分子生物学蛋白质生物合成文稿演示

合集下载

分子生物学--蛋白质的生物合成课件

分子生物学--蛋白质的生物合成课件

+
t
复合物对mRNA进行滑动搜索,寻找起始 密码子AUG
3 1 40S 4C 3 1 40S 4C
AUG
Met
Met
5.生成80S起始复合物
60S
eIF-5
GDP+Pi
各种elF释放
40S
Met
AUG
Met
40S ②
ATP
③ met
ADP+Pi
mRNA
Met elF-2 -GTP - Met-tRNAiMet
1.终止信号的识别:有三种蛋白因子
RF1识别UAA、UAG, RF2识别UAA、UGA。
RF3协助肽链释放。
2. 肽链释放:释放因子使肽酰转移酶活性转变为 水解活性,并释放tRNA,然后核糖体离开。
(三)真核生物蛋白质合成的过程
1. 核糖体:更大,80S,可解离成60S和40S。 2. 起始tRNA:
氨酰-tRNA合成酶将氨基酸装载到tRNA上的过程
氨酰-tRNA的表示方法:
Ala-tRNAAla Ser-tRNASer Met-tRNAMet
E.coli蛋白质的生物合成过程
肽链起始(Initiation)
肽链延伸(Elongation)
肽链终止(Termination)
肽链的起始
1.起始信号:
起始密码子多数是AUG,少数是GUG。
SD序列:起始密码子的上游约10个核苷
酸的地方往往有一段富含嘌呤的序列。 SD序列与核糖体16S rRNA 3’端的核苷酸 序列互补,可促使核糖体与mRNA的结 合。
2.起始tRNA
甲酰甲硫氨酰-tRNA(fMet-tRNAf)
2种可携带Met的tRNA

分子生物学-第五章--蛋白质的生物合成可编辑全文

分子生物学-第五章--蛋白质的生物合成可编辑全文

遗传密码的连续性
遗传密码的摆动配对
密码的简并性具有的生物学意义
它允许生物体的DNA碱基有较大变异 的余地,使基因突变可能造成的为害降至 最低程度,而不影响物种形状的表达,对 环境的适应和物种遗传的稳定。
例如细菌DNA中G+C含量变动很大, 但不同G+C含量的细菌却可以编码出相同 的多肽链。
这归因于同义密码子的分布规则。
摇摆假说
由于同义密码子的第1、2个碱基是保守的,第3个碱 基是可变的,因此解读同义密码子的tRNA的反密码子的 第1个碱基必定具有最小的专一性,也就是说它与密码子 第3个碱基之间的配对原则具有一定范围的灵活性。
由于反密码子位于tRNA的突环上,因此反密码子三 联体的排列就会呈弯曲弧线,不能与密码子保持完全的平 行,加上反密码子的第1个核苷酸位于非双链结构的松弛 环内,摇摆的自由度较大,从而导致密码子的第3个核苷 酸和反密码子的第1个核苷酸之间可能形成非标准的碱基 配对,反密码子的这一位点也被称为摇摆位点(一般为第 34位碱基)。
在原核生物和真核生物中,均存在另一种 携带蛋氨酸的tRNA,识别非起始部位的蛋氨 酸密码,AUG。
tRNA在将密码的信息及排列转换为多肽链中 的氨基酸序列的过程中起着中心及桥梁的作用。
最简单的tRNA只有74个核苷酸,而最大的也 很少超过94个核苷酸。这个特点使得tRNA成为最 先被定序的核酸。
序列测定的结果揭示tRNA是同源性相对较高 的RNA分子,tRNA分子含有大量修饰核苷酸和可 能存在各种碱基配对的二级结构。
能 够 识 别 mRNA 中 5′ 端 起 始 密 码 AUG 的 tRNA是一种特殊的tRNA,称为起始tRNA。
在 原 核 生 物 中 , 起 始 tRNA 是 一 种 携 带 甲 酰蛋氨酸的tRNA,即tRNAifmet;

分子生物学原理-蛋白质的生物合成

分子生物学原理-蛋白质的生物合成
相互作用
蛋白质可以通过非共价相互作用(如氢键和 疏水效应)来保持其三维结构。
蛋白质的生物合成过程
1
转录
蛋白质合成的第一步是通过转录将DNA信息转录成RNA。
2
翻译
在细胞质中,RNA通过翻译过程被转化为氨基酸序列的链。
3
蛋白质的后处理
新合成的蛋白质需要进行修饰,如切割、磷酸化和糖基化。
质量控制和折叠
4 信号传递
蛋白质在免疫系统中起着抗体、炎症因子 和抗菌肽的作用。
蛋白质通过与其他蛋白质和分子相互作用, 参与细而精确的过程,对于维持生命体的正常功能至 关重要。
分子生物学原理-蛋白质 的生物合成
蛋白质是生命体中至关重要的分子之一。它们在细胞结构、代谢调节和信号 传递中发挥着重要角色。
蛋白质-构成与结构
构成多样
蛋白质由氨基酸构建而成,有20种不同类型 的氨基酸。
功能多样
蛋白质的结构决定它们的功能,如酶催化、 结构支撑和信号传递。
三级结构
蛋白质的结构由一级(氨基酸序列)、二级 (α-螺旋、β-折叠)和三级(整体折叠)组 成。
蛋白质折叠
蛋白质在合成过程中需要正确地折叠成特定的三 维结构才能发挥功能。
质量控制
细胞通过质量控制系统来检测和修复异常折叠的 蛋白质。
蛋白质的重要性
1 细胞结构
2 代谢调节
蛋白质构成了细胞的骨架和细胞器,使细 胞能够维持形态和功能。
蛋白质作为酶和调节因子参与细胞的代谢 过程和信号传递。
3 免疫和防御

蛋白质的生物合成课件.ppt

蛋白质的生物合成课件.ppt
如何转变?
密码子:mRNA分子中,每三个相邻的核苷酸组
成的三联体代表某一种氨基酸或其它信息,称为 密码子或三联密码.一个氨基酸密码子决定着一 个氨基酸。
遗传密码:mRNA中的核苷酸排列序列与蛋白
质中的氨基酸排列序列的关系。生物的遗传密码
是通用的。
四种核苷酸编成三联体可形成 43个即64个密码子.其中: 1.一个起始密码:AUG
小亚基:沿mRNA结合,沿5’ 3’ 方向移动.
大亚基:受位(A位): 结合氨基酰- tRNA
给位(P位):成肽
给位 (P位)
蛋 苏
大亚基
UGU
5’AUG ACA GUU
受位 (A位)
小亚基
3’
蛋白质生物合成过程
1、准备阶段: 氨基酸的活化与转运。
2、中心环节: 核蛋白体循环-活化氨基酸 在核蛋白体上的缩合组装。
氨基酸的活化与转运
1、反应式:
氨基酰-tRNA合成酶
AA + tRNA + ATP
氨基酰-tRNA+AMP+PPi 2、AA结合位置:
AA的α-羧基与tRNA活末端腺苷酸中 核糖2 ’或3’羟基以酯键相结合。
tRNA-CCA-OH(R-3’-OH)
核蛋白体循环(三阶段)
(1)、起始阶段 (2)、延伸阶段 (3)、终止阶段
基因操纵子调节系统示意图
调节基因 转录
操纵子
控制区
信息区
启动基因 操纵基因 RNA聚合酶
结构基因
DNA
(-)
(+) 转录
翻译
mRNA
阻遏蛋白
诱导剂
翻译 蛋白质
血红素对起始因子-2的调节作用
血红素

第七讲蛋白质的生物合成ppt文档

第七讲蛋白质的生物合成ppt文档
缬氨酸、亮氨酸、异亮氨酸
alanine
丙氨酸
Ala
A
arginine
精氨酸
Arg
R
asparagine
天冬酰氨 Asn
N
aspartic acid
天冬氨酸 Asp
D
cystine
半胱氨酸 Cys
C
glutarmine
谷氨酰胺 Gln
Q
glutarmic acid 谷氨酸
Glu
E
glycine
甘氨酸
密码的简并性
一种氨基酸有几组密码子,或者几组密码子代 表一种氨基酸的现象称为密码子的简并性,这种简 并性主要是由于密码子的第三个碱基发生摆动现象 形成的,也就是说密码子的专一性主要由前两个碱 基决定,即使第三个碱基发生突变也能翻译出正确 的氨基酸,这对于保证物种的稳定性有一定意义。 如:GCU,GCC,GCA,GCG都代表丙氨酸。
来源
原核 生物
核糖体 (S)
70
亚基 30
RNA(S) 蛋白质 种类
16
21
50 23, 5 34
图7-2 (a)原核生物mRNA为多顺反子 (b)真核生物mRNA为单顺反子
遗传密码的破译
乔治·伽莫夫(1904~1968 ) (George Gamov) 乌克兰裔美国核物理学家
马歇尔.尼伦贝格(1927-) Marshall Nirenberg 德裔美国生物化学家
奥乔亚(1905-1993) Severo Ochoa
西班牙裔美籍生物化学家
• 1966年: 阐明遗传密码
柯拉那(美国)
Har Gobind Khorana,1922~
霍利(美国)
Robert Holley, 1922-1993

分子生物学原理--蛋白质的生物合成课件

分子生物学原理--蛋白质的生物合成课件
分子生物学原理
-LT
-MSH Endophin
分泌性蛋白质
• 分泌蛋白质: 合成后分泌到血液循环中,或再 到靶细胞去发挥功能的蛋白质。
• 信号肽:具疏水性的肽段,可使蛋白质移向细 胞膜并与细胞膜结合,然后将合成的蛋白质送 出细胞。
• 大多数分泌性蛋白质是一种蛋白质前身。
• 肽类激素、血浆蛋白、凝血因子、抗体蛋白、 蛋白酶等
第十二章 翻译
• 翻译:translation 即蛋白质生物合成。
• 把核酸中四种符号(AGCT/U)组成的遗 传信息,以遗传密码破读的手段转变 为蛋白质的氨基酸排列顺序的过程。
2019/6/21
分子生物学原理
第一节、参与蛋白质合成的物质
• 各种RNA、核糖体、氨基酸、酶 • 起始阶段:起始因子 • 延长阶段:延长因子 • 终止阶段:核糖体释放因子
2019/6/21
分子生物学原理
翻译后加工
• 去除N-甲酰基或N-蛋氨酸 • 个别氨基酸的修饰 • 亚基聚合 • 辅基连接 • 水解修饰 • 分泌性蛋白质
2019/6/21
分子生物学原理
去除N-甲酰或N-蛋氨酸
• 由脱甲酰基酶或氨基肽酶催化 • 可与翻译同步
2019/6/21
分子生物学原理
个别氨基酸的修饰
终止
IF-1
IF-3
2019/6/21
分子生物学原理
核糖体循环
2019/6/21
原核生物中: 复制、转录、翻译同步, 多肽合成后,进入大亚 基的管腔内,经滑面内 质网进高尔基体,进行 后加工。
分子生物学原理
翻译后加工
• 翻译后加工: posttranslational procession

关于蛋白质生物合成的ppt

关于蛋白质生物合成的ppt
2、剪接
• 去除初级转录物上的内含子,把外显子连接为成熟RNA 的过程称为mRNA剪接。 • 边界序列。 • 可变剪接(alternative splicing),又称选择性剪接。
3、剪切
4、编辑
18
目录
目录
第十七章
蛋白质的生物合成 (翻译)
Protein Biosynthesis (Translation)
需要
不需要
链的合成 配对 产物 加工修饰
半不连续 A-T
子代双链DNA 不需要
连续 A-U
各种RNA
需要
2
目录
原核生物的转录过程
——起始,延长,终止
目录
RNA聚合酶全酶在转录起始区的结合
大肠杆菌内有一些不同的RNA pol全酶,其差 异是σ亚基的不同。
目录
RNA聚合酶保护法研究转录起始区
RNA聚合酶保护区 结构基因
F E
H
60~70 nt
当合成60~70个核苷酸的RNA时,E和F释放,RNA pol II进入转录
延长期
目录ቤተ መጻሕፍቲ ባይዱ

核小体


RNA-Pol
长 转录方向 中




RNA-Pol


RNA-Pol
目录
真核生物转录终止
—— 和转录后修饰密切相关
mRNA
Poly (A)
核酸酶切断 RNA酶降解
3’
5’
5’ AATAAA GTGTGTG
目录
➢ 蛋白质生物合成的概念
生物体内的蛋白质以mRNA为模板而合成。在这 一过程中,mRNA上来自DNA基因编码的核苷酸序列 信息转换为蛋白质中的氨基酸序列,故称为翻译 (translation)。

第九章蛋白质的生物合成文稿演示

第九章蛋白质的生物合成文稿演示
• 但是若将氨基酸转移到tRNA 分子上, 则能使氨基酸的羧基活化,就能较容 易地与氨基酸失水缩合了。
1. 氨基酸的活化 AA+ATP+酶→[AA • AMP•酶] +ppi
2. 氨酰tRNA 的形成 [AA • AMP•酶]+tRNA → AMP + AA-tRNA+酶
❖ 氨酰tRNA 合成酶对氨基酸、tRNA 高 度特异地识别;水解酯键的催化作用, 发挥酶的校正活性。
• 方向:氨基端-------羧基端
• mRNA是一条长链分子。因此,在进行 蛋白质合成时,可同时被多个核糖体翻 译。这样,在显微镜下便可见到多个核 糖体排列成一串。这种结构就称为多聚 核糖体(polyribosome或polysome)。
翻译过程
• mRNA 5′
3′
5 ′ AUG …………3 ′ UAA
第九章蛋白质的生物合成文稿演示
翻 译 (translation)
• 以mRNA为直接模板,tRNA为氨基酸 运载体,核糖体为装配场所,共同协调 完成蛋白质生物合成的过程。
• 也就是把mRNA的碱基排列顺序转译成 多肽链中氨基酸的排列顺序。
主要内容
• 掌握三种RNA在蛋白质生物合成中的
作用(第一节) • 熟悉各种辅助因子的作用(第二节) • 熟悉蛋白质的生物合成过程(第二节)
核糖体
核糖体特点
• 小亚基可与mRNA 结合 • 大亚基在没有小亚基存在时不能与
mRNA结合,但可与tRNA 非特异结合
30S

50S
核糖体的活性位点
在50S亚基上
• 二位点模型
• 三位点模型
• A部位:氨酰基部位,接受氨酰基tRNA • P部位:肽酰基部位,起始氨酰 tRNA或
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

编 码 区
ORF
3' UAA AAA… … An
3'非 翻 译 区
• 遗传学将编码一个多肽的遗传单位称为顺反子 (cistron)。
• 原核细胞中数个结构基因常串联为一个转录单 位,转录生成的mRNA可编码几种功能相关的 蛋白质,为多顺反子(polycistron)。
• 真核生物一个mRNA只编码一种蛋白质,为单 顺反子(single cistron)。
密码的通用性进一步证明各种生物进化 自同一祖先。
已发现少数例外,如动物细胞的线粒体、 植物细胞的叶绿体。
➢原核生物的多顺反子
5 PPP
3
➢真核生物的单顺反子
5 mG - PPP
蛋白质
AAA … 3
蛋白质
非编码序列
核蛋白体结合位点
编码序列 起始密码子 终止密码子
原核细胞mRNA的结构特点
SD区
顺反子

AGGAGGU
顺反子
顺反子

先导区
插入顺序
插入顺序
末端顺序
特点
① 半衰期短 ② 许多原核生物mRNA以多顺反子形式存在 ③ AUG作为起始密码;AUG上游7~12个核苷酸处有一被称为SD序列
起始密码子(initiation codon):AUG(或甲硫氨酸) 终止密码子(termination codon) :UAA、UAG、UGA
遗 传 密 码 表
遗传密码的特点
1. 方向性(directional) 翻译时遗传密码的阅读方向是5’→3’,即读
码从mRNA的起始密码子AUG开始,按5’→3’ 的方向逐一阅读,直至终止密码子。
3. 简并性(degenerate,synonymous)
一种氨基酸可具有2个或2个以上的密码 子为其编码。这一特性称为遗传密码的简并 性。
除色氨酸和甲硫氨酸仅有1个密码子外, 其余氨基酸有2、3、4个或多至6个三联体为 其编码。为同一种氨基酸编码的各密码子称 为简并性密码子,也称同义密码子 。
各种氨基酸的密码子数目
5
5’-端非翻译区 开放阅读框架
End
Tail
3
3’-端非翻译区
从mRNA 5-端起始密码子AUG到3-端终止密 码子之间的核苷酸序列,称为开放阅读框架 (open reading frame, ORF)。
开放阅读框架(open reading frame, ORF)。
5' m 7Gppp
AUG
5'非 翻 译 区
密码子简并性的生物学意义:减少有害突变。 遗传密码的特异性主要取决于前两位碱基。
GCU GCC GCA GCG
ACU
ACC
Ala ACA Thr
ACG
4. 通用性(universal)
从简单的病毒到高等的人类,几乎使用 同一套遗传密码,因此,遗传密码表中的这 套“通用密码”基本上适用于生物界的所有 物种,具有通用性。
转肽酶、起始因子、延长因子、释放因子等 6. 能源物质:ATP、GTP 7. 无机离子:Mg2+、 K+
翻译模板mRNA及遗传密码
1961年,Nirenberg 证明了mRNA的模板 作用。
一、mRNA是蛋白质生物合成的直接模板
DNA mRNA 蛋白质
4/56
(一)mRNA的基本结构
Start of genetic message Cap
生物学意义
(1)维持多种正常生命活动(生长、发育) (2)适应环境的变化(细菌对乳糖和葡萄糖 的利用) (3)参与组织的更新和修复
第一节 蛋白质生物合成体系
Protein Biosynthesis System
➢ 蛋白质生物合成体系
1. 基本原料:20种编码氨基酸 2. 模板:mRNA 3. 适配器:tRNA 4. 装配机:核蛋白体 5. 主要酶和蛋白质因子:氨基酰-tRNA合成酶、
合成蛋白质 ③ 被蛋白质合成的起始因子所识别,从
而促进蛋白质的合成。
AAAAAAA-OH
和原核生物和真核生物mRNA的比较
(二)遗传密码
➢密码子(codon) 在mRNA的开放阅读框架区,以每3个相邻的
核苷酸为一组,代表一种氨基酸(或其他信息),这 种三联体形式的核苷酸序列称为密码子。 ➢起始密码子和终止密码子:
➢ 蛋白质生物合成的概念
定义 蛋白质生物合成(protein biosynthesis)也称
翻译(translation),是生物细胞以mRNA为模板, 按照mRNA分子中核苷酸的排列顺序所组成的 密码信息合成蛋白质的过程。
翻译的本质:
mRNA 分子中A G C U四种核苷酸序列编码的 遗传信息转换成蛋白质一级结构中20种氨基酸的排 列顺序。
的保守区, 16S rRNA3’- 端反向互补而使mRNA与核糖体结合。
➢真核细胞mRNA的结构特点
m7G-5´ppp-N-3 ´ p
顺反子
5´ “帽子”
Poly(A)尾巴的功能 ① 是mRNA由细胞核进入细胞质
所必需的形式 ② 它大大提高了mRNA在细胞质
中的稳定性
PolyA 3´
帽子结构功能
① 使mRNA免遭核酸酶的破坏 ② 使mRNA能与核糖体小亚基结合并开始
分子生物学蛋白质生物合成文稿演示
本章重要知识点
➢ 蛋白质生物合成(翻译)的概念 ➢ mRNA、tRNA、核蛋白体在翻译过程中的作
用,遗传密码的特点 ➢ 氨基酰-tRNA合成酶的作用特点 ➢ 原核、真核生物翻译过程的异同 ➢ 分子伴侣的作用,翻译后修饰的形式 ➢ 信号肽及其作用,各类蛋白质靶向输送的特点 ➢ 抗生素、毒素和干扰素抑制翻译的机制
读码方向
5′
3′
N
C
肽链延伸方向
2. 连续性(non-punctuated) 编码蛋白质氨基酸序列的各个三联体密
码连续阅读,密码子及密码子的各碱基之间 既无间隔也无交叉。
5’…….A U G G C A G U A C A U …… U A A 3’
Met Ala Val His
ቤተ መጻሕፍቲ ባይዱ
终止密码
基因损伤引起mRNA阅读框架内的碱基发 生插入或缺失,可能导致框移突变(frameshift mutation)。











天冬
➢ 许多真核生物基因转录后有一个对mRNA外显子 加工的过程,可通过特定碱基的插入、缺失或置 换,使mRNA序列中出现移码突变、错义突变或 无义突变,导致mRNA与其DNA模板序列不匹配, 使同一前体mRNA翻译出序列、功能不同的蛋白 质。这种基因表达的调节方式称为mRNA编辑 (mRNA editing)。
相关文档
最新文档