【化学组】2014年6月6日(6)《醛酮的命名和反应》(学生)

合集下载

醛和酮的命名和反应特点

醛和酮的命名和反应特点

醛和酮的命名和反应特点醛和酮是有机化合物中常见的两类功能团,它们在有机合成和生物化学等领域具有重要的地位。

本文将介绍醛和酮的命名规则以及它们的主要反应特点。

一、醛的命名和反应特点醛是含有羰基(C=O)的有机化合物,它们的命名通常根据其碳链长度和取代基来进行。

以下是几个常见的醛的命名示例:1. 甲醛(HCHO)是最简单的醛,也称为福尔马林。

它的命名来自于甲基(CH3)和醛(al)这两个单词的组合。

2. 乙醛(CH3CHO)是一种含有两个碳原子的醛,它的命名来自于乙烯(C2H4)和醛(al)这两个单词的组合。

3. 丁醛(CH3CH2CH2CHO)是一种含有四个碳原子的醛,它的命名来自于丁烯(C4H8)和醛(al)这两个单词的组合。

醛通常具有以下几个反应特点:1. 氧化反应:醛可以被氧化为相应的羧酸。

常见的氧化剂有酸性高锰酸钾(KMnO4)和酸性过氧化氢(H2O2)。

2. 加成反应:醛具有与亲核试剂发生加成反应的能力。

其中最常见的是醛和水(H2O)发生加成反应生成醇。

3. 缩合反应:醛可以与胺或另一个醛发生缩合反应,生成相应的亚胺或醇醛。

这种反应被广泛应用于化学合成中。

二、酮的命名和反应特点酮是由两个碳原子上分别连接有两个烷基或芳基的羰基化合物。

与醛类似,酮的命名也根据碳链长度和取代基来进行。

以下是几个常见的酮的命名示例:1. 丙酮(CH3COCH3)是最简单的酮,它也是只含有三个碳原子的酮。

其命名来自于丙烯(C3H6)和酮(one)这两个单词的组合。

2. 甲基乙基酮(CH3COCH2CH3)是一种含有四个碳原子的酮,它的命名来自于甲基(CH3)、乙基(C2H5)和酮(one)这三个单词的组合。

3. 邻二甲苯酮(C6H4(COCH3)2)是一种含有苯环的酮,它的命名体现了对位取代基的位置关系。

酮的反应特点与醛类似,但也存在一些差异:1. 氧化反应:酮相较醛来说较不容易被氧化,但依然可以通过特定条件下的氧化反应将酮转化为相应的酸。

醛与酮的命名与性质

醛与酮的命名与性质

醛与酮的命名与性质醛和酮是有机化合物的两种重要官能团,它们在化学领域有着广泛的应用。

本文将介绍醛和酮的命名规则以及它们的基本性质。

一、醛的命名与性质1. 醛的命名醛的命名通常以代表碳骨架的前缀和以“-al”后缀来表示。

在命名时,需要找到碳链中最长的连续碳原子链,并标记碳链的一个端点为羰基碳。

然后,按照羰基碳周围的取代基的位置和种类进行命名。

例如,乙醛是一种两个碳原子的醛,其命名的方式是将“-e”结尾的亚烷前缀“eth”转化为醛的后缀“-al”,所以它被称为乙醛。

2. 醛的性质醛具有一些特殊的性质,其中最为显著的是它们很容易发生氧化反应和还原反应。

这是因为醛的羰基碳上有一个未饱和的电子对,易于被其他物质接受或者给予。

此外,醛还具有一定的溶解性,可以溶于许多极性溶剂,如水和醇。

此外,醛也可以与众多化合物发生加成反应,如与胺发生醛胺反应。

二、酮的命名与性质1. 酮的命名酮的命名通常以代表碳骨架的前缀和以“-one”后缀来表示。

在命名时,需要找到碳链中最长的连续碳原子链,并标记两个相邻碳原子为羰基碳和亚烷基(如果有的话)。

然后,按照羰基碳周围的取代基的位置和种类进行命名。

例如,丙酮是一种三个碳原子的酮,并且没有亚烷基,所以它被称为丙酮。

2. 酮的性质酮的性质与醛有一些不同。

酮比醛的氧化性要低,因为酮的羰基碳上没有未饱和的电子对。

此外,酮也具有一定的溶解性,可以溶于某些有机溶剂,如醚。

与醛类似,酮也可以与其他化合物发生加成反应,如与羧酸酯发生酯反应。

三、醛与酮的比较1. 命名比较醛和酮的命名规则相似,都是以碳骨架前缀和相应的后缀表示。

不同之处在于,酮的碳链中必须存在一个羰基碳和一个亚烷基,而醛只需要存在一个羰基碳。

2. 性质比较醛和酮在一些性质上有所区别。

首先,醛比酮更容易发生氧化反应和还原反应。

其次,醛和酮的溶解性也有所不同,在一定范围内可以溶于水或有机溶剂。

最后,醛和酮都可以与其他化合物发生加成反应,但反应条件和产物可能存在差异。

醛 酮

醛 酮

结构,分类和命名醛和酮都是含有羰基官能团的化合物.当羰基与一个羟基和一个氢原子相结合时就是醛,醛基的简写为-CHO.若羰基与两个烃基相结合,就是酮,酮分子中的羰基叫做酮基.醛,酮的通式为:醛: 酮:结构:醛,酮羰基中的碳原子为SP2杂化,而氧原子则是末经杂化的.碳原子的三个SP2杂化轨道相互对称地分布在一个平面上,其中之一与氧原子的2P轨道在键轴方向重叠构成碳氧σ键.碳原子末参加杂化的2P轨道垂直于碳原子三个SP2杂化轨道所在的平面,与氧原子的另一个2P轨道平等重叠,形成π键,即碳氧双键也是由一个σ键和一个π键组成.由于氧原子的电负性比碳原子大,羰基中的π电子云就偏向于氧原子,羰基碳原子带上部分正电荷,而氧原子带上部分负电荷.分类:根据烃基的不同可以分为脂肪醛酮,芳香醛酮.根据羰基的个数可以分为一元醛酮,多元醛酮.命名:普通命名法:醛的命名与醇的习惯命名法相似,称某醛.如:CH3CH2OH CH3CHO乙醇乙醛CH3CH(CH3)CH2OH CH3CH(CH3)CHO异丁醇异丁醛脂肪酮则按酮基所连接的两个烃基而称为某(基)某(基)酮.例如:CH3OCH3 CH3COCH3甲醚二甲酮CH3OCH2CH3 CH3COCH2CH3甲乙醚甲乙酮系统命名法:选择含有羰基的最长碳链作为主链,称为某醛或某酮.由于醛基是一价原子团,必在链端,命名时不必用数字标明其位置.酮基的位置则需用数字标明,写在\"某酮\"之前,并用数字标明侧链所在的位置及个数,写在母体名称之前.例如:CH3CH(CH3)CHO CH3CH2COCH(CH3)CH2CH32-甲基丙醛4-甲基-3-已酮CH3CH═CHCHO CH3CH(CH3)CH═CHCOCH32-丁烯醛5-甲基-3-已烯-2-酮环已基甲醛3-甲基环已酮3-苯丙烯醛1-苯-2-丁酮醛酮命名时习惯上还采用希腊字母α,β,γ等,α碳指与醛基或酮基直接相连的碳原子.例如:CH3CH2CH2CH(CH3)CHO α-甲基戊醛醛和酮的制法醇氧化法伯醇和仲醇氧化可分别得到醛或酮.例如:CH3CH2CH2OH + K2Cr2O7 + H2SO4 CH3CH2CHO实验室中常用的氧化剂是重铬酸钾与稀硫酸或铬酐与吡啶等.因醛比醇更容易氧化,为避免生成的醛进一步氧化成羧酸,应将生成的羧酸尽快与氧化剂分离.酮不易继续氧化,无需立即分离.例如:+ K2Cr2O7 + H2SO4工业上把醇的蒸气通过加热的铜或银等催化剂,发生脱氢生成相应的醛或酮.例如:CH3CH2OH CH3CHO + H2另一种从醇氧化制备酮的方法就是欧芬脑尔氧化法,它是从不饱和醇制备不饱和酮的良好方法.它是把仲醇,叔丁醇铝(或异丙醇铝)与丙酮一起加热回流,仲醇脱去氢,被氧化成相应的酮,而丙酮被还原为异丙醇,并且只氧化羟基成羰基,碳碳双键不受影响.反应通式如下:醛和酮也可由烯烃双键氧化断裂制备,尤其是臭氧化还原后可制得两分子的羰基化合物.例如:CH3CH2CH═C(CH3)CH2CH3 CH3CH2CHO + CH3COCH2CH3炔烃水合法炔烃进行水合时产生不稳定的中间体烯醇,后者重排可得到相应的酮.反应在汞盐和硫酸催化下进行.例如:CH3(CH2)3C≡CH CH3(CH2)3COCH34,直接羰基化法傅-克酰基化反应:在芳烃一章已经讨论过这一反应.例如:+ CH3CH2CH2COCl盖特曼-柯赫合成法:以一氧化碳及干燥氯化氢为原料,在无水三氯化铝及氯化亚铜存在下引入醛基的反应称为盖特曼-柯赫反应.例如:+ CO + HCl物理性质状态:甲醛在室温下为气体,市售的福尔马林是40℅的甲醛水溶液.除甲醛为气体外,12个碳原子以下的脂肪醛,酮均为液体.高级脂肪醛,酮和芳香酮多为固体.水溶性:低级的醛,酮易溶于水.这是由于醛,酮可与水分子形成分子间氢键之故.当分子中烃基的部分增大时,水溶性迅速下降,含6个碳原子以上的醛,酮几乎不溶于水.四,化学性质亲核加成反应醛,酮羰基与碳碳双键一样也是由一个σ键和一个π键组成.由于羰基中氧原子的电负性比碳原子大,π电子云偏向于电负性较大的氧原子,使得氧原子带上部分负电荷,碳原子带上部分正电荷.由于氧原子容纳负电荷的能力较碳原子容纳正电荷的能力大,故发生加成反应时,应是带有一对末共用电子对的亲核试剂(可以是负离子或带有末共有电子对的中性分子)提供一对电子进攻带部分正电荷的羰基碳原子,生成氧负离子.即羰基上的加成反应决定反应速度的一步是由亲核试剂进攻引起的,故羰基的加成反应称为亲核加成反应.与氢氰酸加成醛,脂肪族甲基酮及8个碳以下的环酮能与氢氰酸发生加成反应生成α-氰醇.反应通式为:+ HCN丙酮与氢氰酸作用,无碱存在时,3-4内只有一半反应物作用掉.但如加一滴氢氧化钾,则反应2分钟内即完成.若加入酸,反应速度减慢,加入大量的酸,放置几天也不发生作用.根据以上事实可以推论,在醛,酮与氢氰酸加成反应中,真正起作用的是氰基负离子这一亲核试剂.碱的加入增加了反应体系的氰基负离子浓度,酸的加入则降低了氰基负离子浓度,这是由于弱酸氢氰酸在溶液中存在下面的平衡.HCN CN— + H+醛,酮与亲核试剂的加成反应都是试剂中带负电部分首先向羰基带正电荷碳原子进攻,生成氧负离子,然后试剂中带正电荷部分加到氧负离子上去.在这两步反应中,第一步需共价键异裂,是反应慢的一步,是决定反应速度的一步.可用通式表示如下:+ : Nu—不同结构的醛,酮进行亲核加成反应的难易程度不同,其由易到难的顺序为:HCHO > RCHO > RCOCH3 > RCOR影响醛酮亲核加成反应的速度的因素有两方面,其一是电性因素,烷基是供电子基,与羰基碳原子连接的烷基会使羰基碳原子的正电性下降,对亲核加成不利.其二是立体因素,当烷基与羰基相连,不但降低羰基碳的正电性,而且烷基的空间阻碍作用,也不便于亲核试剂接近羰基,不利于亲核加成反应的进行.2,与亚硫酸氢钠加成醛,甲基酮以及环酮可与亚硫酸氢钠的饱和溶液发生加成反应,生成α-羟基磺酸钠,它不溶于饱和的亚硫酸氢钠溶液中而析出结晶.+ NaHSO3 ↓本加成反应可用来鉴别醛,脂肪族甲基酮和8个碳原子以下的环酮.由于反应为可逆反应,加成物α-羟基磺酸钠遇酸或碱,又可恢复成原来的醛和酮,故可利用这一性质分离和提纯醛酮.3,与醇加成在干燥氯化氢或浓硫酸作用下,一分子醛和一分子醇发生加成反应,生成半缩醛.例如:CH3CH2CHO + CH3OH CH3CH2CH(OH)OCH3半缩醛一般不稳定,它可继续与一分子醇反应,两者之间脱去一分子水,而生成稳定的缩醛.在结构上,缩醛跟醚的结构相似,对碱和氧化剂是稳定的,对稀酸敏感可水解成原来的醛.RCH(OR)2 + H2O RCHO在有机合成中可利用这一性质保护活泼的醛基.例如由对羟基环已基甲醛合成对醛基环已酮时,若不将醛基保护起来,当用高锰酸钾氧化时,醛基也会被氧化成羧酸.+ CH3OH与格氏试剂加成醛,酮与格氏试剂加成,加成产物不必分离,而直接水解可制得相应的醇.格氏试剂与甲醛作用生成伯醇,生成的醇比用作原料的格氏试剂多一个碳原子.HCHO + RMgX RCH2OMgX + H2O RCH2OH格氏试剂与其它醛作用生成仲醇.例如:RCHO + RMgX R2CHOMgX + H2O R2CHOH格氏试剂与酮作用生成叔醇.例如:RCOR + RMgX R3COMgX + H2O R3COH与氨的衍生物加成氨的衍生物可以是伯胺,羟胺,肼,苯肼,2,4-二硝基苯肼以及氨基脲.醛,酮能与氨的衍生物发生加成作用,反应并不停留在加成一步,加成产物相继发生脱水形成含碳氮双键的化合物.反应式如下:+ H2N—R+ H2NOH+ H2NNH2++ H2NNHCONH2上述的氨衍生物可用于检查羰基的存在,又叫羰基试剂.特别是2,4-二硝基苯肼几乎能与所有的醛,酮迅速反应,生成橙黄色或橙红色的结晶,常用来鉴别.6,与魏悌锡试剂加成魏惕锡试剂是由亲核性的三苯基膦(C6H5)3P与卤代烷进行亲核取代反应制得的膦盐,再用强碱例如苯基锂处理除去α-氢而制得.醛,酮与魏悌锡试剂作用脱去一分子氧化三苯基膦生成烯烃,称为魏悌锡反应.反应通式为:+应用魏悌锡反应制备烯烃条件温和,双键位置确定.例如合成亚甲基环已烷,若采用醇脱水的方法难以得到.α-活泼氢的反应醛酮α-碳原子上的氢原子受羰基的影响变得活泼.这是由于羰基的吸电子性使α-碳上的α-H键极性增强,氢原子有变成质子离去的倾向.或者说α-碳原子上的碳氢σ键与羰基中的π键形成σ-π共轭(超共轭效应),也加强了α-碳原子上的氢原子解离成质子的倾向.1,卤代和卤仿反应醛,酮可以和卤素发生卤代反应.在酸的存在下,卤代反应可控制在一卤代产物.+ Br2在碱性催化下,卤代反应不能控制在一卤代产物,而是生成多卤代产物.α-碳原子上连有三个氢原子的醛酮,例如,乙醛和甲基酮,能与卤素的碱性溶液作用,生成三卤代物.三卤代物在碱性溶液中不稳定,立即分解成三卤甲烷和羧酸盐,这就是卤仿反应.常用的卤素是碘,反应产物为碘仿,上述反应就称为碘仿反应.碘仿是淡黄色结晶,容易识别,故碘仿反应常用来鉴别乙醛和甲基酮.次碘酸钠也是氧化剂,可把乙醇及具有CH3CH(OH)—结构的仲醇分别氧化成相应的乙醛或甲基酮,故也可发生碘仿反应.羟醛缩合反应在稀碱的催化下,一分子醛因失去α-氢原子而生成的碳负离子加到另一分子醛的羰基碳原子上,而氢原子则加到氧原子上,生成β-羟基醛,这一反应就是羟醛缩合反应.它是增长碳链的一种方法.例如:CH3CHO + CH3CHO CH3CH(OH)CH2CHO若生成的β-羟基醛仍有α-H时,则受热或在酸作用下脱水生成α,β-不饱和醛.CH3CH(OH)CH2CHO CH3CH═CHCHO酮也能发生醇酮缩合反应,但平衡不利于醇酮的生成.例如丙酮的醇酮缩合需在氢氧化钡的催化下,并采用特殊设备将生成的产物及时分出,使用权平衡向生成产物的方向移动.当两种不同的含α-H的醛(或酮)在稀碱作用下发生醇醛(或酮)缩合反应时,由于交叉缩合的结果会得到4种不同的产物,分离困难,意义不大.若选用一种不含α-H的醛和一种含α-H的醛进行缩合,控制反应条件可和到单一产物.例如:HCHO + (CH3)2CHCHO HOCH2C(CH3)2CHO由芳香醛和脂肪醛酮通过交叉缩合制得α,β-不饱和醛酮,称克莱森-斯密特反应.例如:+ CH3COCH3醇醛缩合反应若在分子内进行则生成环状化合物,是生成环化合物的重要方法.如:(三)氧化与还原反应1,氧化反应醛由于其羰基上连有氢原子,很容易被氧化,不但可被强的氧化剂高锰酸钾等氧化,也可被弱的氧化剂如托伦试剂和斐林试剂所氧化,生成含相同数碳原子的羧酸,而酮却不被氧化.托伦试剂是由氢氧化银和氨水制得的无色溶液.托伦试剂与醛共热,醛被氧化成羧酸而弱氧化剂中的银被还原成金属银析出.若反应试管干净,银可以在试管壁上生成明亮的银境,故又称银境反应. RCHO + *Ag(NH3)2++ RCOONH4 + Ag↓ + NH3 + H2O斐林试剂是由硫酸铜和洒石酸钾钠的氢氧化钠溶液配制而成的深蓝色二价铜络合物,与醛共热则被还原成砖红色的氧化亚铜沉淀.RCHO + Cu2+ + NaOH + H2O RCOONa + Cu2O↓甲醛与斐林试剂作用,有铜析出可生成铜境,故此反应又称铜境反应.HCHO + Cu2+ + NaOH + H2O HCOONa + Cu↓利用托伦试剂可把醛与酮区别开来.但芳醛不与斐林试剂作用,因此,利用斐林试剂可把脂肪醛和芳香醛区别开来.2,还原反应采用不同的还原剂,可将醛酮分子中的羰基还原成羟基,也可以脱氧还原成亚甲基.(1)羰基还原成醇羟基醛酮羰基在催化剂铂,镉,镍等存在下,可催化加氢,将羰基还原成羟基.若分子结构中有碳碳双键也同时被还原.如:CH3CH═CHCHO + H2 CH3CH2CH2CH2OH用金属氢化物如硼氢化钠,氢化锂铝等则只选择性地把羰基还原成羟基,而分子中的碳碳双键不被还原,例如:CH3CH═CHCH2CHO CH3CH═CHCH2CH2OH(2)羰基还原成亚甲基醛,酮与锌汞齐及浓盐酸回流反应,羰基被还原成亚甲基,这一反应称为克莱门森还原.例如:+ HCl(3)康尼查罗反应没有α-氢原子的醛在浓碱作用下发生醛分子之间的氧化还原反应,即一分子醛被还原成醇,另一分子醛被氧化成羧酸,这一反应称为康尼查罗反应,属歧化反应.例如:2HCHO + NaOH(浓) CH3OH + HCOONa如果是两种不含α-H的醛在浓碱条件下作用,若两种醛其中一种是甲醛,由于甲醛是还原性最强的醛,所以总是甲醛被氧化成酸而另一醛被还原成醇.这一特性使得该反应成为一种有用的合成方法. + HCHO + NaOH(浓) + HCOONa+ HCHO + NaOH + HCOONa(四)与品红亚硫酸试剂的显色反应把二氧化硫通入红色的品红水溶液中,至红色刚好消失,所得的溶液称为品红亚硫酸试剂,又称希夫试剂.醛与希夫试剂作用显紫红色,酮则不显色,故可用于区别醛和酮.五,重要的醛和酮1,甲醛又名蚁醛.甲醛在常温下是气体,易溶于水.它有杀菌防腐能力.福尔马林是40℅甲醛水溶液,用作消毒剂和防腐剂.甲醛溶液与氨共同蒸发,生成环六亚甲基四胺,药名为乌洛托品.乌洛托品为白色结晶粉末,易溶于水,在医药上用作利尿剂及尿道消毒剂.2,乙醛是无色,有刺激臭味,易挥发的液体,可溶于水,乙醇,乙醚中.三氯乙醛是乙醛的一个重要衍生物,是由乙醇与氯气作用而得.三氯乙醛由于三个氯原子的吸电子效应,使羰基活性大为提高,可与水形成稳定的水合物,称为水合三氯乙醛,简称水合氯醛.其10℅水溶液在临床上作为长时间作用的催眠药,用于失眠,烦躁不安等.3,苯甲醛为无色液体,微溶于水,易溶于乙醇和乙醚中.苯甲醛易被空气中的氧氧化成白色的苯甲酸固体.4,丙酮为无色易挥发易燃的液体,具有特殊的气味,与极性及非极性液体均能混溶,与水能以任何比例混溶.6,丙烯醛是无色有刺激性的挥发性液体,脂肪过热时所产生的刺激性气味是由于其甘油成分变成丙烯醛之故.。

醛和酮PPT演示课件

醛和酮PPT演示课件
(2)羰基化合物是极性化合物。
13
(二)醛、酮的物理性质
1、状:常温下,甲醛是气体,低、中级醛、酮是液体, 高级醛、酮是固体。
2、味:低级醛有强烈的刺激气味,低级酮有特殊气味, 中级醛、酮有果香味。
3、沸点:醛、酮的沸点比分子量相近的烷烃和醚高,而 比分子量相近的醇低。
4、溶解性:低级脂肪醛、酮易溶于水,其他醛、酮的 水溶性随分子量的增加而减弱,高级醛、酮和 芳香族醛、酮不溶于水。醛、酮能溶于乙醇、 乙醚等有机溶剂。
且垂直于σ键所在的平面。
12
问题:
碳氧双键和碳碳双键都是由一个σ键和一个π键 组成,它们在极性方面会有区别吗?
由于氧原子的电负性较碳原子大,羰基中π键的电 子云偏向于氧原子方面,使得羰基发生极化,羰基碳原 子就带有部分正电荷,而氧原子则带有部分负电荷。
羰基极化的情形:
δ+
δ—
CO
结论: (1)碳氧双键是一个极性不饱和键。
R—C—H + HCN O
H2O/HOH
α—羟基腈
α—羟基酸
18
(2)与亚硫酸氢钠的加成
醛、脂肪族甲基酮 、低级环酮 + 过量NaHSO3饱和 溶液作用,生成α—羟基磺酸钠。
R—C—H + HSO3Na O
R—CH—SO3Na
OH
α—羟基磺酸钠
α—羟基磺酸钠不溶于饱和NaHSO3溶液而呈白色结晶析出。
CH2 + N2
但该还原法是在碱性条件下进行的,所以当分 子中含有对碱敏感的基团时,不能使用这种还原法。
36
5、 歧化反应——Cannizzaro反应
不含α-H 的醛在浓碱作用下,一分子醛被氧化成羧酸, 一分子醛被还原成醇,该反应称为Cannizzaro反应。

有机化学-第八章-醛酮的命名、化性及制备

有机化学-第八章-醛酮的命名、化性及制备

醛酮的命名和化学性质及制备本章要点一、分类命名和结构二、主要化性(一)醛酮1、亲核加成(水/氢氰酸/亚硫酸氢钠/醇/羰基试剂/格式试剂/烷基锂/金属炔化物)2、α-H的反应(卤代/卤仿反应,羟醛缩合)3、氧化还原(不同还原体系产物不同)4、α、β-不饱和醛酮的特征反应(了解)(二)醌1、C=C亲电加成2、C=O亲核加成3、共轭体系1,4-加成一、醛酮的命名1、含CO、较多取代的最长碳链→⨯醛、⨯酮2、CHO总是1位,不饱和醛酮的C=O位号﹤重键3、酮离羰基最近端起编,羰基位次要标明(有些可省)4、有环基取代→环基作取代基5、环酮命名与酮类似,加前缀→环⨯酮例题:1、CHO2、HO CHO3、PhCH=CHCHO4、OHC CHO5、COCH36、CO7、COCH2CH39、H3CO COCH39、(CH3)3CCOCHCH3CH310、CH3CHCHCOCH3CH311、CH3COCH2COCH312、OBr13、CH3O14、CH3O15、COHOOH16、CH3COCH2NH2解:1、苯甲醛2、对羟基苯甲醛3、3-苯基-2-丙稀醛4、乙二醛5、苯乙酮6、二苯甲酮7、苯丙酮8、对甲氧基苯乙酮9、2,2,4-三甲基-3-戊酮10、3-甲基-4-苯基-2-戊酮11、2,4-戊二酮(乙酰丙酮,acac.) 12、2-溴环戊酮13、4-甲基-2-环己烯酮14、4-甲基-2,4-环己二烯酮14、3,4’-二羟基二苯甲酮16、对氨基苯-2-丙酮二、醛酮的结构特点COδδ+1、醛酮中的羰基是极性双键,由于氧的电负性强,因此碳上带有δ+,氧上带有δ-;2、δ+的碳与δ-的氧比较而言,前者更易受到试剂(亲核试剂)的进攻,因此羰基的加成属 于亲核加成;3、受羰基影响,α-H 具有一定的酸性,可发生卤代等反应;4、羰基的氧化度处于中间状态,可继续氧化亦可被还原。

三、醛酮的主要化学性质H Cα-H的反应氧化还原醛的反应(一)羰基的亲核加成反应通式:CNuO C O δδ++ Nu -E+NuC OE注:(1)羰基加成反应属于亲核加成,有别于C=C 的亲电加成,因此,易与C=C 加成的试剂如卤素、卤化氢等,就不易与C=O 进行亲核加成;反之同理。

醛酮的加成反应PPT课件

醛酮的加成反应PPT课件

电子效应对HCN加成反应的影响:
O 2N
CHO
K
1420
CH O CH 3O
CHO
210
32
(5) 与格利雅试剂的加成反应
O + R MgX
OMgX C
R
H
用于醇的制备: C= O
H
R C= O
H
R C= O
R
1. RMgX 2. H 2 O
1. RMgX 2. H 2 O
1. RMgX 2. H 2 O
2
NO2
还原
例1, 如2–: 加2成-丁8醇8%的合成C:= O + H 2N N H
NO2
H 2O
C= NNH
NO2
2,4-二硝基苯肼
2,4-二硝基苯腙
O C= O + H2NNHCNH2
H 2O
O C= NNHCNH2
氨基脲
C= O + H2NR
H 2O
伯胺
缩氨脲
C= N R
席夫碱(取代基为芳基)
CH3CH2CH2MgBr + CH3COCH2CH3
注意:当酮分子中与羰基相连的两个烃基及格利雅试剂中 烃基的体积都很大时,加成产物的产量降低或不起 加成反应。而用有机锂化合物仍能得到加成产物。
(CH3)2CHCOCH(CH3)2 + CH3CH2MgBr
C H2C H3 (C H3)2C H C C H (CH3)2
R
OH
HCl
C
H
SO 3N a
R C= O + NaCl + SO2 + H2O
H
R
OH
C
H

有机化学醛酮-课件

有机化学醛酮-课件

C H 3
C H 3
香茅醛
OH CH3
CH3
H
H
H
O
testosterone
三. 醛、酮的制备 1. 几种已知的方法
炔烃的水解
R CC H
末端炔
H 2O H g++
O R C C H 3
甲基酮
氧化法
• 氧化醇
R 可为不 饱和基团
Sarrett 试剂
Sarrett 试剂
Jones 试剂 Oppenauer 氧化
O R C Cl
H2 / Pd, 硫-喹啉(或硫-脲) Rosenmund 反应
LiAlH(OBu-t)3
S O C l2
O R C OH
(羧酸)
醚 LiAlH4 + 3 t-BuOH
O RCH
➢反应活性比较
还原能力: 羰基的亲电性:
LiAlH4 > LiAlH2(OR)2 > LiAlH(OBu-t)3
O Ar C Ar' 二芳基酮
O Ar C R
通过二卤代物水解合成芳香醛、酮
间接氧化
四. 醛、酮的性质 (I)
羰基氧有弱碱性 可与酸结合
性质分析
a碳有吸电子基 a氢有弱酸性
R1 O
碳与氧相连 氢易被氧化
R2
a
C
C
H(R)
羰基碳有亲电性
H
可与亲核试剂结合
• a氢与碱
R1 O
的反应
R2
a C
C
H(R)
不强
醛酮与负离子型亲核试剂加成的两种形式
• 不可逆型(强亲核试剂的加成)
O
亲核加成
C

有机化学第十章醛酮PPT课件

有机化学第十章醛酮PPT课件
注意事项
在醇氧化制备醛的过程中,应控制反应条件,如温度、浓度、催化剂 等,以避免过度氧化或其它副反应的发生。
通过醇的氧化制备酮
总结词
醇氧化是制备酮的一种常用方法,常用的氧化剂有高锰酸 钾、硝酸、铬酸等。
详细描述
醇氧化制备酮的反应机理是醇分子中的羟基被氧化成羰基, 同时生成氢离子,常用的氧化剂可以将醇氧化成相应的酮, 同时生成水或其它相应的产物。
醛酮还可以用于合成生物活性分子,如激素、维生素等,对生命过程具有重要影响。
05 醛酮的制备方法
通过醇的氧化制备醛
总结词
醇氧化是制备醛的一种常用方法,常用的氧化剂有高锰酸钾、硝酸、 铬酸等。
详细描述
醇氧化制备醛的反应机理是醇分子中的羟基被氧化成羰基,常用的 氧化剂可以将醇氧化成相应的醛,同时生成水或其它相应的产物。
亲核加成反应
与氢氰酸加成
酮在氢氰酸的作用下,可以发生亲核加成反应, 生成相应的羟基腈。
与水加成
酮在水的作用下,可以发生亲核加成反应,生成 相应的醇。
与醇加成
酮在醇的作用下,可以发生亲核加成反应,生成 相应的酯。
亲电加成反应
与溴加成
01
酮在溴的作用下,可以发生亲电加成反应,生成相应的溴代酮。
与硫酸加成
02 醛的化学性质
还原反应
还原成醇
还原成醇和烃的混合物
在催化剂存在下,醛基可被还原成醇, 如用氢化铝锂(LiAlH4)作为还原剂。
在某些条件下,醛基可被还原成醇和 烃的混合物,如用氢气作为还原剂。
还原成烃
在酸性条件下,醛基可被还原成烃, 如用硫酸铜和亚硫酸氢钠作为还原剂。
氧化反应
氧化成酸
在强氧化剂存在下,醛基可被氧化成羧基,如用高锰酸钾 (KMnO4)作为氧化剂。

06醛和酮的人名反应

06醛和酮的人名反应

(thiophene)。
14
Vilsmeier甲酰化反应
二、Vilsmeier甲酰化反应的特点(续)
5、通常采用卤代烃(halogenated hydrocarbon)作溶剂),DMF或 POCl3以及溶剂的特性对试剂的亲电性有较大的影响,因此, 不同的反应要仔细选择溶剂。
6、反应温度取决于底物的活性,低温可以低于0度,最高可达80 度。
一、背景(Background)
工业上在PdCl2和CuCl2催化下,常压的氧将乙烯氧化成乙醛 (ethanal, acetaldehyde)的过程称为Wacker-Smidt工艺。
F. C. Phillips 早 在 1884 年 的 时 候 就 报 道 过 用 化 学 计 量 的 (stoichiometric)的PdCl2在水溶液中将乙烯氧化并析出金属钯的 过程。该过程用来检测烯烃的存在。直到1959年,J. Smidt等 人(系德国Wacker化学)研究表明,使用CuCl2能将Pd(0)金属 重 新氧化成有活性的PdCl2。 这项发现使得这个氧化反应第一次 看到了商业化的可能性,也从此打开了在有机合成中的应用。 使用催化量的Pd(II)盐一锅法将烯烃氧化成相应的酮的过程就 称为Wacker氧化反应。
有机合成反应 第六章 醛和酮中的人名反应
1
Oppenauer氧化反应
Oppenauer氧化反应
2
Oppenauer氧化反应
一、背景(Background)
1937年,R. V. Oppenauer报道了在苯溶剂中使用催化量的叔丁氧 基铝以丙酮作为氧化剂将甾体(steroids)的仲醇氧化成相应的酮的 过程。这个氧化过程证明是高收率,并且比其他氧化方法要好, 原因是条件温和。其实,Oppenauer氧化方法比其他三个不同的 研究者采用烷氧基铝还原羰基的方法要晚10年左右。1) 1925年 的时候,H. Meerwein就成功地用乙氧基铝/乙醇将醛还原;2) 同 一年,A. Verley使用乙氧基铝和异丙氧基铝将酮还原,但是发现 立体位阻的酮(比如樟脑,camphor)的反应很慢。3) 1926年,W. Ponndorf阐述了有好多烷氧基金属衍生物(比如,碱金属和铝的 烷氧基化合物,从仲醇衍生得到)能够还原醛和酮,并且,他发 现这个过程完全是可逆的。

醛酮知识点总结

醛酮知识点总结

醛酮知识点总结一、醛酮的命名和结构1. 命名规则醛酮的命名按IUPAC命名法,以醛和酮的系统命名为主。

醛的命名以碳链较长的端基为主,末端碳原子用“-al”结尾;酮的命名以主链中最长的含氧碳链为主,用“-one”结尾。

若有侧链,则用字母编号。

2. 结构醛酮分子中,碳原子与醛基碳原子和酮基碳原子之间是含有共振的双键结构,因此醛酮具有不饱和性,易发生亲电加成反应。

具体结构如下图所示:C=OR-R' R-C=O-R'这种结构使得醛酮具有一定的活性,容易发生各种化学反应。

二、醛酮的性质1. 物理性质醛酮在常温下为无色液体或固体,具有特殊的刺激性气味。

其沸点、熔点随分子结构的不同而异。

一般来说,醛的沸点较酮低,这是因为醛分子中带有极性较大的羰基,与酮相比更容易被分子间力拉扯。

2. 化学性质醛酮具有一定的活性,容易发生氧化、加成、缩合等化学反应。

具体包括:(1)加成反应:醛酮中羰基具有一定的亲电性,容易受到亲核试剂的攻击,发生加成反应。

(2)缩合反应:醛酮中含有极性双键,容易发生缩合反应,生成双醇或双醛。

(3)氧化反应:醛酮中的羰基具有一定的氧化性,容易被氧化剂氧化成醛酸。

(4)水合反应:醛酮中的羰基与水反应,形成亚醇或亚醛。

总的来说,醛酮的化学性质主要体现在其具有活性的羰基上,因此在有机合成和化工生产中具有广泛的用途。

三、醛酮的合成醛酮可以通过多种途径合成,包括氧化、加成、缩合等化学反应。

1. 从卤代烃氧化反应卤代烃可以与金属氧化剂(如KMnO4、K2Cr2O7等)反应生成醛或酮。

一般来说,卤代烃中的卤素被氧化成α-羟基,然后脱去水分子,生成醛或酮。

2. 从醛或酮的氧化还原反应醛或酮可以通过氧化还原反应生成醛或酮。

一般来说,醛在氧化条件下可以生成酸,然后还原成醛;而酮在氧化条件下可以生成酸,然后还原成酮。

3. 从醇的氧化反应醇可以通过氧化反应生成醛或酮。

一般来说,一度醇经过氧化反应生成醛,再经过进一步氧化生成酸;而二度醇可以直接生成酮。

有机化学全套PPT课件第十章 醛和酮

有机化学全套PPT课件第十章  醛和酮

C=N
OH
t-Bu
H
H2SO4 乙醚
O
Et t-Bu
C-NH-CCH3
H
*3E 贝克曼重排反应的应用
应用1:制备酰胺、羧酸、胺。 应用2:测定酮肟的几何构型(根据反式迁移)。
NH2
反式
HO OC
NO2
顺式
O2N
OH C=N
应用3:合成(如制备尼龙6)
H+ O +H2N OH
OH N
H+
+OH2 N
*4 反应的立体化学
*4a 醛、酮与HCN的加成也符合克莱姆规则一。
O M
S
O


L

-CN
L
较 不 稳 定
S
M
R
R
*4b 当醛、酮的-C上有-OH、-NH时,由于这些基团能与 羰基形成氢键,所以形成如下构象(见图),若发生加成, 亲核试剂主要从S基团一侧进攻,这称为克莱姆规则二。
H OO
L
R
S
O
H
C 2H 5
P hH
X
Mg
O
R
M
S
Mg X
R
LR
PhOຫໍສະໝຸດ HH C 2 H 5
H
O
P hH
C 2H 5 1 RMgX 2 H2O
R
H
C2H 5
+
H
OH
Ph
OH
H
C2H 5
H
R
Ph
Ph
H
C 2H 5
HO
H
R
主要产物
Ph
H
C 2H 5

有机化学基础知识点整理醛酮反应和氧化还原反应

有机化学基础知识点整理醛酮反应和氧化还原反应

有机化学基础知识点整理醛酮反应和氧化还原反应有机化学基础知识点整理——醛酮反应和氧化还原反应有机化学是研究有机物的结构、性质、合成和反应机理的学科,在有机化学中,醛酮反应和氧化还原反应是非常重要的知识点。

本文将对这两个知识点进行整理并介绍其相关内容。

一、醛酮反应1. 醛酮的定义醛和酮是有机化合物中的两类重要化合物,它们有着相似的结构,但在它们的官能团上有所差异。

醛分子中含有一个碳原子上连接有一个氧原子,而酮分子则在碳原子上连接有两个碳基。

2. 醛酮的命名方法醛和酮的命名方法遵循一定的规则,一般是以它们所在的碳基命名,并在名称后面加上"醛"或"酮"。

如果醛或酮分子中有两个或更多的相同官能团,则可使用前缀表示其数目,例如二醛、三酮等。

3. 醛酮的合成方法醛和酮的合成方法多种多样,常用的方法包括氧化、还原、氧化脱氢和酰基化等。

其中,氧化脱氢是一种常用的合成方法,可以将醇氧化为醛或酮。

4. 醛酮的反应类型醛和酮具有丰富的反应类型,包括加成反应、还原反应、氧化反应、羟醛缩合反应等。

这些反应类型使得醛酮在有机化学中应用非常广泛,能够参与多种反应和合成。

二、氧化还原反应1. 氧化还原反应的定义氧化还原反应是指物质在反应过程中电子的转移,即发生氧化的物质失去电子,而发生还原的物质则得到电子的过程。

在氧化还原反应中,有机化合物可发生氧化(失去电子)或还原(得到电子)反应。

2. 氧化还原反应的特征氧化还原反应具有一些明显的特征,包括氧化剂和还原剂的存在,氧化剂可接受电子而被还原,还原剂则可提供电子而被氧化。

此外,氧化还原反应还具有电势差、氧化数变化和原子电荷变化等特征。

3. 氧化还原反应的应用氧化还原反应在有机合成中有着广泛的应用,例如氧化反应可将醇氧化为醛或酮,还原反应可还原醛和酮为相应的醇。

此外,氧化还原反应还可以用于有机物的鉴定、有机合成的控制和有机催化反应的实现等方面。

第一节 醛、酮的分类和命名

第一节 醛、酮的分类和命名

第十一章醛、酮教学要点:掌握醛、酮、醌的结构、性质、制备;掌握常见的氧化剂和还原剂;了解亲核加成反应的历程。

教学时数: 10 学时教学方法:教师讲授、 教学手段:多媒体、自制模型含有羰基(C=O )的化合物为羰基化合物。

R 1、R 2均为烷基时,分子称为酮;R 1、R 2有一个或二个为氢分子称为醛。

在醛和酮的分子中都含有羰基 C=O ,统称羰基化合物。

醛( Aldehyde )的通式为 RCHO 或 ArCHO ,酮的通式为 RCOR ’或 ArCOR 和 Ar 2CO ,由于羰基是醛和酮这两类化合物共有的官能团,所以在化学性质上醛和酮有许多共同之处。

但由于醛的羰基上连有一个氢原子,又使醛和酮的化学性质有所不同。

第一节 醛、酮的分类和命名一、 醛和酮的结构和分类 1.醛和酮的结构在醛、酮分子中,羰基碳原子以sp 2 杂化状态与其它三个原子成键,羰基碳原子的P 轨道与氧原子上的P 轨道以相互平行的方式侧面重叠形成π键,即羰基是一个平面构型的;与羰基碳原子直接相连的其它三个原子处于同一平面内,相互间的键角约为120度,而π键是垂直于这个平面的。

在羰基中由于氧原子的电负性明显大于碳原子,所以羰基中双键的电子偏向氧原子一方,这种电子偏移造成了羰基具有极性,而且氧原子是富电子的,碳原子是缺电子中心。

羰基是一个较强的极性基团,羰基的氧原子具有一定的碱性。

羰基具有极性,醛、酮是极性分子,小分子的醛、酮其极性的是较强的由于羰基具有强吸电子作用(—O R 1CR 2C,—I),使连接在羰基上的烷基显示出明显的供电效应(+I,+C),烷基的这种给电子作用使羰基碳原子上的缺电子性质有所减弱,而且也使羰基化合物的稳定性有所增加。

2.分类根据醛、酮的羰基上连接烃基的情况,可把醛、酮分为脂肪族和芳香族醛、酮两大类,根据烃基是否饱和又可分为饱和及不饱和醛、酮。

由分子中含有羰基的个数,可以分为一元、二元、多元醛、酮等。

羰基直接与芳环相连的醛、酮称为芳醛或芳酮。

醛酮的结构命名课件

醛酮的结构命名课件

CHO
CHO
1 CHO 2
环己醛
1,2-萘二醛
不宽恕众生,不原谅众生,是苦了你自己。 别拿自己的无知说成是别人的愚昧! 人生最大的错误是不断担心会犯错。 孝弟(tì悌)也者,其为仁之本与。——《论语·学而》 宁可笑着流泪,绝不哭着后悔。 常说口里顺,常做手不笨。最淡的墨水,也胜过最强的记性。 友谊也像花朵,好好地培养,可以开得心花怒放,可是一旦任性或者不幸从根本上破坏了友谊,这朵心上盛开的花,可以立刻萎颓凋谢。——大仲 马 时间告诉我,无理取闹的年龄过了,该懂事了。 现实会告诉你,不努力就会被生活给踩死。无需找什么借口,一无所有,就是拼的理由。 人之所以痛苦,在于追求错误的东西。 人一旦觉悟,就会放弃追寻身外之物,而开始追寻内心世界的真正财富。 世界原本就不是属于你,因此你用不着抛弃,要抛弃的是一切的执著。万物皆为我所用,但非我所属。
δ γ βα O
CCCCC H
CH3CH=CHCH2CHO ββ—丁 戊烯烯醛醛
OH CH3—CH—CH2CHO
β-羟基丁醛
O
CH3CH—C—CHCH3
Br
Br
α,α'-二溴-3-戊酮
(2)不饱和醛、酮的命名
从靠近羰基一端给主链编号。命名称 为“某烯醛(酮)”或“某炔醛(酮)”。
CH2=CH—CH—CH—CHO CH3 CH3
O
3-甲基-4-己烯-2-酮
不饱和酮
第一节 醛和酮的结构、性质和命名
人之所以痛苦,在于追求错误的东西。
无需找什么借口,一无所有,就是拼的理由。
友谊也像花朵,好好地培养,可以开得心花怒放,可是一旦任性或者不幸从根本上破坏了友谊,这朵心上盛开的花,可以立刻萎颓凋
3.按分子中羰基数目: 谢。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑸.能与羟胺生成肟__________________________________;
答案:⑴.能发生碘仿反应__________________________________;
⑵.能与亚硫酸氢钠加成__________________________________;
⑶.能与菲林试剂反应__________________________________;
⑷.能与吐伦试剂反应__________________________________;
④.如果需要表示产物是一对外消旋体的对映体时,除用楔形式表示之外,同时还要用纽曼投影式或费歇尔投影式表示。
练习题
一.完成下列转化:
⑴.⑵.⑶.Fra bibliotek⑷.⑸.
⑹.
二、用化学方法鉴别下列各组化合物
⑴.甲醛、乙醛、苯甲醛
⑵.苯乙醛、苯乙酮、1–苯基–1–丙酮
⑶.丙醛、丙酮、丙醇、异丙醇
⑷.乙醛、乙醇、乙醚
⑸.
三、下列化合物哪些能发生碘仿反应?哪些能与亚硫酸氢钠加成?哪些能与菲林试剂反应?哪些能与吐伦试剂反应?哪些能与羟胺生成肟?
化学竞赛小组每日一练(6)
时间:2014年6月6日
内容:醛酮----机理和反应
要求:⑴.认真书写,0.5~0.7黑色笔,正楷或宋体;
⑵.①.遇有立体构型物质,优先用楔形式表示;
②.为六元环时,一般用楔形式表示,如果需要强调稳定性,则用船式椅式的平伏键、直立键形式表示;
③.当需要强调R、S构型时,要用费歇尔投影式表示;
相关文档
最新文档