,平面内的点、以原点为起点的向量、有序实数对三者之间建立一一对应关系.关系图如图所示:2.向量的坐标和这个向量的终点的坐标不一定相同.当且仅当向量的起点在原点时,向量的坐标才和这个终点的坐标相同.2.3.2 平面向量的正交分解及坐标表示2.3.3 平面向量的坐标运算答案知识梳理1.(1)互相垂直 (2)单位向量 x i +y j 有序数对(x ,y ) a =(x ,y ) (3)(x ,y ) (x 2-x 1,y 2-y 1)2.(1)(x 1+x 2,y 1+y 2) (2)(x 1-x 2,y 1-y 2) (3)(λx ,λy )作业设计1.D 2.D3.D [由⎩⎪⎨⎪⎧ λ1+2λ2=3,2λ1+3λ2=4.解得⎩⎪⎨⎪⎧λ1=-1,λ2=2.] 4.C [设P (x ,y ),由(x -3,y +2)=12×(-8,1), ∴x =-1,y =-32.] 5.B [∵AC →=AB →+AD →,∴AD →=AC →-AB →=(-1,-1).∴BD →=AD →-AB →=(-3,-5).]6.D [设D (x ,y ),由AD →=BC →,∴(x -5,y +1)=(2,-5).∴x =7,y =-6.]7.(-3,6)8.112解析 ∵AC →=(-2,0)-(-1,-2)=(-1,2),BD →=(x ,y )-(2,3)=(x -2,y -3),又2BD →=AC →,即(2x -4,2y -6)=(-1,2),∴⎩⎪⎨⎪⎧ 2x -4=-1,2y -6=2, 解得⎩⎪⎨⎪⎧ x =32,y =4,∴x +y =112. 9.-1解析 ∵A (1,2),B (3,2),∴AB →=(2,0).又∵a =AB →,它们的坐标一定相等.∴(x +3,x 2-3x -4)=(2,0).∴⎩⎪⎨⎪⎧ x +3=2,x 2-3x -4=0, ∴x =-1.10.(1,-1)解析 函数y =x 2+2x +2=(x +1)2+1的顶点坐标为(-1,1),函数y =x 2的顶点坐标为(0,0),则a =(0,0)-(-1,1)=(1,-1).11.解 设c =x a +y b ,则(10,-4)=x (-2,3)+y (3,1)=(-2x +3y,3x +y ),∴⎩⎪⎨⎪⎧ 10=-2x +3y ,-4=3x +y , 解得x =-2,y =2,∴c =-2a +2b .12.解 (1)当平行四边形为ABCD 时,AB →=DC →,设点D 的坐标为(x ,y ).∴(4,6)-(3,7)=(1,-2)-(x ,y ),∴⎩⎪⎨⎪⎧ 1-x =1,-2-y =-1, ∴⎩⎪⎨⎪⎧ x =0,y =-1. ∴D (0,-1); (2)当平行四边形为ABDC 时,仿(1)可得D (2,-3);(3)当平行四边形为ADBC 时,仿(1)可得D (6,15).综上可知点D 可能为(0,-1),(2,-3)或(6,15).13.A [设a =(x ,y ),则P =⎩⎨⎧⎭⎬⎫(x ,y )|⎩⎪⎨⎪⎧x =1y =m , ∴集合P 是直线x =1上的点的集合.同理集合Q 是直线x +y =2上的点的集合,即P ={(x ,y )|x =1},Q ={(x ,y )|x +y -2=0}.∴P ∩Q ={(1,1)}.故选A.]14.B [函数y =cos ⎝⎛⎭⎫2x +π6-2按向量a =(m ,n )平移后得到y ′=cos ⎝⎛⎭⎫2x -2m +π6+n -2.若平移后的函数为奇函数,则n =2,π6-2m =k π+π2(k ∈Z ),故m =-π6时适合.]附赠材料答题六注意:规范答题不丢分提高考分的另一个有效方法是减少或避免不规范答题等非智力因素造成的失分,具体来说考场答题要注意以下六点:第一,考前做好准备工作。
2018版数学人教A版必修四文档:第二章平面向量2-3-2~2-3-3含答案精品
2.3.2 平面向量的正交分解及坐标表示2.3.3 平面向量的坐标运算学习目标 1.了解平面向量的正交分解,掌握向量的坐标表示.2.掌握两个向量和、差及数乘向量的坐标运算法则 .3. 正确理解向量坐标的概念,要把点的坐标与向量的坐标区分开来 .知识点一 平面向量的正交分解思考 如果向量 a 与 b 的夹角是 90°,则称向量 a 与 b 垂直,记作 a ⊥ b .互相垂直的两个向量 能否作为平面内所有向量的一组基底?答案 互相垂直的两个向量能作为平面内所有向量的一组基底 .梳理 把一个向量分解为两个互相垂直的向量,叫做把向量正交分解 知识点二 平面向量的坐标表示思考 1 如图,向量 i ,j 是两个互相垂直的单位向量,向量答案 a =2 3i + 2j .思考 2 在平面直角坐标系内, 给定点 A 的坐标为 A (1,1),则 A 点位置确定了吗?给定向量a 的坐标为 a = (1, 1) ,则向量 a 的位置确定了吗?答案 对于 A 点,若给定坐标为 A (1,1) ,则 A 点位置确定 .对于向量 a ,给定 a 的坐标为 a = (1, 1),此时给出了 a 的方向和大小,但因向量的位置由起点和终点确定,且向量可以任 意平移,因此 a 的位置还与其起点有关 .思考 3 设向量 B →C =(1,1),O 为坐标原点,若将向量 B →C 平移到 O →A ,则 O →A 的坐标是多少? A点坐标是多少? 答案 向量 O →A 的坐标为 O →A =(1,1),A 点坐标为 A (1,1). 梳理 (1) 平面向量的坐标①在平面直角坐标系中,分别取与 x 轴、 y 轴方向相同的两个单位向量 i 、j 作为基底 .对于平 面内的一个向量 a ,由平面向量基本定理可知,有且只有一对实数x ,y ,使得 a = x i +y j .平面内的任一向量 a 都可由 x 、 y 唯一确定,我们把有序数对 (x , y )叫做向量 a 的坐标,记作 a = (x ,y ).a 与 i 的夹角是 30°,且 |a |= 4,以向量 i ,j 为基底,如何表示向量a?②在平面直角坐标平面中,i=(1,0),j=(0,1),0=(0,0).(2)知识点三平面向量的坐标运算思考设i、j 是分别与x轴、y 轴同向的两个单位向量,若设a=(x1,y1),b=(x2,y2),则a =x1i+y1j,b=x2 i+y2j,根据向量的线性运算性质,向量a+b,a-b,λa(λ∈ R )如何分别用基底i、j 表示?答案a+b=(x1+x2)i+(y1+y2)j,a-b=( x1-x2)i+(y1-y2)j,λa=λ1x i+λ1y j.梳理设a=(x1,y1),b=(x2,y2),已知点A(x1,y1),B(x2,y2),那么向量AB=(x2-x1,y2-y1),即任意一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标.类型一平面向量的坐标表示例1 如图,在平面直角坐标系xOy 中,OA=4,AB=3,∠AOx=45°,∠OAB=105°,O→A=a,AB=b.四边形 OABC 为平行四边形(1) 求向量 a , b 的坐标; (2) 求向量 B →A 的坐标; (3) 求点B 的坐标 .解 (1)作 AM ⊥x 轴于点 M , 则 OM =OA ·cos 45° = 4× 22=2 2,AM =OA ·sin 45 °= 4× 2=2 2.∴A(2 2,2 2),故 a =(2 2, 2 2).∵∠ AOC = 180°- 105°= 75°, ∠ AOy = 45°, ∴∠ COy = 30°. 又∵OC =AB = 3,∴C - 3,3 3 ,∴A →B = O →C = -3,3 3 , ∴C - 2,2,∴AB = OC = -2, 2 , 即 b = -3, 3 3.22(2)B→A=- A →B = 3,-3 3 . (2)BA =- AB =2,- 2 .(3)O →B =O →A +A →B =(2 2,2 2)+(-32, 323) = 2 2-32,2 2+323.反思与感悟 在表示点、向量的坐标时,可利用向量的相等、加减法运算等求坐标,也可以 利用向量、 点的坐标定义求坐标 .一般利用不等式思想求解, 即把问题条件转化为关于参数的 不等式 (组 ),再解不等式 (组)就可以求得参数的取值范围 .跟踪训练 1 已知边长为 2 的正三角形 ABC ,顶点 A 在坐标原点, AB 边在 x 轴上,点 C 在 第一象限, D 为 AC 的中点,分别求向量 A →B ,A →C ,B →C ,B →D 的坐标 .解 如图,正三角形 ABC 的边长为 2,则顶点 A (0,0),B (2,0),C (2cos 60 °,2sin 60 )°,∴C (1, 3),D (12, 23),∴A →B = (2, 0),A →C =(1, 3),BC = (1-2, 3-0)=(-1, 3), B →D =(12-2, 23- 0)= ( -32, 类型二 平面向量的坐标运算例 2 已知 A (-2,4),B (3,- 1) ,C (- 3,- 4).设A →B =a ,B →C =b ,C →A =c ,且C →M =3c ,C →N =- 2b .(1)求 3a + b -3c ;(2)求满足 a =m b +n c 的实数 m ,n 的值; (3)求 M ,N 的坐标及向量 M →N 的坐标 .解 由已知得 a =(5,- 5), b =(- 6,- 3),c =(1,8).(1)3a + b - 3c = 3(5,- 5)+ (- 6,- 3)-3(1,8)= (15-6- 3,- 15-3-24)=(6,-42).(2)∵ m b +n c =(-6m +n ,- 3m +8n )=a =(5,- 5),(3)设 O 为坐标原点,O →M -O →C =3c ,O →M =3c +O →C =(3,24)+(-3,- 4)=(0,20),∴M (0,20).∴N (9,2),∴MN =(9,- 18).反思与感悟 向量坐标运算的方法(1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则进行 (2)若已知有向线段两端点的坐标,则可先求出向量的坐标,然后再进行向量的坐标运算23)-6m +n =5, - 3m + 8n =- 5,m =- 1, 解得n =-(12,6)+(-3,- 4)=(9,2),又∵CN(3)向量的线性坐标运算可完全类比数的运算进行跟踪训练2 已知a=(-1,2),b=(2,1),求:11 (1)2a+3b;(2)a-3b;(3)2a-3b.解(1)2a+3b=2(-1,2)+3(2,1)=(-2,4)+(6,3)=(4,7).(2)a-3b=(-1,2)-3(2,1)=(-1,2)-(6,3)=(-7,-1).1 1 1 1(3)2a-3b=2(-1,2)-3(2,1)=-1,1 -2,1=-7,2. =-2,1-3,3=-6,3 .类型三平面向量坐标运算的应用例3 已知点A(2,3),B(5,4),C(7,10).若A→P=A→B+λA→C(λ∈R),试求λ为何值时:(1)点P 在第一、三象限的角平分线上;(2)点P 在第三象限内.解设点P 的坐标为(x,y),则A→P=(x,y)-(2,3)=(x-2,y-3),A→B+λA→C=(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7)=(3+5λ,1+7λ).A→P= A→B+λA→C ,x-2= 3+5λ,x= 5+5λ,则y-3= 1+7λ,y= 4+7λ.(1)若点P 在一、三象限角平分线上,则5+5λ=4+7λ,λ=12.5+5 λ<0 ,(2)若点P 在第三象限内,则45+57λ<<00,∴λ<-1.∴当λ=21时,点P 在第一、三象限角平分线上;当λ<-1时,点P 在第三象限内.反思与感悟(1)待定系数法是最基本的数学方法之一,实质是先将未知量设出来,建立方程(组)求出未知数的值,是待定系数法的基本形式,也是方程思想的一种基本应用.(2)坐标形式下向量相等的条件:相等向量的对应坐标相等;对应坐标相等的向量是相等向量由此可建立相等关系求某些参数的值.跟踪训练 3 已知向量 a = (2, 1),b =(1,- 2),若 m a + n b = (9,- 8)( m , n ∈R ),则 m -n 的值为 .答案 - 32m + n = 9,解析 ∵ a =(2,1),b =(1,-2),∴ m a +n b =(2m +n ,m -2n )=(9,-8),即m - 2n =- 8,m =2,解得故 m -n =2-5=- 3.n = 5,1.设平面向量 a =(3,5),b =(-2,1),则 a -2b 等于 ()A. (7,3)B.(7,7)C.(1,7)D.(1 ,3)答案 A2.已知向量O →A =(3,-2),O →B =(-5,-1),则向量21A →B 的坐标是 ()A. -4,21B. 4,- 12 C.(- 8,1)D.(8 ,1)答案 A解析 ∵ A →B =O →B -O →A =(-8,1),1 → 1 ∴2A →B = -4,2 . 3.已知四边形 ABCD 的三个顶点 A (0,2),B (-1,-2),C (3,1),且BC =2AD ,则顶点 D 的 坐标为 ( )A. 2,2B. 2,- 2C.(3,2)D.(1 ,3)答案 A解析 设 D 点坐标为 (x , y ),则 B →C =(4,3),A →D =(x ,y -2),4.已知点 A (0,1),B由B →C =2A →D , 4=2x ,得3= 2 y -2 ,∴ x y == 27 ,∴ D (2, 72).y =2 2(3,2),向量AC=(-4,-3),则向量BC等于()C.(- 1, 4) 答案 A解析 A →B =(3,1),A →C =(-4,-3),B →C =A →C -A →B =(-4,- 3)-(3,1)=(-7,-4).5. _____________ 如图,在 6×6 的方格纸中, 若起点和终点均在格点的向量 则 x + y = .3=x +2y ,c =x a + y b ,∴4= 2x -3y ,1.向量的正交分解是把一个向量分解为两个互相垂直的向量,是向量坐标表示的理论依据 .向量的坐标表示,沟通了向量 “数”与“ 形”的特征,使向量运算完全代数化.2.要区分向量终点的坐标与向量的坐标 .由于向量的起点可以任意选取,如果一个向量的起点是坐标原点,这个向量终点的坐标就是这个向量的坐标;若向量的起点不是原点,则向量的 终点坐标不是向量的坐标,此时 A →B = (x B - x A , y B -y A ).3. 向量和、差的坐标就是它们对应向量坐标的和、差,数乘向量的坐标等于这个实数与原来 向量坐标的积 .D.(1 ,4)a ,b ,c 满足 c =x a +y b (x ,y ∈ R ),19 答案 179解析 建立如图所示的平面直角坐标系,设小方格的边长为1,则可得 a = (1,2),b =(2,-3),c =(3,4). 解得17x =7,y =27.因此 x + y =19.7.课时作业、选择题1. 已知向量 a =(-1,2),b =(1,0),那么向量 3b -a 的坐标是 ( ) B. ( - 4,- 2) C.(4,2) D.(4 ,- 2)答案 D解析 3b -a = 3(1,0)-(-1, 2)= (3,0)-(-1,2)=(3+1,0-2)=(4,- 2),故选 D.12. 已知 a -2b =(1,2),a +b =(4,-10),则 a 等于 ( ) A.( -2,- 2) B.(2 ,2) C.(- 2,2)D.(2 ,- 2)答案 D3.已知向量 a = (1, 2),b =(2, 3), c = (3 ,4),且 c = λ1a + λ2b ,则 λ1, λ2的值分别为 ( )A.-2,1B.1,- 2C.2,- 1D. -1, 2答案 Dλ1+2λ2= 3,λ1=- 1, 解析 由 解得2λ1 + 3λ2= 4,λ2= 2.4.在?ABCD 中,已知 A →D =(3,7),A →B =(-2,3),对角线 AC ,BD 相交于点 O ,则C →O 的坐标 是 ( )答案 B解析 C →O =- 12A →C =- 12(A →B +A →D)在直线的倾斜角为 150°,所以 A ,B 两点关于 y 轴对称,由此可知 B 点坐标为 (- 23,12),故A.( -4,2) 11=-12×(-2,3)-21×(3,7)-21,- 5 ,故选 B. 5.如果将 O →A = ( 23, 12)绕原点 O 逆时针方向旋转 120°得到O →B ,则 O →B 的坐标是 ( A.( -12,3)2)B.( 23,3,1 2 ,2)120°得到 OB 所C. 12,1 C.(- 1, 3)答案 D解析 因为 O →A =(30 °,绕原点 O 逆时针方向旋O→B的坐标是(-23,12),故选D.6.已知向量a=(5,2),b=(-4,-3),c=(x,y),若3a-2b+c=0,则c等于()A.(-23,-12)B.(23 ,12)C.(7,0)D.(-7,0)答案A解析∵a=(5,2),b=(-4,-3),c=(x,y),且3a-2b+c=0,∴c=2b-3a=2(-4,-3)-3(5,2)=(-8-15,-6-6)=(-23,-12).7.已知M(-2,7),N(10,-2),点P是线段MN上的点,且P→N=-2P→M,则P点的坐标为()A.(-14,16)B.(22 ,-11)C.(6,1)D.(2 ,4)答案D二、填空题8._______________________ 已知e1=(1,2),e2=(-2,3),a=(-1,2),则以e1,e2为基底,将a分解成λ1e1+λ2e2(λ1,λ2∈ R)的形式为.14答案a=17e1+47e2解析设a=λ1e1+λ2e2(λ1,λ2∈ R),则(-1,2)=λ1(1, 2)+λ2(-2,3)=(λ1-2λ2,2λ1+3λ2),-1=λ1-2λ2,λ1=7,由解得2=2λ1+3λ2, 4λ2=7.14所以a=71e1+74e2.1 → 1 →9._______________________________________________________________________ 已知平面上三点A(2,-4),B(0,6),C(-8,10),则2AC-4BC的坐标是 _____________________________________________ .答案(-3,6)→→10.________________________________________________________________________ 已知A (-1,-2),B(2,3),C(-2,0),D(x,y),且AC =2BD ,则x+y=___________ .答案112解析∵A→C=(-2,0)-(-1,-2)=(-1,2),BD =(x,y)-(2,3)=(x-2,y-3),又∵2B→D=A→C,即(2x-4,2y-6)=(-1,2),11. ____________________________________________________________________________ 已知 A (-2,4),B (3,-1),C (- 3,-4),C →M =3C →A ,C →N = 2C →B ,则M →N 的坐标为 .答案 (9,- 18)解析 C →M =3(1,8)=(3,24),C →N =2(6,3)=(12,6), M →N =C →N -C →M =(12,6)-(3,24)=(9,- 18). 12. ____________________________________________________________________________ 已知 O 是坐标原点, 点 A 在第二象限, |O →A|=6,∠xOA =150°,向量 O →A 的坐标为 __________ .答案 (- 3 3,3)13. ________________________________ 已知 A (-3,0),B (0,2),O 为坐标原点,点 C 在∠AOB 内, |OC|=2 2,且∠ AOC =4π.设 OC = λOA + OB( λ∈ R ) ,则 λ= .2答案 23解析 过 C 作 CE ⊥x 轴于点 E ,由∠AOC =4π知,|OE|=|CE|=2,所以 O →C =O →E +O →B =λO →A +O →B , 即O →E =λO →A ,2所以 (-2, 0)=λ(-3,0),故 λ=23.三、解答题14. 已知 a =(2,1),b =(-1,3),c =(1,2),求 p =2a +3b +c ,并用基底 a 、b 表示 p . 解 p =2a +3b + c=2(2,1)+3(-1,3)+(1,2) =(4,2)+(-3,9)+(1,2)=(2,13). 设 p =x a + y b ,2x -4=-1 ∴由2y -6=2,解得x =2y =4,则有x + 3y =13,19x =7∴p=179a+274b.四、探究与拓展→ 1 → → 1 → →15.已知点A(-1,2),B(2,8)及AC=3AB,DA=-3BA,求点C、D 和CD的坐标. 解设点C(x1,y1),D(x2,y2),由题意可得A→C=(x1+1,y1-2),A→B=(3,6),DA =(-1-x2 ,2-y2),BA=(-3,-6).→ 1 → → 1 →∵AC=3AB,DA=-3BA,1∴(x1+1,y1-2)=3(3,6)=(1,2),1(-1-x2,2-y2)=-3(-3,-6)=(1,2),x1+1=1,则有1y1-2=2x1=0,和y1=4-1-x2=1,和2-y2=2,x2=-2,y2=0.∴C→D=(-2,-4).精品文档强烈推荐值得拥有值得拥有值得拥有值得拥有值得拥有值得拥有值得拥有值得拥有值得拥有值得拥有值得拥有值得拥有值得拥有∴C,D 的坐标分别为(0,4)和(-2,0),解得精品推荐精品推荐精品推荐精品推荐精品推荐精品推荐精品推荐精品推荐精品推荐精品推荐精品推荐精品推荐精品推荐强力推荐强力推荐强力推荐强力推荐强力推荐强力推荐强力推荐强力推荐强力推荐强力推荐强力推荐强力推荐强力推荐。
第一学期高二数学人教A版必修4第二章课时作业与课件(
2.已知向量 a、b 满足|a|=1,|b|=4,且 a·b=2,则 a 与 b
的夹角为( )
π A.6
B.π4
π C.3
D.π2
解析:a·b=|a||b|cosθ(θ 为 a 与 b 的夹角)=1×4×cosθ=2,
∴cosθ=12,∴θ=π3. 答案:C
知识点二
平面向量数量积的几何意义
3.已知|a|=8,e 为单位向量,当它们的夹角为π3时,a 在 e
的方向上的投影为( )
A.4 3
B.4
C.4 2
D.8+
3 2
解析:a 在 e 方向上的投影为|a|cosπ3=8×12=4.
答案:B
4.已知|a|=4,e 为单位向量,a 在 e 方向上的投影为-2, 则 a 与 e 的夹角为23π,e 在 a 方向上的投影为__-__12___.
解析:设 a 与 e 的夹角为 θ,则|a|·cosθ=-2,即 4cosθ= -2,∴cosθ=-12,∴θ=23π,|e|·cosθ=-12.
第二章
平面向量
2.4 ቤተ መጻሕፍቲ ባይዱ面向量的数量积
第27课时 平面向量数量积的物理背景及其含义
1 课堂对点训练 2 课后提升训练
课堂对点训练
知识点一
平面向量数量积的定义
1.如右图,在等边△ABC 中,边长为 1,则 a·b+b·c+c·a
等于( )
7 A.2
B.12
C.-32
D.-12
解析:a·b=|a|·|b|cos120°=-12, b·c=|b|·|c|cos60°=12, c·a=|c|·|a|cos60°=12, ∴a·b+b·c+c·a=12.故选 B. 答案:B
2018版数学人教A版必修四文档:第二章 平面向量 含答
1 向量和差作图全攻略两个非零向量的和差作图,对同学们是一个难点,这里对其作图方法作出细致分析,以求尽快掌握.一、向量a 、b 共线例1 如图,已知共线向量a 、b ,求作a +b . (1)a 、b 同向;(2)a 、b 反向,且|a |>|b |; (3)a 、b 反向,且|a |<|b |.作法 在与a 平行的同一条直线上作出三个向量OA →=a ,AB →=b ,OB →=a +b ,具体作法是:当a 与b 方向相同时,a +b 与a 、b 的方向相同,长度为|a |+|b |;当a 与b 方向相反时,a +b 与a 、b 中长度长的向量方向相同,长度为||a |-|b ||.为了直观,将三个向量中绝对值最大的向量沿与a 垂直的方向稍加平移,然后分别标上a ,b ,a +b .作图如下:例2 如图,已知共线向量a 、b ,求作a -b . (1)a 、b 同向,且|a |>|b |; (2)a 、b 同向,且|a |<|b |; (3)a 、b 反向.作法 在平面上任取一点O ,作OA →=a ,OB →=b ,则BA →=a -b .事实上a -b 可看作是a +(-b ),按照这个理解和a +b 的作图方法不难作出a -b ,作图如下:二、向量a 、b 不共线如果向量不共线,可以应用三角形法则或平行四边形法则作图.例3 如图,已知向量a 、b . 求作:(1)a +b ;(2)a -b . 作法1 (应用三角形法则)(1)一般情况下,应在两已知向量所在的位置之外任取一点O .第一步:作OA →=a ,方法是将一个三角板的直角边与a 重合,再将直尺一边与三角板的另一直角边重合,最后将三角板拿开,放到一直角边过点O ,一直角边与直尺的一边重合的位置,在此基础上取|OA →|=|a |,并使OA →与a 同向.第二步:同第一步方法作出AB →=b ,一定要保证方向相同且长度相等.(此处最易错的是把AB →作成与b 的方向相反.)第三步:作OB →,即连接OB ,在B 处打上箭头,OB →即为a +b . 作图如下:(2)第一步:在平面上a ,b 位置之外任取一点O ; 第二步:依照前面方法过O 作OA →=a ,OB →=b ; 第三步:连接AB ,在A 处加上箭头,向量BA →即为a -b . 作图如下:点评 向量加法作图的特点是“首尾相接,首尾连”;向量减法作图的特点是“共起点,连终点,箭头指被减”. 作法2 (应用平行四边形法则)在平面上任取一点A ,以点A 为起点作AB →=a ,AD →=b ,以AB ,AD 为邻边作▱ABCD ,则AC →=a +b ,DB →=a -b .作图如下:点评 向量的平行四边形法则和三角法则在本质上是一样的,但在解决某些问题时平行四边形法则有一定的优越性,因此两种法则都应熟练掌握.向量和差作图,要注意的是保证所作向量与目标向量“方向相同,长度相等”,最忌讳的是“作法不一”,比如作法中要求的是作AB →=b ,可实际上作的是AB →=-b .只要作图的过程与作法的每一步相对应,一定能作出正确的图形.2 向量线性运算的应用平面向量的线性运算包括加法、减法以及数乘运算,在解题中具有广泛的应用.在对向量实施线性运算时,要准确利用对应的运算法则、运算律,注意向量的大小和方向两个方面. 一、化简例1 化简下列各式: (1)(2AB →-CD →)-(AC →-2BD →); (2)124[3(2a +8b )-6(4a -2b )]. 解 (1)(2AB →-CD →)-(AC →-2BD →)=2AB →-CD →-AC →+2BD →=2AB →+DC →+CA →+2BD → =2(AB →+BD →)+(DC →+CA →)=2AD →+DA →=AD →. (2)124[3(2a +8b )-6(4a -2b )] =124(6a +24b -24a +12b )=124(-18a +36b ) =-34a +32b .点评 向量的基本运算主要有两个途径:一是基于“形”,通过作出向量,运用平行四边形法则或三角形法则进行化简;二是基于“数”,满足“首尾相接且相加”或“起点相同且相减”的两个向量进行化简,解题时要注意观察是否有这两种形式出现,同时注意向量加法法则、减法法则的逆向应用.数乘运算,可类比实数积的运算方法进行,将向量a ,b ,c 等看成一般字母符号,其中向量数乘之间的和差运算,相当于合并同类项或提取公因式,这里的“同类项”与“公因式”指的是向量.二、求参数例2 如图,已知△ABC 和点M 满足MA →+MB →+MC →=0,若存在实数m 使得AB →+AC →=mAM →成立,则m =________.解析 如图,因为MA →+MB →+MC →=0,即MA →=-(MB →+MC →), 即AM →=MB →+MC →, 延长AM ,交BC 于D 点,所以D 是BC 边的中点,所以AM →=2MD →, 所以AD →=32AM →,所以AB →+AC →=2AD →=3AM →,所以m =3. 答案 3点评 求解含参数的向量线性运算问题,只需把参数当作已知条件,根据向量的加法、减法及数乘运算将问题中所涉及的向量用两个不共线的向量表示,列出向量方程,对比系数求参数的值. 三、表示向量例3 如图所示,在△ABC 中,AD →=23AB →,DE ∥BC 交AC 于E ,BC 边上的中线AM 交DE 于点N ,设AB →=a ,AC →=b ,用向量a ,b 表示AE →、BC →、DE →、DN →、AM →.解 因为DE ∥BC ,AD →=23AB →,所以AE →=23AC →=23b ,BC →=AC →-AB →=b -a ,由△ADE ∽△ABC ,得DE →=23BC →=23(b -a ),又M 是△ABC 底边BC 的中点,DE ∥BC , 所以DN →=12DE →=13(b -a ),AM →=AB →+BM →=a +12BC →=a +12(b -a )=12(a +b ).点评 用已知向量表示另外一些向量,应尽量将所求向量转化到平行四边形或三角形中,利用向量共线条件和平面几何知识的一些定理、性质,如三角形中位线性质,相似三角形对应边成比例等,再利用向量加法、减法法则,即可用已知向量表示所求向量.3 平面向量的基本定理应用三技巧技巧一 构造某一向量在同一基底下的两种不同的表达形式,用“若e 1,e 2为基底,且a =x 1e 1+y 1e 2=x 2e 1+y 2e 2,则用⎩⎪⎨⎪⎧x 1=x 2y 1=y 2来求解.例1 在△OAB 的边OA ,OB 上分别取点M ,N ,使|OM →|∶|OA →|=1∶3,|ON →|∶|OB →|=1∶4,设线段AN 与BM 交于点P ,记OA →=a ,OB →=b ,用a ,b 表示向量OP →. 解 ∵B ,P ,M 共线,∴存在常数s ,使BP →=sPM →, 则OP →=11+s OB →+s 1+s OM →.即OP →=11+s OB →+s 3(1+s )OA →=s 3(1+s )a +11+sb .①同理,存在常数t ,使AP →=tPN →, 则OP →=11+t a +t 4(1+t )b .②∵a ,b 不共线,∴⎩⎨⎧11+t =s3(1+s )11+s =t4(1+t ),解之得⎩⎨⎧s =92t =83,∴OP →=311a +211b .点评 这里选取OA →,OB →作为基底,构造OP →在此基底下的两种不同的表达形式,再根据相同基底的系数对应相等得到实数方程组,最后进行求解.技巧二 构造两个共线向量在同一基底下的表达形式,用“若e 1,e 2为基底,a =x 1e 1+y 1e 2,b =x 2e 1+y 2e 2,且a ∥b ,则x 1y 2-x 2y 1=0”来求解.例2 如图,在△OAB 中,OC →=14OA →,OD →=12OB →,AD 与BC 交于点M ,设OA →=a ,OB →=b .(1)用a 、b 表示OM →;(2)已知在线段AC 上取一点E ,在线段BD 上取一点F ,使EF 过M 点,设OE →=pOA →,OF →=qOB →,求证:17p +37q =1.(1)解 设OM →=m a +n b ,则 AM →=(m -1)a +n b ,AD →=-a +12b .∵点A 、M 、D 共线,∴AM →与AD →共线, ∴12(m -1)-(-1)×n =0,∴m +2n =1.①而CM →=OM →-OC →=(m -14)a +n b ,CB →=-14a +b .∵C 、M 、B 共线,∴CM →与CB →共线, ∴-14n -(m -14)=0.∴4m +n =1.②联立①②可得m =17,n =37,∴OM →=17a +37b .(2)证明 EM →=(17-p )a +37b ,EF →=-p a +q b ,∵EF →与EM →共线,∴(17-p )q -37×(-p )=0. ∴17q -pq =-37p ,即17p +37q=1. 点评 这里多次运用构造一组共线向量的表达形式,再根据共线向量基底的系数关系建立方程组求解.技巧三 将题目中的已知条件转化成λ1e 1+λ2e 2=0的形式(e 1,e 2不共线),根据λ1=λ2=0来求解.例3 如图,已知P 是△ABC 内一点,且满足条件AP →+2BP →+3CP →=0,设Q 为CP 的延长线与AB 的交点,令CP →=p ,试用向量p 表示CQ →.解 ∵AP →=AQ →+QP →,BP →=BQ →+QP →, ∴(AQ →+QP →)+2(BQ →+QP →)+3CP →=0, ∴AQ →+3QP →+2BQ →+3CP →=0,又∵A ,B ,Q 三点共线,C ,P ,Q 三点共线, ∴AQ →=λBQ →,CP →=μQP →, ∴λBQ →+3QP →+2BQ →+3μQP →=0, ∴(λ+2)BQ →+(3+3μ)QP →=0.而BQ →,QP →为不共线向量,∴⎩⎪⎨⎪⎧λ+2=0,3+3μ=0.∴λ=-2,μ=-1.∴CP →=-QP →=PQ →. 故CQ →=CP →+PQ →=2CP →=2p .点评 这里选取BQ →,QP →两个不共线的向量作为基底,运用化归与转化思想,最终变成λ1e 1+λ2e 2=0的形式来求解.4 直线的方向向量和法向量的应用直线的方向向量和法向量是处理直线问题的有力工具.由于直线和平面向量的学习分散在必修2和必修4先后进行,学习中对它们的认识还不到位,重视程度还不够,下面对直线的方向向量和法向量的灵活应用结合例子加以剖析. 一、直线的方向向量 1.定义设P 1,P 2是直线l :Ax +By +C =0上的不同两点,那么向量P 1P 2→以及与它平行的非零向量都称为直线l 的方向向量,若P 1(x 1,y 1),P 2(x 2,y 2),则P 1P 2→的坐标为(x 2-x 1,y 2-y 1);特别当直线l 与x 轴不垂直时,即x 2-x 1≠0,直线的斜率k 存在时,那么(1,k )是它的一个方向向量;当直线l 与x 轴平行时,方向向量可为(1,0);而无论斜率存在与否,其方向向量均可表示为(-B ,A ). 2.应用 (1)求直线方程例1 已知三角形三顶点坐标分别为A (2,-3),B (-7,9),C (18,9),求AB 边上的中线、高线方程以及∠C 的内角平分线方程. 解 ①求中线方程由于CB →=(-25,0),CA →=(-16,-12),那么AB 边上的中线CD 的方向向量为CB →+CA →=(-41,-12),也就是⎝⎛⎭⎫1,1241,因而直线CD 的斜率为1241, 那么直线CD 的方程为y -9=1241(x -18),整理得12x -41y +153=0. ②求高线方程 由于k AB =9+3-7-2=-43,因而AB 的方向向量为⎝⎛⎭⎫1,-43, 而AB 边上的高CE ⊥AB , 则直线CE 的方向向量为⎝⎛⎭⎫1,34, 那么高线CE 的方程为y -9=34(x -18),整理得3x -4y -18=0. ③求∠C 的内角平分线方程 CB →|CB →|=(-1,0),CA →|CA →|=⎝⎛⎭⎫-45,-35, 则∠C 的内角平分线的方向向量为CB →|CB →|+CA →|CA →|=⎝⎛⎭⎫-95,-35,也就是⎝⎛⎭⎫1,13, 因而内角平分线CF 的方程为y -9=13(x -18),整理得x -3y +9=0.点评 一般地,经过点(x 0,y 0),与直线Ax +By +C =0平行的直线方程是A (x -x 0)+B (y -y 0)=0;与直线Ax +By +C =0垂直的直线方程是B (x -x 0)-A (y -y 0)=0. (2)求直线夹角例2 已知l 1:x +3y -15=0与l 2:y -3mx +6=0的夹角为π4,求m 的值.解 直线l 1的方向向量为v 1=(-3,1), 直线l 2的方向向量为v 2=(1,3m ), ∵l 1与l 2的夹角为π4,∴|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|=|3m -3|9+1·1+9m 2=22, 化简得18m 2+9m -2=0.解得m =-23或m =16.点评 一般地,设直线l 1:y =k 1x +b 1,其方向向量为v 1=(1,k 1),直线l 2:y =k 2x +b 2,其方向向量为v 2=(1,k 2),当1+k 1k 2=0时,两直线的夹角为90°;当1+k 1k 2≠0时,设夹角为θ,则cos θ=|v 1·v 2||v 1|·|v 2|=|1+k 1k 2|1+k 21·1+k 22;若设直线l 1:A 1x +B 1y +C 1=0,其方向向量为(-B 1,A 1),直线l 2:A 2x +B 2y +C 2=0,其方向向量为(-B 2,A 2),那么cos θ=|A 1A 2+B 1B 2|A 21+B 21·A 22+B 22.二、直线的法向量 1.定义直线Ax +By +C =0的法向量:如果向量n 与直线l 垂直,则称向量n 为直线l 的法向量.因此若直线的方向向量为v ,则n ·v =0,从而对于直线Ax +By +C =0而言,其方向向量为v =(B ,-A ),则由于n ·v =0,于是可取n =(A ,B ). 2.应用(1)判断直线的位置关系例3 已知直线l 1:ax -y +2a =0与直线l 2:(2a -1)x +ay +a =0. (1)若l 1⊥l 2,求实数a 的值; (2)若l 1∥l 2,求实数a 的值.解 直线l 1,l 2的法向量分别为n 1=(a ,-1),n 2=(2a -1,a ),(1)若l 1⊥l 2,则n 1·n 2=a (2a -1)+(-1)×a =0,解得a =0或a =1.∴a =0或1时,l 1⊥l 2.(2)若l 1∥l 2,则n 1∥n 2,∴a 2-(2a -1)×(-1)=0.解得a =-1±2,且a 2a -1=-1a ≠2.∴a =-1±2时,l 1∥l 2.点评 一般地,设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,它们的法向量分别为n 1=(A 1,B 1),n 2=(A 2,B 2),当n 1⊥n 2,即A 1A 2+B 1B 2=0时,l 1⊥l 2,反之亦然;当n 1∥n 2,即A 1B 2-A 2B 1=0时,l 1∥l 2或l 1与l 2重合. (2)求点到直线的距离例4 已知点M (x 0,y 0)为直线l :Ax +By +C =0外一点. 求证:点M (x 0,y 0)到直线l 的距离d =|Ax 0+By 0+C |A 2+B 2.证明 设P (x 1,y 1)是直线Ax +By +C =0上任一点,n 是直线l 的一个法向量,不妨取n =(A ,B ).则M (x 0,y 0)到直线l :Ax +By +C =0的距离d 等于向量PM →在n 方向上投影的长度,如图所示.d =|PM →|·|cos 〈PM →,n 〉| =|PM →·n ||n |=|(x 0-x 1,y 0-y 1)·(A ,B )|A 2+B 2=|A (x 0-x 1)+B (y 0-y 1)|A 2+B 2=|Ax 0+By 0-(Ax 1+By 1)|A 2+B 2.∵点P (x 1,y 1)在直线l 上,∴Ax 1+By 1+C =0,∴Ax 1+By 1=-C , ∴d =|Ax 0+By 0+C |A 2+B 2.点评 同理应用直线的法向量可以证明平行直线l 1:Ax +By +C 1=0与直线l 2:Ax +By +C 2=0(A 2+B 2≠0且C 1≠C 2)的距离为d =|C 2-C 1|A 2+B 2.证明过程如下:设P 1(x 1,y 1),P 2(x 2,y 2)分别为直线l 1:Ax +By +C 1=0,直线l 2:Ax +By +C 2=0上任意两点,取直线l 1,l 2的一个法向量n =(A ,B ),则P 1P 2→=(x 2-x 1,y 2-y 1)在向量n 上的投影的长度,就是两平行线l 1、l 2的距离. d =|P 1P 2→||cos 〈P 1P 2→,n 〉|=|P 1P 2,→·n ||n |=|(x 2-x 1,y 2-y 1)·(A ,B )|A 2+B 2=|A (x 2-x 1)+B (y 2-y 1)|A 2+B 2=|(Ax 2+By 2)-(Ax 1+By 1)|A 2+B 2=|C 2-C 1|A 2+B 2.5 向量法证明三点共线平面向量既具有数量特征,又具有图形特征,学习向量的应用,可以启发同学们从新的视角去分析、解决问题,有益于培养创新能力.下面就一道习题的应用探究为例进行说明. 典例 已知OB →=λOA →+μOC →,其中λ+μ=1.求证:A 、B 、C 三点共线. 思路 通过向量共线(如AB →=kAC →)得三点共线.证明 如图,由λ+μ=1得λ=1-μ,则OB →=λOA →+μOC →=(1-μ)OA →+μOC →.∴OB →-OA →=μ(OC →-OA →),∴AB →=μAC →, ∴A 、B 、C 三点共线.思考 1.此题揭示了证明三点共线的又一向量方法,点O 具有灵活性;2.反之也成立(证明略):若A 、B 、C 三点共线,则存在唯一实数对λ、μ,满足OB →=λOA →+μOC →,且λ+μ=1.揭示了三点共线的又一个性质;3.特别地,λ=μ=12时,OB →=12(OA →+OC →),点B 为AC →的中点,揭示了△OAC 中线OB 的一个向量公式,应用广泛. 应用举例例1 如图,平行四边形ABCD 中,点M 是AB 的中点,点N 在BD 上,且BN =13BD .利用向量法证明:M 、N 、C 三点共线.思路分析 选择点B ,只须证明BN →=λBM →+μBC →,且λ+μ=1.证明 由已知BD →=BA →+BC →,又点N 在BD 上,且BN =13BD ,得BN →=13BD →=13(BA →+BC →)=13BA→+13BC →. 又点M 是AB 的中点,∴BM →=12BA →,即BA →=2BM →.∴BN →=23BM →+13BC →.而23+13=1.∴M 、N 、C 三点共线. 点评 证明过程比证明MN →=mMC →简洁.例2 如图,平行四边形OACB 中,BD =13BC ,OD 与AB 相交于E ,求证:BE =14BA .思路分析 可以借助向量知识,只需证明:BE →=14BA →,而BA →=BO →+BC →,又O 、D 、E 三点共线,存在唯一实数对λ、μ,且λ+μ=1,使BE →=λBO →+μBD →,从而得到BE →与BA →的关系.证明 由已知条件,BA →=BO →+BC →,又B 、E 、A 三点共线,可设BE →=kBA →,则 BE →=kBO →+kBC →,①又O 、E 、D 三点共线,则存在唯一实数对λ、μ, 使BE →=λBO →+μBD →,且λ+μ=1.又BD →=13BC →,∴BE →=λBO →+13μBC →,②根据①②得⎩⎪⎨⎪⎧k =λ,k =13μ,λ+μ=1,解得⎩⎪⎨⎪⎧k =14,λ=14,μ=34.∴BE →=14BA →,∴BE =14BA .点评 借助向量知识,充分运用三点共线的向量性质解决问题,巧妙、简洁.6 平面向量中的三角形“四心”问题在三角形中,“四心”是一组特殊的点,它们的向量表达形式具有许多重要的性质,在近年高考试题中,总会出现一些新颖别致的问题,不仅考查了向量等知识点,还培养了考生分析问题、解决问题的能力.现就“四心”作如下介绍: 1.重心三角形三条中线的交点叫重心,它到三角形顶点距离与该点到对边中心距离之比为2∶1.在向量表达形式中,设点G 是△ABC 所在平面内的一点,则当点G 是△ABC 的重心时,有GA →+GB →+GC →=0或PG →=13(P A →+PB →+PC →)(其中P 为平面任意一点).反之,若GA →+GB →+GC →=0,则点G 是△ABC 的重心.在向量的坐标表示中,若G ,A ,B ,C 分别是三角形的重心和三个顶点,且坐标分别为G (x ,y ),A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则有x =x 1+x 2+x 33,y =y 1+y 2+y 33.例 已知△ABC 内一点O 满足关系OA →+2OB →+3OC →=0,试求S △BOC ∶S △COA ∶S △AOB 的值. 解 如图,延长OB 至B 1,使BB 1=OB ,延长OC 至C 1,使CC 1=2OC ,连接AB 1,AC 1,B 1C 1.则OB 1→=2OB →,OC 1→=3OC →. 由条件,得OA →+OB 1→+OC 1→=0, ∴点O 是△AB 1C 1的重心.从而S △B 1OC 1=S △C 1OA =S △AOB 1=13S ,其中S 表示△AB 1C 1的面积.∴S △COA =19S ,S △AOB =16S ,S △BOC =12S △B 1OC =12×13S △B 1OC 1=118S .于是S △BOC ∶S △COA ∶S △AOB =118∶19∶16=1∶2∶3. 点评 本题条件OA →+2OB →+3OC →=0与三角形的重心性质GA →+GB →+GC →=0十分类似,因此我们通过添加辅助线,构造一个三角形,使点O 成为辅助三角形的重心,而三角形的重心与顶点的连线将三角形的面积三等分,从而可求三部分的面积比.引申推广 已知△ABC 内一点O 满足关系λ1OA →+λ2OB →+λ3OC →=0,则S △BOC ∶S △COA ∶S △AOB =λ1∶λ2∶λ3. 2.垂心三角形三条高线的交点叫垂心,它与顶点的连线垂直于对边.在向量表达形式中,若H 是△ABC 的垂心,则HA →·HB →=HB →·HC →=HC →·HA →或HA →2+BC →2=HB →2+CA →2=HC →2+AB →2.反之,若HA →·HB →=HB →·HC →=HC →·HA →,则H 是△ABC 的垂心. 3.内心三角形三条内角平分线的交点叫内心.内心就是三角形内切圆的圆心,它到三角形三边的距离相等.在向量表达形式中,若点I 是△ABC 的内心,则有|BC →|·IA →+|CA →|·IB →+|AB →|·IC →=0.反之,若|BC →|·IA →+|CA →|·IB →+|AB →|·IC →=0,则点I 是△ABC 的内心. 4.外心三角形三条边的中垂线的交点叫外心.外心就是三角形外接圆的圆心,它到三角形的三个顶点的距离相等.在向量表达形式中,若点O 是△ABC 的外心,则(OA →+OB →)·BA →=(OB →+OC →)·CB →=(OC →+OA →)·AC →=0或|OA →|=|OB →|=|OC →|.反之,若|OA →|=|OB →|=|OC →|,则点O 是△ABC 的外心.。
第二章平面向量课时作业人教A版必修四第2章2.1.1、2.1.2、2.1.3课时作业
基础达标1.下列说法正确的是( ).A .数量可以比较大小,向量也可以比较大小B .方向不同的向量不能比较大小,但同向的可以比较大小C .向量的大小与方向有关D .向量的模可以比较大小解析 A 中不管向量的方向如何,它们都不能比较大小,∴A 不正确;由A 的过程分析可知方向相同的向量也不能比较大小,∴B 不正确;C 中向量的大小即向量的模,指的是有向线段的长度,与方向无关,∴C 不正确;D 中向量的模是一个数量,可以比较大小,∴D 正确. 答案 D2.设O 为坐标原点,且|OM →|=1,则动点M 的集合是( ). A .一条线段 B .一个圆面 C .一个圆D .一个圆弧解析 动点M 到原点O 的距离等于定长1,故动点M 的轨迹是以O 为圆心,1为半径的圆. 答案 C3.如图,在四边形ABCD 中,若AB →=DC →,则图中相等的向量是( ).A.AD →与CB → B .OB →与OD → C.AC →与BD →D .AO →与OC →解析 ∵AB →=DC →,∴四边形ABCD 是平行四边形,∴AC 、BD 互相平分,∴AO →=OC →. 答案 D4.如图,在△ABC 中,若DE ∥BC ,则图中是共线向量的有 ________. 解析 观察图形,并结合共线向量的定义可得解. 答案 ED →与CB →,AD →与BD →,AE →与CE →5.在四边形ABCD 中,AB →∥CD →且|AB →|≠|CD →|,则四边形ABCD 的形状是________. 解析 ∵AB →∥CD →且|AB →|≠|CD →|,∴AB ∥DC ,但AB ≠DC ,∴四边形ABCD 是梯形. 答案 梯形6.下列说法:①平行向量一定相等;②不相等的向量一定不平行;③共线向量一定相等;④相等向量一定共线;⑤长度相等的向量是相等向量;⑥平行于同一个向量的两个向量是共线向量.其中,说法错误的是________. 答案 ①②③⑤⑥7.如图,在四边形ABCD 中,AB →=DC →,N 、M 分别是AD 、BC 上的点,且CN →=MA →.求证:DN →=MB →. 证明 ∵AB →=DC →, ∴|AB →|=|CD →|且AB ∥CD , ∴四边形ABCD 是平行四边形, ∴|DA →|=|CB →|,且DA ∥CB . 又∵DA →与CB →的方向相同,∴CB →=DA →.同理可证,四边形CNAM 是平行四边形, ∴CM →=NA →.∵|CB →|=|DA →|,|CM →|=|NA →|,∴|DN →|=|MB →|.∵DN ∥MB 且DN →与MB →的方向相同,∴DN →=MB →.能力提升8.以下命题:①若AB →=DC →,则A 、B 、C 、D 四点是平行四边形的四个顶点;②若m =n ,n =k ,则m =k ;③若m ∥n ,n ∥k ,则m ∥k ;④单位向量都是共线向量.其中,正确命题的个数是( ). A .0 B .1 C .2D .3解析 ①A 、B 、C 、D 四点可能共线;③当n =0时,命题不成立;④单位向量的模相等,但方向不确定,所以未必共线. 答案 B9.已知在边长为2的菱形ABCD 中,∠ABC =60°,则|BD →|=________. 解析 易知AC ⊥BD ,且∠ABD =30°,设AC 与BD 交于点O ,则AO =12AB =1.在Rt △ABO 中,易得|BO →|=3,∴|BD →|=2|BO →|=2 3. 答案 2 310.一辆汽车从A 点出发向西行驶了100 km 到达B 点,然后又改变方向向北偏西40°走了200 km 到达C 点,最后又改变方向,向东行驶了100 km 到达D 点.(1)作出向量AB →、BC →、CD →; (2)求|AD →|.解 (1)向量AB →、BC →、CD →如图所示:(2)由题意,易知AB →与CD →方向相反,故AB →与CD →共线,又|AB →|=|CD →|,∴在四边形ABCD 中,AB 綉CD .∴四边形ABCD 为平行四边形. ∴AD →=BC →,∴|AD |→=|BC →|=200 km.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.3 平面向量的基本定理及坐标表示2.3.1 平面向量基本定理课时目标 1.理解并掌握平面向量基本定理.2.掌握向量之间的夹角与垂直.1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个______向量,那么对于这一平面内的______向量a ,__________实数λ1,λ2,使a =____________________________.(2)基底:把________的向量e 1,e 2叫做表示这一平面内________向量的一组基底. 2.两向量的夹角与垂直(1)夹角:已知两个__________a 和b ,作OA →=a ,OB →=b ,则________=θ (0°≤θ≤180°),叫做向量a 与b 的夹角.①范围:向量a 与b 的夹角的范围是______________. ②当θ=0°时,a 与b ________. ③当θ=180°时,a 与b ________.(2)垂直:如果a 与b 的夹角是________,则称a 与b 垂直,记作______________.一、选择题1.若e 1,e 2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是( )A .e 1-e 2,e 2-e 1B .2e 1+e 2,e 1+12e 2C .2e 2-3e 1,6e 1-4e 2D .e 1+e 2,e 1-e 22.等边△ABC 中,AB →与BC →的夹角是( ) A .30° B .45° C .60° D .120° 3.下面三种说法中,正确的是( )①一个平面内只有一对不共线向量可作为表示该平面所有向量的基底;②一个平面内有无数多对不共线向量可作为该平面所有向量的基底;③零向量不可作为基底中的向量. A .①② B .②③ C .①③ D .①②③4.若OP 1→=a ,OP 2→=b ,P 1P →=λPP 2→(λ≠-1),则OP →等于( ) A .a +λb B .λa +(1-λ)bC .λa +b D.11+λa +λ1+λb5.如果e 1、e 2是平面α内两个不共线的向量,那么在下列各命题中不正确的有( ) ①λe 1+μe 2(λ、μ∈R )可以表示平面α内的所有向量;②对于平面α中的任一向量a ,使a =λe 1+μe 2的实数λ、μ有无数多对;③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数λ,使λ1e 1+μ1e 2=λ(λ2e 1+μ2e 2); ④若实数λ、μ使λe 1+μe 2=0,则λ=μ=0.A .①②B .②③C .③④D .②6.如图,在△ABC 中,AD 是BC 边上的中线,F 是AD 上的一点,且AF FD =15,连结CF 并延长交AB 于E ,则AEEB等于( )A.1B.1C.1D.1二、填空题7.设向量m =2a -3b ,n =4a -2b ,p =3a +2b ,试用m ,n 表示p ,p =________.8.设e 1、e 2是不共线的两个向量,给出下列四组向量:①e 1与e 1+e 2;②e 1-2e 2与e 2-2e 1;③e 1-2e 2与4e 2-2e 1.其中能作为平面内所有向量的一组基底的序号是________.(写出所有满足条件的序号)9.在△ABC 中,AB →=c ,AC →=b .若点D 满足BD →=2DC →,则AD →=____________.10.在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ、μ∈R ,则λ+μ=________.三、解答题11. 如图所示,已知△ABC 中,D 为BC 的中点,E ,F 为BC 的三等分点,若AB →=a ,AC →=b ,用a ,b 表示AD →,AE →,AF →.12. 如图所示,已知△AOB 中,点C 是以A 为中点的点B 的对称点,OD →=2DB →,DC 和OA交于点E ,设OA →=a ,OB →=b .(1)用a 和b 表示向量OC →、DC →;(2)若OE →=λOA →,求实数λ的值.能力提升13. 如图所示,OM ∥AB ,点P 在由射线OM 、线段OB 及AB 的延长线围成的阴影区域内(不含边界)运动,且OP →=xOA →+yOB →,则x 的取值范围是________;当x =-12时,y 的取值范围是____________.14. 如图所示,在△ABC 中,点M 是BC 的中点,点N 在边AC 上,且AN =2NC ,AM 与BN 相交于点P ,求证:AP ∶PM =4∶1.1.对基底的理解 (1)基底的特征基底具备两个主要特征:①基底是两个不共线向量;②基底的选择是不唯一的.平面内两向量不共线是这两个向量可以作为这个平面内所有向量的一组基底的条件. (2)零向量与任意向量共线,故不能作为基底. 2.准确理解平面向量基本定理(1)平面向量基本定理的实质是向量的分解,即平面内任一向量都可以沿两个不共线的方向分解成两个向量和的形式,且分解是唯一的.(2)平面向量基本定理体现了转化与化归的数学思想,用向量解决几何问题时,我们可以选择适当的基底,将问题中涉及的向量向基底化归,使问题得以解决.§2.3 平面向量的基本定理及坐标表示2.3.1 平面向量基本定理答案知识梳理1.(1)不共线 任意 有且只有一对 λ1e 1+λ2e 2 (2)不共线 所有 2.(1)非零向量 ∠AOB ①[0°,180°] ②同向 ③反向 (2)90° a ⊥b 作业设计1.D 2.D 3.B4.D [∵P 1P →=λPP 2→,∴OP →-OP 1→=λ(OP 2→-OP →)∴(1+λ)OP →=OP 1→+λOP 2→∴OP →=11+λOP 1→+λ1+λOP 2→=11+λa +λ1+λb .]5.B [由平面向量基本定理可知,①④是正确的.对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是唯一的.对于③,当两向量的系数均为零,即λ1=λ2=μ1=μ2=0时,这样的λ有无数个,故选B.]6.D [设AB →=a ,AC →=b ,AE EB=λ.∵AF FD =15,∴CF →=CA →+AF → =CA →+16AD →=112(AB →+AC →)-AC →=112AB →-1112AC →=112a -1112b . CE →=CA →+AE →=CA →+λ1+λAB →=λ1+λAB →-AC → =λ1+λa -b . ∵CF →∥CE →,∴λ1+λ112=11112.∴λ=110.]7.-74m +138n解析 设p =x m +y n ,则3a +2b =x (2a -3b )+y (4a -2b )=(2x +4y )a +(-3x -2y )b ,得⎩⎪⎨⎪⎧2x +4y =3-3x -2y =2⇒⎩⎨⎧x =-74y =138.8.①②解析 对于③4e 2-2e 1=-2e 1+4e 2=-2(e 1-2e 2), ∴e 1-2e 2与4e 2-2e 1共线,不能作为基底. 9.23b +13c 解析 AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →=23b +13c .10.43 解析设AB →=a ,AD →=b , 则AE →=12a +b ,AF →=a +12b ,又∵AC →=a +b ,∴AC →=23(AE →+AF →),即λ=μ=23,∴λ+μ=43.11.解 AD →=AB →+BD →=AB →+12BC →=a +12(b -a )=12a +12b ;AE →=AB →+BE →=AB →+13BC →=a +13(b -a )=23a +13b ;AF →=AB →+BF →=AB →+23BC →=a +23(b -a )=13a +23b .12.解 (1)由题意,A 是BC 的中点,且OD →=23OB →,由平行四边形法则,OB →+OC →=2OA →. ∴OC →=2OA →-OB →=2a -b ,DC →=OC →-OD →=(2a -b )-23b =2a -53b .(2)EC →∥DC →.又∵EC →=OC →-OE →=(2a -b )-λa =(2-λ)a -b ,DC →=2a -53b ,∴2-λ2=153,∴λ=45.13.(-∞,0) ⎝⎛⎭⎫12,32 解析 由题意得: OP →=a ·OM →+b ·OB →(a ,b ∈R +,0<b <1)=a ·λAB →+b ·OB →=aλ(OB →-OA →)+b ·OB →=-aλ·OA →+(aλ+b )·OB →(λ>0). 由-aλ<0,得x ∈(-∞,0).又由OP →=xOA →+yOB →,则有0<x +y <1,当x =-12时,有0<-12+y <1,解得y ∈⎝⎛⎭⎫12,32.14.解 设AB →=b ,AC →=c , 则AM →=12b +12c ,AN →=23AC →=23c ,BN →=BA →+AN →=23c -b .∵AP →∥AM →,BP →∥BN →,∴存在λ,μ∈R ,使得AP →=λAM →,BP →=μBN →,又∵AP →+PB →=AB →,∴λAM →-μBN →=AB →,由λ⎝⎛⎭⎫12b +12c -μ⎝⎛⎭⎫23c -b =b 得 ⎝⎛⎭⎫12λ+μb +⎝⎛⎭⎫12λ-23μc =b . 又∵b 与c 不共线,∴⎩⎨⎧12λ+μ=1,12λ-23μ=0.解得⎩⎨⎧λ=45,μ=35.故AP →=45AM →,即AP ∶PM =4∶1.。