第一章 有限元基础1
有限元分析基础(推荐完整)
图1-5 驾驶室受侧向力应力云图
图1-6 接触问题结构件应力云图
10
第一章 概述
图1-7 液压管路速度场分布云图
图1-8 磨片热应力云图
图1-9 支架自由振动云图
11
第二章 结构几何构造分析
2.1 结构几何构造的必要性 2.2 结构计算基本知识 2.3 结构几何构造分析的自由度与约束 2.4 自由度计算公式
(1)结点: ① 铰结点;② 刚结点;③ 混合结点。 (2)支座: ① 活动铰支座;② 固定铰支座 ;
③ 固定支座 ;④ 定向支座
15
第二章 结构几何构造分析
2.2.2 结构的分类与基本特征
(1) 按结构在空间的位置分 结构可分为平面结构和空间结构两大类
(2) 按结构元件的几何特征分 ① 杆系结构: 梁、拱、桁架、刚架、桁构结构等 。 ② 板壳结构 ③ 实体结构实体结构的长、宽、高三个尺寸都很 大,具有同一量级。 ④ 混合结构
d. 超静定结构中的多余约束破坏后,结构仍然保持 几何不变性,因而仍有一定的承载能力, 不致整个结构 遭受破坏。
e. 超静定结构由于具有多余的约束,因而比相应的 静定结构具有较大的刚度和稳定性, 在载荷作用下,内 力分布也较均匀,且内力峰值也较静定结构为小。
18
第二章 结构几何构造分析
2.2.3 结构对称性的利用
对称结构在正对称载荷下,对称轴截面上只能产生 正对称的位移,反对称的位移为零;对称结构在反对称 载荷下,对称轴截面上只有反对称的位移,正对称的位 移为零。 (1) 具有奇数跨的刚架
① 正对称载荷作用
(a) 对称刚架
(b) 变形状态分析
(c) 对称性利用
图2-22对称性利用示意图
19
有限元入门ppt课件
有限体积法 (Finite Volume Method)
其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程。其中的未知数是网格点上的因变量的数值。为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面。
1-2 应力的概念
作用于弹性体的外力(或称荷载)可能有两种: 表面力,是分布于物体表面的力,如静水压力,一物体与另一物体之间的接触压力等。单位面积上的表面力通常分解为平行于座标轴的三个成分,用记号 来表示。 体力,是分布于物体体积内的外力,如重力、磁力、惯性力等。单位体积内的体力亦可分解为三个成分,用记号X、Y、Z表示。 弹性体受外力以后,其内部将产生应力。
边界元法 (Boundary Element Method)
边界元法是一种继有限元法之后发展起来的一种新的数值方法,与有限元法不同,边界元法仅在定义域的边界划分单元,用满足控制方程的函数去逼近边界条件。所以边界元与有限元相比具有单元和未知数少、数据准备简单等优点,但边界元法解非线性问题时,遇到同非线性项相对应的区域积分,这种积分奇异点处的强烈的奇异性,使求解遇到困难。边界元法在塑性问题中应用还比较少。
弹性力学 — 区别与联系 — 材料力学 弹性力学与材料力学既有联系又有区别。它们都同属于固体力学领域,但弹性力学研究的对象更普遍,分析的方法更严密,研究的结果更精确,因而应用的范围更广泛。 弹性力学 固有弱点: 由于研究对象的变形状态较复杂,处理的方法又较严谨,因而解算问题时,往往需要冗长的数学运算。但为了简化计算,便于数学处理,它仍然保留了材料力学中关于材料性质的假定:
塑性有限元常用软件
有限元分析基础教案(武汉理工)
有限元分析基础第一章有限元法概述在机械设计中,人们常常运用材料力学、结构力学等理论知识分析机械零构件的强度、刚度和稳定性问题。
但对一些复杂的零构件,这种分析常常就必须对其受力状态和边界条件进行简化。
否则力学分析将无法进行。
但这种简化的处理常常导致计算结果与实际相差甚远,有时甚至失去了分析的意义。
所以过去设计经验和类比占有较大比重。
因为这个原因,人们也常常在设计中选择较大的安全系数。
如此也就造成所设计的机械结构整体尺寸和重量偏大,而局部薄弱环节强度和刚度又不足的设计缺陷。
近年来,数值计算机在工程分析上的成功运用,产生了一门全新、高效的工程计算分析学科——有限元分析方法。
该方法彻底改变了传统工程分析中的做法。
使计算精度和计算领域大大改善。
§1.1 有限元方法的发展历史、现状和将来一,历史有限元法的起源应追溯到上世纪40年代(20世纪40年代)。
1943年R.Courant从数学的角度提出了有限元法的基本观点。
50年代中期在对飞机结构的分析中,诞生了结构分析的矩阵方法。
1960年R.W.Clough在分析弹性力学平面问题时引入了“Finite Element Method”这一术语,从而标志着有限元法的思想在力学分析中的广泛推广。
60、70年代计算机技术的发展,极大地促进了有限元法的发展。
具体表现在:1)由弹性力学的平面问题扩展到空间、板壳问题。
2)由静力平衡问题——稳定性和动力学分析问题。
3)由弹性问题——弹塑性、粘弹性等问题。
二,现状现在有限元分析法的应用领域已经由开始时的固体力学,扩展到流体力学、传热学和电磁力学等多个传统的领域。
已经形成了一种非常成熟的数值分析计算方法。
大型的商业化有限元分析软件也是层出不穷,如:SAP系列的代表SAP2000(Structure Analysis Program)美国安世软件公司的ANSYS大型综合有限元分析软件美国航天航空局的NASTRAN系列软件除此以外,还有MASTER、ALGO、ABIQUES、ADINA、COSMOS等。
有限元基础课件
0 l
0
q(
x)
x
3dx
ql
Q 均布横向力q:M
yi zi
Q yj
2 ql 2
12 ql
M zj
2 ql 2
12
第3节 单元刚度矩阵旳坐标变换
Re , e ,[k]表示单元在局部坐标系oxy的结点力,结点位移,刚度矩阵 Re , e ,[k]表示单元在整体坐标系oxy的结点力,结点位移,刚度矩阵
bi x
ci
y
(i, j, k)
u Niui N ju j Nkuk Niui v Nivi N jv j Nkvk Nivi
d
u v
Ni I
NjI
Nk I e Ne
I 二阶单位阵,[N] 形函数矩阵
第1节 三角形常应变单元(续2)
三、应变
u
x y
xy
S1
总虚变形功:
U ( x x y y z z yz yz zx zx xy xy )dxdydz
对于平面问题:
(Xu Yv)dxdy (Xu Yv)ds S1
( x x y y xy xy )dxdy
第4节 最小势能原理
最小势能原理
在几何可能旳一切允许位移和形变中,真正旳位移和形变使总势能取 最小值;反之,使总势能取最小值者也必是真正旳位移和形变。
总 势 能: U V
形变势能:U
1 2
( x x y y z z yz yz zx zx xy xy )dxdydz
外力势能:V ( Xu Yv Zw)dxdydz ( Xu Yv Zw)dS
S1
形变势能变分:
U ( x x y y z z yz yz zx zx xy xy )dxdydz
有限元分析基础课件第一章
物体离散化 将某个工程结构离散为由各种单元组成的计算模型, 这一步称作单元剖分。 离散后单元于单元之间利用单元的节点相互连接起来; 单元节点的设置、性质、数目等应视问题的性质,描 述变形形态的需要和计算进度而定。 用有限元分析计算所获得的结果只是近似的。如果划 分单元数目非常多而又合理,则所获 得的结果就与实 际情况相符合。
1956年Turener和Clough等用有限元法第一次得 出了平面应力问题的正确答案。 1960年Clough又进一步应用有限元法处理了平面弹 性问题,并提出了有限元法的名称,这才使得有限元 法的理论和应用都得到了迅速发展。 20世纪70年代以后,随着计算机和软件技术的发展 有限元法得到了迅猛的发展。
对于实际的连续结构,任何位置的物体都是相 互连接、相互作用的,而在被离散成有限元模型 后,假设相邻单元除节点外都是不相互连接、不相 互作用的,这一点是不符合实际的,但当单元趋近 无限小、节点无限多时,则这种离散结构将趋近于 实际的连续结构。 有限元法的离散处理的本质就是将原始的无限 自由度的连续体物理系统转换成由有限个节点自由 度组成的离散系统,且当所分割的单元无限小时, 该离散系统完全等价于原始的连续系统。
有限元基础理论
与ANSYS应用
CAD/CAE/CAM:CAD 工具用于产品结构设计,形 成产品的数字化模型,有限元法则用于产品性能的分 析与仿真,帮助设计人员了解产品的物理性能和破坏 的可能原因,分析结构参数对产品性能的影响,对产 品性能进行全面预测和优化;帮助工艺人员对产品的 制造工艺及试验方案进行分析设计。当前,有限元法 在产品开发中的作用,已从传统的零部件分析、校核 设计模式发展为与计算机辅助设计、优化设计、数字 化制造融为一体的综合设计。
增强可视化的前置建模和后置数据处理功能 目前几乎所有的商业化有限元程序系统都有功能很强 的前置建模和后置数据处理模块。使用户能以可视图 形方式直观快速地进行网格自动划分,生成有限元分 析所需数据,并按要求将大量的计算结果整理成变形 图、等值分布云图,便于极值搜索和所需数据的列表 输出。
有限元-第1章
L K 1n u1 L K 2n u 2 L L M L K in u i L L M L K nn u n
为了看出该方程能给出所需的结果,取出该方程组中第 i 个方程式
10 30 u i* = K i1u1 + K i 2 u 2 + L + 10 30 u i + L + K in u n
单元节点载荷列阵。
五、 约束处理 由于结构刚度矩阵是奇异的、不能求逆。造成刚度矩阵奇异的原因是在建立刚度矩阵 时,解除了结构的外界约束而成了自由结构,使结构可产生刚体运动。因此必须排除结构 的刚体位移,使结构刚度矩阵成为非奇异的,才能求解出节点位移。一般情况下,引进边 界位移约束条件后可排除刚体运动,否则,还应适当给定某些节点的位移值。经引进边界 约束条件后,可适当地减少待求的节点位移的数目和方程的数目。 在这里介绍一种适合计算机实施的约束处理的作法,称“置大数法” 。设给定的节点 位移为 ui= u i* ,只需在 ui 所在行中, 将结构刚度矩阵的主对角元素 K ij 置入一个大数, 如 10 30 , 同时,将对应行的载荷项 Pi 用 10 30 u i* 代替,于是结构刚度方程成为
{ } { } { } { }
e V
——单元的等效节点载荷列阵, PVe , Pse , P0e 分别是
{ }{ }{ }
e s
单元的体力、面力、节点上的集中力的等效节点载荷列阵,
{P } = ∫∫∫[N ] {f }dv
T Ve
{P } = ∫∫ [N ] {P}ds
T se p
(1-10a)
方程(1-10)表示了结构的总位能是各单元的应变能之和加上各单元等效节点载荷的 位能之和。将单元刚度矩阵 K e 和单元节点载荷列阵 P e 按结构节点位移列阵 {∆} 的自由 度数和排列顺序添零升阶,式(1-10)可进一步完成 1 1 T T T T Π = {∆} ∑ K e {∆} − {∆} ∑ P e = {∆} [K ]{∆} − {∆} {P} 2 2
有限元基础-上课件
总结词
有限元方法在电-磁场分析中能够模拟电磁 场分布和相互作用,为电磁装置设计提供精 确的预测。
详细描述
有限元方法在电-磁场分析中,能够考虑电 场强度、磁场强度、电流等参数,以及电磁 场与物质的相互作用。这为电磁装置设计提 供了精确的预测,如变压器、电动机、发电 机等的设计,以确保其性能和稳定性。
06
04
有限元方法的基本步骤
选取单元体与划分网格
选取单元体
选择适合问题特性的单元体,通常选 择容易解析和计算的几何形状,如三 角形、矩形等。
划分网格
将问题域分解成由单元体组成的网格 ,每个单元体之间通过节点相连。
建立单元体的刚度矩阵与质量矩阵
建立刚度矩阵
根据单元体的力学特性和边界条件,建立单元体的刚度矩阵,反映了单元体抵 抗变形的能力。
热传导分析
总结词
有限元方法在热传导分析中能够模拟热 量的传递和分布,为热工设计和优化提 供依据。
VS
详细描述
有限元方法在热传导分析中,能够考虑热 量的产生、传递和分布,以及材料热物理 性质的影响。这为热工设计和优化提供了 依据,如电子设备、机械零件、建筑保温 等的设计,以实现高效、稳定的热管理。
电-磁场分析
弹性力学本构方程
本构方程的数学表述
01
描述了材料的应力应变关系。
线弹性本构
02
材料在受力后会发生形变,但这种形变是可逆的,与应力大小
成正比。
非线性本构
03
材料在受力后发生的形变与应力大小不成正比,呈现出非线性
关系。
弹性力学边界条件与初始条件
边界条件
物体在边界上受到的力或位移约 束。
初始条件
物体在初始时刻的位移和速度状 态。
有限元第一章
Ω
v x (k x )dxdy
Ω
v (k )dxdy v(k )nx dΓ x x x Ω Γ v
y Γ
式中: v, v 为任意标量函数; 这里还假设
Γ 上的边界条件:
v y (k y )dxdy y (k y )dxdy v(k y )n dΓ
第 1 章 预备知识
—— 有限单元法的数学、力学基础
1.1 引
1. 数值计算方法概述
工程问题 (力学、物理等) 求解 建立一组 基本方程
言
控制微分方程 常微分方程 偏微分方程 位移边界条件 力的边界条件 初始条件
1.1 引
言
1.2 微分方程的等效积分形式和加 权余量法 1.3 变分原理和里兹(Ritz)法 1.4 弹性力学的基本方程和变分原理 1.5 小 结
Ω
0
在选择函数 时已自动满足。 这类边界条件称为强制边界条件 。 (2)等效积分的“弱”形式:
式中:n x , n y 边界的外法线方向关于坐标轴的方向余弦。 将其代入式(1.2.10)有
v (k )dxdy (k )dxdy v(k ) n x dΓ x x x x 对式(1.2.10) Ω x Ω Γ 分步积分: v v (k )dxdy (k )dxdy v(k ) n y dΓ y y y y y Ω Ω Γ
边值条件 精确解 (均质、边界条件简单)
近似解 (1)有限差分法 (数值解)(2)等效积分法(包括变分法) (3)有限单元法 (4)边界单元法 …… (1)有限差分法 代替 要点:差分 微分; x h 3 0 1
《有限元基础》课件
有限元方法可以应用于各种物理问题和工程领域 ,如结构力学、流体力学、热传导、电磁场等。
高效性
有限元方法采用分块逼近的方式,将整体问题分 解为多个子问题,从而大大降低了问题的规模和 复杂度,提高了计算效率。
精度可控制
通过选择足够小的离散元尺寸和足够多的元数目 ,可以控制求解的精度,使得结果更加精确可靠 。
有限元方法对初值和边界条件 的选取比较敏感,不同的初值 和边界条件可能导致截然不同 的结果。
高阶偏微分方程的离散化 困难
对于一些高阶偏微分方程,有 限元方法的离散化过程可能会 变得相当复杂和困难。
有限元方法的发展趋势
并行化和高性能计算
随着计算机技术的发展,有限元方法的计算效率和精度得到了极大的提高。未来,随着并行化和高性能计算技术的进 一步发展,有限元方法的计算效率将会得到进一步提升。
02
有限元的数学基础
线性代数基础知识
向量与矩阵
介绍向量的基本概念、向量的运算、矩阵的表示和基 本运算。
线性方程组
阐述线性方程组的基本概念、解法以及在有限元分析 中的应用。
特征值与特征向量
介绍特征值和特征向量的概念、计算方法以及在有限 元分析中的应用。
变分法基础知识
变分法的基本概念
阐述变分法的基本思想、定义和定理,以及在 有限元分析中的作用。
弱收敛与弱*收敛
03
介绍弱收敛和弱*收敛的概念、性质以及在有限元分析中的应用
。
03
有限元方法的基本步骤
问题的离散化
总结词
将连续的问题离散化,将连续体划分为有限个小的单元,每个单元称为有限元 。
详细描述
在有限元方法中,首先需要对实际问题进行离散化,即将连续的问题划分为有 限个小的单元,每个单元称为有限元。离散化的目的是将连续的物理量近似为 离散的数值,以便进行数值计算。
有限元分析基础
有限元分析基础第⼀讲第⼀章有限元的基本根念Basic Concepts of the Finite Element Method1.1引⾔(introduction)有限元(FEM 或FEA)是⼀种获取近似边值问题的计算⽅法。
边值问题(boundary valueproblems, 场问题field problem )是⼀种数学问题(mathematical problems)(在所研究的区域,⼀些相关变量满⾜微分⽅程如物理⽅程、位移协调⽅程等且满⾜特定的区域边界)。
边值问题也称为场问题,场是指我们研究的区域,并代表⼀种物理模型。
场变量是满⾜微分⽅程的相关变量,边界条件代表场变量在场边界上特定的值(物理边界转化为数学边界)。
根据所分析物理问题的不同,场变量包括位移、温度、热量等。
1.2有限元法的基本思路 (how does the finite element methods work)有限元法的基本思路可以归结为:将连续系统分割成有限个分区或单元,对每个单元提出⼀个近似解,再将所有单元按标准⽅法组合成⼀个与原有系统近似的系统。
下⾯⽤在⾃重作⽤下的等截⾯直杆来说明有限元法的思路。
等截⾯直杆在⾃重作⽤下的材料⼒学解答图1.1 受⾃重作⽤的等截⾯直杆图1.2 离散后的直杆受⾃重作⽤的等截⾯直杆如图所⽰,杆的长度为L ,截⾯积为A ,弹性模量为E ,单位长度的重量为q ,杆的内⼒为N 。
试求:杆的位移分布,杆的应变和应⼒。
)()(x L q x N -=EAdxx L q EA dx x N x dL )()()(-==-==x x Lx EA q EA dx x N x u 02)2()()((1))(x L EAq dx du x -==ε )(x L AqE x x -==εσ等截⾯直杆在⾃重作⽤下的有限元法解答 (1) 离散化如图1.2所⽰,将直杆划分成n 个有限段,有限段之间通过⼀个铰接点连接。
第1章有限元基本理论ppt课件
x dx
li
E i
i
E (ui1ui )
x
x
li
1.8 直杆受自重作用的拉伸问题(续)
❖ 外载荷与结点的平衡方程
EA(uiui1 ) li1
EA(ui1ui ) li
q(li1 li ) 2
q(li1li ) 为第i个结点上承受的外载荷
2
1.8 直杆受自重作用的拉伸问题(续)
❖ 假定将直杆分割成3个单元,每个单元长为a=L/3, 则对结点2,3,4列出的平衡方程为:
单元: 一组节点自由度间相互作用的 数值、矩阵描述(称为刚度或系数 矩阵)。单元有线、面或实体以及二 维或三维的单元等种类。
载荷
有限元模型由一些简单形状的单元组成,单 元之间通过节点连接,并承受一定载荷。
1.6 节点和单元 (续)
信息是通过单元之间的公共节点传递的。
. . 2 nodes ...
. . . 1 node
1.1 有限元分析 (FEA)
有限元分析 是利用数学近似的方法对真实物理
系统(几何和载荷工况)进行模拟。它利用简 单而又相互作用的元素,即单元,用有限数量 的未知量去逼近无限未知量的真实系统。
1.2 有限单元法的基本思想
❖ 将连续的结构离散成有限个单元,并在每一单元中 设定有限个节点,将连续体看作只在节点处相连接 的一组单元的集合体。
I
J
O
N
三维实体结构单元
K UX, UY, UZ
P
M L
J
I
J
K J
O N
K J
三维梁单元 UX, UY, UZ, ROTX, ROTY, ROTZ
三维四边形壳单元 UX, UY, UZ, ROTX, ROTY, ROTZ
有限元的基础理论
§1有限元的基础理论§1-1 概述有限元法是一种数值计算的近似方法。
早在40年代初期就已有人提出,但当时由于没有计算工具而搁置,一直到50年代中期,高速数字电子计算机的出现和发展为有限元法的应用提供了重要的物质条件,才使有限元法得以迅速发展。
有限元法在西方起源于飞机和导弹的结构设计,发表这方面文章最早而且最有影响的是西德的J.H.Argyris教授,于1954–1955年间,他在《Aircraft engineering》上发表了许多有关这方面的论文,并在此基础上写成了《能量原理与结构分析》,此书成为有限元法的理论基础。
美国的M.T.Turner,R.W.Clough,H.C.Martin和L.J.Topp等人于1956年发表了一篇题为《复杂结构的刚度和挠度分析》一文,此文提出了计算复杂结构刚度影响系数的方法,说明了如何利用计算机进行分析。
美国教授R.W.Clough于1960年在一篇介绍平面应力分析的论文中,首次提出了有限元法的名字。
1965年英国的O.C.Zienliewice教授及其合作者解决了将有限元应用于所有场的问题,使有限元法的应用范围更加广泛。
有限元法的优点很多,其中最突出的优点是应用范围广。
发展至今,不仅能解决静态的、平面的、最简单的杆系结构,而且还可以解决空间问题、板壳问题、结构的稳定性问题、动力学问题、弹塑性问题和粘弹性问题、疲劳和脆性断裂问题以及结构的优化设计问题。
而且不论物体的结构形式和边界条件如何复杂,也不论材料的性质和外载荷的情况如何,原则上都能应用。
§1-2 有限元的基础理论有限元法的基本思路和基本原则以结构力学中的位移法为基础,把复杂的结构或连续体看成有限个单元的组合,各单元彼此在节点处连接而组成整体。
把连续体分成有限个单元和节点,称为离散化。
先对单元进行特性分析,然后根据各节点处的平衡和协调条件建立方程,综合后作整体分析。
这样一分一合,先离散再综合的过程,就是把复杂结构或连续体的计算问题转化为简单单元的分析与综合的问题。
《有限元基本原理》课件
有限元法的历史与发展
01
有限元法的思想起源于20世纪40年代,但直到1960年 才由美国科学家克拉夫(Clough)正式提出“有限元 法”这一术语。
02
随着计算机技术的发展,有限元法得到了广泛应用和推 广,成为工程领域中解决复杂问题的有力工具。
03
近年来,随着计算能力的提升和算法优化,有限元法的 应用范围不断扩大,涉及的领域也更加广泛。
有限元法的基本思想
01
将连续体离散化为有限个单元,每个单元具 有简单的几何形状和物理属性。
03
02
通过在节点处设置位移约束,将各个单元相 互连接,形成一个整体模型。
通过在各个单元上设置方程,建立整个离散 化模型的平衡方程组。
高阶有限元方法
与其他方法的结合
研究高阶有限元方法,以提高计算的精度 和稳定性。
研究有限元方法与其他数值方法的结合, 如有限差分法、有限体积法等,以拓展其 应用范围。
谢谢聆听
04 有限元法的应用实例
静力分析实例
总结词
静力分析是有限元法最常用的领域之一,主要用于分析结构在恒定载荷下的响应。
详细描述
静力分析用于评估结构在恒定载荷下的应力、应变和位移。例如,桥梁、高层建筑和飞机机身等结构 的稳定性分析。通过有限元法,可以模拟复杂结构的整体行为,并预测其在各种载荷条件下的性能。
动力分析实例
总结词
动力分析涉及结构在动态载荷下的响应 ,如地震、风载和冲击载荷等。
VS
详细描述
动力分析用于评估结构在动态载荷作用下 的振动、冲击和响应。例如,地震工程中 建筑物和桥梁的抗震性能分析。通过有限 元法,可以模拟结构的动态行为,预测其 在地震或其他动态载荷下的破坏模式和倒 塌过程。
有限元法基础理论
为了表明这个正应力的作用面和作用方向,加上一个角码,例如,正应力σ x 是作用在垂直于 x
轴的面上同时也沿着 X 轴方向作用的。 (2)剪应力τ 加上两个角码,前一个角码表明作用面垂直于哪一个坐标轴,后一个角码表明作用方向沿着哪
一个坐标轴。例如,剪应力τ xy 是作用在垂直于 X 轴的面上而沿着 y 轴方向作用的。
如图 2 所示,将直杆划分成 n 个有限段,有限段之间通过一个铰接点连接。称两段之间的连接
1
点为结点,称每个有限段为单元。 第i个单元的长度为Li,包含第i,i+1 个结点。
2)用单元节点位移表示单元内部位移。我们假设单元内部位移为线性函数。
u(x)
=
ui
+
ui+1 − ui Li
(x
−
xi )
其中 ui 为第 i 结点的位移, xi 为第 i 结点的坐标。第 i 个单元的应变为 ε i ,应力为σ i ,内力为 Ni :
5
或乘积项都可以略去不计,这就使得弹性力学中的微分方程都成为线性方程。 三、基本变量
1.应力的概念 1)外力:面力和体力 作用于弹性体的外力(或称荷载)可能有两种: 表面力,是分布于物体表面的力,如静水压力,一物体与另一物体之间的接触压力等。单位面
积上的表面力通常分解为平行于坐标轴的三个成分,用记号 Χ、Υ、Ζ
结点 位移
(1)
内部各 点位移
(2)
(3)
(4)
应变
应力
结点力
单元分析
以平面问题的三角形 3 结点单元为例。如图 1-15 所示,单元有三个结点 I、J、M,每个结点有 两个位移 u、v 和两个结点力 U、V。
3
Lesson1 有限元第一章绪论
型材挤压成形的分析。型材在挤压 成形的初期,容易产生形状扭曲。
螺旋齿轮成形过程的分析
有限元应用实例
T形锻件的成形分析有限元应实例焊接残余应力分析(用Sysweld完成)
结构与焊缝布置
焊接过程的温度分布与轴向残余应力
有限元应用实例
1946年电子计算机诞生,杆系结构的结构矩阵法在计算机 上首先得到应用������
1956年M.J.Turner, R.W.Clough, H.C.Martin, L.J.Topp在纽 约举行的航空学会年会上介绍了一种新的计算方法,将矩阵 位移法推广到求解平面应力问题。他们把结构划分成一个个 三角形和矩形的“单元”,利用单元中近似位移函数,求得 单元节点力与节点位移关系的单元刚度矩阵。
思考:学习一种数学解题方法的关键?
1.3有限元法的一般描述
1.3.1 有限元法的基本思想
离散法:将不规则区域近似地分成有限个理 想的规则区域,对理想的规则区域一一求解, 从而得到全域的近似解。
依据:如果无限细分,则结果与真实结果无限 接近。•有限单元法是离散法的典型代表。
1.3.1 有限元法的基本思想(P3)
把结构或连续体分割成许多单元。
有限元法的基础是用有限个单元体的集合来代替原 有的连续体。因此首先要对弹性体进行必要的简化, 再将弹性体划分为有限个单元组成的离散体。单元 之间通过单元节点相连接。由单元、结点、结点连 线构成的集合称为网格。
通常把三维实体划分成4面体或6面体单元的网格, 平面问题划分成三角形或四边形单元的网格。
单元的所有结点位移、结点力,可以表示为结点位移向量 (vector):
第一章概述 有限元法基本原理及应用课件
第一章 概述
有限元法的基本思想 有限元法的特点 有限元法的发展及其应用领域
1.1有限元法的基本思想
2.有限元法是一种应用已知求解未知的思想
在弹性力学领域,已经能用数学偏微分方程将问 题加以表达,但是运用解析方法求解这些方程有时会 很难甚至无法求解。而有限元法是应用人们对事物规 律的已有认识并结合研究对象的各种约束条件,组织 一个运用已知的参量和规律来求解未知问题的有机过 程。
西班牙的Onate E和波兰的Rojek J将DEM 和FEM结合解决地质 力学中的动态分析问题;
瑞典的Birgersson F和英国的Finnveden S针对FEM在频域中的 应用提出了SFEM 。
FEM也从分析比较向优化设计方向发展。印度Mahanty博士用 ANSYS对拖拉机前桥进行优化设计
物体的几何形状可以用大大小小的多种单元进行拼装,所以 有限元法可以分析包括各种特殊结构的复杂结构体。
单元之间材料性质可以有跳跃性的变化,所以能处理许多物 体内部带有间断性的复杂问题,以适应不连续的边界条件和载荷 条件。
三维实体的四面体单元划分
平面问题的四边形单元划分
1.2 有限元法的特点
7.适合计算机的高效计算
20世纪90年代以来,大批FEA系统纷纷向微机移植, 出现了基于各种微机版FEA系统。有限元法向流体力学、 温度场、电传导、磁场、渗流和声场等问题的求解计算 方面发展,并发展到求解一些交叉学科的问题。
1.3.1 有限元法的发展
3.有限元法的研究现状
美国的HeoFanis Strouboulis等人提出用GFEM 解决 分析域内含有大量孔洞特征的问题;比利时的Nguyen Dang Hung 和越南的Tran Thanh Ngoc 提出用HSM解 决实际开裂问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1.4)
i.e.,
ke u f
(1.5)
11
the element stiffness matrix is
k k e k
k k
(1.6)
the objective is to solve for the unknown nodal displacements, so we may have
these are denoted as f1 and f 2
10
nodal displacements are denoted by
u1 and u 2
, the deflection is
u2 u1
the resultant axial force in the spring is
( u11) U 1
( u21) U 2
( u1 2 ) U 2
( u22 ) U 3
(1.9)
16
The compatibility conditions state the physical fact that the springs are connected at node 2, remain connected at node 2 after deformation.
Thus, element-to-element displacement continuity is enforced at nodal connections.
17
Substituting Equations 1.9 into Equations 1.8, we obtain
k1 k 1
(1.1)
f k k (u2 u1 )
For equilibrium,
(1.2)
f1 f 2 0
f1 k (u2 u1 )
(1.3a) (1.3b)
f 2 k (u2 u1 )
in matrix form
k k
k u1 f1 u f k 2 2
writing the equilibrium equation for each node.
To illustrate, via a simple example shown in Figure 1.2.
Figure 1.2 System of two springs with node numbers, element numbers, nodal displacements, and nodal forces.
we apply the first theorem of Castigliano and the principle of minimum potential energy.
6
1.2 LINEAR SPRING AS A FINITE ELEMENT
nodal displacements
nodes
13
step 2. global analysis:
1.2.1 System Assembly in Global Coordinates
For a connected system of spring elements, derivation of the global stiffness matrix is based on equilibrium conditions.
u1 1 f k e 1 u 2 f2
(1.7)
where
k e 1
is the inverse of the element stiffness matrix.
The element stiffness matrix for the linear spring element is a 2 x 2 matrix. the matrix is symmetric. A symmetric matrix has off-diagonal terms such that ,
k2 k 2
k1 U 1 f1(1) U (1) k1 2 f 2
k 2 U 2 f 2( 2 ) k 2 U 3 f 3( 2 )
(1.10a)
(1.10b)
Equation 1.10 is the equilibrium equations for each spring element We expand both matrix equations to 3 x 3 as follows
k k
k u1 f1 u f k 2 2
[1.4]
15
Element 1
( k1 k1 u11) f1(1) k (1) (1) 1 k1 u2 f 2
(1.8a)
Element 2
k2 k 2
( k 2 u1 2 ) f 2( 2 ) ( k 2 u22 ) f 3( 2 )
(1.8b)
To begin “assembling” the equilibrium equations the displacement compatibility conditions, which relate element displacements to system displacements, are written as
9
step 1. element analysis:
Two types of forces: 1. concentrated forces, 2. distributed forces. Nodal displacements
Nodal forces
The forces are applied to the element only at the nodes . (distributed forces are accommodated for other element types later),
k ij k ji
12
■ Can we solve equation (1.7) and obtain the displacements No!
u1
and
u2
?
The inverse matrix k e
1
does not exist, since the determinant of the element
5
Finite element analysis is based on the mathematic/physical principles.
■ For simple elements,
we utilize the principle of static equilibrium,
■ For more complicated structural systems,
Chapter 1 Spring and Bar Elements
1
2
A piece of spring, as a spring element
A bar element:
3ቤተ መጻሕፍቲ ባይዱ
The bar elements used for trusses.
4
1.1 INTRODUCTION
The finite element method (FEM) is a computational technique. Finite elements: (1) Spring element --- a linearly elastic spring (2) Bar element --- an elastic tension-compression member
stiffness matrix is identically zero. the element stiffness matrix is singular. The physical significance of the singular nature of the element stiffness matrix is that no displacement constraint whatever has been imposed on motion of the spring element: that is, the spring is not connected to any physical object that would prevent or limit motion of either node. With no constraint, it is not possible to solve for the nodal displacements individually.
A linear relationship
ykx
Constant, spring stiffness
8
The general solution procedure:
For example:
Two big steps: 1. element analysis
2. global analysis
As an elastic spring supports axial loading only , we select an element coordinate system (also known as a local coordinate system) as an x axis oriented along the length of the spring, The global coordinate system is that system in which the behavior of a complete structure is to be described.