第八讲 假设检验

合集下载

第8 假设检验(共80张PPT)

第8 假设检验(共80张PPT)
第 8 章 假设检验
8.1 8.2 8.3 8.4
假设检验的根本问题 一个总体参数的检验 两个总体参数的检验 假设检验中的其他问题
我认为该企业生产的零件的平
均长度为4厘米!
什么是假设? 对总体 参数的一种看法
总体参数包括总 体均值、比例、方 差等
举例说明假设检验的根本思路
某单位职工上月平均收入为210元,这个 月的情况与上月没有大的变化,我们设想平均 收入还是210元.
样本均值的抽样分布
置信水平
拒绝域
1-
接受域
临界值
H0
样本统计量
如果备择假设具有符号“>〞,拒绝域位于抽样分 布的右侧,故称为右侧检验
样本均值的抽样分布
置信水平
1- 接受域
拒绝域
H0
样本统计量
临界值
请判断它们的拒绝域:
〔1〕假设检验的假设为H0:m=m0 ,H1: m≠m0,那么拒绝域为〔 〕。
〔2〕假设检验的假设为H0:m≥m0 ,H1: m < m0,那么拒绝域为〔 〕。
〔3〕假设检验的假设为H0:m≤m0 ,H1: m > m0,那么拒绝域为〔 〕。
检验统计量:Z > Z;
Z > Z/2 或Z <-Z/2 ;
Z <-Z
决策规那么
给定显著性水平 ,查表得出相应的临界 值 将检验统计量的值与 水平下的临界值进 行比较 双侧检验:I统计量I > 临界值,拒绝H0 左侧检验:统计量 < -临界值,拒绝H0 右侧检验:统计量 > 临界值,拒绝H0 得出拒绝或不拒绝原假设的结论
H0:m=10 H1:m≠10
例 6.2
某品牌洗涤剂在它的产品说明书中声称:平均 净含量不少于500g。从消费者的利益出发, 有关研究人员要通过抽检其中的一批产品来验 证该产品制造商的说明是否属实。试陈述用于 检验的原假设与备择假设。

概率论与数理统计(8)假设检验

概率论与数理统计(8)假设检验

概率论与数理统计(8)假设检验第八章假设检验第一节假设检验问题第二节正态总体均值的假设检验第三节正态总体方差的检验第四节大样本检验法第五节 p值检验法第六节假设检验的两类错误第七节非参数假设检验第一节假设检验问题前一章我们讨论了统计推断中的参数估计问题,本章将讨论另一类统计推断问题——假设检验.在参数估计中我们按照参数的点估计方法建立了参数的估计公式,并利用样本值确定了一个估计值,认为参数真值。

由于参数是未知的,只是一个假设(假说,假想),它可能是真,也可能是假,是真是假有待于用样本进行验证(检验).下面我们先对几个问题进行分析,给出假设检验的有关概念,然后总结给出检验假设的思想和方法.一、统计假设某大米加工厂用自动包装机将大米装袋,每袋的标准重量规定为10kg,每天开工时,需要先检验一下包装机工作是否正常. 根据以往的经验知道,自动包装机装袋重量X服从正态分布N( ).某日开工后,抽取了8袋,如何根据这8袋的重量判断“自动包装机工作是正常的”这个命题是否成立?请看以下几个问题:问题1引号内的命题可能是真,也可能是假,只有通过验证才能确定.如果根据抽样结果判断它是真,则我们接受这个命题,否则就拒绝接受它,此时实际上我们接受了“机器工作不正常”这样一个命题.若用H0表示“”,用H1表示其对立面,即“”,则问题等价于检验H0:是否成立,若H0不成立,则H1:成立.一架天平标定的误差方差为10-4(g2),重量为的物体用它称得的重量X服从N( ).某人怀疑天平的精度,拿一物体称n次,得n 个数据,由这些数据(样本)如何判断“这架天平的精度是10-4(g2)”这个命题是否成立?问题2记H0: =10-4,H1: ,则问题等价于检验H0成立,还是H1成立.某种电子元件的使用寿命X服从参数为的指数分布,现从一批元件中任取n个,测得其寿命值(样本),如何判定“元件的平均寿命不小于5000小时”这个命题是否成立?记问题3则问题等价于检验H0成立,还是H1成立.某种疾病,不用药时其康复率为,现发明一种新药(无不良反应),为此抽查n位病人用新药的治疗效果,设其中有s人康复,根据这些信息,能否断定“该新药有效”?记问题4则问题等价于检验H0成立,还是H1成立.自1965年1月1日至1971年2月9日共2231天中,全世界记录到震级4级及以上的地震共计162次,问相继两次地震间隔的天数X是否服从指数分布?问题5记服从指数分布,不服从指数分布.则问题也等价于检验H0成立,还是H1成立.在很多实际问题中,我们常常需要对关于总体的分布形式或分布中的未知参数的某个陈述或命题进行判断,数理统计学中将这些有待验证的陈述或命题称为统计假设,简称假设.如上述各问题中的H0和H1都是假设.利用样本对假设的真假进行判断称为假设检验。

假设检验一般概念

假设检验一般概念

x 400 k 时接受原假设H0;
(1)
x 400 k 时拒绝原假设H0接受备择假设H1
(2)
进一步,由于当H0为真时,有
u x400 ~N(0,1) 25/ n
1 |u|要构x造一40个0具有明确k分布的统计量,可将(1)、(2)式转化为
25/ n 25/ n
2 |u|时接x受原40假0设H0 k
2. 拒绝域与接受域 称是检验水平或显著性水平,它是我们
制定检验标准的重要依据。常数u/2把标准正态分布密度曲线下
的区域分成了两大部分,其中一部分
(x1,x2, ,xn)uu/2
称为H0的拒绝域或否定域, 当样本点落入拒绝域时,我们便拒 绝原假设H0(同前述(6)式),另一部分
(x1,x2, ,xn)uu/2
(1)根据问题的要求提出假设,写明原假设H0和备择假设H1的
具体内容。
(2)根据H0的内容,建立(或选取)检验统计量并确定其分布。 (3)对给定(或选定)的显著性水平 ,由统计量的分布查表 或计算确定出临界值,进而得到H0的拒绝域和接受域。
(4)由样本观察值计算出统计量的值。
(5)做出推断:当统计量的值满足“接受H0的条件”时就接受 H0,否则就拒绝H0接受H1 。
u
2
时接受原假设H0 (5)
时拒绝原假设H0,接受备择假设 H1 (6)
分析(5)、(6)两式,可以这 样认为:
拒绝H0,是因为以H0成立 为出发点进行推理时,得到 了不合情理的结论,使小概 率事件在一次试验中发生了。
接受H0,是因为以H0成立 为出发点进行推理时,未发 现异常。
这就是带有概率特征的反证 法,认为小概率事件在一次 试验中不可能发生。
H0:X服从泊松分布;H1:X不服从泊松分布.

概率论与数理统计课件第八章假设检验01

概率论与数理统计课件第八章假设检验01
若抽查结果发现1件次品, 则在H0成立时
P C p (1 p) 0.306 0.3
1 1 12 11
这不是 小概率事件, 没理由拒绝原假设。在不 准备继续抽样的情况下,作出接受原假设的决 定, 即该批产品可以出厂.
5
例2: 一条新建的南北交通干线全长10公里.公路 穿过一个隧道(长度忽略不计),隧道南面3.5公里, 北面6.5公里. 在刚刚通车的一个月中, 隧道南 发生了3起交通事故, 而隧道北没有发生交通事 故,能否认为隧道南的路面更容易发生交通事故? 分析: 用p表示一起交通事故发生在隧道南的概 率.则p=0.35表示隧道南北的路面发生交通事故 的可能性相同.p>0.35表示隧道南的路面发生交 通事故的概率比隧道北的路面发生交通事故的 概率大. ------为了作出正确的判断, 先作一个假设
所以我们否定H0, 认为隧道南的路面发生交 通事故的概率比隧道北大. 做出以上结论也有可能犯错误。这是因为 当隧道南北的路面发生交通事故的概率相同, 而3起交通事故又都出现在隧道南时, 我们才犯 错误。这一概率正是P=0.043. 于是, 我们判断正确的概率是1-0.043=95.7%
8
假设检验中的基本概念和检验思想 (1) 根据问题的背景, 提出原假设 H0: p=0.35, 及其备择假设 H1: p>0.35.
再作一个备择假设
H1 : p 0.04
在H0成立时
3 3 12 9
p 0.04 代入
4
P C p (1 p) 0.0097 0.01
这是 小概率事件, 一般在一次试验中是不会发 生的, 现一次试验竟然发生, 故可认为原假设不 成立, 即该批产品次品率p>0.04 , 则该批产品不 能出厂.

第八讲 单总体假设检验

第八讲 单总体假设检验

0
❖ 双边:
0 x
❖ 3)统计量
z
0
❖ 4)拒绝域
n
z z ❖ 单边: 右~ z 左~ z
z z ❖ 双边: z 或 z
2
2
(二)方差未知

1)原假设

H 0 :
0
❖ 2)备择假设 H 1
❖ 单边: 或
0
0
❖ 双边:

3)统计量
0
x
x
t
0
0 ~ tn 1
效 。 0.05
❖ 2、原有资料:某市居民彩电拥有率为60%, 现抽样100户,彩电拥有率为62%,问,能否
认为彩电拥有率有所增长? 0.05
第二节 小样本假设检验
❖ 一、单正态总体均值检验 ❖ (一)方差已知:
H ❖ 1)原假设 0 : 0
❖ 2)备择假设 H 1
❖ 单边:

0
水稻亩产标准差不超过去年数值75公斤?
x
s
❖ 4)拒绝域
n
❖ 单边: 右~ t t
❖ 双边: t t 或 2
左~ t t
t t 2
例:
❖ 1、某厂职工去年月收入服从正态分布,平均为570 元,标准差为8元,今年实行新的分配政策,抽样 10人,结果如下:575 560 565 580 585 586 575 582 570 570。问平均收入是否所有明显改变?
❖ 2、某产品重量服从正态0.0分5布,现随机抽取6件,测
得重量为(公斤):36.4 38.2 36.6 36.9 37.8 37.6。能否认为该产品的平均重量为37公斤?
0.05
二、单正态总体方差检验
❖ 检验步骤:

《概率论与数理统计》课件第八章 假设检验

《概率论与数理统计》课件第八章 假设检验
假设检验是统计学中一种重要的推断方法,其理论依据为小概率原理。小概率原理指的是,在一次试验中,小概率事件几乎不会发生。在假设检验中,如果原假设为真,那么出现小概率率性质的反证法,它允许我们在一定程度上接受或拒绝关于总体参数或分布的假设。假设检验在统计学中有着广泛的应用,尤其是在单个及两个正态总体的均值和方差的检验中。通过这些检验,我们可以根据样本数据对总体的特性进行推断,从而作出科学的决策。需要注意的是,任何检验方法都不能完全排除犯错误的可能性,但假设检验通过控制犯第一类错误的概率,即错误地拒绝真实假设的概率,来确保推断的可靠性。在实际应用中,我们还需要根据具体情况选择合适的显著性水平,以平衡犯两类错误的概率。

统计学 第8章 假设检验 教学课件ppt

统计学 第8章  假设检验 教学课件ppt
2. 一般来说,发生哪一类错误的后果更为严重,就应 该首要控制哪类错误发生的概率。但由于犯第Ι类错 误的概率是可以由研究者控制的,因此在假设检验 中,人们往往先控制第Ι类错误的发生概率
确定适当的检验统计量
什么是检验统计量?
1. 用于假设检验决策的统计量
原假设H0为真 点估计量的抽样分布 (样本均值、样本方差)
比较 3. 作出决策
双侧检验:I统计量I > 临界值,拒绝H0 左侧检验:统计量 < -临界值,拒绝H0 右侧检验:统计量 > 临界值,拒绝H0
利用 P 值 进行决策
什么是P 值?
(P-value)
P值告诉我们: 如果原假设是正确的话,我们得到得到样本观察 结果或更极端结果出现的可能性有多大,如果这 个可能性很小,就应该拒绝原假设
因此,如果在一次抽样中竟然出现了满足
X 0 / n
ห้องสมุดไป่ตู้
的 u /2
X
那么我们就有理由怀疑原假设H0的正确性了,因此会拒
绝H0 。
由于 | U |
X 0 / n
u 2
是一个小概率事件.
故我们可以取拒绝域为:
W: | U | u 2
如果由样本值算得该统计量的实测值落入区域 W,则拒绝H0 ;否则,不能拒绝H0 .
1、生产已不正常
2、生产正常:但属于小概率事件,一次抽样中几乎 不可能发生
因此:在原假设成立(生产正常)的情况下, 若发生小概率事件,则我们有充分的理由怀 疑原假设已不成立。
因此若H0为真,即 0 时,
X
0
/ n
u /2
是一个小概率事件:1%、5%、10%
而小概率事件在一次试验中基本上不应该发生 。

第八讲 心理统计学-假设检验

第八讲 心理统计学-假设检验
3年级学生的ABC记忆考试的平均成绩低于5年 级学生的平均成绩。
1422:16
零假设和相应的研究假设
零假设
3年级学生的ABC记忆 考试的平均成绩和5年 级学生的平均成绩没有 差异。
由社区长期照料老人的 效率和由家庭长期照料 老人的效果没有差异。
无方向研究假设
有方向研究假设
3年级学生的ABC记忆 3年级学生的ABC记忆 考试的平均成绩不同于 考试的平均成绩低于5 5年级学生的平均成绩。 年级学生的平均成绩。
¾需要考虑的条件
总体分布 总体方差 样本容量
46
¾1.总体正态分布,总体方差已知; ¾2.总体正态分布,总体方差未知; ¾3.总体非正态分布。
47
1.总体正态分布,总体方差已知
¾ 大样本和小样本的检验方法与步骤是相同 的。都是用样本平均数分布的标准误差按 正态分布去计算Z值。
¾ 检验方法:Z检验。
1622:16
¾ 举例:某班级进行瑞文智力测验,结果平均分X =100,已知瑞文测验的常模μ0=100;σ0= 16,问该班智力水平(不是这一次测验结果) 是否确实与常模水平有差异。
¾ 样本分布理论:多次抽样,得到多次测验的结 果的总平均为μ
¾ 检验目的是证明H1 :μ≠ μ0
17
二、假设检验的步骤
第1步:提出虚无和对立假设 第2步:确定适当的检验统计量 第3步:规定显著性水平 第4步:计算检验统计量的值 第5步:做出统计决策
1822:16
3
第一步 提出假设
¾定义
虚无假设(H0 ):原假设、无差假设、零假设 对立假设(H1 ):备择假设,研究假设
¾例子 测量女大学生是否有性别歧视的倾向
IV. 作为好的研究者,我们的工作是解释观察到的差异时消除偶然 性因素,并评价其他可能导致群体差异的因素

第八章 假设检验

第八章  假设检验

§3 平均数差异的显著性检验
1.2相关样本的平均数差异检验 相关样本:同一组被试进行前后两次实验或 测验所得到的两个样本。 例8-7 某幼儿园在入园时对49名儿童进行了比 奈智力测验(σ=16),结果平均智商为 106,一年后再对同组被试施测,结果平均 智商为110,已知两次测验结果的相关系数 r=0.74,问能否说随着年龄增长与一年的 教育,儿童智商有了显著提高。
第八章 假设检验
假设检验的一般原理 平均数差异的显著性检验 方差、相关系数、比率的显著性检验
§1 假设检验的原理
1 假设与假设检验 例8-1 某班级进行比奈智力测验,结果 =110,已知比奈测验 的常模μ0 =100,σ0=16 ,问该班智力水平(不是这一次测验 的结果)是否确实与常模水平有差异。 1.1研究假设 H1 : μ1 ≠ μ0 (又称为备择假设) 若以μ1表示该班多次比奈智力测验的总平均,则本题检验的目 的是要证实μ1 ≠ μ0 ,就得到研究假设。 1.2虚无假设 由于H1的真实性不能直接被证实,需建立与之对立的假设H0 : μ1 = μ0 ,又称为原假设、零假设。而H0能直接被证实。
§6 两比率差异的显著性检验
检验步骤: ① 建立原假设和备择假设 H0 : p1 =p2 H1 :p1 ≠p2 ②选择如下统计量: ③决策。
§6 两比率差异的显著性检验
例甲乙两校某年毕业生考 校别 取及未考取大学的人 数见下表,问两校升 学比例有无显著差异? 甲 考取大 未考取 学(人)大学 (人)
§5 相关系数差异的显著性检验
检验步骤: ① 建立原假设和备择假设 H0 : ρ 1 ≤ρ 2 H1 :ρ 1 >ρ 2 ②将r1 和 r2进行费舍Zr转换 ③选择如下统计量: ④决策。
§5 相关系数差异的显著性检验

第八章 统计学 假设检验

第八章  统计学 假设检验

结论:
有证据表明这批灯泡的使用 寿命有显著提高
0
1.645
Z
2 未知大样本均值的检验 (例题分析)
【例】某电子元件批量生产 的质量标准为平均使用寿命 1200 小时。某厂宣称他们采 用一种新工艺生产的元件质 量大大超过规定标准。为了 进行验证,随机抽取了 100 件作为样本,测得平均使用 寿命 1245 小时,标准差 300 小时。能否说该厂生产的电 子元件质量显著地高于规定 标准? (=0.05)
/2
/2
临界值
0
临界值
样本统计量
显著性水平和拒绝域(双侧检验 )
抽样分布
拒绝H0 置信水平 拒绝H0 1-
/2
/2
临界值
0
临界值
样本统计量
单侧检验(显著性水平与拒绝域)
抽样分布
拒绝域 置信水平

1-
临界值
H0值
样本统计量
显著性水平和拒绝域(左侧检验 )
抽样分布
拒绝H0 置信水平
单侧检验
2 未知大样本均值的检验 (例题分析)
H0: 1200 H1: >1200 = 0.05 n = 100 临界值(s):
拒绝域 0.05
检验统计量:
z
x 0

n

1245 1200 300 100
1.5
决策:
在 = 0.05的水平上不拒绝H0
双侧检验
2 已知均值的检验 (例题分析)
H0: = 0.081 H1: 0.081 = 0.05 n = 200
拒绝 H0
.025
检验统计量:
z
x 0

概率论与数理统计第八章 假设检验

概率论与数理统计第八章 假设检验

第八章假设检验第一节概述统计推断中的另一类重要问题是假设检验(Hypothesis testing).当总体的分布函数未知,或只知其形式而不知道它的参数的情况时,我们常需要判断总体是否具有我们所感兴趣的某些特性.这样,我们就提出某些关于总体分布或关于总体参数的假设,然后根据样本对所提出的假设作出判断:是接受还是拒绝.这就是本章所要讨论的假设检验问题.我们先从下面的例子来说明假设检验的一般提法.例8.1某工厂用包装机包装奶粉,额定标准为每袋净重0.5kg.设包装机称得奶粉重量X服从正态分布N(μ,σ2).根据长期的经验知其标准差σ=0.015(kg).为检验某台包装机的工作是否正常;随机抽取包装的奶粉9袋,称得净重(单位:kg)为0.499 0.515 0.508 0.512 0.4980.515 0.516 0.513 0.524问该包装机的工作是否正常?由于长期实践表明标准差比较稳定,于是我们假设X~N(μ,0.0152).如果奶粉重量X 的均值μ等于0.5kg,我们说包装机的工作是正常的.于是提出假设:H0:μ=μ0=0.5;H1:μ≠μ0=0.5.这样的假设叫统计假设.1.统计假设关于总体X的分布(或随机事件之概率)的各种论断叫统计假设,简称假设,用“H”表示,例如:(1)对于检验某个总体X的分布,可以提出假设:H0:X服从正态分布,H1: X不服从正态分布.H0:X服从泊松分布,H1: X不服从泊松分布.(2)对于总体X的分布的参数,若检验均值,可以提出假设:H0:μ=μ0;H1:μ≠μ0.H0:μ≤μ0;H1:μ>μ0.若检验标准差,可提出假设:H0:σ=σ0;H1:σ≠σ0.H0:σ≥σ0;H1:σ<σ0.这里μ0,σ0是已知数,而μ=E(X),σ2=D(X)是未知参数.上面对于总体X的每个论断,我们都提出了两个互相对立的(统计)假设:H0和H1,显然,H0与H1只有一个成立,或H0真H1假,或H0假H1真,其中假设H0,称为原假设(Original hypothesis)(又叫零假设、基本假设),而H1称为H0的对立假设(又叫备择假设).在处理实际问题时,通常把希望得到的陈述视为备择假设,而把这一陈述的否定作为原假设.例如在上例中,H0:μ=μ0=0.5为原假设,它的对立假设是H1:μ≠μ0=0.5.统计假设提出之后,我们关心的是它的真伪.所谓对假设H0的检验,就是根据来自总体的样本,按照一定的规则对H0作出判断:是接受,还是拒绝,这个用来对假设作出判断的规则叫做检验准则,简称检验,如何对统计假设进行检验呢?我们结合上例来说明假设检验的基本思想和做法.2.假设检验的基本思想 在例8.1中所提假设是H 0:μ=μ0=0.5(备择假设H 1:μ≠μ0).由于要检验的假设涉及总体均值μ,故首先想到是否可借助样本均值这一统计量来进行判断.从抽样的结果来看,样本均值x =19(0.499+0.515+0.508+0.512+0.498+0.515+0.516+0.513+0.524)=0.5110,与μ=0.5之间有差异.对于与μ0之间的差异可以有两种不同的解释.(1) 统计假设H 0是正确的,即μ=μ0=0.5,只是由于抽样的随机性造成了与μ0之间的差异;(2) 统计假设H 0是不正确的,即μ≠μ0=0.5,由于系统误差,也就是包装机工作不正常,造成了与μ0之间的差异.对于这两种解释到底哪一种比较合理呢?为了回答这个问题,我们适当选择一个小正数α(α=0.1,0.05等),叫做显著性水平(Level of significance).在假设H0成立的条件下,确定统计量X -μ0的临界值αλ,使得事件{|X -μ0|>αλ}为小概率事件,即P{|X -μ0|>αλ}=α.(8.1)例如,取定显著性水平α=0.05.现在来确定临界值λ0.05.因为X ~N (μ,σ2),当H 0:μ=μ0=0.5为真时,有X ~N (μ0,σ2),于是2011~,n i i X X N n n σμ=⎛⎫= ⎪⎝⎭∑,ZX X =N (0,1),所以 P {|Z |>z α/2}=α.由(8.1)式,有P Z ⎧>⎨⎩=α,因此22,z z αααλ==λ0.05=z 0.0250.015/3=0.0098. 故有P {|X -μ0|>0.0098}=0.05.因为α=0.05很小,根据实际推断原理,即“小概率事件在一次试验中几乎是不可能发生的”原理,我们认为当H 0为真时,事件{|X -μ0|>0.0098}是小概率事件,实际上是不可能发生的.现在抽样的结果是|x -μ0|=|0.5110-0.5|=0.0110>0.0098.也就是说,小概率事件{|X -μ0|>0.0098}居然在一次抽样中发生了,这说明抽样得到的结果与假设H 0不相符,因而不能不使人怀疑假设H 0的正确性,所以在显著性水平α=0.05下, 我们拒绝H 0,接受H 1,即认为这一天包装机的工作是不正常的.通过上例的分析,我们知道假设检验的基本思想是小概率事件原理,检验的基本步骤是: (1) 根据实际问题的要求,提出原假设H 0及备择假设H 1;(2) 选取适当的显著性水平α(通常α=0.10,0.05等)以及样本容量n ;(3) 构造检验用的统计量U ,当H 0为真时,U 的分布要已知,找出临界值αλ使P {|U |>αλ}=α.我们称|U |>αλ所确定的区域为H 0的拒绝域(Rejection region),记作W ; (4) 取样,根据样本观察值,计算统计量U 的观察值U 0;(5) 作出判断,将U 的观察值U 0与临界值αλ比较,若U 0落入拒绝域W 内,则拒绝H 0接受H 1;否则就说H 0相容(接受H 0).3.两类错误由于我们是根据样本作出接受H 0或拒绝H 0的决定,而样本具有随机性,因此在进行判断时,我们可能会犯两个方面的错误:一类错误是,当H 0为真时,而样本的观察值U 0落入拒绝域W 中,按给定的法则,我们拒绝了H 0,这种错误称为第一类错误.其发生的概率称为犯第一类错误的概率或称弃真概率,通常记为α,即P {拒绝H 0|H 0为真}=α;另一种错误是,当H 0不真时,而样本的观察值落入拒绝域W 之外,按给定的检验法则,我们却接受了H 0.这种错误称为第二类错误,其发生的概率称为犯第二类错误的概率或取伪概率,通常记为β,即P {接受H 0|H 0不真}=β.显然这里的α就是检验的显著性水平.总体与样本各种情况的搭配见表8-1.表8-1对给定的一对H 0和H 1,总可以找到许多拒绝域W .当然我们希望寻找这样的拒绝域W ,使得犯两类错误的概率α与β都很小.但是在样本容量n 固定时,要使α与β都很小是不可能的,一般情形下,减小犯其中一类错误的概率,会增加犯另一类错误的概率,它们之间的关系犹如区间估计问题中置信水平与置信区间的长度的关系那样.通常的做法是控制犯第一类错误的概率不超过某个事先指定的显著性水平α(0<α<1),而使犯第二类错误的概率也尽可能地小.具体实行这个原则会有许多困难,因而有时把这个原则简化成只要求犯第一类错误的概率等于α,称这类假设检验问题为显著性检验问题,相应的检验为显著性检验.在一般情况下,显著性检验法则是较容易找到的,我们将在以下各节中详细讨论.在实际问题中,要确定一个检验问题的原假设,一方面要根据问题要求检验的是什么,另一方面要使原假设尽量简单,这是因为在下面将讲到的检验法中,必须要了解某统计量在原假设成立时的精确分布或渐近分布.下面各节中,我们先介绍正态总体下参数的几种显著性检验,再介绍总体分布函数的假设检验.第二节 单个正态总体的假设检验1.单个正态总体数学期望的假设检验(1) σ2已知关于μ的假设检验(Z 检验法(Z -test)) 设总体X ~N (μ,σ2),方差σ2已知,检验假设H 0:μ=μ0;H 1:μ≠μ0 (μ0为已知常数) 由X ~N (μ,n σ)X N (0,1), 我们选取ZX (8.2)作为此假设检验的统计量,显然当假设H 0为真(即μ=μ0正确)时,Z ~N (0,1),所以对于给定的显著性水平α,可求z α/2使P {|Z |>z α/2}=α,见图8-1,即P {Z <-z α/2}+P {Z >z α/2}=α.从而有P {Z >z α/2}=α/2, P {Z ≤z α/2}=1-α/2.图8-1利用概率1-α/2,反查标准正态分布函数表,得双侧α分位点(即临界值)z α/2. 另一方面,利用样本观察值x 1,x 2,…,x n 计算统计量Z 的观察值z 0x (8.3)如果:(a )|z 0|>z α/2,则在显著性水平α下,拒绝原假设H 0(接受备择假设H 1),所以|z 0|>z α/2便是H0的拒绝域.(b ) |z 0|≤z α/2,则在显著性水平α下,接受原假设H 0,认为H 0正确.这里我们是利用H0为真时服从N (0,1)分布的统计量Z 来确定拒绝域的,这种检验法称为Z 检验法(或称U 检验法).例8.1中所用的方法就是Z 检验法.为了熟悉这类假设检验的具体作法,现在我们再举一例.例8.2 根据长期经验和资料的分析,某砖厂生产的砖的“抗断强度”X 服从正态分布,方差σ2=1.21.从该厂产品中随机抽取6块,测得抗断强度如下(单位:kg ·cm -2):32.56 29.66 31.64 30.00 31.87 31.03检验这批砖的平均抗断强度为32.50kg ·cm -2是否成立(取α=0.05,并假设砖的抗断强度的方差不会有什么变化)?解 ① 提出假设H 0:μ=μ0=32.50;H 1:μ≠μ0. ② 选取统计量ZX ,若H 0为真,则Z ~N (0,1).③ 对给定的显著性水平α=0.05,求z α/2使P {|Z |>z α/2}=α,这里z σ/2=z 0.025=1.96.④ 计算统计量Z 的观察值:|z 0| ≈3.05.⑤ 判断:由于|z 0|=3.05>z 0.025=1.96,所以在显著性水平α=0.05下否定H 0,即不能认为这批产品的平均抗断强度是32.50 kg ·cm -2.把上面的检验过程加以概括,得到了关于方差已知的正态总体期望值μ的检验步骤: (a ) 提出待检验的假设H 0:μ=μ0;H 1:μ≠μ0. (b ) 构造统计量Z ,并计算其观察值z 0:ZX ,z 0x(c ) 对给定的显著性水平α,根据P {|Z |>z α/2}=α,P {Z >z α/2}=α/2,P {Z ≤z α/2}=1-α/2查标准正态分布表,得双侧α分位点z α/2. (d ) 作出判断:根据H 0的拒绝域 若|z 0|>z α/2,则拒绝H 0,接受H 1; 若|z 0|≤z α/2,则接受H 0.(2) 方差σ2未知,检验μ(t 检验法(t -test)) 设总体X ~N (μ,σ2),方差σ2未知,检验H 0:μ=μ0;H 1:μ≠μ0.由于σ2X 便不是统计量,这时我们自然想到用σ2的无偏估计量——样本方差S 2代替σ2,由于X t (n -1),故选取样本的函数tX (8.4)图8-2作为统计量,当H 0为真(μ=μ0)时t ~t (n -1),对给定的检验显著性水平α,由P {|t |>t α/2(n -1)}=α, P {t >t α/2(n -1)}=α/2,见图8-2,直接查t 分布表,得t 分布分位点t α/2(n -1).利用样本观察值,计算统计量t 的观察值t 0x 因而原假设H0的拒绝域为|t 0|>t α/2(n -1). (8.5)所以,若|t 0|>t α/2(n -1),则拒绝H 0,接受H 1;若|t 0|≤t α/2(n -1),则接受原假设H 0.上述利用t 统计量得出的检验法称为t 检验法.在实际中,正态总体的方差常为未知,所以我们常用t 检验法来检验关于正态总体均值的问题.例8.3 用某仪器间接测量温度,重复5次,所得的数据是1250°,1265°,1245°,1260°,1275°,而用别的精确办法测得温度为1277°(可看作温度的真值),试问此仪器间接测量有无系统偏差?这里假设测量值X 服从N (μ,σ2)分布. 解 问题是要检验H 0:μ=μ0=1277;H 1:μ≠μ0.由于σ2未知(即仪器的精度不知道),我们选取统计量tX .当H 0为真时,t ~t (n -1),t 的观察值为|t 0|185.399-==>3.对于给定的检验水平α=0.05,由P {|t |>t α/2(n -1)}=α, P {t >t α/2(n -1)}=α/2, P {t >t 0.025(4)}=0.025,查t 分布表得双侧α分位点t α/2(n -1)=t 0.025(4)=2.776.因为|t 0|>3>t 0.025(4)=2.776,故应拒绝H 0,认为该仪器间接测量有系统偏差.(3) 双边检验与单边检验上面讨论的假设检验中,H 0为μ=μ0,而备择假设H 1:μ≠μ0意思是μ可能大于μ0,也可能小于μ0,称为双边备择假设,而称形如H 0:μ=μ0,H 1:μ≠μ0的假设检验为双边检验.有时我们只关心总体均值是否增大,例如,试验新工艺以提高材料的强度,这时所考虑的总体的均值应该越大越好,如果我们能判断在新工艺下总体均值较以往正常生产的大,则可考虑采用新工艺.此时,我们需要检验假设H 0:μ=μ0;H 1:μ>μ0. (8.6)(我们在这里作了不言而喻的假定,即新工艺不可能比旧的更差),形如(8.6)的假设检验,称为右边检验,类似地,有时我们需要检验假设H 0:μ=μ0;H 1:μ<μ0. (8.7)形如(8.7)的假设检验,称为左边检验,右边检验与左边检验统称为单边检验.下面来讨论单边检验的拒绝域. 设总体X ~N (μ,σ2),σ2为已知,x 1,x 2,…,x n 是来自X 的样本观察值.给定显著性水平α,我们先求检验问题H 0:μ=μ0;H 1:μ>μ0.的拒绝域.取检验统计量ZX ,当H 0为真时,Z 不应太大,而在H 1为真时,由于X 是μ的无偏估计,当μ偏大时,X 也偏大,从而Z 往往偏大,因此拒绝域的形式为ZX ≥k ,k 待定.因为当H 0X ~N (0,1),由P {拒绝H 0|H 0为真}=PX k ⎫≥⎬⎭=α得k =z α,故拒绝域为ZX ≥z α. (8.8)类似地,左边检验问题H 0:μ=μ0;H 1:μ<μ0.的拒绝域为ZX ≤-z α. 8.9)例8.4 从甲地发送一个信号到乙地,设发送的信号值为μ,由于信号传送时有噪声迭加到信号上,这个噪声是随机的,它服从正态分布N (0,22),从而乙地接到的信号值是一个服从正态分布N (μ,22)的随机变量.设甲地发送某信号5次,乙地收到的信号值为: 8.4 10.5 9.1 9.6 9.9由以往经验,信号值为8,于是乙方猜测甲地发送的信号值为8,能否接受这种猜测?取α=0.05.解 按题意需检验假设H 0:μ=8;H 1:μ>8.这是右边检验问题,其拒绝域如(8.8)式所示, 即 Z =X ≥z 0.05=1.645.而现在z 0=1.68>1.645,所以拒绝H 0,认为发出的信号值μ>8.2.单个正态总体方差的假设检验(2χ检验法(2χ-test)) (1) 双边检验设总体X ~N (μ,σ2),μ未知,检验假设H 0:σ2=σ02;H 1:σ2≠σ2.其中σ02为已知常数.由于样本方差S 2是σ2的无偏估计,当H 0为真时,比值22S σ一般来说应在1附近摆动,而不应过分大于1或过分小于1,由第六章知当H 0为真时2χ=220(1)n S σ-~2χ(n -1). (8.10)所以对于给定的显著性水平α有(图8-3)图8-3P {21/2αχ-(n -1)≤2χ≤2/2αχ(n -1)}=1-α. (8.11)对于给定的α,查2χ分布表可求得2χ分布分位点21/2αχ-(n -1)与2/2αχ(n -1).由(8.11)知,H 0的接受域是21/2αχ- (n -1)≤2χ≤2/2αχ (n -1); (8.12)H 0的拒绝域为2χ<21/2αχ-(n -1)或2χ>2/2αχ(n -1). (8.13)这种用服从2χ分布的统计量对个单正态总体方差进行假设检验的方法,称为2χ检验法. 例8.5 某厂生产的某种型号的电池,其寿命长期以来服从方差σ2=5000(小时2)的正态分布,现有一批这种电池,从它的生产情况来看,寿命的波动性有所改变,现随机抽取26只电池,测得其寿命的样本方差s 2=9200(小时2).问根据这一数据能否推断这批电池的寿命的波动性较以往有显著的变化(取α=0.02)?解 本题要求在α=0.02下检验假设H 0:σ2=5000;H 1:σ2≠5000.现在n =26,2/2αχ(n -1)=20.01(25)χ=44.314,21/2αχ- (n -1)= 20.99(25)χ=11.524,σ02=5000.由(8.13)拒绝域为2σ>44.314或220(1)n s σ-<11.524由观察值s 2=9200得22(1)n s σ-=46>44.314,所以拒绝H 0,认为这批电池寿命的波动性较以往有显著的变化.(2) 单边检验(右检验或左检验) 设总体X ~N (μ,σ2),μ未知,检验假设H 0:σ2≤σ02;H 1:σ2>σ02.(右检验)由于X ~N (μ,σ2),故随机变量*2χ=22(1)n S σ-~2χ(n -1).当H 0为真时,统计量2χ=22(1)n S σ-≤*2χ.对于显著性水平α,有P {*2χ>2αχ(n -1)}=α图8-4(图8-4).于是有P {2χ>2αχ(n -1)}≤P {*2χ>2αχ(n -1)}=α.可见,当α很小时,{2χ>2αχ(n -1)}是小概率事件,在一次的抽样中认为不可能发生,所以H 0的拒绝域是:2χ=22(1)n S σ->2αχ(n -1)(右检验). (8.14)类似地,可得左检验假设H 0:σ2≥σ02,H 1:σ2<σ2的拒绝域为2χ<21αχ-(n -1)(左检验). (8.15) 例8.6 今进行某项工艺革新,从革新后的产品中抽取25个零件,测量其直径,计算得样本方差为s 2=0.00066,已知革新前零件直径的方差σ2=0.0012,设零件直径服从正态分布,问革新后生产的零件直径的方差是否显著减小?(α=0.05)解 (1) 提出假设H 0:σ2≥σ02=0.0012;H 1:σ2<σ02. (2) 选取统计量2χ=22(1)n S σ-.*2χ=22(1)n S σ-~2χ(n -1),且当H 0为真时,*2χ≤2χ(3) 对于显著性水平α=0.05,查2χ分布表得21αχ-(n -1)=20.95(24)χ=13.848,当H 0为真时,P {2χ<21αχ- (n -1)}≤P 2212(1)(1)n S n αχσ-⎧⎫-<-⎨⎬⎩⎭=α. 故拒绝域为2χ<21αχ- (n -1)=13.848.(4) 根据样本观察值计算2χ的观察值2χ=220(1)240.000660.0012n s σ-⨯==13.2.(5) 作判断:由于2χ=13.2<21αχ- (n -1)=13.848,即2χ落入拒绝域中,所以拒绝H 0:σ2≥σ02,即认为革新后生产的零件直径的方差小于革新前生产的零件直径的方差.最后我们指出,以上讨论的是在均值未知的情况下,对方差的假设检验,这种情况在实际问题中较多.至于均值已知的情况下,对方差的假设检验,其方法类似,只是所选的统计量为2χ=2120()nii Xμσ=-∑.当σ2=σ2为真时,2χ~2χ(n ).关于单个正态总体的假设检验可列表8-2.表8-2注:上表中H0中的不等号改成等号,所得的拒绝域不变.第三节两个正态总体的假设检验上一节介绍了单个正态总体的数学期望与方差的检验问题,在实际工作中还常碰到两个正态总体的比较问题.1.两正态总体数学期望假设检验(1)方差已知,关于数学期望的假设检验(Z检验法)设X~N(μ1,σ12),Y~N(μ2,σ22),且X,Y相互独立,σ12与σ22已知,要检验的是H0:μ1=μ2;H1:μ1≠μ2.(双边检验)怎样寻找检验用的统计量呢?从总体X 与Y 中分别抽取容量为n 1,n 2的样本X 1,X 2,…,1n X 及Y 1,Y 2,…,2n Y ,由于2111~,X N n σμ⎛⎫ ⎪⎝⎭,2222~,Y N n σμ⎛⎫⎪⎝⎭,E (X -Y )=E (X )-E (Y )=μ1-μ2, D (X -Y )=D (X )+D (Y )=221212n n σσ+,故随机变量X -Y 也服从正态分布,即X -Y ~N (μ1-μ2,221212n n σσ+).从而X Y ~N (0,1).于是我们按如下步骤判断.(a ) 选取统计量 ZX Y , (8.16)当H 0为真时,Z ~N (0,1).(b ) 对于给定的显著性水平α,查标准正态分布表求z α/2使P {|Z |>z α/2}=α,或P {Z ≤z α/2}=1-α/2. (8.17) (c ) 由两个样本观察值计算Z 的观察值z 0:z 0x y .(d ) 作出判断:若|z 0|>z α/2,则拒绝假设H 0,接受H 1; 若|z 0|≤z α/2,则与H 0相容,可以接受H 0.例8.7 A ,B 两台车床加工同一种轴,现在要测量轴的椭圆度.设A 车床加工的轴的椭圆度X ~N (μ1,σ12),B 车床加工的轴的椭圆度Y ~N (μ2,σ22),且σ12=0.0006(mm 2),σ22=0.0038(mm 2),现从A ,B 两台车床加工的轴中分别测量了n 1=200,n 2=150根轴的椭圆度,并计算得样本均值分别为=0.081(mm),=0.060(mm).试问这两台车床加工的轴的椭圆度是否有显著性差异?(给定α=0.05)解 ① 提出假设H 0:μ1=μ2;H 1:μ1≠μ2. ② 选取统计量ZX Y ,在H 0为真时,Z ~N (0,1).③ 给定α=0.05,因为是双边检验,α/2=0.025.P {|Z |>z α/2}=0.05, P {Z >z α/2}=0.025,P {Z ≤z α/2}=1-0.025=0.975.查标准正态分布表,得z α/2=z 0.025=1.96.④ 计算统计量Z 的观察值zz 0x y =.⑤ 作判断:由于|z 0|=3.95>1.96=z α/2,故拒绝H 0,即在显著性水平α=0.05下,认为两台车床加工的轴的椭圆度有显著差异.用Z 检验法对两正态总体的均值作假设检验时,必须知道总体的方差,但在许多实际问题中总体方差σ12与σ22往往是未知的,这时只能用如下的t 检验法.(2) 方差σ12,σ22未知,关于均值的假设检验(t 检验法) 设两正态总体X 与Y 相互独立,X ~N (μ1,σ12),Y ~N (μ2,σ22),σ12,σ22未知,但知σ12=σ22,检验假设H 0:μ1=μ2;H 1:μ1≠μ2.(双边检验) 从总体X ,Y 中分别抽取样本X 1,X 2,…,1n X 与Y 1,Y 2,…,2n Y ,则随机变量tX Y μμ---t (n 1+n 2-2),式中S w 2=22112212(1)(1)2n S n S n n -+-+-,S 12,S 22分别是X 与Y 的样本方差.当假设H 0为真时,统计量t ~t (n 1+n 2-2). (8.18)对给定的显著性水平α,查t 分布得t α/2(n 1+n 2-2),使得P {|t |>t α/2(n 1+n 2-2)}=α. (8.19)再由样本观察值计算t 的观察值t 0x y(8.20)最后作出判断:若|t 0|>t α/2(n 1+n 2-2),则拒绝H 0; 若|t 0|≤t α/2(n 1+n 2-2),则接受H 0.例8.8 在一台自动车床上加工直径为2.050毫米的轴,现在每相隔两小时,各取容量都为10的样本,所得数据列表如表8-3所示.12是未知常数.问这台自动车床的工作是否稳定?(取α=0.01)解 这里实际上是已知σ12=σ22=σ2,但σ2未知的情况下检验假设H 0:μ1=μ2;H 1:μ1≠μ2.我们用t 检验法,由样本观察值算得:x =2.063, y =2.059,s 12=0.00000956, s 22=0.00000489,s w 2=2212990.0000860.0000441010218s s ⨯+⨯+=+-=0.0000072.由(8.20)式计算得t 0=3.3.对于α=0.01,查自由度为18的t 分布表得t 0.005(18)=2.878.由于|t 0|=3.3>t 0.005(18)=2.878,于是拒绝原假设H 0:μ1=μ2.这说明两个样本在生产上是有差异的,可能这台自动车床受时间的影响而生产不稳定.2. 两正态总体方差的假设检验(F 检验法(F -test )) (1) 双边检验设两正态总体X ~N (μ1,σ12),Y ~N (μ2,σ22),X 与Y 独立,X 1,X 2,…,1n X 与Y 1,Y 2,…,2n Y 分别是来自这两个总体的样本,且μ1与μ2未知.现在要检验假设H 0:σ12=σ22;H 1:σ12≠σ22.在原假设H 0成立下,两个样本方差的比应该在1附近随机地摆动,所以这个比不能太大又不能太小.于是我们选取统计量F =2122S S . (8.21) 显然,只有当F 接近1时,才认为有σ12=σ22.由于随机变量F *=22112222//S S σσ ~F (n 1-1,n 2-1),所以当假设H 0:σ12=σ22成立时,统计量F =2122S S ~F (n 1-1,n 2-1). 对于给定的显著性水平α,可以由F 分布表求得临界值12a F-(n 1-1,n 2-1)与F α/2(n 1-1,n 2-1)使得 P { 12a F-(n 1-1,n 2-1)≤F ≤F α/2(n 1-1,n 2-1)}=1-α(图8-5),由此可知H 0的接受区域是12aF-(n 1-1,n 2-1)≤F ≤F α/2(n 1-1,n 2-1);而H 0的拒绝域为F <12a F-(n 1-1,n 2-1),或 F >F α/2(n 1-1,n 2-1).然后,根据样本观察值计算统计量F 的观察值,若F 的观察值落在拒绝域中,则拒绝H 0,接受H 1;若F 的观察值落在接受域中,则接受H 0.图8-5例8.9 在例8.8中我们认为两个总体的方差σ12=σ22,它们是否真的相等呢?为此我们来检验假设H 0:σ12=σ22(给定α=0.1).解 这里n 1=n 2=10,s 12=0.00000956,s 22=0.00000489,于是统计量F 的观察值为F =0.00000956/0.00000489=1.95.查F 分布表得F α/2(n 1-1,n 2-1)=F 0.05(9,9)=3.18,F 1-α/2(n 1-1,n 2-1)=F 0.95(9,9)=1/F 0.05(9,9)=1/3.18.由样本观察值算出的F 满足F 0.95(9,9)=1/3.18<F =1.95<3.18=F 0.05(9,9).可见它不落入拒绝域,因此不能拒绝原假设H 0:σ12=σ22,从而认为两个总体的方差无显著差异.注意:在μ1与μ2已知时,要检验假设H 0:σ12=σ22,其检验方法类同均值未知的情况,此时所采用的检验统计量是:F =12211122121()1()n i i n i i X n Y n μμ==--∑∑~F (n 1,n 2). 其拒绝域参看表8-4.表8-4(2) 单边检验可作类似的讨论,限于篇幅,这里不作介绍了.第四节总体分布函数的假设检验上两节中,我们在总体分布形式为已知的前提下,讨论了参数的检验问题.然而在实际问题中,有时不能确知总体服从什么类型的分布,此时就要根据样本来检验关于总体分布的χ检验法.假设.例如检验假设:“总体服从正态分布”等.本节仅介绍2χ检验法是在总体的分布为未知时,根据样本值x1,x2,…,x n来检验关于总体所谓2分布的假设H0:总体X的分布函数为F(x);H1:总体X的分布函数不是F(x)(8.22)的一种方法(这里的备择假设H1可不必写出).注意,若总体X为离散型,则假设(8.22)相当于H0:总体X的分布律为P{X=x i}=p i,i=1,2,…;(8.23)若总体X为连续型,则假设(8.22)相当于H0:总体X的概率密度为f(x). (8.24)在用2χ检验法检验假设H 0时,若在假设H 0下F (x )的形式已知,而其参数值未知,此时需先用极大似然估计法估计参数,然后再作检验.2χ检验法的基本思想与方法如下:(1) 将随机试验可能结果的全体Ω分为k 个互不相容的事件A 1,A 2,…,A k (1ki i A ==Ω,A i A j =∅,i ≠j ;i ,j =1,2,…,k ),于是在H 0为真时,可以计算概率ˆi p =P (A i )(i =1,2,…,k ).(2) 寻找用于检验的统计量及相应的分布,在n 次试验中,事件A i 出现的频率if n与概率ˆi p往往有差异,但由大数定律可以知道,如果样本容量n 较大(一般要求n 至少为50,最好在100以上),在H 0成立条件下ˆii f p n-的值应该比较小,基于这种想法,皮尔逊使用 2χ=21ˆ()ˆki i i if npnp =-∑ (8.25) 作为检验H 0的统计量,并证明了如下的定理.定理8.1 若n 充分大(n ≥50),则当H 0为真时(不论H 0中的分布属什么分布),统计量(8.25)总是近似地服从自由度为k -r -1的2χ分布,其中r 是被估计的参数的个数.(3) 对于给定的检验水平α,查表确定临界值2(1)k r αχ--使P {2χ>2(1)k r αχ--)}=α,从而得到H 0的拒绝域为2χ>2(1)k r αχ--).(4)由样本值x 1,x 2,…,x n 计算2χ的值,并与2(1)k r αχ--比较.(5) 作结论:若2χ>2(1)k r αχ--,则拒绝H 0,即不能认为总体分布函数为F (x );否则接受H 0.例8.10 一本书的一页中印刷错误的个数X 是一个随机变量,现检查了一本书的100页,记录每页中印刷错误的个数,其结果如表8-5所示.i =0.05)?解 由题意首先提出假设:H 0:总体X 服从泊松分布.P {X =i }=!e ii λλ-,i =0,1,2,…,这里H 0中参数λ为未知,所以需先来估计参数.由最大似然估计法得03614061ˆ+70100x λ⨯+⨯++⨯⨯===1.将试验结果的全体分为A 0,A 1,…,A 7两两不相容的事件.若H 0为真,则P {X =i }有估计111ˆˆ{}!!e e i p P X i i i --====,i =0,1,2,….例如10ˆˆ{0},e pP X -=== 11ˆˆ{1},e pP X -=== 12ˆˆ{2},2e pP X -=== ………………166701ˆˆˆ{7}11.!e i i i pP X p i -===≥=-=-∑∑ 计算结果如表8-6所示.将其中有些np i <5的组予以适当合并,使新的每一组内有np i ≥5,如表8-6所示,此处并组后k =4,但因在计算概率时,估计了一个未知参数λ,故24221ˆ()~(411).ˆi i i i f npnp χχ=-=--∑计算结果为2χ=1.460(表8-6).因为220.05(411)(2)αχχ--==5.991>1.46,所以在显著性水平为0.05下接受H 0,即认为总体服从泊松分布. 表8-68-7).n =61ii f=∑=200.要求在给定的检验水平α=0.05下检验假设H 0:抗压强度X ~N (μ,σ2).解 原假设所定的正态分布的参数是未知的,我们需先求μ与σ的极大似然估计值.由第七章知,μ与σ2的极大似然估计值为ˆx μ=, 2211ˆ()ni i x x n σ==-∑. 设*i x 为第i 组的组中值,我们有*1195102052624514200i ii x x f n ⨯+⨯++⨯==∑=221,{}2*222211ˆ()(26)10(16)262414200i ii x x f n σ=-=-⨯+-⨯++⨯∑=152,ˆσ=12.33. 原假设H 0改写成X 是正态N (221,12.332)分布,计算每个区间的理论概率值{}11ˆ()()i i i i i pP a X a μμΦΦ--=≤<=-, i =1,2,…,6, 其中ˆi i a xμσ-=, 22()i t i t μμ--∞=e d Φ. 为了计算出统计量2χ之值,我们把需要进行的计算列表如下(表8-8).表8-8从上面计算得出2χ的观察值为1.35.在检验水平α=0.05下,查自由度m =6-2-1=3的2χ分布表,得到临界值20.05(3)χ=7.815.由于2χ=1.35<7.815=20.05(3)χ,不能拒绝原假设,所以认为混凝土制件的抗压强度的分布是正态分布N (221,152).小 结有关总体分布的未知参数或未知分布形式的种种论断叫做统计假设.一般统计假设分为原假设H 0(在实际问题中至关重要的假设)及与原假设H 0对立假设即是备择假设H 1.假设检验就是人们根据样本提供的信息作出“接受H 0、拒绝H 1”或“拒绝H 0、接受H 1”的判断.假设检验的思想是小概率原理,即小概率事件在一次试验中几乎不会发生.这种原理是人们处理实际问题中公认的原则.由于样本的随机性,当H 0为真时,我们可能会作出拒绝H 0、接受H 1的错误判断(弃当样本容量n 固定时,我们无法同时控制犯二类错误,即减小犯第一类错误的概率,就会增大犯第二类错误的概率,反之亦然.在假设检验中我们主要控制(减小)犯第一类错误的概率.使P {拒绝H 0|H 0为真}≤α,其中α很小.(0<α<1),α称为检验的显著性水平,这种只对犯第一类错误的概率加以控制而不考虑犯第二类错误的概率的检验称为显著性假设检验.单个、两个正态总体的均值、方差的假设检验是本章重点问题,读者需掌握Z 检验法、2χ检验法、t 检验法等.这些检验法中原假设H 0备择假设H 1及H 0的拒绝域分别见表8-2、表8-4.重要术语及主题原假设 备择假设 检验统计量 单边检验 双边检验 显著性水平 拒绝域 显著性检验 一个正态总体的参数的检验 两个正态总体均值差、方差比的检验 总体分布函数的假设检验习 题 八1. 已知某炼铁厂的铁水含碳量在正常情况下服从正态分布N (4.55,0.1082).现在测了5炉铁水,其含碳量(%)分别为4.28 4.40 4.42 4.35 4.37问若标准差不改变,总体平均值有无显著性变化(α=0.05)? 2.某种矿砂的5个样品中的含镍量(%)经测定为:3.24 3.26 3.24 3.27 3.25设含镍量服从正态分布,问在α=0.01下能否接收假设:这批矿砂的含镍量为3.25. 3.在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为1.008(克),样本方差s 2=0.1(克2).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=0.05).4.某公司宣称由他们生产的某种型号的电池其平均寿命为21.5小时,标准差为2.9小时.在实验室测试了该公司生产的6只电池,得到它们的寿命(以小时计)为19,18,20,22,16,25,问这些结果是否表明这种电池的平均寿命比该公司宣称的平均寿命要短?设电池寿命近似地服从正态分布(取α=0.05).5.测量某种溶液中的水分,从它的10个测定值得出x =0.452(%),s =0.037(%).设测定值总体为正态,μ为总体均值,σ为总体标准差,试在水平α=0.05下检验. (1) H 0:μ=0.5(%);H 1:μ<0.5(%).(2)0H ':σ=0.04(%);1H ':σ<0.04(%). 6.某种导线的电阻服从正态分布N (μ,0.0052).今从新生产的一批导线中抽取9根,测其电阻,得s =0.008欧.对于α=0.05,能否认为这批导线电阻的标准差仍为0.005? 7.有两批棉纱,为比较其断裂强度,从中各取一个样本,测试得到: 第一批棉纱样本:n 1=200,x =0.532kg, s 1=0.218kg ; 第二批棉纱样本:n 2=200,x =0.57kg, s 2=0.176kg .设两强度总体服从正态分布,方差未知但相等,两批强度均值有无显著差异?(α=0.05) 8.两位化验员A ,B 对一种矿砂的含铁量各自独立地用同一方法做了5次分析,得到样本方差分别为0.4322(%2)与0.5006(%2).若A ,B 所得的测定值的总体都是正态分布,其方差分别为σA 2,σB 2,试在水平α=0.05下检验方差齐性的假设H 0:σA 2=σB 2; H 1:σA 2≠σB 2.9.在π的前800位小数的数字中,0,1,…,9相应的出现了74,92,83,79,80,73,77,75,76,91次.试用2χ检验法检验假设H 0:P (X =0)=P (X =1)=P (X =2)=…=P (X =9)=1/10,其中X 为π的小数中所出现的数字,α=0.10.10.在一副扑克牌(52张)中任意抽3张,记录3张牌中含红桃的张数,放回,然后再任抽。

2023考研概率统计全考点精讲-第八讲 假设检验(仅数一)

2023考研概率统计全考点精讲-第八讲 假设检验(仅数一)

第八讲 假设检验(仅数一)【考试要求】1.(仅数一)理解显著性检验的基本思想,掌握假设检验的基本步骤.了解假设检验可能产生的两类错误.2.(仅数一)掌握单个及两个正态总体的均值和方差的假设检验.考点:假设检验1.假设检验关于总体分布中未知参数取值所提出的假设称为原假设,记为0H ;对立于原假设的假设称为备择假设,记为1H .假设检验就是根据样本,按照某种检验法则,决定在0H 与1H 之中接受其一. 对总体分布中未知参数提出的假设进行检验的问题,叫做参数假设检验. 【注】理论依据:小概率事件原理. 2.两类错误在0H 为真的情况下,而作出拒绝0H 的选择,称此类错误为第一类错误(弃真错误).在0H 为假(本来就不成立)的情况下,而作出接受0H 的选择,称此类错误为第二类错误(取伪错误).把犯第一类错误和第二类错误的概率分别记为α和β,则00{|}P H H α=拒绝为真,00{|}P H H β=接受不真.3.显著性检验在给定样本容量的情况下,我们总是控制第一类错误的概率,使它不大于α,而不考虑犯第二类错误的概率,这种检验称为显著性检验. 数α称为显著性水平.由样本对原假设进行判断总是通过一个统计量完成的,称该统计量为检验统计量.当检验统计量在某个区域W 上取值时,我们拒绝原假设0H ,称区域W 为拒绝域,拒绝域的边界点称为临界点.4. 双边检验与单边检验设总体X 的分布中有某一未知参数θ.形如00:H θθ=,10:H θθ≠的假设检验称为双边检验;形如00:H θθ≤(或者0θθ=),10:H θθ>的假设检验称为右边检验; 形如00:H θθ≥(或者0θθ=),10:H θθ<的假设检验称为左边检验,右边检验和左边检验统称为单边检验.5. 假设检验的一般步骤(1)根据实际问题的要求,提出原假设0H 和备择假设1H . (2)给出显著性水平α以及样本容量n . (3)确定检验统计量K 及拒绝域的形式;(4)按犯第一类错误的概率等于α求出拒绝域W ;(5)根据样本值计算K 的观察值k ,当k W ∈时,拒绝原假设0H ;否则,接受0H .6. 正态总体均值、方差的假设检验(1)单个正态总体的假设检验法(2)两个正态总体的假设检验法【例1】 某厂生产某种产品,正常生产时,该产品的某项指标服从正态分布2(5038)N ,.,在生产过程中为检验机器生产是否正常,随机抽取50件产品,其平均指标为26.51=x (设生产过程中方差不改变),在显著性水平为05.0=α下,检验生产过程是否正常.【例2】(1998-1)(课后作业)设某次考试的学生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分. 问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?给出检验过程.附表:t 分布表 ()(){}p P t n t n p ≤=,。

统计学:第8章 假设检验

统计学:第8章  假设检验
(第四版)
由例8.16可以看出:当将原假设和备择假设交换,检验得到的最终结果 不一定相同。对假设的设定没有固定统一的标准。一般遵循的原则是:
(1)把传统的、被大多数人 所认可的观点或结论放在原假设,意为, 在没有充分证明其错误时,总是被认定为正确的。
(2)将新的、可能的、猜测的假设放在备择假设。 (3)将研究者关注的(要证明的)结论放在备择假设,这样,如果通 过假设检验作出拒绝零假设而选择备择假设的判断,会使检验的结论更具 说服力(拒绝原假设时是有充分的理由的,而接受原假设是在没有充分理 由拒绝它时才作出的决定)。 (4)容易构造统计量的角度来设置原假设和备择假设,因为原假设和 备择假设设置的不同可能会导致使用的统计量不同。
8 - 27
统计学
STATISTICS
(第四版)
右单侧检验
(显著性水平与拒绝域 )
抽样分布
置信水平 拒绝域
1 -

H0值
临界值
样本统计量
8 - 28
统计学
STATISTICS
(第四版)
右单侧检验举例(1)
【例8.16】某批发商欲从厂家购进一批灯泡,根据 合同规定灯泡的使用寿命平均高于1000小时。
建立的原假设与备择假设应为
H0: 10 H1: 10
8 - 20
统计学
STATISTICS
(第四版)
双侧检验
(显著性水平与拒绝域 )
抽样分布
拒绝域
置信水平 拒绝域
/2
1 -
/2
临界值
H0值
临界值
样本统计量
8 - 21
统计学
STATISTICS
(第四版)
左单侧检验 (定义)

第八讲假设检验.

第八讲假设检验.

S X=SEX= n n 1
Sn1
例8.4 学生的学习成绩与教师的教学方法有关。
某校一教师采用了一种他认为新式有效的教学
方法。经过一学年的教学后,从该教师所教班
级中随机抽取了6名学生的考试成绩,分别为
48.5, 49.0, 53.5, 49.5,56.0, 52.5, 而在该学年考试
中,全年级的总平均分数为52.0, 试分析采用这
0
n
3、指定检验中的显著性水平;
用样本推断H0是否正确,必有犯错误的可能。
原假设H0正确,而被我们拒绝,犯这种错误
的概率用表示。把称为假设检验中的显著 性水平( Significant level), 即决策中的风险。显 著性水平就是指当原假设正确时人们却把它拒 绝了的概率或风险。
通常取=0.05或=0.01或=0.001, 那么, 接受
•假设检验的目的在于检验差异,所以,又叫 差异的显著性检验
2、确定适当的检验统计量 用于假设检验问题的统计量称为检验统计量。与参数 估计相同,需要考虑: •总体是否正态分布; •大样本还是小样本; •总体方差已知还是未知。
由于本例中总体正态,样本容量大于等于30, 所以检验统计量为Z分布。
Z=
X- 0
以认为受过良好早期教 育的儿童智力高于一般 水平。
8.2.2 总体正态分布,总体方差未知的均值检验
Z统计量中包含已知参数2,当总体方差2未知 时,不能选择Z统计量。这时需要用样本方差S2 代替2,检验统计量
X 0 t S n
服从自由度df=n-1的t分布,此时的检验叫做t 检验。而不是Z检验。标准误为:
例8.1 某校一个班进行比奈智力测验, X =110, 班级人数 n=50, 该测验常模0=100, 0=16。该班智力水平1(不是这一 次测验结果)是否与常模水平有显著差异?

《假设检验的概念及》PPT课件

《假设检验的概念及》PPT课件
2. 假设检验( test of
hypothesis)
实例
通过以往大规模调查,已知某地一般新生 儿的头围均数为34.50cm。为研究某矿区 新生儿的发育状况,现从该地某矿区随机 抽取新生儿55人,测得其头围均数为 33.89cm,问该矿区新生儿的头围总体均 数与一般新生儿头围总体均数是否不同?
假设检验的步骤及有关概念
按α=0.05 水准,不拒绝H0 ,两者的差别无统计学意义
附表2 t界值表
二、配对资料的比较
两种情况:1.随机配对设计(randomized
paired design)是将受试对象按某些混杂因素(如性 别、年龄、窝别等)配成对子,每对中的两个个体随 机分配给两种处理(如处理组与对照组);2.或者同 一受试对象作两次不同的处理(自身对照)。
怀疑H0的正确性,从而接受H1。通常选择后 者。本例,可认为该矿区新生儿总体均数与
一般新生儿头围总体均数不同。
例8-2:1995年,某地20岁应征男青年平 均身高为168.5cm。2003年在当地20岁 应征男青年中随机抽取85人,平均身高 为171.2cm,标准差为5.3cm,问这两年 身高是否不同。
t | d | 0.112 0.817, n 1 12 1 11
Sd / n 0.475 / 12
3. 查相应界值表,确定P 值,下结论。 查表t0.05/ 2,11 2.201,t P t , 0.05/ 2,11 >0.05,按α=0.05 水准, 不拒绝 H 0 ,两种方法的测量结果差值无统计学意义。
第八章 假设检验的概念及t检验
统计推断
statistical inference
内容:
总体
抽取部分观察单位 样本
1. 参数估计 (estimation of

假设检验讲义

假设检验讲义

第八章假设检验内容介绍本章主要介绍统计假设检验的基本思想和概念以及参数的假设检验,并简单介绍非参数的统计假设检验的一些方法.内容讲解§8.1 假设检验的基本思想和概念1.引例例题1. P167 例8-1 味精厂用一台包装机包装味精,已知袋装味精的重量(单位:公斤)X~N(μ,0.0152),机器正常时,其均值μ=0.5公斤. 某日开工后随机抽取9袋袋装味精,其净重分别为0.497, 0.506, o.518, 0.524, 0.498, 0.511, 0.520, 0.515, 0.512,问这台包装机工作是否正常?【答疑编号12080101】分析:从上述数据可知,9袋味精没有一袋与包装上标明的0.5公斤相同,这是一种普遍现象.造成这种差异不外乎有两种原因:一是偶然因素造成的差异称为随机误差,属于正常误差;二是由于条件因素造成的误差,称为条件误差,属于不正常的误差。

为了检验包装机是否正常,在数理统计中给出了假设检验的方法。

解:已知袋装味精重X~N(μ,0.0152),假设现在包装机工作正常,提出如下假设:H0:μ=μ0=0.5,H1:μ≠μ0,这是两个对立的假设,让我们通过抽样进行检验,从中选取其一,作出决策.从总体中抽取容量为n的样本,其均值为是μ的一个无偏估计.易知,当很小时,认定H0为真,反之,很大时,我们有理由怀疑H0为真而拒绝H0,接受H1.如何求出大、小的临界值?下面讨论之.为了确定临界值,给定一个小数α(0<α<1).由于H0为真时,~,与区间估计类似,考虑,查表可得临界值.显然,事件是一个小概率事件,在一次试验中几乎不可能发生. 我们只需计算的值,与临界值比较大小,若,说明上述小概率事件没有发生,我们接受H0,反之说明,小概率事件居然发生了,与“小概率事件在一次试验中几乎不可能发生”相矛盾,于是拒绝H0,接受H1,认为这台包装机工作不正常.2.统计假设检验中的一些基本概念(1)参数检验与非参数检验如果需要检验的量仅仅涉及总体分布的未知参数,则称之为参数检验. 这是本章讲解的主要内容;如果涉及分布函数形式等时,则称之为非参数检验.(2)原假设与备择假设引例中的假设H0,即正常情况下放弃H0是小概率事件,则称H0为原假设或零假设;与之相对立的是假设H1,称之为备择假设. 两个假设有且仅有一个为真.(3)检验统计量引例中的,称为检验统计量. 对样本数据进行加工并用来判断是否接受原假设的统计量称为检验统计量. 检验统计量应满足:①必须与统计假设有关;②当H0为真时,检验统计量的分布是已知的.(4)显著水平假设检验的基本理论根据是小概率原理,即小概率事件在一次试验中几乎不可能发生,根据这一原理,如果小概率事件不发生,则接受原假设,否则拒绝原假设。

第八讲假设检验的计算单总体讲课文档

第八讲假设检验的计算单总体讲课文档

差值di 9.5 11.5 8.5 7.5 11 8 9.5 7.5 11 14.5 98.5
第42页,共70页。
t xd 9.85 13.44 sd n1 2.199 9
解:H0: 1 – 2 8.5
查附表5,- t0.05 (9) =-1.833
H1: 1 – 2 < 8.5 = 0.05
.025
拒绝 H0
.025
检验统计量:
z
pˆ p 0
p 0 (1 p 0 )
n
0 .3 4 0 .3 1 .2 3 4 0 .3 0 .7
200
决策: 在 = 0.05的水平上接受H0
-1.96 0 1.96 Z
结论: 从总体来看,研究者的估计可信
第27页,共70页。
2. 小样本总体比例的两端检验
第23页,共70页。
(二)单个总体比例的检验
第24页,共70页。
1. 大样本单总体比例的检验
1. 假定条件
有两类结果 总体服从二项分布
比例检验的 z 统计量
z pˆ p 0 p 0 (1 p 0 ) n
P0为假设的总体比例
pˆ 为样本中计算出来的
比例
第25页,共70页。
例题4
某研究者估计本市居民家庭
第6页,共70页。
3.一端检验与二端检验
在何种情况下选择一端检验还是二端检验? 取决于是否可以确定研究假设(H1)的方向. 如果H1能定出方向,如<或>,则为一端检验. 如果H1定不出方向,如≠,则样本的统计值落在抽样分布
的右端或左端的可能性是相同的,因而要用二端检验.
如果所选定的显著度相同的,二端检验比一端检验更 难否定原假设/虚无假设.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1, L( x ) ≥ k , ϕ ( x) = 0, L( x ) < k
其中常数 k由Eθ (ϕ ( x )) = Pθ { L( x ) ≥ k } = α确定,
0 0
这是因为 Pθ { L( x ) = k } = 0。这说明此种情形下
0
的拒绝域具有形式 W = { x:L( x ) ≥ k }。
c
域就建立起一一对应关系。 域就建立起一一对应关系。 为了确定拒绝域, 为了确定拒绝域,往往根据问题的直观背
为真时, 景,寻找合适的统计量T ( x ),当H 0为真时,要
能由统计量 T ( x )确定出拒绝域 W ,这样的统 称为检验统计量 计量T ( x ) 称为检验统计量(Test Statistic)。 为了便于描述拒绝域及数学理论上的需要, 为了便于描述拒绝域及数学理论上的需要, 有必要引入函数 1, x ∈W , ϕ ( x) = 0, x ∉W 它是拒绝于上的示性函数,称其为检验函数 它是拒绝于上的示性函数,称其为检验函数。 检验函数。 当ϕ ( x ) = 1时拒绝 H 0,当ϕ ( x ) = 0时接受 H 0。 这 种检验函数也称为非随机化的, 种检验函数也称为非随机化的, 而随机化的检 验函数的定义是: 验函数的定义是:在[0,1]上取值的样本的函数
β (θ ) = Pθ { x ∉W } = 1 − Pθ { x ∈W }, θ ∈ Θ1 .
定义8.1 一个检验的功效(Power)定义为当 H 0假 定义 一个检验的功效 的概率, 时拒绝 H 0的概率,即 γ (θ ) = Pθ { x ∈W } = 1 − β (θ ), θ ∈ Θ1 . 而第一类错误和功效可以看成函数 g (θ ) = Pθ { x ∈W } = Eθ (ϕ ( x )), θ ∈ Θ 的不同取值,这个函数称为功效函数。 的不同取值,这个函数称为功效函数。 功效函数
1
θ ∈Θ 0
是密度函数或分布率, 其中 p( x ,θ )是密度函数或分布率, L( x )是统计
的检验称为似然 量。 对较大 L( x )拒绝原假设 H 0的检验称为似然 比检验(Likelihood Ratio Test)。 比检验 。
在这节, 在这节,我们先讨论简单原假设对简单备择 假设的检验问题, 假设的检验问题, 下节讨论较复杂的检验问题。 下节讨论较复杂的检验问题。 设统计模型为 { Pθ ,θ ∈ Θ},其中Θ = {θ 0 ,θ 1 }, 即参数空间仅包含两个参数, 即参数空间仅包含两个参数,所考虑的检验问 题为
0
(2) ) (3) )
且检验 ϕ ( x )是水平为 α的MPT。
(2) 如果ϕ ( x )是水平为 α的MPT,则必存在
常数k ≥ 0, 使得ϕ ( x )满足式( 2)。 进一步若 ϕ的功
效满足 Eθ (ϕ ( x )) < 1, 则ϕ ( x )也满足式( 3)。
1
引理的证明可参看《高等统计学》 郑忠国 郑忠国)。 引理的证明可参看《高等统计学》(郑忠国 。 注: (1) L( x )为连续随机变量时, MPT的 为连续随机变量时, ) 当 的 检验统计量可取为非随机化的形式 检验统计量可取为非随机化的形式
当θ ∈ Θ 0时,g (θ ) = α (θ ); 而当 θ ∈ Θ1时, g (θ ) = γ (θ )。
(Power Function)
检验的水平 固定时, 当样本容量 n 固定时,要减少犯第一类错 误的概率,就会增大犯第二类错误的概率; 误的概率,就会增大犯第二类错误的概率;反 若要减少犯第二类错误的概率, 之,若要减少犯第二类错误的概率,就会增大 犯第一类错误的概率。 犯第一类错误的概率。即就是说当样本容量固 定时,不可能同时减少犯两类错误的概率, 这 定时,不可能同时减少犯两类错误的概率, 是一对不可调和的矛盾。 是一对不可调和的矛盾。 Neyman-Pearson检验原理就是控制犯第一 检验原理就是控制犯第一
检验定义如下。 检验定义如下。
设ϕ ∗ ( x )是水平为 α 定义8.2 在检验问题 中, 在检验问题(1)中 定义 的检验, 的检验, 如果对任一水平为 α的检验 ϕ ( x ),有 Eθ (ϕ ∗ ( x )) ≥ Eθ (ϕ ( x ))
1 1
成立, 成立,则称ϕ ∗ ( x )是水平为 α的 最优功效检验, 最优功效检验,
二、 Neyman-Pearson 引理
考虑检验问题 设统计模型为 { Pθ ,θ ∈ Θ}, H 0:θ ∈ Θ 0, H 1:θ ∈ Θ1 定义似然比 其中Θ = Θ 0 U Θ1。定义似然比(Likelihood Ratio)为 sup{ p( x ,θ )} θ ∈Θ L( x ) = , sup{ p( x ,θ )}
Pθ { x ∈W } = Eθ (ϕ ( x )) ≤ α , θ ∈ Θ 0
的检验函数类中, 的检验函数类中,寻找使得功效
Eθ (ϕ ( x )) = Pθ { x ∈W } (θ ∈ Θ1 )
尽可能大的检验函数。 尽可能大的检验函数。
对给定的 α ∈ [0,1],若检验 ϕ ( x )对所有的 θ ∈ Θ 0,满足Eθ (ϕ ( x )) ≤ α , 则称ϕ ( x )是一个水 是一个水 的检验。 平( Level)为 α 的检验。 根据这个定义, 根据这个定义, 水平不唯一。 水平不唯一。若 ϕ ( x )是水平 ϕ 的检验, 为 α 的检验, 则对任何满足 α < α ′ ≤ 1的α ′ , ( x ) 的检验。 也是水平为α ′ 的检验。称 sup{ Eθ (ϕ ( x )),θ ∈ Θ 0 } 真实水平。 为检验 ϕ ( x ) 的大小(Size)或真实水平。 实用上当提到一个检验的水平时, 实用上当提到一个检验的水平时,一般是 指它的真实水平。 指它的真实水平。
这样一个检验就等同于将样本空间分成 两个互不相交的子集 W 和W c,当x ∈W时就拒 绝 H 0,认为备择假设 H 1成立;当x ∈W c时就接 成立;
(Rejection Region) 为接受域(Acceptance Region)。 这样检验和拒绝
拒绝域, 成立。 受H 0,认为 H 0成立。 称 W 为拒绝域, 称 W
H 0:θ = θ 0, H 1:θ = θ 1
(1) )
比较两个检验 ϕ 1 ( x )和ϕ 2 ( x ) 的优劣的一个自然 的准则就是比较它们功效的大小。 的准则就是比较它们功效的大小。

Eθ (ϕ 1 ( x )) ≥ Eθ (ϕ 2 ( x )),
1 1
则称检验 ϕ 1 ( x )不比检验 ϕ 2 ( x )差,或检验 ϕ 1 ( x ) 比检验 ϕ 2 ( x )好。根据这点我们有所谓最优的
(Most Powerful Test)
简记为MPT。Biblioteka 。 简记为对于检验问题(1), 似然比为 对于检验问题 , p( x ,θ 1 ) L( x ) = , p( x ,θ 0 ) 规定: 规定:当p( x ,θ 0 ) = 0, p( x ,θ 1 ) > 0时,L( x ) = ∞, 当p( x ,θ 0 ) = p( x ,θ 1 ) = 0时,L( x ) = 0. 下面的N-P引理不但彻底解决了检验问题(1) 下面的N-P引理不但彻底解决了检验问题(1) 的 引理不但彻底解决了检验问题 检 MPT的存在问题, 而且还给出了构造 的存在问题, 的存在问题 而且还给出了构造MPT检 验的方法。 虽然这个引理仅针对检验问题(1), 验的方法。 虽然这个引理仅针对检验问题 , 但它对解决复合假设检验问题最优检验的存在 起到非常重要的作用。 起到非常重要的作用。
第八讲 假设检验
一、基本概念 二、Neyman-Pearson 引理 三、一致最优势检验
一、基本概念
在自然科学和社会科学等中, 在自然科学和社会科学等中,常常要对某 些重要问题做出回答: 些重要问题做出回答:是或否。如月球比地球 早形成吗? 一种新药对某种病有效吗? 早形成吗? 一种新药对某种病有效吗? 某种 股票会张吗? 新推出的电视节目收视率高吗? 股票会张吗? 新推出的电视节目收视率高吗? 等等。为了回答这些问题, 等等。为了回答这些问题,我们需要对感兴趣 的问题进行试验或观察获得相关数据, 的问题进行试验或观察获得相关数据,根据这 些数据决定是 些数据决定是或否的过程称为假设检验。 的过程称为假设检验。 假设检验
(Hypothesis Testing)
在这节,给出一般的Neyman-Pearson假设 在这节,给出一般的 假设 检验构架。 检验构架。 原假设和备择假设
是统计模型, 设{ Pθ ,θ ∈ Θ}是统计模型,关于总体 X的分 即 的推测, 布或关于参数θ 的推测, H:θ ∈ Θ ⊂ Θ 称为
假设, 假设,其中 Θ 是 Θ 的非空真子集。 的非空真子集。 在一个假设检验中,常涉及两个假设。 在一个假设检验中,常涉及两个假设。所 要检验的假设称为原假设 零假设, 原假设或 要检验的假设称为原假设或零假设, 记为H 0 。
ϕ ( x )。在随机化检验时,有了样本 x 后,计算 在随机化检验时, ϕ ( x ), 依ϕ ( x )为成功概率做 Minomial试验, 若 试验,
成功就拒绝 H 0, 否则接受 H 0。
两类错误、 两类错误、功效和功效函数 由于样本时随机的, 由于样本时随机的, 进行检验时可能犯 两类错误, 两类错误,其一是当 H 0为真时,却拒绝 H 0, 为真时, 称为第一类错误 第一类错误, 称为第一类错误, 其概率为 α (θ ) = Pθ { x ∈W }, θ ∈ Θ 0 . 称为第二类 为假时, 其二是当 H 0为假时,却接受 H 0, 称为第二类 错误, 错误,其概率为
(Neyman-Pearson引理 引理) 引理
就检验问题(1), 引理8.1 就检验问题 ,对给定 α ∈ (0,1),有 引理 (1) 存在常数 k ≥ 0及检验 1, 当L( x ) > k时 , ϕ ( x) = 0, 当L( x ) < k时 Eθ (ϕ ( x )) = α . 满足
相关文档
最新文档