电气知识:微机故障录波图形分析

合集下载

故障录波及常见故障波形讲解

故障录波及常见故障波形讲解
电压和零序电流出现。 • 在故障切除后,电流通道变为一根直线。如果是线路PT,在
线路两端故障均切除后故障相电压变为0,零序电流变得很小 或为0,但有很大的零序电压。 • 重合成功,三相电流流恢复正常负荷电流,三相电压恢复对称。
06 故障录波器的波形分析
➢ 、根据故障录波图能够获得的信息: • 1、发生故障的电气元件和故障类型; • 2、保护动作时间和故障切除时间; • 3、故障电流和故障电压; • 4、重合时间以及是否重合成功; • 5、详细的保护动作情况; • 6、完成附属功能(测距、阻抗轨迹、相量以及谐波分析等)
07 故障录波器在应用中存在的问题及措施
故障录波器在实际应用过程中会出现保护管理机调不到故 障波形的故障,严重影响了故障波形的分析,在系统发生故障时将 影响对故障性质的判断,根据现场处理的情况有以下几种原因导 致该故障的发生: (1)保护管理机与故障录波器之间通信中断 (2)保护管理机死机导致死数据 (3)故障录波器存储单元损坏
(1)一相电流增大,一相电压降低;出现零序电流、零序电压
1、发生故障的电气元件和故障类型;
故障录波器在应用中存在的问题及措施
2、保护动作时间和故障切除时间; 5、详细的保护动作情况;
利用故障录波器记录下来的保护事件和开关副
A但/D高转的换采器样的速位率数,则决要定使了用录较波多器的记存录储数空据间的,节同准时确点在度进。状行数态据传信输时息,要找花费出更长保的时护间,不这很正不利确于故动障后作的原快速因分析故障。
流。 • 两相接地故障,两个故障相的电流突变增大,但两个电流之间的相
位有角度差,变化范围随过电阻的不同在60°-180°之间变化,但 有零序电流出现。 • 三相接地故隆或不接地故障,三相电流同步增大,没有零序电流和 零序电压。

常见故障波形图的关键点识别及分析

常见故障波形图的关键点识别及分析

常见故障波形图的关键点识别及分析【电源⽹】本⽂以常见事故波形图为例,介绍故障波形图⼏个关键点识别和分析⽅法,从中了解相关故障信息和保护等设备的动作⾏为,以便快速帮助管理部门确定故障性质和制定事故处理⽅案,及时恢复送电。

⽬前,国内的⾼压或超⾼压保护对于多数的故障均可以做到在0.1S以内切除故障,甚⾄可以达到⼏个毫秒,故障过程是⾮常短暂的。

但各种故障被切除后,根据《电⼒⽣产事故调查规程》规定在⼀定时间范围,必须明确故障设备是否能否恢复送电,超时否则算电⽹事故处理。

为此需要了解故障前及故障时的全过程,判断事故性质。

其中最有效、最直接的⽅法是快速读懂故障波形图来了解故障发⽣的全过程。

即了解故障过程中电流、电压幅值和相位,故障性质、故障的持续时间,以及保护、断路器的动作时间等信息。

⼀、故障波形图录取现状电⼒系统的各种故障信息必须通过专⽤故障录波器或保护本⾝动作报告记录。

⽬前现场采⽤的均是微机保护和微机故障录波器,它主要由故障启动、信息数据采集、存储分析及波形输出等部分组成。

不论是保护或是专⽤的故障录波器启动主要是利⽤故障特征明显的电⽓量来启动⼯作,⼀般的启动量有电流、电压突变量启动,电流、电压越限启动,频率变化量启动及开关量启动等。

采集到的信息数据⼀般不作滤波处理,尽可能地保持故障信息真实性和实时性。

信息数据主要有两种类型,⼀种为记录电流、电压瞬时值的交变信号,⼀种为反映正负跃变的开关量信号。

为了便于分析故障,信息数据⼀般包括故障前的⼀部分和故障的全过程,反映电流、电压变化的瞬时值波形及反映电位变化的开关量均采⽤同⼀时标绘制。

输出部分包括简要分析报告、重要故障信息数据及故障全过程波形图、输出波形的幅度及多少可根据需要在显⽰和打印输出时设定。

⼆、关键点识别与分析在现场使⽤的保护⽣产长家较多,型号亦很多,各种型号的保护故障波形图结构不尽相同,标注信息的⽅式也差别很⼤,但归结起来可以分为两⼤部分,第⼀部分是故障分析简报,第⼆部分为故障波形图信息。

典型故障波形图

典型故障波形图

录波波形分析分析录波图的基本方法:1、首先要通过前面所学的知识大致判断系统发生了什么故障,故障持续了多长时间。

2、以某一相电压或电流的过零点为相位基准,查看故障前电流电压相位关系是否正确,是否为正相序?负荷角为多少度?3、以故障相电压或电流的过零点为相位基准,确定故障态各相电流电压的相位关系。

(注意选取相位基准时应躲开故障初始及故障结束部分,因为这两个区间一是非周期分量较大,二是电压电流夹角由负荷角转换为线路阻抗角跳跃较大,容易造成错误分析)4、绘制向量图,进行分析。

一、单相接地短路故障录波图分析:A相单相接地短路典型录波图A相单相接地短路典型向量图UCUAIA3I0约80°3U0UB分析单相接地故障录波图要点:1、故障相电流增大,电压降低;出现零序电流、零序电压。

2、非故障相短路电流为零,负荷电流无变化3、零序电流相位与故障相电流同向,零序电压与故障相电压反向。

4、故障相电压超前故障相电流约80 度左右;零序电流超前零序电压约100 度左右。

“80 度左右”的概念实际上就是短路阻抗角,即线路阻抗角。

二、两相短路故障录波图分析: AB 相间短路典型录波图AB 相间短路典型向量图U CU A U B约80°I ABI AI B分析两相短路故障录波图要点:1、两相电流增大,两相电压降低;没有零序电流、零序电压。

2、故障相中的电流大小相等方向相反3、短路点,故障相的电压方向相同、大小相等,为故障相电压的一半,方向与故障相电压方向相反,母线处,故障相电压大小相等,两相之和与正常相方向相反,非故障相的电压大小不变;4、故障相间电压超前故障相间电流约80 度左右二、 两相短路接地故障录波图分析: AB 两相接地短路典型录波图AB 两相接地短路典型向量图U CU AU B约80°U ABI ABI AI B3U0约110°分析两相接地短路故障录波图要点:1、两相电流增大,两相电压降低;出现零序电流、零序电压。

电力系统故障波形图中关键点识别及分析

电力系统故障波形图中关键点识别及分析
危害:谐波干扰会导致电力设备过热、产生噪音、降低设备寿命,严重时甚至会导致设备损坏或 系统瘫痪。
关键点分析:在电力系统故障波形图中,谐波干扰的分析是关键。通过对波形图的观察和分析, 可以确定谐波干扰的来源、传播途径和影响范围,为后续的治理提供依据。
PART FOUR
故障定位:通 过关键点识别, 快速准确地定 位电力系统中 的故障位置。
故障类型识别: 根据关键点的 特征,识别出 故障的类型, 如短路、断线
等。
保护装置动作 评估:利用关 键点识别技术, 评估保护装置 的动作行为是
否正确。
故障恢复与预防: 通过对关键点的 分析,制定针对 性的故障恢复和 预防措施,提高 电力系统的稳定
性和可靠性。
故障发生背景:某地区电力系统出现故障,导致大面积停电 关键点识别:通过故障波形图识别出故障发生的原因 案例分析:分析故障发生的原因,如设备老化、人为操作失误等 解决方案:提出相应的解决方案,如更换设备、加强人员培训等
分析方法:通过观察 曲线的变化趋势和特 征,结合实际运行经 验,对故障进行定位 和定性分析
短路故障波形 图
断相故障波形 图
接地故障波形 图
谐振故障波形 图
电压幅值:表示故障发生时电压的大小 波形畸变:表示电压波形是否正常 频率:表示电压的频率是否正常 相位差:表示不同相位的电压之间的角度差是否正常
远程监控技术:实 时监测电力系统的 运行状态,及时发 现故障并进行处理
智能运维:利用大数 据、人工智能等技术 对电力系统进行智能 化管理,提高运维效 率
发展趋势:随着物联 网、5G等技术的发展 ,远程监控与智能运 维将更加普及和智能 化
展望:未来电力系统 将实现全面远程监控 与智能运维,提高电 力系统的安全性和稳 定性

用“故障电流录波图”对故障进行分析

用“故障电流录波图”对故障进行分析

用“故障电流录波图”对故障进行分析朱宝林(韶关电力局,广东韶关512026)广东500kV北郊变电站2001-06-21T15:06在雷雨时,220kV6号母线上的2457、2458、202B、206B、2026断路器全部跳闸,220kV6号母线失压。

黄(黄埔站)北(北郊站)线2458断路器对侧的黄埔站断路器也跳闸。

将2458断路器退出运行后,220kV6号母线恢复运行正常。

1故障电流录波图事故发生后,检查保护动作情况:220kV黄北线主保护动作。

220kV6号母线差动保护动作。

打印出的故障电流录波图如图1所示。

图1北郊站黄北线故障电流录波针对这张故障电流录波图,提出了下列疑问:(1)从故障开始到46ms,为A相单相短路故障,A相短路电流约19.2kA,3I0约20.4kA(根据故障电流录波图和CT变比估算,下同),两者比较接近,而且相位相同,情况正常。

(2)从490ms到560ms,为A相和B相相间短路接地故障,相间短路电流变小,而且相位相同,A相短路电流约8.5kA,B相短路电流约8.1kA,3I0约16.4kA,约为两者之和。

为什么A相和B相会相位相同?(3)从560ms到585ms,为什么3I0消失,A相和B相相间短路电流变得更小,大小相等,都是1.7kA,而且变成相位相反?(4)为什么北郊站侧A相和B相相间短路电流是1.7kA,而在线路对侧黄埔站的A相和B相相间短路电流却是3.6kA?2故障分析为了弄清楚上述问题,经现场检查发现:黄北线靠北郊侧单相永久性接地故障;黄北线2458断路器处A相和B相CT顶部金属外罩之间击穿放电短路。

2.1从保护动作断路器跳闸分析(1)从故障开始到46ms,为A相单相短路故障,黄北线北郊站侧A相主保护动作跳闸。

(2)从490ms到560ms,A相和B相CT顶部金属外罩之间击穿放电,形成相间短路通过放电点A相接地故障,北郊站侧220kV6号母线差动保护动作,6号母线上所有断路器跳闸。

故障录波器与故障波形分析_图文

故障录波器与故障波形分析_图文
利用故障录波器记录下来的电流电压 量对故障线路进行测距,同时给出能否强 送的依据
二、故障录波器之功能
2、电力系统元件发生不明原因跳闸
利用故障录波器记录下来的电流 电压量判断出是否无故障跳闸
查明原因, 马上恢复
送电
二、故障录波器之功能
3、继电保护装置有不正确动作行为
继电保护装置误动造成无故障跳闸 系统有故障但保护装置拒动 系统有故障但保护动作行为不符合预先设计
故障录波器与故障波形分析_图文.pptx
背景 电网事故的一般处理程序
电网事故判断
电网事故处理
电网事故分析
电网事故分析
现场保护 的动作信 号--来 自于调度 员的汇报
故障录波 器的录波 图
保护装置 内部动作 事件报告 和动作波 行图
继电保护故障信息
内容
一、故障录波器的概念 二、故障录波器的功能 三、故障录波器的原理 四、故障录波器之装置特点 五、故障录波器的主要参数 六、故障录波器的技术分析 七、故障录波器在应用中存在的问题及措施 八、典型故障波形的分析
5.3特殊记录方式
如果出现长期的电压、频率越限或电流振荡,则由S时刻开始沿ABCD时 段顺序录波,并延长D时段,直至所有起动量全部复归或振荡停息。其中频 率值测量精度不劣于± 0.05Hz。
六、故障录波器之技术分析
各种故障情况下的波行特征:
• 单相接地故障,故障相电流和零序电流大小相等 且同相位,故障相电压有一定程度减小,同时有 零序电压出现。
四、故障录波器之装置特点
1、集故障录波与测距、实时监测和电能质 量分析为一体
不定长动态录波和故障测距,测距精度优于2%; 记录系统发生大扰动时的时刻:年、月、日、时、分、秒、毫秒; 记录系统发生大扰动前后各输入量(电流、电压、高频、开关状态等)

故障录波及常见故障波形讲解

故障录波及常见故障波形讲解

05 故障录波器的主要参数
➢ 5、录波数据采样及记录方式 • 、不定长录波的实现
1)非振荡故障启动 a)第一次启动,按A→B→C→D顺序录波; b)除A、B段外,如果正在录波又出现一次启动,则录波立即回到S点重新开始A→B→C→D顺序录。 2)自动终止记录条件(同时符合如下条件时,则自动停止记录) a)记录时间>3s; b)所有启动量全部复归。
02
故障录波器的功能
根据电力系统发生故障的不同情况,对应于故障录波 器的作用主要体现在以下三个方面:
➢ 1、系统发生故障,保护动作不正确 利用故障录波器记录下来的电压、电流量对故障线路
进行测距,同时给出能否强送的依据
02
故障录波器的功能
➢ 2、电力系统元件发生不明原因跳闸 利用故障录波器记录下来的电压、电流量判断出是否
07 故障录波器在应用中存在的问题及措施
故障录波器在实际应用过程中会出现保护管理机调不到故 障波形的故障,严重影响了故障波形的分析,在系统发生故障时将 影响对故障性质的判断,根据现场处理的情况有以下几种原因导 致该故障的发生: (1)保护管理机与故障录波器之间通信中断 (2)保护管理机死机导致死数据 (3)故障录波器存储单元损坏
如果出现长期的电压、频率越限或电流振荡,则由S时刻开始沿ABCD时段顺序录波,并延长D时段, 直至所有起动量全部复归或振荡停息。其中频率值测量精度不劣于±0.05Hz。
06 故障录波器的波形分析
➢ 、各种故障情况下的波行特征: • 单相接地故障,故障相电流和零序电流大小相等且同相位,故障相
电压有一定程度减小,同时有零序电压出现。 • 两相之间故障,两个故障相的电流大小相等,方向相反,没有零序电
电力行业标准规定,故障录波器的采样速率应达到5kHz。

故障录波器波形分析

故障录波器波形分析

故障录波器波形分析故障录波器(Fault Recorder)是一种专用的电力系统故障记录设备,广泛应用于电力系统的技术运行和故障分析过程中。

它能够记录和保存电力系统中的各种故障事件的波形数据,为故障的快速分析和解决提供了重要的依据。

故障录波器的波形分析是指对录波器保存的故障事件波形数据进行分析和解读的过程。

通过对波形数据的全面分析,可以从中获得有关故障事件的详细信息,包括故障类型、发生位置、故障时刻、故障电压和电流的变化等等。

这对于电力系统的运行和维护非常重要。

波形分析主要包括以下几个方面:1.故障类型的识别:通过对波形数据的特征分析,可以确定故障事件的类型,如短路、接地故障、电压暂降、电压暂升等。

不同类型的故障具有不同的波形特征,通过对波形数据的分析,可以准确地确定故障类型,为故障的修复提供依据。

2.故障的发生位置和时刻的确定:通过对电流和电压波形的相位和幅值分析,可以确定故障事件的发生位置和发生时刻。

电流和电压波形的相位差可以反映故障发生的位置,而波形的幅值变化可以反映故障的时刻。

通过对波形数据的分析,可以快速准确地确定故障的发生位置和时刻。

3.故障电压和电流的变化规律分析:通过对电流和电压波形的变化规律的分析,可以了解故障电压和电流在故障事件中的变化过程。

这对于了解故障的严重程度和对电力设备的损坏程度有重要的意义,对于故障的修复和设备的保护具有重要的指导作用。

4.波形数据的比较和对比分析:通过对不同事件之间波形数据的比较和对比分析,可以找出故障事件之间的相似之处和不同之处,寻找共性和规律。

这有助于从整体上了解故障事件的特点和规律,为未来类似故障的分析和解决提供经验和参考。

总之,故障录波器的波形分析是电力系统故障处理和分析的重要环节。

通过对波形数据的深入分析和解读,可以准确地确定故障的类型、发生位置和时刻,了解故障电压和电流的变化规律,为故障的修复和设备的保护提供重要依据。

它对于电力系统的安全稳定运行和维护具有重要的意义。

故障录波图你真的了解吗!续

故障录波图你真的了解吗!续

故障录波图你真的了解吗!续一、Y/△-11变压器△侧(低压侧)两相短路故障录波图分析先以△侧(低压侧)AB两相短路为例,介绍一下Y/△-11变压器△侧(低压侧)发生两相短路故障,Y侧(高压侧)电流电压的向量情况。

通过前面的分析我们知道低压侧AB两相短路时,保护安装处向量图如下图示:我们知道Y/△-11的变压器△侧(低压侧)电压、电流与Y侧(高压侧)电流、电压的关系如下:FA△=FAY-FBYFB△=FBY-FCYFC△=FCY-FAY由上面的向量图可知,对于正序分量,FA△超前FAY30度;对于负序分量,FA△滞后FAY30度。

通过这个关系我们就可以将△侧(低压侧)各序分量转换至Y侧(高压侧),从而求取出高压侧的全电压、全电流。

变压器低压侧AB两相短路时,高压侧保护安装处向量图如下图示:从向量图我们可得到变压器低压侧两相短路时,高压侧全电压、全电流得特点:短路滞后相电流与其他两相电流方向相反,且大小为其他两相电流的2倍。

短路滞后相母线故障残压非常小,接近为零。

非故障相电压与短路超前相电压大小相等,方向相反。

那么在构成变压器电压闭锁电流保护时,由于高压侧电压闭锁电流保护要作为低压侧电压闭锁电流保护的后备保护,可是从向量图我们知道如果高压侧电压闭锁量采用三个接于线电压的低电压继电器,将不能可靠的开放保护,造成拒动,实现不了对低压侧的后备作用。

因此常采用负序继电器加一个接于相间的低电压继电器构成复合电压继电器来实现闭锁。

从而提高保护的灵敏性。

接下来我们看一张变压器低压侧两相短路时的录波图:分析变压器低压侧两相短路故障录波图要点:低压侧两相电流增大,两相电压降低;没有零序电流、零序电压。

低压侧电流流增大、电压降低为相同两个相别。

低压侧两个故障相电流基本反向。

高压侧短路滞后相电流与其他两相电流方向相反,且大小为其他两相电流的2倍左右。

高压侧短路滞后相母线故障残压非常小,接近为零。

高压侧非故障相电压与短路超前相电压大小相等,方向相反。

故障录波及常见故障波形讲解

故障录波及常见故障波形讲解

05 故障录波器的主要参数
➢ 5、录波数据采样及记录方式 • 5.2、不定长录波的实现
1)非振荡故障启动 a)第一次启动,按A→B→C→D顺序录波; b)除A、B段外,如果正在录波又出现一次启动,则录波立即回到S点重新开始A→B→C→D顺序录。 2)自动终止记录条件(同时符合如下条件时,则自动停止记录) a)记录时间>3s; b)所有启动量全部复归。
02
故障录波器的功能
根据电力系统发生故障的不同情况,对应于故障录波 器的作用主要体现在以下三个方面:
➢ 1、系统发生故障,保护动作不正确 利用故障录波器记录下来的电压、电流量对故障线路
进行测距,同时给出能否强送的依据
02
故障录波器的功能
➢ 2、电力系统元件发生不明原因跳闸 利用故障录波器记录下来的电压、电流量判断出是否
05 故障录波器的主要参数
➢ 1、采样速率
采样速率的高低决定了录波器对高次谐波的记录能力,在系 统发生故障之初,故障波形的高次谐波非常严重,因此,为了较真实 地记录故障的暂态过程,录波器要有较高的采样速率。电力行业 标准规定,故障录波器的采样速率应达到5kHz。但高的采样速率, 则要使用较多的存储空间,同时在进行数据传输时,要花费更长的 时间,这很不利于故障后的快速分析故障。
有一定程度减小,同时有零序电压出现。 • 两相之间故障,两个故障相的电流大小相等,方向相反,没有零序电流 。 • 两相接地故障,两个故障相的电流突变增大,但两个电流之间的相位有
角度差,变化范围随过电阻的不同在60°-180°之间变化,但有零序 电流出现。 • 三相接地故隆或不接地故障,三相电流同步增大,没有零序电流和零 序电压。
07 故障录波器在应用中存在的问题及措施

故障录波及常见故障波形讲解PPT资料【优质版】

故障录波及常见故障波形讲解PPT资料【优质版】

03
故障录波器的原理
➢ 动作原理
由电压互感器、电流互感器提供的电流经A/D转换器,将模 拟信号变为数字量,在送入计算机,由CPU处理后存入存储器, 进行检测计算,探测故障.断路器位置及保护动作情况经开关量 输入接口变成电信号,再经隔离之后,成组进入CPU处理储存。 在正常情况下,CPU采集到电流电压突变量,或过电流、过电 压、零序电流、开关状态变化等信号时,启动故障录波。由于 数据采集是连续的,故可将故障前一定时段的数据和故障后的 全部数据采集送入RAM。然后存入磁盘,由离线分析程序显示 出波形曲线图、一次/二次录波值等。
利用故障录波器记录下来的保护事件和开关副 节点状态信息找出保护不正确动作原因
03
故障录波器的原理
➢ 故障录波器
用来记录电力系统中电气量和非电气量以及开关量的 自动记录装置,通过记录和监视系统中模拟量和事件量来 对系统中发生的故障和异常等事件生成故障波形储存,通 过分析软件的处理对波形进行分析和计算,从而对故障性 质故障发生点的距离,故障的严重程度进行准确地判断。
器 的 作 用 主 要 体 现 在 以 下 三 个 方 面 : 故障分析和电能质量分析;
模拟量采样及记录方式按下图执行 根据以上特点分析判断故障性质为两相接地短路,故障相为接地电流明显增大的那两相 重合成功,三相电流流恢复正常负荷电流,三相电压恢复对称。 (3)故障录波器存储单元损坏 在正常情况下,CPU采集到电流电压突变量,或过电流、过电压、零序电流、开关状态变化等信号时,启动故障录波。
的处理对波形进行分析和计算,从而对故障性质故障发生点的距离,故障的严重程度进行准确地判断。
地 记 录 故 障 的 暂 态 电力行业标准规定,故障录波器的采样速率应达到5kHz。

故障录波识图基础及典型故障分析课件

故障录波识图基础及典型故障分析课件
总结词
变压器故障录波可以监测其运行状态,为设备检修提供依据,保障电力系统的稳 定运行。
详细描述
变压器故障录波可以记录其运行过程中的电压、电流、温度等参数的变化情况, 通过分析这些数据,可以判断出变压器的健康状态,为设备检修提供依据。
案例三:电机故障录波在工业生产中的应用
总结词
电机故障录波能够监测电机的运行状态,为工业生产中的设 备维护提供依据,保障生产线的稳定运行。
设备故障诊断与预防
设备故障检测
通过分析故障录波数据,可以检 测出电力设备是否存在故障。
设备故障类型识别
故障录波数据可以帮助识别电力 设备的故障类型。
设备维护策略制定
基于故障录波数据,可以制定更 有效的设备维护策略,预防设备
故障。
电力系统的运行监控
1 2
电力系统运行状态监测
通过实时监测电力系统的运行状态,及时发现异 常情况。
04
故障录波的应用场景
电力系统稳定性分析
电力系统的暂态稳性
通过故障录波数据,可以分析电力系统在故障情况下的暂态稳定 性,为系统设计提供依据。
电力系统的动态稳定性
故障录波数据可以用于分析电力系统的动态稳定性,预测系统在故 障情况下的行为。
电力系统的频率稳定性
通过故障录波数据,可以分析电力系统在故障情况下的频率稳定性 ,确保系统的频率波动在可接受的范围内。
02
这些记录的波形图可以用于分析 故障类型、原因和影响,为后续 的维护和修复工作提供重要依据 。
故障录波的重要性
故障录波对于电力系统的安全稳定运 行至关重要。
通过分析故障录波,可以及时发现并 解决潜在的故障隐患,避免事故扩大 ,保障电力系统的稳定供电。
故障录波的历史与发展

故障录波图讲义讲解学习

故障录波图讲义讲解学习

故障录波图讲义幻灯片1故障录波图分析幻灯片2在我们的日常生产中经常需要通过录波图来分析电力系统到底发生了什么样的故障?保护装置的动作行为是否正确?二次回路接线是否正确?CT、PT极性是否正确等等问题。

接下来我就先讲一下分析录波图的基本方法:1、当我们拿到一张录波图后,首先要通过前面所学的知识大致判断系统发生了什么故障,故障持续了多长时间。

2、以某一相电压或电流的过零点为相位基准,查看故障前电流电压相位关系是否正确,是否为正相序?负荷角为多少度?3、以故障相电压或电流的过零点为相位基准,确定故障态各相电流电压的相位关系。

(注意选取相位基准时应躲开故障初始及故障结束部分,因为这两个区间一是非周期分量较大,二是电压电流夹角由负荷角转换为线路阻抗角跳跃较大,容易造成错误分析)4、绘制向量图,进行分析。

幻灯片3第一节单相接地短路故障录波图分析幻灯片4分析单相接地故障录波图要点:1、一相电流增大,一相电压降低;出现零序电流、零序电压。

2、电流增大、电压降低为同一相别。

3、零序电流相位与故障相电流同向,零序电压与故障相电压反向。

4、故障相电压超前故障相电流约80度左右;零序电流超前零序电压约110度左右。

当我们看到符合第1条的一张录波图时,基本上可以确定系统发生了单相接地短路故障;若符合第2条可以确定电压、电流相别没有接错;符合第3条、第4条可以确定保护装置、二次回路整体均没有问题幻灯片5(不考虑电压、电流同时接错的问题,对于同时接错的问题需要综合考虑,比如说你可以收集同一系统上下级变电所的录波图,对于同一个系统故障各个变电所录波图反映的情况应该是相同的,那么与其他站反映的故障相别不同的变电站就需要进行现场测试)。

若单相接地短路故障出现不符合上述条件情况,那么需要仔细分析,查找二次回路是否存在问题。

这里需要特别说明一下南瑞公司的900系列线路保护装置,该系列保护在计算零序保护时加入了一个78度的补偿阻抗,其录波图上反映的是零序电流超前零序电压180度左右。

故障录波及常见故障波形讲解

故障录波及常见故障波形讲解

(1)一相电流增大,一相电压降低;出现零序电流、零序电压
1、发生故障的电气元件和故障类型;
故障录波器在应用中存在的问题及措施
2、保护动作时间和故障切除时间; 5、详细的保护动作情况;
利用故障录波器记录下来的保护事件和开关副
A但/D高转的换采器样的速位率数,则决要定使了用录较波多器的记存录储数空据间的,节同准时确点在度进。状行数态据传信输时息,要找花费出更长保的时护间,不这很正不利确于故动障后作的原快速因分析故障。
07 故障录波器在应用中存在的问题及措施
故障录波器在实际应用过程中会出现保护管理机调不到故 障波形的故障,严重影响了故障波形的分析,在系统发生故障时将 影响对故障性质的判断,根据现场处理的情况有以下几种原因导 致该故障的发生: (1)保护管理机与故障录波器之间通信中断 (2)保护管理机死机导致死数据 (3)故障录波器存储单元损坏
05 故障录波器的主要参数
➢ 1、采样速率
采样速率的高低决定了录波器对高次谐波的记录能力,在系 统发生故障之初,故障波形的高次谐波非常严重,因此,为了较真实 地记录故障的暂态过程,录波器要有较高的采样速率。电力行业 标准规定,故障录波器的采样速率应达到5kHz。但高的采样速率, 则要使用较多的存储空间,同时在进行数据传输时,要花费更长的 时间,这很不利于故障后的快速分析故障。
➢ 4、三相故障
系 统 有 故 障 但 保 护 装 置 拒 动 5、录波数据采样及记录方式
如采果样是 速线率路的P高T低,决在定线•了路录两波端器故对障高均次切谐除波后的故记障录相能电力压,在变系为统0,零发序生电故流障变之得初很,故小障或波为形0的,但高有次很谐大波的非零常序严电重压,因。此,为了较真实地记录故障的暂态过程,录波器要有较高的采样速率。

故障录波器波形分析

故障录波器波形分析

故障录波器波形分析1.转换波形数据:将录波器记录的波形数据转换成图表形式,以便更直观地观察和分析。

2.故障类型判断:通过观察波形,可以判断出故障类型,如短路故障、接地故障、过电压故障等。

3.故障原因分析:根据录波器记录的波形特点,可以分析出故障发生的原因。

例如,如果录波器记录到了电流突变和电压波动,可以判断是由于短路故障或者设备故障引起的。

4.故障位置定位:通过分析故障波形的传播时间和电流电压的大小变化,可以估计故障发生的位置。

例如,通过测量电流和电压的相位差和传播时间,可以利用时差法或半径法进行故障位置的定位。

5.故障后果预测:根据录波器记录的波形,可以对故障后果进行预测。

例如,通过分析电流的大小和变化,可以预测设备是否会损坏,以及故障对电网运行和负荷供应的影响程度。

故障录波器波形分析的优势在于能够提供准确的故障信息和相对精确的故障位置,可以帮助维修人员迅速定位故障点和采取相应的修复措施。

此外,录波器还可以在故障发生的瞬间记录数据,避免了人工分析时可能的遗漏和误判。

然而,故障录波器波形分析也存在一些限制。

首先,必须依赖于高质量的录波器设备和准确的数据采集。

其次,对于复杂的故障,需要综合考虑多个因素才能得出准确的判断结果。

再者,对于一些细微的故障,波形分析可能无法捕捉到相关的特征,需要借助其他手段进行进一步的分析。

总之,故障录波器波形分析是电力系统故障处理中重要的一环,可以帮助维修人员准确快速地定位故障情况,从而提高维修效率。

随着技术的不断发展,故障录波器波形分析的方法和设备也在不断改进和完善,为电力系统的安全运行提供了有力的支持。

故障录波录波图分析word版

故障录波录波图分析word版

故障录波录波图分析各类故障情形下的波行特点:单相接地故障,故障相电流和零序电流大小相等且同相位,故障相电压有必然程度减小,同时有零序电压显现。

两相之间故障,两个故障相的电流大小相等,方向相反,没有零序电流。

两相接地故障,两个故障相的电流突变增大,但两个电流之间的相位有角度差,转变范围随过渡电阻的不同在60°-180°之间转变,但有零序电流显现。

三相接地故障或不接地故障,三相电流同步增大,没有零序电流和零序电压。

故障进程中的波形特点:➢故障相电流有明显突变增大,电压有必然程度减小,同时有零序电压和零序电流显现➢在故障切除后,电流通道变成一根直线。

若是是线路PT,在线路两头故障均切除后故障相电压变成0,零序电流变得很小或为0,但有专门大的零序电压。

重合成功。

三相电流恢复正常负荷电流,三相电压恢复对称。

依照故障录波图能够取得的信息1、发生故障的电气元件和故障类型2、爱惜动作时刻和故障切除时刻3、故障电流和故障电压4、重合时刻和是不是重合成功5、详细的爱惜动作情形6、完成附属功能(测距、阻抗轨迹、相量和谐波分析等)7、直流是不是正常,是不是接地、短路8、高频是不是发信在咱们的日常生产中常常需要通过录波图来分析电力系统到底发生了什么样的故障?爱惜装置的动作行为是不是正确?二次回路接线是不是正确?CT、PT 极性是不是正确等等问题。

接下来我就先讲一下分析录波图的大体方式:一、当咱们拿到一张录波图后,第一要通过前面所学的知识大致判定系统发生了什么故障,故障持续了多长时刻。

二、以某一相电压或电流的过零点为相位基准,查看故障前电流电压相位关系是不是正确,是不是为正相序?负荷角为多少度?3、以故障相电压或电流的过零点为相位基准,确信故障态各相电流电压的相位关系。

(注意选取相位基准时应躲开故障初始及故障终止部份,因为这两个区间一是非周期分量较大,二是电压电流夹角由负荷角转换为线路阻抗角跳跃较大,容易造成错误分析)4、绘制向量图,进行分析。

故障录波及常见故障波形讲解

故障录波及常见故障波形讲解

05 故障录波器的主要参数
➢ 5、录波数据采样及记录方式 • 5.2、不定长录波的实现
1)非振荡故障启动 a)第一次启动,按A→B→C→D顺序录波; b)除A、B段外,如果正在录波又出现一次启动,则录波立即回到S点重新开始A→B→C→D顺序录。 2)自动终止记录条件(同时符合如下条件时,则自动停止记录) a)记录时间>3s; b)所有启动量全部复归。
• 10、你要做多大的事情,就该承受多大的压力。12/11/
2020 3:42:37 AM03:42:372020/12/11
• 11、自己要先看得起自己,别人才会看得起你。12/11/
谢 谢 大 家 2020 3:42 AM12/11/2020 3:42 AM20.12.1120.12.11
• 12、这一秒不放弃,下一秒就会有希望。11-Dec-2011 December 202020.12.11
08
典型故障波形的分析
➢ 2、两相接地短路故障
根据分析两相接地短路故障录波图得出以下特点:
(1)两相电流增大,两相电压降低;出现零序电流、零序电压 (2)电流增大、电压降低为相同两个相别 (3)零序电流向量为位于故障两相电流间。 根据以上特点分析判断故障性质为两相接地短路,故障相为接地电流明 显增大的那两相
02
故障录波器的功能
根据电力系统发生故障的不同情况,对应于故障录波 器的作用主要体现在以下三个方面:
➢ 1、系统发生故障,保护动作不正确 利用故障录波器记录下来的电压、电流量对故障线路
进行测距,同时给出能否强送的依据
02
故障录波器的功能
➢ 2、电力系统元件发生不明原因跳闸 利用故障录波器记录下来的电压、电流量判断出是否
05 故障录波器的主要参数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电气知识:微机故障录波图形分析在我们的日常生产中经常需要通过录波图来分析电力系统到底发生了什么样的故障?保护装置的动作行为是否正确?二次回路接线是否正确?CT、PT 极性是否正确等等问题。

接下来我就先讲一下分析录波图的基本方法:
1、当我们拿到一张录波图后,首先要通过前面所学的知识大致判断系统发生了什么故障,故障持续了多长时间。

2、以某一相电压或电流的过零点为相位基准,查看故障前电流电压相位关系是否正确,是否为正相序?负荷角为多少度?
3、以故障相电压或电流的过零点为相位基准,确定故障态各相电流电压的相位关系。

(注意选取相位基准时应躲开故障初始及故障结束部分,因为这两个区间一是非周期分量较大,二是电压电流夹角由负荷角转换为
线路阻抗角跳跃较大,容易造成错误分析)
4、绘制向量图,进行分析。

1、单相接地短路故障录波图分析:
分析单相接地故障录波图要点:
1、一相电流增大,一相电压降低;出现零序电流、零序电压。

2、电流增大、电压降低为同一相别。

3、零序电流相位与故障相电流同向,零序电压与故障相电压反向。

4、故障相电压超前故障相电流约80 度左右;零序电流超前零序电
压约110 度左右。

当我们看到符合第1 条的一张录波图时,基本上可以确定系统发生了单相接地短路故障;若符合第2 条可以确定电压、电流相别
没有接错;符合第3 条、第4 条可以确定保护装置、二次回路整体
均没有问题(不考虑电压、电流同时接错的问题,对于同时接错的
问题需要综合考虑,比如说你可以收集同一系统上下级变电所的录
波图,对于同一个系统故障各个变电所录波图反映的情况应该是相
同的,那么与其他站反映的故障相别不同的变电站就需要进行现场
测试)。

若单相接地短路故障出现不符合上述条件情况,那么需要仔
细分析,查找二次回路是否存在问题。

这里需要特别说明一下南瑞公司的900 系列线路保护装置,该系列保护在计算零序保护时加入了一个78 度的补偿阻抗,其录波图
上反映的是零序电流超前零序电压180 度左右。

对于分析录波图,第4 条是非常重要的,对于单相故障,故障相电压超前故障相电流约80 度左右;对于多相故障,则是故障相间
电压超前故障相间电流约80 度左右;“80 度左右”的概念实际上就
是短路阻抗角,也即线路阻抗角。

2、两相短路故障录波图分析:
分析两相短路故障录波图要点:
1、两相电流增大,两相电压降低;没有零序电流、零序电压。

2、电流增大、电压降低为相同两个相别。

3、两个故障相电流基本反向。

4、故障相间电压超前故障相间电流约80 度左右。

若两相短路故障出现不符合上述条件情况,那么需要仔细分析,查找二次回路是否存在问题。

比如说有一条线路正常运行时负荷电流基本没有,发生故障后保护拒动。

我们来分析一下由录波图绘制的向量图。

对照要点分析录波图,前三条都满足,但第四条不满足,绘制出向量图以后成了故障相间电压滞后故障相间电流约110 度左右。

大家想一下,保护回路出了什么问题?通过分析可以看出保护的 A 相电流与B 相电流接反了,但由于装置正常运行时负荷电流基本为零,装置不会报警。

将A、B 两根电流线交换后,第四条变成满足,证明保护装置接线不再有问题。

所以再重申一遍:对于分析录波图,第4 条是非常重要的,对于单相故障,故障相电压超前故障相电流约80 度左右;对于多相故障,则是故障相间电压超前故障相间电流约80 度左右;“80 度左右”的概念实际上就是短路阻抗角,也即线路阻抗角。

3、两项接地短路
分析两相接地短路故障录波图要点:
1、两相电流增大,两相电压降低;出现零序电流、零序电压。

2、电流增大、电压降低为相同两个相别。

3、零序电流向量为位于故障两相电流间。

4、故障相间电压超前故障相间电流约80 度左右;零序电流超前零
序电压约110 度左右。

若两相接地短路故障出现不符合上述条件情况,那么需要仔细分析,查找二次回路是否存在问题。

4、三相短路故障录波图分析:
分析三相短路故障录波图要点:
1、三相电流增大,三相电压降低;没有零序电流、零序电压。

2、故障相电压超前故障相电流约80 度左右;故障相间电压超前故
障相间电流同样约80 度左右
若两相接地短路故障出现不符合上述条件情况,那么需要仔细分析,查找二次回路是否存在问题。

相关文档
最新文档