2015年高考数学试题分类汇编-----专题九(导数及应用)

合集下载

2015年高考数学真题导数(文科)及答案

2015年高考数学真题导数(文科)及答案

导数1.【2015高考福建,文12】“对任意(0,)2x π∈,sin cos k x x x <”是“1k <”的( )A .充分而不必要条件B .必要而不充分条件C . 充分必要条件D .既不充分也不必要条件 【答案】B【解析】当1k <时,sin cos sin 22k k x x x =,构造函数()sin 22kf x x x =-,则'()cos 210f x k x =-<.故()f x 在(0,)2x π∈单调递增,故()()022f x f ππ<=-<,则sin cos k x x x <; 当1k =时,不等式sin cos k x x x <等价于1sin 22x x <,构造函数1()sin 22g x x x =-,则'()cos 210g x x =-<,故()g x 在(0,)2x π∈递增,故()()022g x g ππ<=-<,则sin cos x x x <.综上所述,“对任意(0,)2x π∈,sin cos k x x x <”是“1k <”的必要不充分条件,选B .【考点定位】导数的应用.【名师点睛】本题以充分条件和必要条件为载体考查三角函数和导数在单调性上的应用,根据已知条件构造函数,进而研究其图象与性质,是函数思想的体现,属于难题. 2.【2015高考湖南,文8】设函数()ln(1)ln(1)f x x x =+--,则()f x 是( ) A 、奇函数,且在(0,1)上是增函数 B 、奇函数,且在(0,1)上是减函数 C 、偶函数,且在(0,1)上是增函数 D 、偶函数,且在(0,1)上是减函数 【答案】A 【解析】 函数()ln(1)ln(1)f x x x =+--,函数的定义域为(-1,1),函数()ln(1)ln(1)()f x x x f x -=--+=-所以函数是奇函数.()2111'111f x x x x=+=+-- ,在(0,1)上()'0f x > ,所以()f x 在(0,1)上单调递增,故选A. 【考点定位】利用导数研究函数的性质【名师点睛】利用导数研究函数()f x 在(a ,b)内的单调性的步骤:(1)求()'f x ;(2)确认()'f x 在(a ,b)内的符号;(3)作出结论:()'0f x >时为增函数;()'0f x <时为减函数.研究函数性质时,首先要明确函数定义域.3.【2015高考北京,文8】某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.注:“累计里程“指汽车从出厂开始累计行驶的路程在这段时间内,该车每100千米平均耗油量为( )A .6升B .8升C .10升D .12升 【答案】B【解析】因为第一次邮箱加满,所以第二次的加油量即为该段时间内的耗油量,故耗油量48V =升. 而这段时间内行驶的里程数3560035000600S =-=千米. 所以这段时间内,该车每100千米平均耗油量为481008600⨯=升,故选B. 【考点定位】平均变化率.【名师点晴】本题主要考查的是平均变化率,属于中档题.解题时一定要抓住重要字眼“每100千米”和“平均”,否则很容易出现错误.解此类应用题时一定要万分小心,除了提取必要的信息外,还要运用所学的数学知识进行分析和解决问题.4.【2015高考新课标1,文14】已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则 a = . 【答案】1 【解析】试题分析:∵2()31f x ax '=+,∴(1)31f a '=+,即切线斜率31k a =+,又∵(1)2f a =+,∴切点为(1,2a +),∵切线过(2,7),∴273112a a +-=+-,解得a =1.考点:利用导数的几何意义求函数的切线;常见函数的导数;【名师点睛】对求过某点的切线问题,常设出切点,利用导数求出切线方程,将已知点代入切线方程得到关于切点横坐标的方程,解出切点的横坐标,即可求出切线方程,思路明确,关键是运算要细心.5.【2015高考天津,文11】已知函数()()ln ,0,f x ax x x =∈+∞ ,其中a 为实数,()f x '为()f x 的导函数,若()13f '= ,则a 的值为 .【答案】3【解析】因为()()1ln f x a x '=+ ,所以()13f a '==. 【考点定位】本题主要考查导数的运算法则.【名师点睛】本题考查内容单一,求出()()1ln f x a x '=+由,再由()13f '=可直接求得a 的值,因此可以说本题是一道基础题,但要注意运算的准确性,由于填空题没有中间分,一步出错,就得零分,故运算要特别细心.6.【2015高考陕西,文15】函数xy xe =在其极值点处的切线方程为____________. 【答案】1y e=-【解析】()()(1)xxy f x xe f x x e '==⇒=+,令()01f x x '=⇒=-,此时1(1)f e-=-函数xy xe =在其极值点处的切线方程为1y e=- 【考点定位】:导数的几何意义.【名师点睛】1.本题考查导数的几何意义,利用导数研究曲线上某点处切线方程等基础知识,考查运算求解能力.2.解决导数几何意义的问题时要注意抓住切点的三重作用:○1切点在曲线上;○2切点在切线上;○3切点处导函数值等于切线斜率. 7.【2015高考安徽,文21】已知函数)0,0()()(2>>+=r a r x axx f (Ⅰ)求)(x f 的定义域,并讨论)(x f 的单调性; (Ⅱ)若400=ra,求)(x f 在),0(+∞内的极值. 【答案】(Ⅰ)递增区间是(-r ,r );递减区间为(-∞,-r )和(r ,+∞);(Ⅱ)极大值为100;无极小值.【解析】(Ⅰ)由题意可知r x -≠ 所求的定义域为()()r r -∞--+∞,,. 2222)()(r xr x axr x ax x f ++=+=,422222)())(()2()22()2()(r x r x x r a r xr x r x ax r xr x a x f ++-=+++-++=' 所以当r x -<或r x >时,0)(<'x f ,当r x r <<-时,0)(>'x f因此,)(x f 单调递减区间为),(),,(+∞--∞r r ;)(x f 的单调递增区间为(),r r -. (Ⅱ)由(Ⅰ)的解答可知0)('=r f )(x f 在()r ,0上单调递增,在()+∞,r 上单调递减. 因此r x =是)(x f 的极大值点,所以)(x f 在),0(+∞内的极大值为()100440042)(2====r a r ar r f ,)在(+∞,0)(x f 内无极小值; 综上,)在(+∞,0)(x f 内极大值为100,无极小值.【考点定位】本题主要考查了函数的定义域、利用导数求函数的单调性,以及求函数的极值等基础知识.【名师点睛】本题在利用导数求函数的单调性时要注意,求导后的分子是一个二次项系数为负数的一元二次式,在求0)(>'x f 和0)(<'x f 时要注意,本题主要考查考生对基本概念的掌握情况和基本运算能力.8.【2015高考北京,文19】(本小题满分13分)设函数()2ln 2x f x k x =-,0k >.(I )求()f x 的单调区间和极值;(II )证明:若()f x 存在零点,则()f x 在区间(上仅有一个零点.【答案】(I )单调递减区间是,单调递增区间是)+∞;极小值(1ln )2k k f -=;(II )证明详见解析.2'()k x kf x x x x-=-=.由'()0f x =解得x =.()f x 与'()f x 在区间(0,)+∞上的情况如下:所以,()f x 的单调递减区间是,单调递增区间是)+∞;()f x 在x =处取得极小值(1ln )2k k f -=.(Ⅱ)由(Ⅰ)知,()f x 在区间(0,)+∞上的最小值为(1ln )2k k f -=. 因为()f x 存在零点,所以(1ln )02k k -≤,从而k e ≥.当k e =时,()f x 在区间上单调递减,且0f =,所以x =是()f x 在区间上的唯一零点.当k e >时,()f x 在区间上单调递减,且1(1)02f =>,02e kf -=<,所以()f x 在区间上仅有一个零点.综上可知,若()f x 存在零点,则()f x 在区间上仅有一个零点.考点:导数的运算、利用导数判断函数的单调性、利用导数求函数的极值、函数零点问题. 【名师点晴】本题主要考查的是导数的运算、利用导数判断函数的单调性、利用导数求函数的极值和函数的零点,属于难题.利用导数求函数()f x 的单调性与极值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③求方程()0f x '=的所有实数根;④列表格.证明函数仅有一个零点的步骤:①用零点存在性定理证明函数零点的存在性;②用函数的单调性证明函数零点的唯一性.9.【2015高考福建,文22】已知函数2(1)()ln 2x f x x -=-.(Ⅰ)求函数()f x 的单调递增区间; (Ⅱ)证明:当1x >时,()1f x x <-;(Ⅲ)确定实数k 的所有可能取值,使得存在01x >,当0(1,)x x ∈时,恒有()()1f x k x >-.【答案】(Ⅰ) ⎛ ⎝;(Ⅱ)详见解析;(Ⅲ)(),1-∞. 【解析】(I )()2111x x f x x x x-++'=-+=,()0,x ∈+∞.由()0f x '>得210x x x >⎧⎨-++>⎩解得0x <<.故()f x 的单调递增区间是⎛ ⎝. (II )令()()()F 1x f x x =--,()0,x ∈+∞.则有()21F x x x-'=.当()1,x ∈+∞时,()F 0x '<, 所以()F x 在[)1,+∞上单调递减,故当1x >时,()()F F 10x <=,即当1x >时,()1f x x <-. (III )由(II )知,当1k =时,不存在01x >满足题意.当1k >时,对于1x >,有()()11f x x k x <-<-,则()()1f x k x <-,从而不存在01x >满足题意.当1k <时,令()()()G 1x f x k x =--,()0,x ∈+∞,则有()()2111G 1x k x x x k x x-+-+'=-+-=.由()G 0x '=得,()2110x k x -+-+=.解得10x =<,21x =>.当()21,x x ∈时,()G 0x '>,故()G x 在[)21,x 内单调递增. 从而当()21,x x ∈时,()()G G 10x >=,即()()1f x k x >-, 综上,k 的取值范围是(),1-∞. 【考点定位】导数的综合应用.【名师点睛】利用导数判断或求函数的单调区间,通过不等式'()0f x >或'()0f x <求解,但是要兼顾定义域;利用导数研究函数的单调性,再用单调性来证明不等式是函数、导数、不等式综合中的一个难点,解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或最值,从而证得不等式,注意()()f x g x >与min max ()()f x g x >不等价,min max ()()f x g x >只是()()f x g x >的特例,但是也可以利用它来证明,在2014年全国Ⅰ卷理科高考21题中,就是使用该种方法证明不等式;导数的强大功能就是通过研究函数极值、最值、单调区间来判断函数大致图象,这是利用研究基本初等函数方法所不具备的,而是其延续.10.【2015高考广东,文21】(本小题满分14分)设a 为实数,函数()()()21f x x a x a a a =-+---.(1)若()01f ≤,求a 的取值范围; (2)讨论()f x 的单调性; (3)当2a ≥时,讨论()4f x x+在区间()0,+∞内的零点个数. 【答案】(1)1,2⎛⎤-∞ ⎥⎝⎦;(2))(x f 在),(+∞a 上单调递增,在),(a -∞上单调递减;(3)当2=a 时,()4f x x +有一个零点2x =;当2>a 时,()4f x x+有两个零点. 【解析】试题分析:(1)先由()01f <可得1≤+a a ,再对a 的取值范围进行讨论可得1≤+a a 的解,进而可得a 的取值范围;(2)先写函数()f x 的解析式,再对a 的取值范围进行讨论确定函数()f x 的单调性;(3)先由(2)得函数()f x 的最小值,再对a 的取值范围进行讨论确定()4f x x+在区间()0,+∞内的零点个数. 试题解析:(1)22(0)f a a a a a a =+-+=+,因为()01f ≤,所以1≤+a a , 当0≤a 时,10≤,显然成立;当0>a ,则有12≤a ,所以21≤a .所以210≤<a . 综上所述,a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦.(2)()⎪⎩⎪⎨⎧<++-≥--=ax a x a x ax x a x x f ,2)12(,12)(22对于()x a x u 1221--=,其对称轴为a a a x <-=-=21212,开口向上, 所以)(x f 在),(+∞a 上单调递增;对于()a x a x u 21221++-=,其对称轴为a a a x >+=+=21212,开口向上, 所以)(x f 在),(a -∞上单调递减.综上所述,)(x f 在),(+∞a 上单调递增,在),(a -∞上单调递减.(3)由(2)得)(x f 在),(+∞a 上单调递增,在),0(a 上单调递减,所以2min )()(a a a f x f -==.(i)当2=a 时,2)2()(min -==f x f ,⎪⎩⎪⎨⎧<+-≥-=2,452,3)(22x x x x x x x f令()40f x x +=,即xx f 4)(-=(0x >). 因为)(x f 在)2,0(上单调递减,所以2)2()(-=>f x f而x y 4-=在)2,0(上单调递增,2)2(-=<f y ,所以)(x f y =与xy 4-=在)2,0(无交点. 当2≥x 时,xx x x f 43)(2-=-=,即04323=+-x x ,所以042223=+--x x x ,所以()0)1(22=+-x x ,因为2≥x ,所以2=x ,即当2=a 时,()4f x x+有一个零点2x =.(ii)当2>a 时,2min )()(a a a f x f -==,当),0(a x ∈时,42)0(>=a f ,2)(a a a f -=,而xy 4-=在),0(a x ∈上单调递增, 当a x =时,a y 4-=.下面比较2)(a a a f -=与a4-的大小 因为0)2)(2()4()4(2232<++--=---=---aa a a a a a a a a所以aa a a f 4)(2-<-=结合图象不难得当2>a 时,)(x f y =与xy 4-=有两个交点. 综上所述,当2=a 时,()4f x x +有一个零点2x =;当2>a 时,()4f x x+有两个零点. 考点:1、绝对值不等式;2、函数的单调性;3、函数的最值;4、函数的零点.【名师点晴】本题主要考查的是绝对值不等式、函数的单调性、函数的最值和函数的零点,属于难题.零点分段法解绝对值不等式的步骤:①求零点;②划区间,去绝对值号;③分别解去掉绝对值的不等式;④取每段结果的并集,注意在分段时不要遗漏区间的端点值.判断函数的单调性的方法:①基本初等函数的单调性;②导数法.判断函数零点的个数的方法:①解方程法;②图象法.11.【2015高考湖北,文21】设函数()f x ,()g x 的定义域均为R ,且()f x 是奇函数,()g x 是偶函数,()()e x f x g x +=,其中e 为自然对数的底数.(Ⅰ)求()f x ,()g x 的解析式,并证明:当0x >时,()0f x >,()1g x >; (Ⅱ)设0a ≤,1b ≥,证明:当0x >时,()()(1)()(1)f x ag x a bg x b x+-<<+-. 【答案】(Ⅰ)1()(e e )2x x f x -=-,1()(e e )2x x g x -=+.证明:当0x >时,e 1x >,0e 1x -<<,故()0.f x >又由基本不等式,有1()(e e )12x x g x -=+>=,即() 1.g x > (Ⅱ)由(Ⅰ)得2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x f x g x -''=-=+=+=⑤2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x g x f x -''=+=-=-=⑥当0x >时,()()(1)f x ag x a x >+-等价于()()(1)f x axg x a x >+- ⑦ ()()(1)f x bg x b x<+-等价于()()(1).f x bxg x b x <+- ⑧于是设函数 ()()()(1)h x f x cxg x c x =---,由⑤⑥,有()()()()(1)h x g x cg x cxf x c '=----(1)[()1]().c g x cxf x =--- 当0x >时,(1)若0c ≤,由③④,得()0h x '>,故()h x 在[0,)+∞上为增函数,从而()(0)0h x h >=,即()()(1)f x cxg x c x >+-,故⑦成立.(2)若1c ≥,由③④,得()0h x '<,故()h x 在[0,)+∞上为减函数,从而()(0)0h x h <=,即()()(1)f x cxg x c x <+-,故⑧成立.综合⑦⑧,得 ()()(1)()(1)f x ag x a bg x b x+-<<+-.【考点定位】本题考查函数的奇偶性和导数在研究函数的单调性与极值中的应用,属高档题.【名师点睛】将函数的奇偶性和导数在研究函数的单调性与极值中的应用联系在一起,重点考查函数的综合性,体现了函数在高中数学的重要地位,其解题的关键是第一问需运用奇函数与偶函数的定义及性质建立方程组进行求解;第二问属于函数的恒成立问题,需借助导数求解函数最值来解决.12.【2015高考山东,文20】设函数()()ln f x x a x =+,2()ex x g x =. 已知曲线()y f x =在点(1(1))f ,处的切线与直线20x y -=平行.(I ) 求a 的值;(II ) 是否存在自然数k ,使得方程()()f x g x =在(1)k k +,内存在唯一的根?如果存在,求出k ;如果不存在,请说明理由;(III ) 设函数()min{()()}m x f x g x =,(min{}p q ,表示p q ,中的较小值),求()m x 的 最大值.【答案】(I )1a = ;(II) 1k = ;(III)24e . 【解析】(I )由题意知,曲线在点(1,(1))f 处的切线斜率为2,所以'(1)2f =, 又'()ln 1,a f x x x=++所以1a =. (II )1k =时,方程()()f x g x =在(1,2)内存在唯一的根. 设2()()()(1)ln ,x x h x f x g x x x e=-=+- 当(0,1]x ∈时,()0h x <. 又2244(2)3ln 2ln 8110,h e e =-=->-= 所以存在0(1,2)x ∈,使0()0h x =. 因为1(2)'()ln 1,x x x h x x x e -=+++所以当(1,2)x ∈时,1'()10h x e>->,当(2,)x ∈+∞时,'()0h x >,所以当(1,)x ∈+∞时,()h x 单调递增.所以1k =时,方程()()f x g x =在(,1)k k +内存在唯一的根.(III )由(II )知,方程()()f x g x =在(1,2)内存在唯一的根0x ,且0(0,)x x ∈时,()()f x g x <,0(,)x x ∈+∞时,()()f x g x >,所以020(1)ln ,(0,](),(,)xx x x x m x x x x e +∈⎧⎪=⎨∈+∞⎪⎩. 当0(0,)x x ∈时,若(0,1],()0;x m x ∈≤若0(1,),x x ∈由1'()ln 10,m x x x=++>可知00()();m x m x <≤故0()().m x m x ≤ 当0(,)x x ∈+∞时,由(2)'(),x x x m x e -=可得0(,2)x x ∈时,'()0,()m x m x >单调递增;(2,)x ∈+∞时,'()0,()m x m x <单调递减; 可知24()(2),m x m e ≤=且0()(2)m x m <. 综上可得函数()m x 的最大值为24e . 【考点定位】1.导数的几何意义;2.应用导数研究函数的单调性、最值;3.函数零点存在性定理.【名师点睛】本题考查了导数的几何意义、应用导数研究函数的性质、函数零点存在性定理等,解答本题的主要困难是(II )(III)两小题,首先是通过构造函数,利用函数零点存在性定理,作出判断,并进一步证明函数在给定区间的单调性,明确方程()()f x g x =在(,1)k k +内存在唯一的根.其次是根据(II )的结论,确定得到()m x 的表达式,并进一步利用分类讨论思想,应用导数研究函数的单调性、最值.本题是一道能力题,属于难题.在考查导数的几何意义、应用导数研究函数的性质、函数零点存在性定理等基础知识的同时,考查考生的计算能力、应用数学知识分析问题解决问题的能力及分类讨论思想.本题是教辅材料的常见题型,有利于优生正常发挥.13.【2015高考四川,文21】已知函数f (x )=-2lnx +x 2-2ax +a 2,其中a >0.(Ⅰ)设g (x )为f (x )的导函数,讨论g (x )的单调性;(Ⅱ)证明:存在a ∈(0,1),使得f (x )≥0恒成立,且f (x )=0在区间(1,+∞)内有唯一解.【解析】(Ⅰ)由已知,函数f (x )的定义域为(0,+∞) g (x )=f '(x )=2(x -1-lnx -a )所以g '(x )=2-22(1)x x x-=当x ∈(0,1)时,g '(x )<0,g (x )单调递减当x ∈(1,+∞)时,g '(x )>0,g (x )单调递增(Ⅱ)由f '(x )=2(x -1-lnx -a )=0,解得a =x -1-lnx令Φ(x )=-2xlnx +x 2-2x (x -1-lnx )+(x -1-lnx )2=(1+lnx )2-2xlnx则Φ(1)=1>0,Φ(e )=2(2-e )<0于是存在x 0∈(1,e ),使得Φ(x 0)=0令a 0=x 0-1-lnx 0=u (x 0),其中u (x )=x -1-lnx (x ≥1)由u '(x )=1-1x≥0知,函数u (x )在区间(1,+∞)上单调递增 故0=u (1)<a 0=u (x 0)<u (e )=e -2<1即a 0∈(0,1)当a =a 0时,有f '(x 0)=0,f (x 0)=Φ(x 0)=0再由(Ⅰ)知,f '(x )在区间(1,+∞)上单调递增当x ∈(1,x 0)时,f '(x )<0,从而f (x )>f (x 0)=0当x ∈(x 0,+∞)时,f '(x )>0,从而f (x )>f (x 0)=0又当x ∈(0,1]时,f (x )=(x -a 0)2-2xlnx >0故x ∈(0,+∞)时,f (x )≥0综上所述,存在a ∈(0,1),使得f (x )≥0恒成立,且f (x )=0在区间(1,+∞)内有唯一解.【考点定位】本题主要考查导数的运算、导数在研究函数中的应用、函数的零点等基础知识,考查推理论证能力、运算求解能力、创新意识,考查函数与方程、数形结合、化归与转化等数学思想.【名师点睛】本题第(Ⅰ)问隐藏二阶导数知识点,由于连续两次求导后,参数a 消失,故函数的单调性是确定的,讨论也相对简单.第(Ⅱ)问需要证明的是:对于某个a ∈(0,1),f (x )的最小值恰好是0,而且在(1,+∞)上只有一个最小值.因此,本题仍然要先讨论f (x )的单调性,进一步说明对于找到的a ,f (x )在(1,+∞)上有且只有一个等于0的点,也就是在(1,+∞)上有且只有一个最小值点.属于难题.14.【2015高考新课标1,文21】(本小题满分12分)设函数()2ln x f x e a x =-.(I )讨论()f x 的导函数()f x '的零点的个数;(II )证明:当0a >时()22ln f x a a a≥+. 【答案】(I )当0a £时,()f x ¢没有零点;当0a >时,()f x ¢存在唯一零点.(II )见解析【解析】试题分析:(I )先求出导函数,分0a £与0a >考虑()f x '的单调性及性质,即可判断出零点个数;(II )由(I )可设()f x ¢在()0+¥,的唯一零点为0x ,根据()f x '的正负,即可判定函数的图像与性质,求出函数的最小值,即可证明其最小值不小于22lna a a +,即证明了所证不等式.试题解析:(I )()f x 的定义域为,()2()=20x a f x e x x¢->. 当0a £时,()0f x ¢>,()f x ¢没有零点;当0a >时,因为2x e 单调递增,a x-单调递增,所以()f x ¢在()0+¥,单调递增.又()0f a ¢>,当b 满足04a b <<且14b <时,(b)0f ¢<,故当0a >时,()f x ¢存在唯一零点. (II )由(I ),可设()f x ¢在()0+¥,的唯一零点为0x ,当()00x x Î,时,()0f x ¢<; 当()0+x x 违,时,()0f x ¢>.故()f x 在()00x ,单调递减,在()0+x ¥,单调递增,所以当0x x =时,()f x 取得最小值,最小值为0()f x . 由于0202=0x a e x -,所以00022()=2ln 2ln 2a f x ax a a a x a a++?. 故当0a >时,2()2lnf x a a a ?. 考点:常见函数导数及导数运算法则;函数的零点;利用导数研究函数图像与性质;利用导数证明不等式;运算求解能力.【名师点睛】导数的综合应用是高考考查的重点和热点,解决此类问题,要熟练掌握常见函数的导数和导数的运算法则、掌握通过利用导数研究函数的单调性、极值研究函数的图像与性质.对函数的零点问题,利用导数研究函数的图像与性质,画出函数图像草图,结合图像处理;对恒成立或能处理成立问题,常用参变分离或分类讨论来处理.15.【2015高考浙江,文20】(本题满分15分)设函数2(),(,)f x x ax b a b R =++∈. (1)当214a b =+时,求函数()f x 在[1,1]-上的最小值()g a 的表达式; (2)已知函数()f x 在[1,1]-上存在零点,021b a ≤-≤,求b 的取值范围.【答案】(1)222,2,4()1,22,2,24a a a g a a a a a ⎧++≤-⎪⎪⎪=-<≤⎨⎪⎪-+>⎪⎩;(2)[3,9--【解析】(1)将函数进行配方,利用对称轴与给定区间的位置关系,通过分类讨论确定函数在给定上的最小值,并用分段函数的形式进行表示;(2)设定函数的零点,根据条件表示两个零点之间的不等关系,通过分类讨论,分别确定参数b 的取值情况,利用并集原理得到参数b 的取值范围.试题解析:(1)当214a b =+时,2()()12a f x x =++,故其对称轴为2a x =-. 当2a ≤-时,2()(1)24a g a f a ==++. 当22a -<≤时,()()12ag a f =-=. 当2a >时,2()(1)24a g a f a =-=-+. 综上,222,2,4()1,22,2,24a a a g a a a a a ⎧++≤-⎪⎪⎪=-<≤⎨⎪⎪-+>⎪⎩(2)设,s t 为方程()0f x =的解,且11t -≤≤,则s t a st b +=-⎧⎨=⎩. 由于021b a ≤-≤,因此212(11)22t t s t t t --≤≤-≤≤++. 当01t ≤≤时,222222t t t b t t --≤≤++,由于222032t t --≤≤+和212932t t t --≤≤-+,所以293b -≤≤-当10t -≤≤时,222222t t t b t t --≤≤++, 由于22202t t --≤<+和2302t t t --≤<+,所以30b -≤<.综上可知,b 的取值范围是[3,9--.【考点定位】1.函数的单调性与最值;2.分段函数;3.不等式性质;4.分类讨论思想.【名师点睛】本题主要考查函数的单调性与最值,函数零点问题.利用函数的单调性以及二次函数的对称轴与给定区间的位置关系,利用分类讨论思想确定在各种情况下函数的最小值情况,最后用分段函数的形式进行表示;利用函数与方程思想,确定零点与系数之间的关系,利用其范围,通过分类讨论确定参数b 的取值范围.本题属于中等题,主要考查学生应用函数性质解决有关函数应用的能力,考查学生对数形结合数学、分类讨论思想以及函数与方程思想的应用能力,考查学生基本的运算能力.。

导数的应用专项训练(附解析2015高考数学一轮)

导数的应用专项训练(附解析2015高考数学一轮)

导数的应用专项训练(附解析2015高考数学一轮)导数的应用专项训练(附解析2015高考数学一轮)A组基础演练1.(2013•浙江)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是()解析:在(-1,0)上,f′(x)单调递增,所以f(x)图象的切线斜率呈递增趋势;在(0,1)上,f′(x)单调递减,所以f(x)图象的切线斜率呈递减趋势.故选B.答案:B2.(2012•辽宁)函数y=12x2-lnx的单调递减区间为()A.(-1,1]B.(0,1]C.1,+∞)D.(0,+∞)解析:y=12x2-lnx,y′=x-1x=x2-1x=-+>0).令y′≤0,得0<x≤1,∴递减区间为(0,1].故选B.答案:B3.(理科)(2013•浙江)已知e为自然对数的底数,设函数f(x)=(ex-1)(x-1)k(k=1,2),则()A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值解析:当k=1时,f(x)=(ex-1)(x-1),f′(x)=xex-1,f′(1)≠0,故A、B 错;当k=2时,f(x)=(ex-1)(x-1)2,f′(x)=(x2-1)ex-2x+2=(x-1)(x +1)ex-2],故f′(x)=0有一根为x1=1,另一根x2∈(0,1).当x∈(x2,1)时,f′(x)<0,f(x)递减,当x∈(1,+∞)时,f′(x)>0,f(x)递增,∴f(x)在x=1处取得极小值.故选C.答案:C3.(文科)若函数f(x)=x3-x+1在区间(a,b)(a,b是整数,且b-a=1)上有一个零点,则a+b的值为()A.3B.-2C.2D.-3解析:由于f(-1)=1>0,f(-2)=-5<0,即f(-1)f(-2)<0且函数为增函数,故函数零点必在区间(-2,-1)内,故有a+b=-3.答案:D4.函数f(x)=x3-3x2+2在区间-1,1]上的最大值是()A.-2B.0C.2D.4解析:∵f′(x)=3x2-6x,令f′(x)=0,得x=0或x=2.∴f(x)在-1,0)上是增函数,f(x)在(0,1]上是减函数.∴f(x)max=f(x)极大值=f(0)=2.答案:C5.已知函数f(x)=alnx+x在区间2,3]上单调递增,则实数a的取值范围是________.解析:∵f(x)=alnx+x,∴f′(x)=ax+1.又∵f(x)在2,3]上单调递增,∴ax+1≥0在x∈2,3]上恒成立,∴a≥(-x)max=-2,∴a∈-2,+∞).答案:-2,+∞)6.已知f(x)=2x3-6x2+m(m为常数)在-2,2]上有最大值3,那么此函数在-2,2]上的最小值为________.解析:∵f′(x)=6x2-12x=6x(x-2),∴f(x)在(-2,0)上为增函数,在(0,2)上为减函数,∴当x=0时,f(x)=m最大.∴m=3,从而f(-2)=-37,f(2)=-5.∴最小值为-37.答案:-377.函数f(x)=x3+3ax2+3(a+2)x+1]有极大值又有极小值,则a的取值范围是________.解析:∵f(x)=x3+3ax2+3(a+2)x+1],∴f′(x)=3x2+6ax+3(a+2).令3x2+6ax+3(a+2)=0,即x2+2ax+a+2=0.∵函数f(x)有极大值和极小值,∴方程x2+2ax+a+2=0有两个不相等的实根,即Δ=4a2-4a-8>0,∴a>2或a<-1.答案:a>2或a<-18.(2013•课标全国Ⅰ)已知函数f(x)=ex(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值.解:(1)f′(x)=ex(ax+a+b)-2x-4.由已知得f(0)=4,f′(0)=4.故b=4,a+b=8.从而a=4,b=4.(2)由(1)知,f(x)=4ex(x+1)-x2-4x,f′(x)=4ex(x+2)-2x-4=4(x+2)ex-12.令f′(x)=0,得x=-ln2或x=-2.从而当x∈(-∞,-2)∪(-ln2,+∞)时,f′(x)>0;当x∈(-2,-ln2)时,f′(x)<0.故f(x)在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减.当x=-2时,函数f(x)取得极大值,极大值为f(-2)=4(1-e-2).9.(2014•郑州质量预测)已知函数f(x)=1-xax+lnx.(1)当a=12时,求f(x)在1,e]上的最大值和最小值;(2)若函数g(x)=f(x)-14x在1,e]上为增函数,求正实数a的取值范围.解:(1)当a=12时,f(x)=-+lnx,f′(x)=x-2x2,令f′(x)=0,得x=2,∴当x∈1,2)时,f′(x)<0,故f(x)在1,2)上单调递减;当x∈(2,e]时,f′(x)>0,故f(x)在(2,e]上单调递增,故f(x)min=f(2)=ln2-1.又∵f(1)=0,f(e)=2-ee<0.∴f(x)在区间1,e]上的最大值f(x)max=f(1)=0.综上可知,函数f(x)在1,e]上的最大值是0,最小值是ln2-1. (2)∵g(x)=f(x)-14x=1-xax+lnx-14x,∴g′(x)=-ax2+4ax+44ax2(a>0),设φ(x)=-ax2+4ax-4,由题意知,只需φ(x)≥0在1,e]上恒成立即可满足题意.∵a>0,函数φ(x)的图象的对称轴为x=2,∴只需φ(1)=3a-4≥0,即a≥43即可.故正实数a的取值范围为43,+∞.B组能力突破1.(2013•福建)设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是()A.∀x∈R,f(x)≤f(x0)B.-x0是f(-x)的极小值点C.-x0是-f(x)的极小值点D.-x0是-f(-x)的极小值点解析:函数f(x)的极大值f(x0)不一定是最大值,故A错;f(x)与-f(-x)关于原点对称,故x0(x0≠0)是f(x)的极大值点时,-x0是-f(-x)的极小值点,故选D.答案:D2.f(x)是定义在R上的偶函数,当x<0时,f(x)+x•f′(x)<0,且f(-4)=0,则不等式xf(x)>0的解集为()A.(-4,0)∪(4,+∞)B.(-4,0)∪(0,4)C.(-∞,-4)∪(4,+∞)D.(-∞,-4)∪(0,4)解析:令g(x)=x•f(x),则g(x)为奇函数且当x<0时,g′(x)=f(x)+x•f′(x)<0,∴f(x)的图象的变化趋势如图所示:所以xf(x)>0的解集为(-∞,-4)∪(0,4).答案:D3.设函数f(x)=px-1x-2lnx(p是实数),若函数f(x)在其定义域内单调递增,则实数p的取值范围为________.解析:易知函数f(x)的定义域为(0,+∞),因为f′(x)=px2-2x+px2,要使f(x)为单调增函数,须f′(x)≥0在(0,+∞)上恒成立,即px2-2x+p≥0在(0,+∞)上恒成立,即p≥2xx2+1=2x+1x在(0,+∞)上恒成立,又2x+1x≤1,所以当p≥1时,f(x)在(0,+∞)上为单调增函数.答案:1,+∞)4.(理科)已知函数f(x)=ln|x|,(x≠0),函数g(x)=+af′(x),a∈R.(1)求函数y=g(x)的表达式和单调区间;(2)若a>0,函数y=g(x)在(0,+∞)上的最小值是2,求a的值.解:(1)因为f(x)=ln|x|,所以当x>0时,f(x)=lnx,当x<0时,f(x)=ln(-x).所以当x>0时,f′(x)=1x,当x<0时,f′(x)=1-x•(-1)=1x,∴当x≠0时,f′(x)=1x,所以当x≠0时,函数y=g(x)=x+ax.易知,g(x)为定义在(-∞,0)∪(0,+∞)上的奇函数,且g′(x)=1-ax2=x2-ax2,①当a≤0时,g′(x)>0,g(x)的增区间为(-∞,0)和(0,+∞);②当a>0时,g′(x)=+-,由g′(x)>0得,g(x)的增区间为(-∞,-a)和(a,+∞),由g′(x)<0解得g(x)的减区间是(-a,0)和(0,a).(2)由(1)知,当x>0时,g(x)=x+ax.所以当a>0,x>0时,g(x)≥2a,当且仅当x=a时取等号.所以函数y=g(x)在(0,+∞)上的最小值是2a.所以2a=2.解得a=1.4.(文科)已知函数f(x)=lnx,函数g(x)=+af′(x),a∈R.(1)求函数y=g(x)的单调区间;(2)若a>0,函数y=g(x)在(0,+∞)上的最小值是2,求a的值.解:(1)因为f′(x)=1x,所以g(x)=x+ax,且x>0,g′(x)=1-ax2=x2-ax2,①当a≤0时,g′(x)>0,g(x)在(0,+∞)上递增;②当a>0时,由g′(x)=0得x=a或x=-a(舍)x∈(0,a)时,g′(x)<0;x∈(a,+∞)时,g′(x)>0,即g(x)在(0,a)上递减,在(a,+∞)上递增.综上,当a≤0时,g(x)的增区间为(0,+∞);当a>0时,g(x)的增区间为(a,+∞),减区间为(0,a).(2)由(1),知当x>0时,g(x)=x+ax.所以当a>0,x>0时,g(x)≥2a,当且仅当x=a时取等号.所以函数y=g(x)在(0,+∞)上的最小值是2a.所以2a=2.解得a=1.。

2015年全国各地高考数学试题及解答分类大全(导数及其应用)

2015年全国各地高考数学试题及解答分类大全(导数及其应用)

的坐标为

【答案】 1,1
【解析】
试题分析:因为 y ex ,所以 y ex ,所以曲线 y ex 在点 0,1 处的切线的斜率 k1 y x0 e0 1,
设 的坐标为 x0,
y0 ( x0
0 ),则
y0
1 x0
,因为
y
1 x
,所以
y
1 x2
,所以曲线
y
1 x
在点
处的切线的斜率 k2
与最值;函数零点问题考查时,要经常性使用零点存在性定理.
2. (2015 湖南理) 02(x 1)dx
.
【答案】 0 .
【考点定位】定积分的计算. 【名师点睛】本题主要考查定积分的计算,意在考查学生的运算求解能力,属于容易题,定积分的计 算通常有两类基本方法:一是利用牛顿-莱布尼茨定理;二是利用定积分的几何意义求解.
3.(2015 福建文)“对任意 x (0, ) , k sin x cos x x ”是“ k 1”的( ) 2
A.充分而不必要条件 B.必要而不充分条件 C. 充分必要条件 D.既不充分也不必要条件 【答案】B
考点:导数的应用.
4.(2015 全国新课标Ⅰ卷理)设函数 f (x) = ex (2x 1) ax a ,其中 a 1,若存在唯一的整 数 x0,使得 f (x0 ) 0,则 a 的取值范围是( )
2.(2015 福建理)若定义在 R 上的函数 f x 满足 f 0 1 ,其导函数 f x 满足
f x k 1 ,则下列结论中一定错误的是( )
A.
f
1 k
1 k
【答案】C
B.
f
1 k
k
1 1
C.

2015年全国高考数学试题分类汇编§3.1 导数的概念及运算

2015年全国高考数学试题分类汇编§3.1 导数的概念及运算

3.1导数的概念及运算考点一 导数的概念及几何意义3.(2015课标Ⅰ,14,5分)已知函数f(x)=ax 3+x+1的图象在点(1, f(1))处的切线过点(2,7),则a= .答案 14.(2015课标Ⅱ,16,5分)已知曲线y=x+ln x 在点(1,1)处的切线与曲线y=ax 2+(a+2)x+1相切,则a= .答案 85.(2015四川,15,5分)已知函数f(x)=2x ,g(x)=x 2+ax(其中a ∈R).对于不相等的实数x 1,x 2,设m=f (x 1)-f(x 2)x 1-x 2,n=g (x 1)-g(x 2)x 1-x 2.现有如下命题:①对于任意不相等的实数x 1,x 2,都有m>0;②对于任意的a 及任意不相等的实数x 1,x 2,都有n>0;③对于任意的a,存在不相等的实数x 1,x 2,使得m=n;④对于任意的a,存在不相等的实数x 1,x 2,使得m=-n.其中的真命题有 (写出所有真命题的序号).答案 ①④10.(2015山东,20,13分)设函数f(x)=(x+a)ln x,g(x)=x 2e x .已知曲线y=f(x)在点(1, f(1))处的切线与直线2x-y=0平行.(1)求a 的值;(2)是否存在自然数k,使得方程f(x)=g(x)在(k,k+1)内存在唯一的根?如果存在,求出k;如果不存在,请说明理由;(3)设函数m(x)=min{f(x),g(x)}(min{p,q}表示p,q 中的较小值),求m(x)的最大值. 解析 (1)由题意知,曲线y=f(x)在点(1, f(1))处的切线斜率为2,所以f '(1)=2,又f '(x)=ln x+a x +1,所以a=1.(2)k=1时,方程f(x)=g(x)在(1,2)内存在唯一的根.设h(x)=f(x)-g(x)=(x+1)ln x-x 2e x ,当x ∈(0,1]时,h(x)<0.又h(2)=3ln 2-4e 2=ln 8-4e 2>1-1=0, 所以存在x 0∈(1,2),使得h(x 0)=0.因为h'(x)=ln x+1x +1+x (x -2)e x ,所以当x ∈(1,2)时,h'(x)>1-1e >0,当x ∈(2,+∞)时,h'(x)>0,所以当x ∈(1,+∞)时,h(x)单调递增.所以k=1时,方程f(x)=g(x)在(k,k+1)内存在唯一的根.(3)由(2)知方程f(x)=g(x)在(1,2)内存在唯一的根x0,且x∈(0,x0)时,f(x)<g(x),x∈(x0,+∞)时,f(x)>g(x),所以m(x)=(x+1)ln x,x∈(0,x0], x2e x,x∈(x0,+∞).当x∈(0,x0)时,若x∈(0,1],m(x)≤0;若x∈(1,x0),由m'(x)=ln x+1x+1>0,可知0<m(x)≤m(x0);故m(x)≤m(x0).当x∈(x0,+∞)时,由m'(x)=x(2-x)e,可得x∈(x0,2)时,m'(x)>0,m(x)单调递增;x∈(2,+∞)时,m'(x)<0,m(x)单调递减,可知m(x)≤m(2)=4e,且m(x0)<m(2).综上可得函数m(x)的最大值为4e2.考点二导数的运算1.(2015天津,11,5分)已知函数f(x)=axln x,x∈(0,+∞),其中a为实数,f'(x)为f(x)的导函数.若f'(1)=3,则a的值为.答案3。

2015年全国高考数学试题分类汇编考点10导数在研究函数中的应用与生活中的优化问题举例

2015年全国高考数学试题分类汇编考点10导数在研究函数中的应用与生活中的优化问题举例

考点10 导数在研究函数中的应用与生活中的优化问题举例一、选择题1.(2015年新课标全国卷Ⅱ理科·T12)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是( )A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0)D.(0,1)∪(1,+∞)【解题指南】根据xf′(x)-f(x)<0,构造函数g(x)=,对函数g(x)=求导,利用其单调性及奇偶性确定f(x)>0成立的x的取值范围.【试题解析】选A.记函数()()f xg xx=,则''2()()()xf x f xg xx-=,因为当0x>时,'()()0xf x f x-<,故当0x>时,'()0g x<所以g(x)在(0,+∞)上单调递减;又因为函数f(x)(x∈R)是奇函数,故函数g(x)是偶函数,所以g(x)在(-∞,0)上单调递增,且g(-1)=g(1)=0.当0<x<1时,g(x)>0,则f(x)>0;当x<-1时,g(x)<0,则f(x)>0,综上所述,使得f(x)>0成立的x的取值范围是(-∞,-1)∪(0,1).2.(2015·安徽高考文科·T10)函数()32f x ax bx cx d=+++的图像如图所示,则下列结论成立的是()A.a>0,b<0,c>0,d>0B.a>0,b<0,c<0,d>0C.a<0,b<0,c<0,d>0D.a >0,b >0,c >0,d <0【解题指南】结合图像的特征及导函数的性质进行判断。

【试题解析】选A 。

由函数f(x)的图像可知a >0,令x =0得d >0,又/2()32f x ax bx c =++可知12x x ,是方程/()0f x =的两个根,由图可知120,0x x >>,所以121220030.03b x x b ac c x x a ⎧+=->⎪<⎧⎪⇒⎨⎨>⎩⎪=>⎪⎩,故选A.3. (2015年陕西高考理科·T12)对二次函数f(x)=ax 2+bx +c(a 为非零常数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是 ( ) A.-1是f(x)的零点 B.1是f(x)的极值点 C.3是f(x)的极值D.点(2,8)在曲线y =f(x)上【解题指南】根据选项假设A 错误,利用导数推导函数的极值点及极值,与其余的选项相符,假设正确,从而确定答案.【试题解析】选A.若选项A 错误,则选项B,C,D 正确.f ′(x)=2ax +b,因为1是f(x)的极值点,3是f(x)的极值,所以{{{,解得,即,230230)1(3)1(a b a c b a c b a f f -=+==+=++='=,因为点(2,8)在曲线y =f(x)上,所以4a +2b +c =8,即4a +2×(-2a)+a +3=8,解得:a =5,所以b =-10,c =8,所以f(x)=5x 2-10x +8,因为f(-1)=5×1-10×(-1)+8=23≠0,所以-1不是f(x)的零点,所以选项A 错误,选项B 、C 、D 正确.4.(2015年福建高考理科·T10) 若定义在R 上的函数()f x 满足()01f =- ,其导函数()f x ' 满足()1f x k '>> ,则下列结论中一定错误的是( ) A .11f k k ⎛⎫< ⎪⎝⎭ B .111f k k ⎛⎫> ⎪-⎝⎭ C .1111f k k ⎛⎫< ⎪--⎝⎭ D . 111k f k k ⎛⎫> ⎪--⎝⎭ 【解题指南】利用导数与单调性的关系及构造函数法求解.【试题解析】选C.因为f ′(x)>k >1,构造函数g(x)=f(x)-kx,所以g(x)在R 上单调递增,又>0,所以g>g(0)即f->-1,得到f>,所以C 选项一定错误.A,B,D 都有可能正确.5.(2015年福建高考文科·T12)“对任意x∈,ksinxcosx <x ”是“k <1”的 ( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 【解题指南】构造函数,利用导数求出k 的范围.【试题解析】选B.令g(x)=ksinxcosx-x=sin2x-x,因为x∈,2x∈,当k ≤0时,sin2x >0,g(x)<0恒成立,当0<k ≤1时,g ′(x)=kcos2x-1,因为<1,所以此时g ′(x)<0,g(x)在上单调递减,又g(0)=0,所以g(x)<g(0)=0成立,当k >1时,g ′(x)=0有一个根x 0且在区间(0,x 0)单调递增,此时g(x)<0不恒成立,故k 的范围是k ≤1,k ≤1不能推出k <1,充分性不成立,但是k <1能推出k ≤1,必要性成立. 6.(2015年新课标全国卷Ⅰ理科·T12)设函数f(x)=e x (2x-1)-ax +a,其中a <1,若存在唯一的整数x 0,使得f(x 0)<0,则a 的取值范围是 ( )A.)1,23[e -B. )43,23[e -C. )43,23[eD. )1,23[e【解题指南】构造函数g(x)=e x (2x-1),y =ax-a,使得f(x 0)<0,即g(x 0)在直线y =ax-a 的下方.【试题解析】选D.设g(x)=e x (2x-1),y =ax-a,由题意知存在唯一的整数x 0,使得g(x 0)在直线y =ax-a 的下方.因为g ′(x)=e x (2x +1),所以当x <-时,g ′(x)<0,当x >-时,g ′(x)>0,所以,当x =-12时,[g(x)]min =-2.当x =0时,g(0)=-1,g(1)=e,直线y =ax-a 恒过点(1,0),且斜率为a,故-a >g(0)=-1,且g(-1)=-3e -1≥-a-a,解得≤a <1.二、填空题7.(2015年新课标全国卷Ⅰ文科·T14)已知函数f =ax 3+x +1的图象在点处的切线过点,则a = .【解题指南】先对函数f=ax 3+x +1求导,求出在点处的切线方程.【试题解析】因为f ′(x)=3ax 2+1,所以图象在点处的切线的斜率k =3a +1,所以切线方程为y-7=(3a +1)(x-2),即y =(3a +1)x-6a +5,又切点为,所以f(1)=3a +1-6a +5=-3a +6,又f(1)=a +2,所以-3a +6=a +2,解得a =1. 答案:18.(2015年新课标全国卷Ⅱ文科·T16)已知曲线y =x +lnx 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a = . 【解题指南】先对函数y =x +ln x 求导,然后将(1,1)代入到导函数中,求出切线的斜率,从而确定切线方程,再将切线方程与曲线y =ax 2+(a +2)x +1联立,利用Δ=0求出a 的值.【试题解析】y ′=1+,则曲线y =x +ln x 在点(1,1)处的切线斜率为k =y ′=1+1=2,故切线方程为y =2x-1.因为y =2x-1与曲线y =ax 2+(a +2)x +1相切,联立⎩⎨⎧+++=-=1)2(122x a ax y x y 得ax 2+ax +2=0,显然a ≠0,所以由Δ=a 2-8a =0⇒a =8. 答案:89.(2015·安徽高考理科·T15)设30x ax b ++=,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的是 (写出所有正确条件的编号)(1)3,3a b =-=-;(2)3,2a b =-=;(3)3,2a b =->;(4)0,2a b ==;(5)1,2a b ==【解题指南】利用导数的单调性及极值判断各选项。

2015年高考理数导数大全免费

2015年高考理数导数大全免费

2015年高考理数导数大全免费15 高考导数大全 1.(安徽)(2)下列函数中,既是偶函数又存在零点的是(A )y cos x = (B )y sin x = (C )y n l x = (D )21y x =+答案:A2.(安徽)9、函数()()2ax bf x x c +=+的图象如图所示,则下列结论成立的是( )(A )0a >,0b >,0c < (B )0a <,0b >,0c > (C )0a <,0b >,0c < (D )0a <,b <,0c <3.(安徽) 15. 设3xax b ++=,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的是 (写出所有正确条件的编号)(1)3,3a b =-=-;(2)3,2a b =-=;(3)3,2a b =->;(4)0,2a b ==;(5)1,2a b ==.4.(北京)7.如图,函数()f x 的图像为折线ACB ,则不等式()()2log 1f x x +≥的解集是AB Oxy -122CA .{}|10x x -<≤B .{}|11x x -≤≤C .{}|11x x -<≤D .{}|12x x -<≤ 答案C5.(北京)8.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油( )(A )(,-1)∪(0,1) (B )(,0)∪(1,+)(C )(,-1)∪(-1,0)(D )(,1)∪(1,+)12.(广东)3、下列函数中,既不是奇函数,也不是偶函数的是( )A .21y x =+B .1y x x =+C .122x x y =+ D .x y x e =+13.(湖北)6.已知符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,则 A .sgn[()]sgn g x x=B .sgn[()]sgn g x x =-C .sgn[()]sgn[()]g x f x =D .sgn[()]sgn[()]g x f x =-答案:B14.(湖北)12.函数2π()4cos cos()2sin |ln(1)|22x f x x x x =---+的零点个数为 . 答案:215.(湖南)5.设函数()ln(1)ln(1)f x x x =+--,则()f x 是( )A.奇函数,且在(0,1)上是增函数B. 奇函数,且在(0,1)上是减函数C. 偶函数,且在(0,1)上是增函数D. 偶函数,且在(0,1)上是减函数 答案:A16.(湖南)15.已知32,(),x x a f x x x a⎧≤=⎨>⎩,若存在实数b ,使函数()()g x f x b =-有两个零点,则a 的取值范围是 . 答案:(,0-∞)⋃(1,+∞)17.(江苏)13.已知函数|ln |)(x x f =,⎩⎨⎧>--≤<=1,2|4|10,0)(2x x x x g ,则方程1|)()(|=+x g x f 实根的个数为 。

2015年高考数学真题解析之导数真题(理科)

2015年高考数学真题解析之导数真题(理科)
线 C 符合函数 y y l1 C l P N O l2 x M
a (其中 a,b 为常数)模型. x b
2
(1)求 a,b 的值; (2)设公路 l 与曲线 C 相切于 P 点,P 的横坐标为 t. ①请写出公路 l 长度的函数解析式 f t ,并写出其定义域; ②当 t 为何值时,公路 l 的长度最短?求出最短长度. 4. (本小题满分 12 分, (1)小问 7 分, (2)小问 5 分) 设函数 f x
| f( x) g ( x) | x 2 .
14. (本小题 13 分)已知函数 f x ln (Ⅰ)求曲线
1 x . 1 x
y f x
在点 0 ,f 0 处的切线方程;
x3 时, f x 2 x ; 3
(Ⅱ)求证:当
f x
2a 2a , 0, ,0 3 上单调递减; 在 , 上单调递增,在 3
2a 2a x , 0 , x 0, 3 时, f x 0 , 3 时, f x 0 , 当 a 0 时, 2a 2a , 0, f x , 0 3 3 上单调递减. 上单调递增,在 所以函数 在 ,
试卷第 2页,总 3页


(Ⅱ)若 x 0, f x 0 成立,求 a 的取值范围. 10.已知 a 0 ,函数 f ( x ) e sin x ( x [0, )) ,记 xn 为 f ( x ) 的从小到大的第
ax
n ( n N * ) 个极值点,证明:
(1)数列 { f ( xn )} 是等比数列 (2)若 a

2015年高考数学(理)核按钮:第三章《导数》(含解析)

2015年高考数学(理)核按钮:第三章《导数》(含解析)

第三章 导 数§3.1 导数的概念及运算1.导数的概念(1)通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵.(2)通过函数图象直观地理解导数的几何意义. 2.导数的运算(1)能根据导数定义,求函数y =c (c 为常数),y =x ,y =1x,y =x ,y =x 2,y =x 3的导数.(2)能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,并了解复合函数求导法则,能求简单复合函数(仅限于形如f (ax +b )的复合函数)的导数.导数的几何意义是高考考查的重点内容之一,常以选择,填空的形式出现,有时也出现在解答题中.导数的运算基本上每年都考,一般不单独设题,大都是在考查导数应用的同时考查.1.导数的概念 (1)定义如果函数y =f (x )的自变量x 在x 0处有增量Δx ,那么函数y 相应地有增量Δy =f (x 0+Δx )-f (x 0),比值ΔyΔx 就叫函数y =f (x )从x 0到x 0+Δx 之间的平均变化率,即ΔyΔx=f (x 0+Δx )-f (x 0)Δx .如果当Δx →0时,ΔyΔx有极限,我们就说函数y =f (x )在点x 0处 ,并把这个极限叫做f (x )在点x 0处的导数,记作 或y ′0|x x =,即f ′(x 0)=0lim →∆xΔyΔx =0lim →∆x f (x 0+Δx )-f (x 0)Δx. (2)导函数当x 变化时,f ′(x )便是x 的一个函数,我们称它为f (x )的导函数(简称导数).y =f (x )的导函数有时也记作y ′,即f ′(x )=y ′=0lim →∆x f (x +Δx )-f (x )Δx .(3)求函数y =f (x )在点x 0处导数的方法①求函数的增量Δy = ;②求平均变化率ΔyΔx = ;③取极限,得导数f ′(x 0)=0lim →∆xΔy Δx. 2.导数的意义 (1)几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率.也就是说,曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率是 .相应的切线方程为 .(2)物理意义函数S =s (t )在点t 0处的导数s ′(t 0), 就是当物体的运动方程为S =s (t )时,物体运动在t 0时刻的瞬时速度v ,即 .设v =v (t )是速度函数,则v ′(t 0)表示物体在t =t 0时刻的 .3.基本初等函数的导数公式(1)c ′= (c 为常数), (x α) ′= (α∈Q *); (2)(sin x ) ′=______________, (cos x ) ′= ; (3)(ln x ) ′= , (log a x ) ′= ;(4)(e x ) ′= ,(a x ) ′= . 4.导数运算法则 (1)[f (x )±g (x )] ′= . (2)[f (x )g (x )] ′= ;当g (x )=c (c 为常数)时,即[cf (x )] ′= . (3)⎣⎢⎡⎦⎥⎤f (x )g (x ) ′= (g (x )≠0). 5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为 .即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.【自查自纠】 1.(1)可导 f ′(x 0)(3)①f (x 0+Δx )-f (x 0) ②f (x 0+Δx )-f (x 0)Δx2.(1)f ′(x 0) y -y 0=f ′(x 0)(x -x 0) (2)v =s ′(t 0) 加速度3.(1)0 αx α-1 (2)cos x -sin x (3)1x 1x ln a(4)e x a x ln a4.(1)f ′(x )±g ′(x ) (2)f ′(x )g (x )+f (x )g ′(x ) cf ′(x ) (3)f ′(x )g (x )-f (x )g ′(x )[g (x )]25.y x ′=y ′u ·u ′x函数f (x )=1的导函数是( )A .y =0B .y =1C .不存在D .不确定 解:常数函数的导函数是y =f ′(x )=0.故选A.函数f (x )=a 3+5a 2x 2的导数f ′(x )=( ) A .3a 2+10ax 2 B .3a 2+10ax 2+10a 2x C .10a 2x D .以上都不对解:f ′(x )=10a 2x .故选C.曲线y =e x 在点A (0,1)处的切线斜率为( )A .1B .2C .e D.1e解:y ′=e x ,y ′|x =0=1,故选A.(2012·广东)曲线y =x 3-x +3在点(1,3)处的切线方程为 .解:y ′=3x 2-1,当x =1时,y ′=2,此时切线斜率k =2,故切线方程为y -3=2(x -1),即2x -y +1=0.故填2x -y +1=0.物体的运动方程是s =-13t 3+2t 2-5,则物体在t =3时的瞬时速度为 .解:v (t )=s ′(t )=-t 2+4t ,t =3时,v =3, 故填3.类型一 导数的概念设f (x )为可导函数,当x 趋近于0时,f (1)-f (1-2x )2x趋近于-1,则过曲线y =f (x )上点(1,f (1))处的切线斜率为( )A .2B .-1C .1D .-2解:f (1)-f (1-2x )2x =f (1-2x )-f (1)-2x ,当x 趋近于0时,-2x 也趋近于0,∴y ′|x =1=-1,所以y =f (x )在点(1,f (1))处的切线斜率为-1.故选B. 【评析】本题利用导数定义求导数,将“表达式”变形为导数的“定义式”的标准形式是关键,这里要找准增量Δx =-2x .“y ′|x =1”是指曲线在x =1处的切线斜率.已知f ′(0)=2,则h 趋近于0时,f (3h )-f (0)h趋近于 .解:f (3h )-f (0)h =3[f (0+3h )-f (0)]3h当h 趋近于0时,3h 也趋近于0. ∴f (3h )-f (0)h趋近于3f ′(0)=6.故填6.类型二 导数的几何意义已知曲线y =13x 3+43.(1)求满足斜率为1的曲线的切线方程; (2)求曲线在点P (2,4)处的切线方程; (3)求曲线过点P (2,4)的切线方程. 解:(1)设切点为(x 0,y 0),故切线的斜率为k =x 20=1,解得x 0=±1,故切点为⎝⎛⎭⎫1,53,(-1,1). 故所求切线方程为y -53=x -1和y -1=x +1,即3x -3y +2=0和x -y +2=0.(2)∵y ′=x 2,且P (2,4)在曲线y =13x 3+43上,∴在点P (2,4)处的切线的斜率k =y ′|x =2=4. ∴曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(3)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎫x 0,13x 30+43,又∵切线的斜率k =y ′|x =x 0=x 20, ∴切线方程为y -⎝⎛⎭⎫13x 30+43=x 20(x -x 0),即y =x 20x -23x 30+43. ∵点P (2,4)在切线上,∴4=2x 20-23x 30+43,即x 30-3x 20+4=0,∴x 30+x 20-4x 20+4=0, ∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2, 故所求的切线方程为4x -y -4=0或x -y +2=0. 【评析】曲线切线方程的求法: (1)以曲线上的点(x 0,f (x 0))为切点的切线方程的求解步骤:①求出函数f (x )的导数f ′(x ); ②求切线的斜率f ′(x 0);③写出切线方程y -f (x 0)=f ′(x 0)(x -x 0),并化简. (2)如果已知点(x 1,y 1)不在曲线上,则设出切点(x 0,y 0),解方程组⎩⎪⎨⎪⎧y 0=f (x 0),y 1-y 0x 1-x 0=f ′(x 0),得切点(x 0,y 0),进而确定切线方程.注意:①求切线方程时,要注意判断已知点是否满足曲线方程,即是否在曲线上.②与曲线只有一个公共点的直线不一定是曲线的切线,曲线的切线与曲线的公共点不一定只有一个.已知函数f (x )=x 3+x -16.(1)求满足斜率为4的曲线的切线方程; (2)求曲线y =f (x )在点(2,-6)处的切线的方程; (3)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程.解:(1)设切点坐标为(x 0,y 0), ∵f ′(x 0)=3x 20+1=4,∴x 0=±1, ∴⎩⎪⎨⎪⎧x 0=1,y 0=-14或⎩⎪⎨⎪⎧x 0=-1,y 0=-18. ∴切线方程为y =4x -18或y =4x -14. (2)∵f ′(x )=3x 2+1,且(2,-6)在曲线f (x )=x 3+x -16上, ∴在点(2,-6)处的切线的斜率为k =f ′(2)=13. ∴切线的方程为y =13x -32. (3)解法一:设切点为(x 0,y 0), ∵直线l 的斜率为f ′(x 0)=3x 20+1,∴直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16,又∵直线l 过原点(0,0),∴0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得x 0=-2, ∴斜率k =13.∴直线l 的方程为y =13x .解法二:设直线l 的方程为y =kx ,切点为(x 0,y 0),则斜率k =y 0-0x 0-0=x 30+x 0-16x 0,又∵k =f ′(x 0)=3x 20+1,∴x 30+x 0-16x 0=3x 20+1,解得x 0=-2, ∴k =13.∴直线l 的方程为y =13x .类型三 求导运算求下列函数的导数: (1)y =5x 2-4x +1; (2)y =(2x 2-1)(3x +1);(3)y =sin(πx +φ)(其中φ为常数);(4)y =x +3x +2(x ≠-2).解:(1)y ′=10x -4;(2)y ′=4x ·(3x +1)+(2x 2-1)·3=18x 2+4x -3; (3)y ′=cos(πx +φ)·(πx +φ) ′=πcos(πx +φ);(4)y ′=⎝⎛⎭⎫1+1x +2 ′=-1(x +2)2.【评析】求导运算,一是熟记公式及运算法则,二是掌握求复合函数导数的步骤,遵从“由外到内”的原则,三是要注意在求导前对可以化简或变形的式子进行化简或变形,从而使求导运算更简单.求下列函数的导数:(1)y =(x +1)(x +2);(2)y =xe x -1(x ≠0);(3)y =cos2x ;(4)y =ln x +3x +1(x >-1).解:(1)y ′=(x +1) ′(x +2)+(x +1)(x +2) ′ =x +2+x +1=2x +3;(2)y ′=x ′(e x -1)-x (e x -1)′(e x -1)2=(1-x )e x -1(e x -1)2;(3)y ′=-sin2x ·(2x ) ′=-2sin2x ;(4)y ′=[ln(x +3)-ln(x +1)] ′=1x +3-1x +1=-2(x +1)(x +3).1.弄清“函数在一点x 0处的导数”“导函数”“导数”的区别与联系(1)函数在一点x 0处的导数f ′(x 0)是一个常数,不是变量;(2)函数的导函数(简称导数),是针对某一区间内任意点x 而言的.函数f (x )在区间(a ,b )内每一点都可导,是指对于区间(a ,b )内的每一个确定的值x 0,都对应着一个确定的导数f ′(x 0),根据函数的定义,在开区间(a ,b )内就构成了一个新的函数,也就是函数f (x )的导函数f ′(x );(3)函数y =f (x )在点x 0处的导数f ′(x 0)就是导函数f ′(x )在点x =x 0处的函数值.2.求函数y =f (x )在x =x 0处的导数f ′(x 0)通常有以下两种方法(1)利用导数的定义:即求lim →∆x f (x 0+Δx )-f (x 0)Δx 的值;(2)利用导函数的函数值:先求函数y =f (x )在开区间(a ,b )内的导函数f ′(x ),再将x 0(x 0∈(a ,b ))代入导函数f ′(x ),得f ′(x 0).3.求曲线在某一点处的切线方程时,可以先求函数在该点的导数,即曲线在该点的切线的斜率,再利用点斜式写出直线的方程.如果切点未知,要先求出切点坐标.4.在导数与切线斜率的对应关系中体会数形结合的思想方法.1.函数f (x )=x 3+sin2x 的导数f ′(x )=( ) A .x 2+cos2x B .3x 2+cos2x C .x 2+2cos2xD .3x 2+2cos2x解:f ′(x )=3x 2+(2x ) ′cos2x =3x 2+2cos2x .故选D. 2.已知f (x )=(x -2)(x -3),则f ′(2)的值为( ) A .0 B .-1C .-2D .-3解:∵f ′(x )=(x -3)+(x -2)=2x -5,∴f ′(2)=-1.故选B.3.曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( )A .-9B .-3C .9D .15解:由y ′|x =1=3,得在点P (1,12)处的切线方程为3x -y +9=0,令x =0,得y =9,故选C.4.若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为( )A .(0,+∞)B .(-1,0)∪(2,+∞)C .(2,+∞)D .(-1,0)解:∵f ′(x )=2x -2-4x =2(x -2)(x +1)x >0,x >0,∴x -2>0,解得x >2.故选C.5.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( )A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-1解:∵y ′=2x +a ,∴y ′|x =0=a ,∴a =1. ∵(0,b )在切线x -y +1=0上,∴b =1, 故选A.6.已知点P 在曲线y =4e x +1上,则曲线在点(0,f (0))处的切线的斜率是( )A .2B .1C .0D .-1解:∵y ′=4′·(e x+1)-4·(e x +1)′(e x +1)2=-4e xe 2x +2e x +1,∴y ′|x =0=-41+2+1=-1.故选D.7.曲线y =x 3+x -2的一条切线平行于直线y =4x-1,则切点P 0的坐标是________________.解:∵y ′=3x 2+1,又∵3x 2+1=4,解得x =±1. ∴切点P 0的坐标为(1,0)或(-1,-4).故填(1,0)或(-1,-4).8.(2013·江西)设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(1)=________.解:令e x =t ,则x =ln t .∵f (e x )=x +e x ,∴f (t )=ln t +t ,∴f ′(t )=1t+1,∴f ′(1)=1+1=2.故填2.9.求函数f (x )=x 3-4x +4图象上斜率为-1的切线的方程.解:设切点坐标为(x 0,y 0), ∵f ′(x 0)=3x 20-4=-1,∴x 0=±1. ∴切点为(1,1)或(-1,7).切线方程为x +y -2=0或x +y -6=0. 10.设函数f (x )=x 3+2ax 2+bx +a ,g (x )=x 2-3x +2,其中x ∈R ,a ,b 为常数.已知曲线y =f (x )与y =g (x )在点(2,0)处有相同的切线l ,求a ,b 的值,并写出切线l 的方程.解:f ′(x )=3x 2+4ax +b ,g ′(x )=2x -3,由于曲线y =f (x )与y =g (x )在点(2,0)处有相同的切线,故有f (2)=g (2)=0,f ′(2)=g ′(2)=1,由此解得a =-2,b =5.从而切线l 的方程为x -y -2=0.11.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=2x 2.(1)求x <0时, f (x )的表达式;(2)令g (x )=ln x ,问是否存在x 0,使得f (x ),g (x )在x =x 0处的切线互相平行?若存在,求出x 0的值;若不存在,请说明理由.解:(1)当x <0时,-x >0, f (x )=-f (-x )=-2(-x )2=-2x 2; ∴当x <0时,f (x )的表达式为f (x )=-2x 2. (2)若f (x ),g (x )在x 0处的切线互相平行,则f ′(x 0)=g ′(x 0),当x 0>0时,f ′(x 0)=4x 0=g ′(x 0)=1x 0,解得x 0=12.故存在x 0=12满足条件.(2013·福建改编)已知函数f (x )=x -1+ae x(a ∈R ,e 为自然对数的底数). (1)若曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值;(2)当a =1时,若直线l :y =kx -1与曲线y =f (x )相切,求l 的直线方程.解:(1)f ′(x )=1-aex ,因为曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,所以f ′(1)=1-ae =0,解得a=e.(2)当a =1时,f (x )=x -1+1e x ,f ′(x )=1-1e x .设切点为(x 0,y 0),∵f (x 0)=x 0-1+0e 1x =kx 0-1,① f ′(x 0)=1-e 1x =k ,② ①+②得x 0=kx 0-1+k ,即(k -1)(x 0+1)=0. 若k =1,则②式无解,∴x 0=-1,k =1-e. ∴l 的直线方程为y =(1-e)x -1.§3.2 导数的应用(一)1.导数在研究函数中的应用(1)结合实例,借助图形直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次).(2)结合函数的图象,了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值,极小值(其中多项式函数不超过三次),会求闭区间上函数的最大值,最小值(其中多项式函数不超过三次).2.生活中的优化问题举例通过解“利润最大”“用料最省”“效率最高”等优化问题,体会导数在解决实际问题中的应用.高考对导数应用的考查很频繁.内容既可以是对某一类函数性质的研究,也可以联系方程的根,不等式的解等综合考查,选择,填空,解答等题型均有可能出现,分值比较重,是每年高考考查的重点内容之一.1.函数的单调性与导数在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在这个区间内 .2.函数的极值(1)判断f (x 0)是极大值,还是极小值的方法: 一般地,当f ′(x 0)=0时,①如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值;②如果在x 0附近的左侧 ,右侧 ,那么f (x 0)是极小值.(2)求可导函数极值的步骤: ①求f ′(x );②求方程 的根;③检查f ′(x )在上述方程根的左右对应函数值的符号.如果左正右负,那么f (x )在这个根处取得 ;如果左负右正,那么f (x )在这个根处取得 .3.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则__________为函数在[a ,b ]上的最小值, 为函数在[a ,b ]上的最大值;若函数f (x )在[a ,b ]上单调递减,则 为函数在[a ,b ]上的最大值,为函数在[a ,b ]上的最小值.(3)设函数f (x )在[a ,b ]上连续,在(a ,b )内可导,求f (x )在[a ,b ]上的最大值和最小值的步骤如下:①求f (x )在(a ,b )内的极值;②将f (x )的各极值与端点处的函数值 , 比较,其中最大的一个是最大值,最小的一个是最小值.【自查自纠】 1.单调递减2.(1)②f ′(x )<0 f ′(x )>0(2)②f ′(x )=0 极大值 极小值3.(2)f (a ) f (b ) f (a ) f (b ) (3)②f (a ) f (b )若在区间[1,2]内有f ′(x )>0,且f (1)=0,则在[1,2]内有( )A .f (x )≥0B .f (x )≤0C .f (x )=0D .不确定解:∵f ′(x )>0,∴f (x )在[1,2]内单调递增. ∵f (1)=0,∴在[1,2]内f (x )≥0.故选A.已知函数f (x )=12x 2-x ,则f (x )的单调增区间是( )A .(-∞,-1)和(0,+∞)B .(0,+∞)C .(-1,0)和(1,+∞)D .(1,+∞)解:f ′(x )=x -1,令f ′(x )>0,解得x >1.故选D.关于函数的极值,下列说法正确的是( ) A .导数为0的点一定是函数的极值点 B .函数的极小值一定小于它的极大值C .f (x )在定义域内最多只能有一个极大值,一个极小值D .若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内不是单调函数解:导数为0的点不一定是极值点(如y =x 3,在x =0处),而极值点的导数一定为0.极值是局部概念,因此极小值可能有多个且有可能大于极大值.极值点是单调性的转折点.故选D.已知函数f (x )=x 3+6x 2+nx +4在x =-1时有极值,则n = .解:∵f ′(x )=3x 2+12x +n ,f ′(-1)=0, ∴3-12+n =0,得n =9.故填9.函数f (x )=x 3-3x 2+1在x = 处取得极小值.解:f ′(x )=3x 2-6x =3x (x -2).所以f (x )的递增区间是(-∞,0),(2,+∞),递减区间是(0,2),因此f (x )在x =2处取得极小值.故填2.类型一 导数法判断函数的单调性设函数f (x )在定义域内可导,y =f (x )的图象如图所示,则导函数y =f ′(x )的图象可能是()解:当x <0时,f (x )为增函数,f ′(x )>0,排除A ,C ;当x >0时,f (x )先增后减,再增,对应f ′(x )先正后负,再正.故选D.【评析】导函数的图象在哪个区间位于x 轴上方(下方),说明导函数在该区间大于0(小于0),那么它对应的原函数在那个区间就单调递增(单调递减).若函数f (x )的导函数y =f ′(x )的部分图象如图所示,则下列函数中与f (x )的单调性不可能相同的是()解:当x <1时,f ′(x )<0,f (x )单调递减; 当x >1时,f ′(x )>0,f (x )单调递增,只有C 项的单调性与f (x )不同.故选C.类型二 导数法研究函数的单调性已知函数f (x )=x 3-ax ,f ′(1)=0. (1)求a 的值;(2)求函数f (x )的单调区间.解:(1)f ′(x )=3x 2-a ,由f ′(1)=3-a =0,得 a =3.(2)∵f (x )=x 3-3x ,∴f ′(x )=3x 2-3. 令f ′(x )>0,得x <-1或x >1. 所以f (x )的单调递增区间是(-∞,-1),(1,+∞), 单调递减区间是[-1,1].【评析】①用导数求函数的单调区间,突破口是讨论导数的符号.②注意:区间的端点可以属于单调区间,也可以不属于单调区间,对结论没有影响.如,本例中[-1,1]也可以写成(-1,1).③写单调区间时,一般不要使用符号“∪”,可以用“,”“和”分开各区间,原因是各单调区间用“∪”连接的条件是在合并后的区间内函数单调性依然成立.如,本例中(-∞,-1),(1,+∞)不能写成(-∞,-1)∪(1,+∞),不妨取x 1=-32,x 2=32,x 1<x 2,而f (x 1)=f ⎝⎛⎭⎫-32=98,f (x 2)=-98,这时f (x 1)<f (x 2)不成立.已知函数f (x )=e x -ax ,f ′(0)=0.(1)求a 的值;(2)求函数f (x )的单调区间.解:(1)f ′(x )=e x -a ,由f ′(0)=1-a =0,得 a =1.(2)∵f (x )=e x -x ,∴f ′(x )=e x -1. 令f ′(x )>0,得x >0.所以函数f (x )的单调递增区间是(0,+∞),单调递减区间是(-∞,0).类型三 导数法研究函数的极值问题已知函数f (x )=12x 3+cx 在x =1处取得极值.(1)求函数f (x )的解析式; (2)求函数f (x )的极值.解:(1)f ′(x )=32x 2+c ,当x =1时,f (x )取得极值,则f ′(1)=0,即32+c =0,得c =-32.故f (x )=12x 3-32x .(2)f ′(x )=32x 2-32=32(x 2-1)=32(x -1)(x +1),令f ′(x )=0,得x =-1或1.x ,f ′(x ),f (x )的变化情况如下表:,其中a 斜率为2.(1)确定(2)求函数=x3+bx,c)处具有公共切线(1)求a(2)求函数=f′(x)的图象关于直线(1)求实数(2)求函数解:(1)f是边长为60 cm的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点棱柱形状的包装盒,解:(1)根据题意有S =602-4x 2-(60-2x )2=240x -8x 2,0<x <30, S ′=240-16x ,令S ′=0,得x =15. 当0<x <15时,S ′>0,S 递增; 当15<x <30时,S ′<0,S 递减.所以x =15 cm 时包装盒侧面积S 最大. (2)根据题意有V =(2x )2·22(60-2x )=22x 2(30-x ),0<x <30,V ′=62x (20-x ),当0<x <20时,V ′>0,V 递增; 当20<x <30时,V ′<0,V 递减. 所以x =20 cm 时包装盒容积V 最大.【评析】本题主要考查学生的空间想象能力,阅读能力,运用数学知识解决实际问题的能力及建立函数模型的能力,属于中档题.注意用导数求解实际问题中的最大(小)值时,如果函数在区间只有一个极值点,那么依据实际意义,该极值点也就是最值点.用长为15 cm ,宽为8 cm 的长方形铁皮做一个无盖的容器,先在四角分别裁去一个边长为x 的小正方形,然后把四边翻转90°角,再焊接而成(如图).问该容器的高为多少时,容器的容积最大?解:依题意,0<x <4, 容积V =(15-2x )·(8-2x )·x =4x 3-46x 2+120x , V ′=12x 2-92x +120=4(3x -5)(x -6).令V ′=0,得x =53或6(舍去).当0<x <53时,V ′>0,V 递增;当53<x <4时,V ′<0,V 递减. 所以高x =53 cm 时容器的容积最大.1.用导数判断单调性用导数判断函数的单调性时,首先应确定函数的定义域,然后在函数的定义域内,通过讨论导数的符号,来判断函数的单调区间.在对函数划分单调区间时,除了必须确定使导数等于0的点外,还要注意定义区间内的间断点.2.极值与最值的区别(1)“极值”反映函数在某一点附近的大小情况,刻画的是函数的局部性质;“最值”是个整体概念,是整个区间上的最大值或最小值,具有绝对性.(2)从个数上看,一个连续函数在闭区间内的最值一定存在且是唯一的,而极值可以同时存在若干个或不存在,且极大值并不一定比极小值大.(3)从位置上看,极值只能在定义域内部取得而最值却可以在区间的端点处取得;有极值未必有最值,有最值未必有极值;极值有可能成为最值,最值只要不在端点处必定是极值.3.实际问题中的最值在实际问题中,如果函数在区间内只有一个极值点,那么只要根据实际意义判定是最大值还是最小值即可,不必再与端点的函数值比较.1.函数f (x )是定义域为R 的可导函数,若f ′(x )>0,设a =f ⎝⎛⎭⎫12,b =f ⎝⎛⎭⎫23,c =f (-1),则a ,b ,c 的大小关系是( )A .b >a >cB .a >b >cC .c >b >aD .a >c >b解:因为f ′(x )>0,所以f (x )在(-∞,+∞)上单调递增.∵-1<12<23,∴f (-1)<f ⎝⎛⎭⎫12<f ⎝⎛⎭⎫23, 即c <a <b .故选A.2.设f ′(x )是函数f (x )的导函数,y =f ′(x )的图象如图所示,则y =f (x )的图象有可能是( )解:当x <0时,f ′(x )>0,f (x )单调递增; 当x >0时,f ′(x )<0,f (x )单调递减.故选C. 3.函数f (x )=(x -3)e x 的单调递增区间是( ) A .(-∞,2) B .(0,3) C .(1,4) D .(2,+∞)解:f ′(x )=(x -3) ′e x +(x -3)(e x ) ′=(x -2)e x ,令 f ′(x )>0,解得x >2,故选D.4.函数f (x )=(x -1)(x -2)2的极值点为x =( )A .1,2 B.43,2 C.13,1 D.13,43解:f ′(x )=(x -2)2+2(x -1)(x -2)=(x -2)(3x -4).令f ′(x )=0⇒x 1=43,x 2=2,结合导数的符号变化.故选B.5.f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是( )A .-2B .0C .2D .4解:f ′(x )=3x 2-6x =3x (x -2),令f ′(x )=0,得x =0或x =2(舍去), 当-1≤x <0时,f ′(x )>0; 当0<x ≤1时,f ′(x )<0.所以当x =0时,f (x )取得最大值为2.故选C.6.(2012·陕西)设函数f (x )=2x+ln x ,则( ) A. x =12为f (x )的极大值点B. x =12为f (x )的极小值点C. x =2为 f (x )的极大值点D. x =2为 f (x )的极小值点解:f ′(x )=x -2x2,令f ′(x )=0,得x =2.当x <2时,f ′(x )<0,f (x )为减函数;当x >2时,f ′(x )>0,f (x )为增函数,所以x =2为f (x )的极小值点,故选D.7.若函数f (x )=ax +1+x 在x =1处取极值,则a=________.解:f ′(x )=-a (x +1)2+1,f ′(1)=-a4+1=0⇒a =4.故填4.8.一块形状为直角三角形的铁皮,两直角边长分别为40 cm ,60 cm ,现要将它剪成一个矩形,并以此三角形的直角为矩形的一个角,则矩形的最大面积是________cm 2.解:设长为40 cm 和60 cm 的直角边上对应的矩形边长分别为x cm ,y cm ,则40-x 40=y60,得y =60-32x .矩形的面积S =xy =x ⎝⎛⎭⎫60-32x =60x -32x 2,令S ′=60-3x =0,得x =20.所以当x =20时矩形面积最大,最大面积为600 cm 2.故填600.9.(2013·湖北模拟)已知函数f (x )=2ax 3-3x 2,其中a >0.求证:函数f (x )在区间(-∞,0)上是增函数. 证明:f ′(x )=6ax 2-6x =6x (ax -1).因为a >0且x <0,所以f ′(x )>0.所以函数f (x )在区间(-∞,0)上是增函数.10.已知函数f (x )=x e -x (x ∈R ). (1)求函数f (x )的单调区间; (2)求函数f (x )的极值.解:(1)f ′(x )=(1-x )e -x .令f ′(x )=0,得x =1. x在区间(1,+∞)内是减函数.(2)由(1)可知,函数f (x )在x =1处取得极大值f (1)=1e. 11.已知函数f (x )=ax +ln(x +1),a ∈R .(1)若a =2,求曲线y =f (x )在点(0,f (0))处的切线方程;(2)若f (x )在x =1处取得极值,试讨论f (x )的单 调性.解:f ′(x )=a +1x +1.(1)若a =2,则f ′(0)=2+10+1=3,又f (0)=0,因此曲线y =f (x )在点(0,f (0))处的切线方程为y -0=3(x -0),即3x -y =0.(2)∵f ′(1)=0,∴f ′(1)=a +12=0,得a =-12,∴f (x )=-12x +ln(x +1),x >-1,f ′(x )=-12+1x +1=-(x -1)2(x +1),令f ′(x )=0,得x =1.调递减.(2012·福建)已知f (x )=x 3-6x 2+9x -abc ,a <b <c ,且f (a )=f (b )=f (c )=0.现给出如下结论:①f (0)f (1)>0;②f (0)f (1)<0;③f (0)f (3)>0;④f (0)f (3)<0.其中正确结论的序号是( )A .①③B .①④C .②③D .②④ 解:f (3)=27-54+27-abc =-abc =f (0),因为f ′(x )=3(x -1)(x -3),所以f (x )在(-∞,1)和(3,+∞)上单调递增,在(1,3)上单调递减.∵a <b <c ,且f (a )=f (b )=f (c )=0,∴a <1<b <3<c ,∴f (1)>0,f (3)=f (0)<0,∴f (0)f (1)<0,f (0)f (3)>0.故选C.§3.3 导数的应用(二)利用导数来解决函数的单调性,极值与最值问题已经成为热点问题之一.既有填空题,侧重于利用导数确定函数的单调性和极值;也有解答题,侧重于导数的综合应用,即导数与函数,数列,不等式的综合应用.故编写导数的应用(二),以加大学习力度.1.当f ′(x )在某个区间内个别点处为零,在其余点处均为正(或负)时,f (x )在这个区间上仍旧是单调递增(或递减)的,例如:在(-∞,+∞)上,f (x )=x 3,当x =0时,f ′(x )=,当x ≠0时,f ′(x )>0,而f (x )=x 3显然在(-∞,+∞)上是单调递增函数.2.可导函数求最值的方法f ′(x )=0⇒x =x 1,x 2,…,x n ,x ∈[a ,b ]. 直接比较f (a ),f (b ),f (x 1),…,f (x n ),找出 和____________即可.在此基础上还应注意:(1)结合 可减少比较次数.(2)含参数的函数求最值可用:①按 分类;②按 分类.【自查自纠】 1.02.最小值 最大值 (1)单调性 (2)单调性 极值点函数f (x )=ax 3+x +1在x =-1处有极值,则a 的值为( )A .1B .0C .-13D .-12解:f ′(x )=3ax 2+1,∵f ′(-1)=3a +1=0,∴a =-13.故选C.函数y =4x 2+1x的单调增区间为( )A .(0,+∞) B.⎝⎛⎭⎫12,+∞ C .(-∞,-1) D.⎝⎛⎭⎫-∞,-12 解:y ′=8x -1x 2,令y ′>0,解得x >12,∴函数y =4x 2+1x 在⎝⎛⎭⎫12,+∞上递增.故选B.已知函数f (x )=ax 3+bx +c (a ,b ,c ∈R ),若f ′(1)=2,则f ′(-1)=( )A .0B .3C .-1D .2 解:f ′(x )=3ax 2+b ,f ′(-1)=f ′(1)=2.故选D.已知f (x )=sin x +2x ,x ∈R ,且f (2a )<f (a -1),则a 的取值范围是 .解:∵f ′(x )=cos x +2>0恒成立,∴f (x )在R 上单调递增.∵f (2a )<f (a -1),∴2a <a -1,得a <-1.故填(-∞,-1).若函数g (x )=e x -3x 在(1,+∞)上的最小值是 .解:g ′(x )=e x -3,令g ′(x )=0,得x =ln3,g (x )在(-∞,ln3)上单调递减,在(ln3,+∞)上单调递增,所以g (x )在(1,+∞)上的最小值g (ln3)=3-3ln3.故填3-3ln3.类型一 函数单调性的进一步讨论设函数f (x )=x e kx (k ≠0).(1)若k >0,求函数f (x )的单调区间;(2)若函数f (x )在区间(-1,1)内单调递增,求k 的取值范围.解:(1)f ′(x )=(1+kx )e kx .若k >0,令f ′(x )>0,得x >-1k,所以函数f (x )的单调递增区间是⎝⎛⎭⎫-1k ,+∞, 单调递减区间是⎝⎛⎭⎫-∞,-1k . (2)∵f (x )在区间(-1,1)内单调递增,∴f ′(x )=(1+kx )e kx ≥0在(-1,1)内恒成立, ∴1+kx ≥0在(-1,1)内恒成立, 即⎩⎪⎨⎪⎧1+k ·(-1)≥0,1+k ·1≥0, 解得-1≤k ≤1. 因为k ≠0,所以k 的取值范围是[-1,0)∪(0,1]. 【评析】①函数单调性的讨论归结为对不等式解的讨论;②函数f (x )在限定区间是单调函数,求参数范围的问题,可以转化为恒成立问题求解.若函数f (x )=-x +b ln(x +2)在[-1,+∞)上是减函数,则b 的取值范围是( )A .[-1,+∞)B .(-1,+∞)C .(-∞,1]D .(-∞,1)解:∵f ′(x )=-1+bx +2≤0在[-1,+∞)上恒成立,∴b ≤x +2在[-1,+∞)上恒成立.∴b ≤1.故选C .类型二 极值与最值的进一步讨论(2013·福建)已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程;(2)求函数f (x )的极值.解:(1)∵当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x.∴f (1)=1,f ′(1)=-1.∴所求切线方程为y -1=-(x -1),即x +y -2=0.(2)f ′(x )=1-a x =x -ax,x >0.若a ≤0,则f ′(x )>0恒成立,f (x )不存在极值.所以f (x )的极小值f (a )=a -a ln a .【评析】本题要求掌握运用导数研究函数的单调性,极值的一般步骤.第二问对分类讨论要求较高,其分类是以表格为基础进行的.(2013·河南模拟)已知函数f (x )=x ln x 在区间[t ,+∞)(t >0)上的最小值大于-1e,则t 的取值范围是( )A.⎝⎛⎭⎫0,1e B .(1,e) C.⎣⎡⎭⎫1e ,1 D.⎝⎛⎭⎫1e ,+∞ 解:f ′(x )=ln x +1,令f ′(x )=0,得x =1e.x所以f (x )的极小值f ⎝⎛⎭⎫1e =-1e. 显然,若t >1e ,则f (x )的最小值大于-1e.故选D.类型三 方程根的讨论已知函数f (x )=e x ,x ∈R .(1)求f (x )的图象在点(0,f (0))处的切线方程;(2)证明:曲线y =f (x )与直线y =e x 有唯一公共点. 解:(1)∵f ′(0)=e 0=1,f (0)=1,∴切线方程为y -1=1·(x -0),即x -y +1=0. (2)证法一:设g (x )=e x -e x ,曲线y =e x 与y =e x 的公共点的个数等于函数g (x )=e x -e x 零点的个数.∵g ′(x )=e x -e ,令g ′(x )=0,得x =1, ∴g(x )在(-∞,1)上单调递减,在(1,+∞)上单调递增,∴g (x )的最小值g (1)=e 1-e =0,g (x )=e x -e x ≥0(仅当x =1时,等号成立). ∴曲线y =f (x )与直线y =e x 有唯一公共点.证法二:⎝⎛⎭⎫由于方程e x =e x 等价于x e x =1e . 设h (x )=xe x ,分析方法类似证法一.【评析】通过作差或作商可得到新的函数,求出新函数的单调区间,极值点,区间端点处的函数值,特殊点(如图象与x 轴,y 轴交点),来判断交点的个数.若a >1e,则方程ln x -ax =0的实根的个数为( )A .0个B .1个C .2个D .无穷多个解法一:由于方程ln x -ax =0等价于ln xx=a .设f (x )=ln xx .∵f ′(x )=1x ·x -ln x x 2=1-ln xx 2, 令f ′(x )=0,得x =e ,∴f (x )在(0,e)上单调递增;在(e ,+∞)上单调递减.∴f (x )的最大值f (e)=1e,f (x )=ln x x ≤1e (仅当x =e 时,等号成立).∵a >1e,∴原方程无实根.解法二:设g (x )=ln x -ax ,分析单调性,极值可得结论.故选A.类型四 导数法证明不等式已知函数f (x )=e x ,当x ∈[0,1]时.求证: (1)f (x )≥1+x ; (2)(1-x )f (x )≤1+x .证明:(1)设g (x )=e x-x -1,x ∈[0,1]. ∵g ′(x )=e x -1≥0,∴g (x )在[0,1]上是增函数, g (x )≥g (0)=1-0-1=0. ∴e x ≥1+x ,即f (x )≥1+x .(2)设h (x )=(1-x )e x -x -1,x ∈[0,1]. ∵h ′(x )=-x e x -1<0,∴h (x )在[0,1]上是减函数,h (x )≤h (0)=1-0-1=0.∴(1-x )e x -x -1≤0, 即(1-x )f (x )≤1+x .【评析】①用导数证明不等式问题的关键在于构造函数;②由作差或者作商来构造函数是最基本的方法;③本题通过作差构造函数,分析其单调性,最值,得出函数值恒大于或小于0,使问题得证.(2013·江西模拟)设函数f (x )=x1+x,g (x )=ln x +12.求证:当0<x ≤1时,f (x )≥g (x ).证明:设h (x )=x 1+x-ln x -12,0<x ≤1.∵h ′(x )=1+x -x (1+x )2-1x =1(1+x )2-1x=-x 2-x -1(1+x )2x <0, ∴h (x )在(0,1]上单调递减.∵h (1)=12-0-12=0,h (x )≥0(仅当x =1时,等号成立). ∴当0<x ≤1时,f (x )≥g (x ).1.证明不等式问题可通过作差或作商构造函数,然后用导数证明.2.求参数范围问题的常用方法:(1)分离变量; (2)运用最值.3.方程根的问题:可化为研究相应函数的图象,而图象又归结为极值点和单调区间的讨论.4.高考中一些不等式的证明需要通过构造函数,转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键.1.函数f (x )的导函数为f ′(x )=1-xx,则f (x )的单调增区间是( )A .(-∞,0)B .[1,+∞)C .(0,1]D .(-∞,0),[1,+∞)解:令f ′(x )>0,解得0<x <1.又f ′(1)=0,所以f (x )在(0,1]上单调递增. 故选C.2.函数f (x )=43x 3-x 2的单调减区间是( )A.⎝⎛⎭⎫12,+∞B .(-∞,0)C .(-∞,0),⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫0,12 解:f ′(x )=4x 2-2x =2x (2x -1),令f ′(x )<0,得0<x <12.所以f (x )的单调减区间是⎝⎛⎭⎫0,12.故选D.3.已知函数f (x )=mx 3+12m x ,f ′(1)=-12,则实数m 的值为( )A .2B .-2C .4D .-4解:f ′(x )=3mx 2+12m ,由f ′(1)=3m +12m =-12,得m 2+4m +4=0,即(m +2)2=0,故m =-2, 故选B.4.函数f (x )=x (1-x )n 的部分图象如图所示,f (x )在x =13处取极值,则n 的值为()A .1B .-1C .2D .-2解:f ′(x )=(1-x )n -nx (1-x )n -1=(1-x -nx )(1-x )n -1,∵x =13为f (x )的极值点,∴f ′⎝⎛⎭⎫13=0,得⎝⎛⎭⎫1-13-n 3·⎝⎛⎭⎫23n -1=0,∴n =2.故选C.5.已知函数f (x )=e xx,则x >0时,f (x )( )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值,又有极小值D .既无极大值也无极小值解:f ′(x )=e x ·x -e x x 2=(x -1)e xx 2,x >0.令f ′(x )=0,得x =1.又f (x )在(0,1)上单调递减,在(1,+∞)上单调递增.所以x =1为f (x )的极小值点,f (x )无极大值.故选B.6.若对于R 上的可导函数f (x )满足(x -1)f ′(x )≥0,则必有( )A .f (0)+f (2)<2f (1)B .f (0)+f (2)≤2f (1)C .f (0)+f (2)≥2f (1)D .f (0)+f (2)>2f (1)解:当x >1时,f ′(x )≥0,f (x )在(1,+∞)上是增函数;当x <1时,f ′(x )≤0,f (x )在(-∞,1)上是减函数, 故f (x )的最小值为f (1),必有f (0)+f (2)≥2f (1).故选C .7.(2013·山西模拟)函数f (x )=x 2+3xf ′(1),在点(2,f (2))处的切线方程为 .解:f ′(x )=2x +3f ′(1),f ′(1)=2×1+3f ′(1),得f ′(1)=-1,所以f (x )=x 2-3x ,f ′(x )=2x -3.代入x =2,可知f (2)=-2,f ′(2)=1,在点(2,f (2))处的切线方程为y +2=x -2,即x -y -4=0.故填x -y -4=0.8.(2013·广东改编)函数f (x )=(x -1)e x -x 2的单调减区间是 .解:f ′(x )=e x +(x -1)e x -2x =x (e x -2), 令f ′(x )<0,得0<x <ln2.故填(0,ln2).9.已知函数f (x )=12ax 2+(a -1)x +1,a ∈R .(1)求f (x )的图象在(0,f (0))处的切线方程; (2)若f (x )在区间(1,4)上为减函数,求实数a 的取值范围.解:(1)f ′(x )=ax +a -1,f ′(0)=a -1,f (0)=1. 所以在点(0,f (0))处的切线方程为y -1=(a -1)(x -0),即(a -1)x -y +1=0.(2)∵f (x )在区间(1,4)上为减函数, ∴f ′(x )≤0在区间(1,4)上恒成立, ∴ax +a -1≤0在区间(1,4)上恒成立,即⎩⎪⎨⎪⎧a ·1+a -1≤0,a ·4+a -1≤0, 得⎩⎨⎧a ≤12,a ≤15.因此a ≤15.10.已知函数f (x )=e x -2x +a ,a ∈R . (1)求f (x )的单调区间;(2)若f (x )在R 上有零点,求a 的取值范围. 解:(1)f ′(x )=e x -2,令f ′(x )=0,得x =ln2.所以f (x )的单调减区间是(-∞,ln2), 单调增区间是(ln2,+∞). (2)若f (x )在R 上有零点,则f (x )的最小值f (ln2)≤0,即e ln2-2ln2+a ≤0,得a ≤2ln2-2.11.已知函数f (x )=x 2+a ln x ,a ≠0.(1)若x =1是函数f (x )的极值点,求实数a 的值; (2)讨论f (x )的单调性.解:(1)f ′(x )=2x +ax,x >0.因为f ′(1)=0,所以2+a =0,得a =-2, 经检验,当a =-2时,x =1是函数f (x )的极值点. (2)①若a >0,则f ′(x )>0恒成立,f (x )在(0,+∞)上单调递增.②若a <0,令f ′(x )=0,得x =-a2,当x ∈⎝⎛⎭⎫0,-a2时,f ′(x )<0,f (x )单调递减;当x ∈⎝⎛⎭⎫-a2,+∞时,f ′(x )>0,f (x )单调递增.(2014届湖北重点中学高三10月阶段性统一考试)已知函数f (x )=a x +x 2,g (x )=x ln a ,a >1.(1)求证:函数F (x )=f (x )-g (x )在(0,+∞)上单调递增;(2)若函数y =|F (x )-b 2-3b |-3有四个零点,求b 的取值范围.证明:(1)F (x )=a x +x 2-x ln a ,F ′(x )=a x ln a +2x -ln a =(a x -1)ln a +2x .∵a >1,当x ∈(0,+∞)时,a x -1>0,ln a >0,2x >0,∴F ′(x )>0,函数F (x )在(0,+∞)上单调递增. (2)由(1)知F (x )在(0,+∞)上单调递增, 当x <0时,a x -1<0,ln a >0,2x <0, ∴函数F (x )在(-∞,0)上单调递减.当x 趋近于+∞或-∞时,F (x )趋近无穷大. ∴F (x )的最小值为F (0)=1. 由|F (x )-b 2-3b |-3=0,得F (x )=b 2+3b +3或F (x )=b 2+3b -3.所以要使函数y =|F (x )-b 2-3b |-3有四个零点,只需b 2+3b +3>1且b 2+3b -3>1,即b 2+3b >4.解得b <-4或b >1.§3.4 定积分与微积分基本定理1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.2.了解微积分基本定理的含义.3.初步掌握定积分的主要应用:①利用定积分求曲边梯形的面积;②利用定积分求变速直线运动物体的路程;③利用定积分求变力作的功.近几年高考试卷中对定积分的考查主要内容有:定积分的运算,求曲边梯形的面积(或利用曲边梯形的面积计算概率),定积分的物理应用等,一般为选择,填空题,难度不大.1.定积分的定义(1)如果函数f (x )在区间[a ,b ]上连续,用分点将区间[a ,b ]等分成n 个小区间,在每个小区间上任取一点ξi (i =1,2,…,n )作和式∑=-ni i f n ab 1)(ξ.当n →∞时,上述和式无限接近于某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作 ,即⎠⎛a bf (x )d x =∑=∞→-ni i n f n a b 1)(lim ξ.其中f (x )称为________,x 称为__________,f (x )d x 称为__________,[a ,b ]为__________,a 为积分下限,b 为积分上限,“∫”称为积分号.(2)用化归为计算矩形面积和逼近的思想方法求出曲边梯形的面积的具体步骤为 ,近似代替,求和, .2.定积分的性质(1)⎠⎛a b kf (x )d x = (k 为常数);(2)⎠⎛a b [f 1(x )±f 2(x )]d x = ;(3)⎠⎛ab f (x )d x = (其中a <c <b ). 3.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ) ,那么⎠⎛ab f (x )d x = ,这个结论叫做微积分基本定理,又叫做牛顿-莱布尼茨公式.常常把F (b )-F (a )记作 ,即 ⎠⎛abf (x )d x = = .4.定积分在几何中的简单应用(1)当函数f (x )在区间[a ,b ]上恒为正时,由直线x=a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的曲边梯形(图甲中阴影部分)的面积S =.(2)当函数f (x )在区间[a ,b ]上恒为负时,由直线 x =a ,x =b (a ≠b ),y =0和曲线y =f (x )围成的曲边梯形(图乙中阴影部分)的面积S = .(3)当x ∈[a ,b ]有f (x )>g (x )>0时,由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x ),y =g (x )围成的曲边梯形(图丙中阴影部分)的面积S =.一般情况下,定积分⎠⎛ab f (x )d x 的几何意义是介于x轴,曲线y =f (x )以及直线x =a ,x =b 之间的曲边梯形(图丁中阴影部分)面积的代数和,其中在x 轴上方的面积等于该区间上的积分值,在x 轴下方的面积等于该区间上积分值的相反数.(4)若f (x )是偶函数,则⎠⎛-aa f (x )d x = (其中a >0);若f (x )是奇函数,则⎠⎛-aa f (x )d x = (其中a >0).5.定积分在物理中的简单应用(1)作变速直线运动的物体(速度函数为V (t ),速度方向不变)在时间区间[a ,b ]上所经过的路程S =____________.(2)在变力F =F (x )的作用下,物体沿力F 的方向作直线运动,并且由x =a 运动到x =b (a <b ),则力F 对物体所作的功W = .(3)在变力F =F (x )的作用下,物体沿与力F 的方向成θ角的方向作直线运动,并且由x =a 运动到x =b (a <b ),则力F 对物体所作的功W = .【自查自纠】1.(1)⎠⎛ab f (x )d x 被积函数 积分变量被积式 积分区间 (2)分割 取极限。

2015高考数学——专题九 导数及其应用

2015高考数学——专题九 导数及其应用

专题九 导数及其应用1.(15北京理科)已知函数()1ln 1xf x x+=-.(Ⅰ)求曲线()y f x =在点()()00f ,处的切线方程; (Ⅱ)求证:当()01x ∈,时,()323x f x x ⎛⎫>+ ⎪⎝⎭; (Ⅲ)设实数k 使得()33x f x k x ⎛⎫>+ ⎪⎝⎭对()01x ∈,恒成立,求k 的最大值. 【答案】(Ⅰ)20x y -=,(Ⅱ)证明见解析,(Ⅲ)k 的最大值为2.试题解析:(Ⅰ)212()ln,(1,1),(),(0)2,(0)011x f x x f x f f x x+''=∈-===--,曲线()y f x =在点()()00f ,处的切线方程为20x y -=;(Ⅱ)当()01x ∈,时,()323x f x x ⎛⎫>+ ⎪⎝⎭,即不等式3()2()03x f x x -+>,对(0,1)x ∀∈成立,设331()ln 2()ln(1)ln(1)2()133x x x F x x x x x x +=-+=+---+-,则422()1x F x x'=-,当()01x ∈,时,()0F x '>,故()F x 在(0,1)上为增函数,则()(0)0F x F >=,因此对(0,1)x ∀∈,3()2()3x f x x >+成立;(Ⅲ)使()33x f x k x ⎛⎫>+ ⎪⎝⎭成立,()01x ∈,,等价于31()ln ()013x x F x k x x +=-+>-,()01x ∈,; 422222()(1)11kx k F x k x x x+-'=-+=--, 当[0,2]k ∈时,()0F x '≥,函数在(0,1)上位增函数,()(0)0F x F >=,符合题意;当2k >时,令402()0,(0,1)k F x x k-'==∈,()(0)F x F <,显然不成立,综上所述可知:k 的最大值为2.考点:1.导数的几何意义;2.利用导数研究函数的单调性,证明不等式;3.含参问题讨论.2.(15北京文科)设函数()2ln 2x f x k x =-,0k >. (Ⅰ)求()f x 的单调区间和极值;(Ⅱ)证明:若()f x 存在零点,则()f x 在区间(上仅有一个零点.【答案】(1)单调递减区间是,单调递增区间是)+∞;极小值(1ln )2k k f -=;(2)证明详见解析.所以,()f x 的单调递减区间是,单调递增区间是)+∞;()f x 在x =(1ln )2k k f -=.(Ⅱ)由(Ⅰ)知,()f x 在区间(0,)+∞上的最小值为(1ln )2k k f -=. 因为()f x 存在零点,所以(1ln )02k k -≤,从而k e ≥.当k e =时,()f x 在区间上单调递减,且0f =,所以x =()f x 在区间上的唯一零点.当k e >时,()f x 在区间上单调递减,且1(1)02f =>,02e kf -=<,所以()f x 在区间上仅有一个零点.综上可知,若()f x 存在零点,则()f x 在区间上仅有一个零点.考点:导数的运算、利用导数判断函数的单调性、利用导数求函数的极值和最值、函数零点问题.3.(15年安徽理科)设函数2()f x x ax b =-+.(1)讨论函数(sin )22f x ππ在(-,)内的单调性并判断有无极值,有极值时求出极值;(2)记20000(),(sin )(sin )f x x a x b f x f x =-+-求函数在22ππ(-,)上的最大值D ;(3)在(2)中,取2000,D 14aa b z b ===-≤求满足时的最大值。

2015年高考数学导数真题与答案

2015年高考数学导数真题与答案

导数目录1.【2015高考,理10】.................................................. - 2 -2.【2015高考,理12】.................................................. - 2 -3.【2015高考新课标2,理12】.......................................... - 3 -4.【2015高考新课标1,理12】.......................................... - 4 -5.【2015高考,理16】.................................................. - 5 -6.【2015高考天津,理11】.............................................. - 5 -7.【2015高考新课标2,理21】(本题满分12分).......................... - 6 -8.【2015高考,19】(本小题满分16分).................................. - 8 -9.【2015高考,理20】................................................. - 10 -10.【2015高考,17】(本小题满分14分)................................ - 13 -11.【2015高考,理21】................................................ - 14 -12.【2015高考,理21】................................................ - 17 -13.【2015高考天津,理20(本小题满分14分)........................... - 19 -14.【2015高考,理20】................................................ - 21 -15.【2015高考,理21】................................................ - 22 -16.【2015高考,理22】................................................ - 24 -17.【2015高考新课标1,理21】........................................ - 26 -18.【2015高考北京,理18】............................................ - 27 -19.【2015高考,理19】................................................ - 29 -20【2015高考,理21】................................................. - 31 -1.【2015高考,理10】若定义在R 上的函数()f x 满足()01f =- ,其导函数()f x ' 满足()1f x k '>> ,则下列结论中一定错误的是( )A .11f k k ⎛⎫< ⎪⎝⎭B .111f k k ⎛⎫> ⎪-⎝⎭C .1111f k k ⎛⎫< ⎪--⎝⎭D . 111k f k k ⎛⎫> ⎪--⎝⎭ 【答案】C【解析】由已知条件,构造函数()()g x f x kx =-,则''()()0g x f x k =->,故函数()g x 在R 上单调递增,且101k >-,故1()(0)1g g k >-,所以1()111k f k k ->---,11()11f k k >--,所以结论中一定错误的是C ,选项D 无法判断;构造函数()()h x f x x =-,则''()()10h x f x =->,所以函数()h x 在R 上单调递增,且10k >,所以1()(0)h h k>,即11()1f k k ->-,11()1f k k >-,选项A,B 无法判断,故选C . 【考点定位】函数与导数.【名师点睛】联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,属于难题.2.【2015高考,理12】对二次函数2()f x ax bx c =++(a 为非零常数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是( )A .1-是()f x 的零点B .1是()f x 的极值点C .3是()f x 的极值 D. 点(2,8)在曲线()y f x =上【答案】A【解析】若选项A 错误时,选项B 、C 、D 正确,()2f x ax b '=+,因为1是()f x 的极值点,3是()f x 的极值,所以()()1013f f '=⎧⎪⎨=⎪⎩,即203a b a b c +=⎧⎨++=⎩,解得:23b a c a =-⎧⎨=+⎩,因为点()2,8在曲线()y f x =上,所以428a b c ++=,即()42238a a a +⨯-++=,解得:5a =,所以10b =-,8c =,所以()25108f x x x =-+,因为()()()21511018230f -=⨯--⨯-+=≠,所以1-不是()f x 的零点,所以选项A 错误,选项B 、C 、D 正确,故选A .【考点定位】1、函数的零点;2、利用导数研究函数的极值.【名师点晴】本题主要考查的是函数的零点和利用导数研究函数的极值,属于难题.解题时一定要抓住重要字眼“有且仅有一个”和“错误”,否则很容易出现错误.解推断结论的试题时一定要万分小心,除了作理论方面的推导论证外,利用特殊值进行检验,也可作必要的合情推理.3.【2015高考新课标2,理12】设函数'()f x 是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值围是( )A .(,1)(0,1)-∞-UB .(1,0)(1,)-+∞UC .(,1)(1,0)-∞--UD .(0,1)(1,)+∞U【答案】A 【考点定位】导数的应用、函数的图象与性质.【名师点睛】联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,属于难题.4.【2015高考新课标1,理12】设函数()f x =(21)x e x ax a --+,其中a 1,若存在唯一的整数0x ,使得0()f x 0,则a 的取值围是( ) (A)[-32e ,1) (B)[-32e ,34) (C)[32e ,34) (D)[32e,1) 【答案】D 【解析】设()g x =(21)x e x -,y ax a =-,由题知存在唯一的整数0x ,使得0()g x 在直线y ax a =-的下方.因为()(21)x g x e x '=+,所以当12x <-时,()g x '<0,当12x >-时,()g x '>0,所以当12x =-时,max [()]g x =12-2e -,当0x =时,(0)g =-1,(1)30g e =>,直线y ax a =-恒过(1,0)斜率且a ,故(0)1a g ->=-,且1(1)3g e a a --=-≥--,解得32e≤a <1,故选D.【考点定位】本题主要通过利用导数研究函数的图像与性质解决不等式成立问题【名师点睛】对存在性问题有三种思路,思路1:参变分离,转化为参数小于某个函数(或参数大于某个函数),则参数该于该函数的最大值(大于该函数的最小值);思路2:数形结合,利用导数先研究函数的图像与性质,再画出该函数的草图,结合图像确定参数围,若原函数图像不易做,常化为一个函数存在一点在另一个函数上方,用图像解;思路3:分类讨论,本题用的就是思路2.5.【2015高考,理16】如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为 .【答案】1.2【解析】建立空间直角坐标系,如图所示:原始的最大流量是()11010222162⨯+-⨯⨯=,设抛物线的方程为22x py =(0p >),因为该抛物线过点()5,2,所以2225p ⨯=,解得254p =,所以2252x y =,即2225y x =,所以当前最大流量是()()5323535522224022255255257575753x dx x x --⎛⎫⎛⎫⎛⎫⎡⎤-=-=⨯-⨯-⨯--⨯-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎰,故原始的最大流量与当前最大流量的比值是16 1.2403=,所以答案应填:1.2. 【考点定位】1、定积分;2、抛物线的方程;3、定积分的几何意义.【名师点晴】本题主要考查的是定积分、抛物线的方程和定积分的几何意义,属于难题.解题时一定要抓住重要字眼“原始”和“当前”,否则很容易出现错误.解本题需要掌握的知识点是定积分的几何意义,即由直线x a =,x b =,0y =和曲线()y f x =所围成的曲边梯形的面积是()ba f x dx ⎰. 6.【2015高考天津,理11】曲线2y x = 与直线y x = 所围成的封闭图形的面积为 . O xy【答案】16【考点定位】定积分几何意义与定积分运算.【名师点睛】本题主要考查定积分几何意义与运算能力.定积分的几何意义体现数形结合的典型示,既考查微积分的基本思想又考查了学生的作图、识图能力以及运算能力.【2015高考,理11】20(1)x dx ⎰-= .【答案】0.【解析】试题分析:0)21()1(22200=-=-⎰x x dx x . 【考点定位】定积分的计算.【名师点睛】本题主要考查定积分的计算,意在考查学生的运算求解能力,属于容易题,定积分的计算通常有两类基本方法:一是利用牛顿-莱布尼茨定理;二是利用定积分的几何意义求解.7.【2015高考新课标2,理21】(本题满分12分)设函数2()mx f x e x mx =+-.(Ⅰ)证明:()f x 在(,0)-∞单调递减,在(0,)+∞单调递增;(Ⅱ)若对于任意12,[1,1]x x ∈-,都有12()()1f x f x e -≤-,求m 的取值围.【答案】(Ⅰ)详见解析;(Ⅱ)[1,1]-.【解析】(Ⅰ)'()(1)2mx f x m e x =-+.若0m ≥,则当(,0)x ∈-∞时,10mx e -≤,'()0f x <;当(0,)x ∈+∞时,10mx e -≥,'()0f x >.若0m <,则当(,0)x ∈-∞时,10mx e ->,'()0f x <;当(0,)x ∈+∞时,10mx e -<,'()0f x >.所以,()f x 在(,0)-∞单调递减,在(0,)+∞单调递增.(Ⅱ)由(Ⅰ)知,对任意的m ,()f x 在[1,0]-单调递减,在[0,1]单调递增,故()f x 在0x =处取得最小值.所以对于任意12,[1,1]x x ∈-,12()()1f x f x e -≤-的充要条件是:(1)(0)1,(1)(0)1,f f e f f e -≤-⎧⎨--≤-⎩即1,1,m m e m e e m e -⎧-≤-⎪⎨+≤-⎪⎩①,设函数()1t g t e t e =--+,则'()1t g t e =-.当0t <时,'()0g t <;当0t >时,'()0g t >.故()g t 在(,0)-∞单调递减,在(0,)+∞单调递增.又(1)0g =,1(1)20g e e --=+-<,故当[1,1]t ∈-时,()0g t ≤.当[1,1]m ∈-时,()0g m ≤,()0g m -≤,即①式成立.当1m >时,由()g t 的单调性,()0g m >,即1m e m e ->-;当1m <-时,()0g m ->,即1m e m e -+>-.综上,m 的取值围是[1,1]-.【考点定位】导数的综合应用.【名师点睛】(Ⅰ)先求导函数'()(1)2mx f x m e x =-+,根据m 的围讨论导函数在(,0)-∞和(0,)+∞的符号即可;(Ⅱ)12()()1f x f x e -≤-恒成立,等价于12max ()()1f x f x e -≤-.由12,x x 是两个独立的变量,故可求研究()f x 的值域,由(Ⅰ)可得最小值为(0)1f =,最大值可能是(1)f -或(1)f ,故只需(1)(0)1,(1)(0)1,f f e f f e -≤-⎧⎨--≤-⎩,从而得关于m 的不等式,因不易解出,故利用导数研究其单调性和符号,从而得解.8.【2015高考,19】(本小题满分16分)已知函数),()(23R b a b ax x x f ∈++=.(1)试讨论)(x f 的单调性;(2)若a c b -=(实数c 是a 与无关的常数),当函数)(x f 有三个不同的零点时,a 的取值围恰好是),23()23,1()3,(+∞--∞Y Y ,求c 的值.【答案】(1)当0a =时, ()f x 在(),-∞+∞上单调递增;当0a >时, ()f x 在2,3a ⎛⎫-∞- ⎪⎝⎭,()0,+∞上单调递增,在2,03a ⎛⎫- ⎪⎝⎭上单调递减; 当0a <时, ()f x 在(),0-∞,2,3a ⎛⎫-+∞ ⎪⎝⎭上单调递增,在20,3a ⎛⎫- ⎪⎝⎭上单调递减. (2) 1.c =当0a <时,()2,0,3a x ⎛⎫∈-∞-+∞ ⎪⎝⎭U 时,()0f x '>,20,3a x ⎛⎫∈- ⎪⎝⎭时,()0f x '<, 所以函数()f x 在(),0-∞,2,3a ⎛⎫-+∞ ⎪⎝⎭上单调递增,在20,3a ⎛⎫- ⎪⎝⎭上单调递减. (2)由(1)知,函数()f x 的两个极值为()0f b =,324327a f a b ⎛⎫-=+ ⎪⎝⎭,则函数()f x 有三个零点等价于()32400327a f f b a b ⎛⎫⎛⎫⋅-=+< ⎪ ⎪⎝⎭⎝⎭,从而304027a ab >⎧⎪⎨-<<⎪⎩或304027a b a <⎧⎪⎨<<-⎪⎩. 又b c a =-,所以当0a >时,34027a a c -+>或当0a <时,34027a a c -+<. 设()3427g a a a c =-+,因为函数()f x 有三个零点时,a 的取值围恰好是 ()33,31,,22⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭U U ,则在(),3-∞-上()0g a <,且在331,,22⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭U 上()0g a >均恒成立,从而()310g c -=-≤,且3102g c ⎛⎫=-≥⎪⎝⎭,因此1c =. 此时,()()()3221111f x x ax a x x a x a ⎡⎤=++-=++-+-⎣⎦,因函数有三个零点,则()2110x a x a +-+-=有两个异于1-的不等实根, 所以()()22141230a a a a ∆=---=+->,且()()21110a a ---+-≠,解得()33,31,,22a ⎛⎫⎛⎫∈-∞-+∞ ⎪⎪⎝⎭⎝⎭U U . 综上1c =.【考点定位】利用导数求函数单调性、极值、函数零点【名师点晴】求函数的单调区间的步骤:①确定函数y =f(x)的定义域;②求导数y′=f′(x),令f′(x)=0,解此方程,求出在定义区间的一切实根;③把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;④确定f′(x)在各个区间的符号,根据符号判定函数在每个相应区间的单调性. 已知函数的零点个数问题处理方法为:利用函数的单调性、极值画出函数的大致图像,数形结合求解.已知不等式解集求参数方法:利用不等式解集与对应方程根的关系找等量关系或不等关系.9.【2015高考,理20】已知函数f()ln(1)x x =+,(),(k ),g x kx R =?(Ⅰ)证明:当0x x x ><时,f();(Ⅱ)证明:当1k <时,存在00x >,使得对0(0),x x Î任意,恒有f()()x g x >;(Ⅲ)确定k 的所以可能取值,使得存在0t >,对任意的(0),x Î,t 恒有2|f()()|x g x x -<.【答案】(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ) =1k .【解析】解法一:(1)令()f()ln(1),(0,),F x x x x x x =-=+-??则有1()11+1+x F x x x¢=-=- 当(0,),x ?? ()0F x ¢<,所以()F x 在(0,)+?上单调递减;故当0x >时,()(0)0,F x F <=即当0x >时,x x f()<.(2)令G()f()()ln(1),(0,),x x g x x kx x =-=+-??则有1(1k)()1+1+kx G x k x x -+-¢=-= 当0k £ G ()0x ¢>,所以G()x 在[0,)+?上单调递增, G()(0)0x G >=(3)当1k >时,由(1)知,对于(0,),x "违+()f()g x x x ,>>故()f()g x x >, |f()()|()()k ln(1)x g x g x f x x x -=-=-+,令2M()k ln(1),[0)x x x x x =-+-违,+,则有21-2+(k-2)1M ()k 2=,11x x k x x x x +-¢=--++故当0x Î(时,M ()0x ¢>,M()x 在[0上单调递增,故M()M(0)0x >=,即2|f()()|x g x x ->,所以满足题意的t 不存在.当1k <时,由(2)知存在00x >,使得对任意的任意的0(0),x x ,Î恒有f()()x g x >. 此时|f()()|f()()ln(1)k x g x x g x x x -=-=+-, 令2N()ln(1)k ,[0)x x x x x =+--违,+,则有2'1-2-(k+2)1()2=,11x x k N x k x x x-+=--++故当0x Î(时,N ()0x ¢>,M()x 在[0上单调递增,故N()(0)0x N >=,即2f()()x g x x ->,记0x1x ,则当21(0)|f()()|x x x g x x ?>,时,恒有,故满足题意的t 不存在.当=1k ,由(1)知,(0,),x 违当+|f()()|()()ln(1)x g x g x f x x x -=-=-+,令2H()ln(1),[0)x x x x x =-+-违,+,则有21-2H ()12=,11x xx x x x-¢=--++ 当0x >时,H ()0x ¢<,所以H()x 在[0+¥,)上单调递减,故H()(0)0x H <=, 故当0x >时,恒有2|f()()|x g x x -<,此时,任意实数t 满足题意. 综上,=1k .解法二:(1)(2)同解法一.(3)当1k >时,由(1)知,对于(0,),x "违+()f()g x x x >>,, 故|f()()|()()k ln(1)k (k 1)x g x g x f x x x x x x -=-=-+>-=-,令2(k 1),01x x x k -><<-解得,从而得到当1k >时,(0,1)x k ?对于恒有2|f()()|x g x x ->,所以满足题意的t 不存在. 当1k <时,取11k+1=12k k k <<,从而 由(2)知存在00x >,使得0(0),x x Î任意,恒有1f()()x k x kx g x >>=. 此时11|f()()|f()()(k)2kx g x x g x k x x --=->-=, 令21k 1k ,022x x x --><<解得,此时 2f()()x g x x ->, 记0x 与1-k 2中较小的为1x ,则当21(0)|f()()|x x x g x x ?>,时,恒有,【考点定位】导数的综合应用.【名师点睛】在解函数的综合应用问题时,我们常常借助导数,将题中千变万化的隐藏信息进行转化,探究这类问题的根本,从本质入手,进而求解,利用导数研究函数的单调性,再用单调性来证明不等式是函数、导数、不等式综合中的一个难点,解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或最值,从而证得不等式,注意()()f x g x >与min max ()()f x g x >不等价,min max ()()f x g x >只是()()f x g x >的特例,但是也可以利用它来证明,在2014年全国Ⅰ卷理科高考21题中,就是使用该种方法证明不等式;导数的强大功能就是通过研究函数极值、最值、单调区间来判断函数大致图象,这是利用研究基本初等函数方法所不具备的,而是其延续.10.【2015高考,17】(本小题满分14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建 一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为12l l ,,山区边 界曲线为C ,计划修建的公路为l ,如图所示,M ,N 为C 的两个端点,测得点M 到12l l , 的距离分别为5千米和40千米,点N 到12l l ,的距离分别为20千米和2.5千米,以12l l , 所在的直线分别为x ,y 轴,建立平面直角坐标系xOy ,假设曲线C 符合函数2ay x b=+ (其中a ,b 为常数)模型. (1)求a ,b 的值;(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t .①请写出公路l 长度的函数解析式()f t②当t 为何值时,公路l 的长度最短?求出最短长度.【答案】(1)1000,0;a b ==(2)①()f t =定义域为[5,20],②min ()t f t ==千米【解析】(1)由题意知,点M ,N 的坐标分别为()5,40,()20,2.5.将其分别代入2a y x b =+,得4025 2.5400aba b⎧=⎪⎪+⎨⎪=⎪+⎩,解得1000a b =⎧⎨=⎩.(2)①由(1)知,21000y x =(520x ≤≤),则点P 的坐标为21000,t t ⎛⎫⎪⎝⎭, 设在点P 处的切线l 交x ,y 轴分别于A ,B 点,32000y x '=-, 2则l 的方程为()2310002000y x t t t -=--,由此得3,02t ⎛⎫A ⎪⎝⎭,230000,t ⎛⎫B ⎪⎝⎭.故()f t ==,[]5,20t ∈.②设()624410g t t t ⨯=+,则()6516102g t t t⨯'=-.令()0g t '=,解得t =当(t ∈时,()0g t '<,()g t 是减函数;当()20t ∈时,()0g t '>,()g t 是增函数.从而,当t =()g t 有极小值,也是最小值,所以()min 300g t =,此时()min f t =答:当t =l 的长度最短,最短长度为千米. 【考点定位】利用导数求函数最值,导数几何意义【名师点晴】解决实际应用问题首先要弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型,然后将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;本题已直接给出模型,只需确定其待定参数即可.求解数学模型,得出数学结论,这一步骤在应用题中要求不高,难度中等偏下,本题是一个简单的利用导数求最值的问题.首先利用导数的几何意义是切点处切线的斜率,然后再利用导数求极值与最值.11.【2015高考,理21】设函数()()()2ln 1f x x a x x =++-,其中a R ∈. (Ⅰ)讨论函数()f x 极值点的个数,并说明理由; (Ⅱ)若()0,0x f x ∀>≥成立,求a 的取值围.【答案】(I ):当0a < 时,函数()f x 在()1,-+∞上有唯一极值点; 当809a ≤≤时,函数()f x 在()1,-+∞上无极值点; 当89a >时,函数()f x 在()1,-+∞上有两个极值点;(II )a 的取值围是[]0,1.(2)当0a > 时, ()()28198a a a a a ∆=--=-①当809a <≤时,0∆≤ ,()0g x ≥ 所以,()0f x '≥,函数()f x 在()1,-+∞上单调递增无极值; ②当89a >时,0∆> 设方程2210ax ax a ++-=的两根为1212,(),x x x x < 因为1212x x +=- 所以,1211,44x x <->- 由()110g -=>可得:111,4x -<<-所以,当()11,x x ∈-时,()()0,0g x f x '>> ,函数()f x 单调递增; 当()12,x x x ∈时,()()0,0g x f x '<< ,函数()f x 单调递减; 当()2,x x ∈+∞时,()()0,0g x f x '>> ,函数()f x 单调递增; 因此函数()f x 有两个极值点. (3)当0a < 时,0∆> 由()110g -=>可得:11,x <-当()21,x x ∈-时,()()0,0g x f x '>> ,函数()f x 单调递增;当()2,x x ∈+∞时,()()0,0g x f x '<< ,函数()f x 单调递减; 因此函数()f x 有一个极值点. 综上:当0a < 时,函数()f x 在()1,-+∞上有唯一极值点; 当809a ≤≤时,函数()f x 在()1,-+∞上无极值点;当89a >时,函数()f x 在()1,-+∞上有两个极值点; (II )由(I )知, (1)当809a ≤≤时,函数()f x 在()0,+∞上单调递增, 因为()00f =所以,()0,x ∈+∞时,()0f x > ,符合题意; (2)当819a <≤ 时,由()00g ≥ ,得20x ≤ 所以,函数()f x 在()0,+∞上单调递增,又()00f =,所以,()0,x ∈+∞时,()0f x > ,符合题意; (3)当1a > 时,由()00g < ,可得20x > 所以()20,x x ∈ 时,函数()f x 单调递减; 又()00f =所以,当()20,x x ∈时,()0f x < 不符合题意; (4)当0a <时,设()()ln 1h x x x =-+ 因为()0,x ∈+∞时,()11011x h x x x '=-=>++当11x a>-时,()210ax a x +-< 此时,()0,f x < 不合题意. 综上所述,a 的取值围是[]0,1【考点定位】1、导数在研究函数性质中的应用;2、分类讨论的思想.【名师点睛】本题考查了导数在研究函数性质中的应用,着重考查了分类讨论、数形结合、转化的思想方法,意在考查学生结合所学知识分析问题、解决问题的能力,其中最后一问所构造的函数体现了学生对不同函数增长模型的深刻理解.12.【2015高考,理21】设函数2()f x x ax b =-+. (Ⅰ)讨论函数(sin )f x 在(,)22ππ-的单调性并判断有无极值,有极值时求出极值; (Ⅱ)记2000()f x x a x b =-+,求函数0(sin )(sin )f x f x -在[]22ππ-,上的最大值D ; (Ⅲ)在(Ⅱ)中,取000a b ==,求24a z b =-满足D 1≤时的最大值.【答案】(Ⅰ)极小值为24a b -;(Ⅱ)00||||D a a b b =-+-; (Ⅲ)1.【解析】(Ⅰ)2(sin )sin sin sin (sin )f x x a x b x x a b =-+=-+,22x ππ-<<.[(sin )]'(2sin )cos f x x a x =-,22x ππ-<<.因为22x ππ-<<,所以cos 0,22sin 2x x >-<<.①当2,a b R ≤-∈时,函数(sin )f x 单调递增,无极值. ②当2,a b R ≥∈时,函数(sin )f x 单调递减,无极值. ③当22a -<<,在(,)22ππ-存在唯一的0x ,使得02sin x a =. 02x x π-<≤时,函数(sin )f x 单调递减;02x x π<<时,函数(sin )f x 单调递增.因此,22a -<<,b R ∈时,函数(sin )f x 在0x 处有极小值20(sin )()24a a f x fb ==-.(Ⅱ)22x ππ-≤≤时,00000|(sin )(sin )||()sin |||||f x f x a a x b b a a b b -=-+-≤-+-,当00()()0a a b b --≥时,取2x π=,等号成立,当00()()0a a b b --<时,取2x π=-,等号成立,由此可知,函数0(sin )(sin )f x f x -在[]22ππ-,上的最大值为00||||D a a b b =-+-.(Ⅲ)D 1≤,即||||1a b +≤,此时201,11a b ≤≤-≤≤,从而214a z b =-≤. 取0,1a b ==,则||||1a b +≤,并且214a z b =-=. 由此可知,24a zb =-满足条件D 1≤的最大值为1.【考点定位】1.函数的单调性、极值与最值;2.绝对值不等式的应用.【名师点睛】函数、导数解答题中贯穿始终的是数学思想方法,在含有参数的试题中,分类与整合思想是必要的,由于是函数问题,所以函数思想、数形结合思想也是必要的,把不等式问题转化为函数最值问题、把方程的根转化为函数零点问题等,转化与化归思想也起着同样的作用,解决函数、导数的解答题要充分注意数学思想方法的应用.13.【2015高考天津,理20(本小题满分14分)已知函数()n ,nf x x x x R =-∈,其中*n ,n 2N ∈≥. (I)讨论()f x 的单调性;(II)设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()y g x =,求证:对于任意的正实数x ,都有()()f x g x ≤;(III)若关于x 的方程()=a(a )f x 为实数有两个正实根12x x ,,求证: 21|-|21ax x n<+- 【答案】(I) 当n 为奇数时,()f x 在(,1)-∞-,(1,)+∞上单调递减,在(1,1)-单调递增;当n 为偶数时,()f x 在(,1)-∞-上单调递增,()f x 在(1,)+∞上单调递减. (II)见解析; (III)见解析.(2)当n 为偶数时,当()0f x '>,即1x <时,函数()f x 单调递增; 当()0f x '<,即1x >时,函数()f x 单调递减.所以,()f x 在(,1)-∞-上单调递增,()f x 在(1,)+∞上单调递减. (II)证明:设点P 的坐标为0(,0)x ,则110n x n-=,20()f x n n '=-,曲线()y f x =在点P 处的切线方程为()00()y f x x x '=-,即()00()()g x f x x x '=-,令()()()F x f x g x =-,即()00()()()F x f x f x x x '=--,则0()()()F x f x f x '''=-由于1()n f x nxn -'=-+在()0,+∞上单调递减,故()F x '在()0,+∞上单调递减,又因为0()0F x '=,所以当0(0,)x x ∈时,0()0F x '>,当0(,)x x ∈+∞时,0()0F x '<,所以()F x 在0(0,)x 单调递增,在0(,)x +∞单调递减,所以对任意的正实数x 都有0()()0F x F x ≤=,即对任意的正实数x ,都有()()f x g x ≤.(III)证明:不妨设12x x ≤,由(II)知()()20()g x n n x x =--,设方程()g x a =的根为2x ',可得202.ax x n n '=+-,当2n ≥时,()g x 在(),-∞+∞上单调递减,又由(II)知222()()(),g x f x a g x '≥==可得22x x '≤.类似的,设曲线()y f x =在原点处的切线方程为()y h x =,可得()h x nx =,当(0,)x ∈+∞,()()0n f x h x x -=-<,即对任意(0,)x ∈+∞,()().f x h x <设方程()h x a =的根为1x ',可得1ax n'=,因为()h x nx =在(),-∞+∞上单调递增,且111()()()h x a f x h x '==<,因此11x x '<.由此可得212101ax x x x x n''-<-=+-. 因为2n ≥,所以11112(11)111n n n Cn n ---=+≥+=+-=,故1102n nx -≥=,所以2121ax x n-<+-. 【考点定位】1.导数的运算;2.导数的几何意义;3.利用导数研究函数性质、证明不等式. 【名师点睛】本题主要考查函数的性质与导数之间的关系以及利用函数证明不等式.第(I)小题求导后分n 为奇偶数讨论函数的单调性,体现了数学分类讨论的重要思想;第(II)(III)中都利用了构造函数证明不等式这一重要思想方法,体现数学中的构造法在解题中的重要作用,是拨高题.14.【2015高考,理20】设函数()()23xx axf x a R e+=∈ (1)若()f x 在0x =处取得极值,确定a 的值,并求此时曲线()y f x =在点()()1,1f 处的切线方程;(2)若()f x 在[)3,+∞上为减函数,求a 的取值围。

2015年高考数学真题分类汇编_专题09_圆锥曲线_理

2015年高考数学真题分类汇编_专题09_圆锥曲线_理

专题九 圆锥曲线1.【2015高考福建,理3】若双曲线22:1916x y E -= 的左、右焦点分别为12,F F ,点P 在双曲线E 上,且13PF =,则2PF 等于( )A .11B .9C .5D .32.【2015高考四川,理5】过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则AB =( )(D ) 3.【2015高考广东,理7】已知双曲线C :12222=-b y a x 的离心率54e =,且其右焦点()25,0F ,则双曲线C 的方程为( )A .13422=-y x B. 191622=-y x C. 116922=-y x D. 14322=-y x4.【2015高考新课标1,理5】已知M (00,x y )是双曲线C :2212x y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF ∙<,则0y 的取值范围是( )(A )() (B )((C )() (D )( 5.【2015高考湖北,理8】将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( ) A .对任意的,a b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e >6.【2015高考四川,理10】设直线l 与抛物线24y x =相交于A ,B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( )(A )()13,(B )()14, (C )()23, (D )()24, 7.【2015高考重庆,理10】设双曲线22221x y a b-=(a >0,b >0)的右焦点为1,过F 作AF 的垂线与双曲线交于B ,C 两点,过B ,C 分别作AC ,AB 的垂线交于点D .若D 到直线BC 的距离小于a +,则该双曲线的渐近线斜率的取值范围是 ( )A 、(1,0)(0,1)-B 、(,1)(1,)-∞-+∞C 、(D 、(,)-∞+∞8.【2015高考天津,理6】已知双曲线()222210,0x y a b a b-=>> 的一条渐近线过点( ,且双曲线的一个焦点在抛物线2y = 的准线上,则双曲线的方程为( )(A )2212128x y -= (B )2212821x y -=(C )22134x y -=(D )22143x y -=9.【2015高考安徽,理4】下列双曲线中,焦点在y 轴上且渐近线方程为2y x =±的是( )(A )2214y x -= (B )2214x y -= (C )2214y x -= (D )2214x y -=10.【2015高考浙江,理5】如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是( )A.11BF AF -- B.2211BF AF -- C.11BF AF ++ D.2211BF AF ++11.【2015高考新课标2,理11】已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A .2 C D12.【2015高考北京,理10】已知双曲线()22210x y a a-=>0y +=,则a =.【2015高考上海,理5】抛物线22y px =(0p >)上的动点Q 到焦点的距离的最小值为1,则p = .【2015高考湖南,理13】设F 是双曲线C :22221x y a b-=的一个焦点,若C 上存在点P ,使线段PF 的中点恰为其虚轴的一个端点,则C 的离心率为 .13.【2015高考浙江,理9】双曲线2212x y -=的焦距是 ,渐近线方程是 .14.【2015高考新课标1,理14】一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 .15.【2015高考陕西,理14】若抛物线22(0)y px p =>的准线经过双曲线221x y -=的一个焦点,则p = .【2015高考上海,理9】已知点P 和Q 的横坐标相同,P 的纵坐标是Q 的纵坐标的2倍,P 和Q 的轨迹分别为双曲线1C 和2C .若1C 的渐近线方程为y =,则2C 的渐近线方程为 .16.【2015高考山东,理15】平面直角坐标系xoy 中,双曲线()22122:10,0x y C a b a b-=>>的渐近线与抛物线()22:20C x py p =>交于点,,O A B ,若OAB ∆的垂心为2C 的焦点,则1C 的离心率为 .17.【2015江苏高考,12】在平面直角坐标系xOy 中,P 为双曲线122=-y x 右支上的一个动点。

2015年高考数学真题分类汇编:专题(03)导数(文科)及答案

2015年高考数学真题分类汇编:专题(03)导数(文科)及答案

2015年高考数学真题分类汇编 专题03 导数 文1.【2015高考福建,文12】“对任意(0,)2x π∈,sin cos k x x x <”是“1k <”的( )A .充分而不必要条件B .必要而不充分条件C . 充分必要条件D .既不充分也不必要条件 【答案】B【解析】当1k <时,sin cos sin 22k k x x x =,构造函数()sin 22kf x x x =-,则'()cos 210f x k x =-<.故()f x 在(0,)2x π∈单调递增,故()()022f x f ππ<=-<,则sin cos k x x x <; 当1k =时,不等式sin cos k x x x <等价于1sin 22x x <,构造函数1()sin 22g x x x =-,则'()cos 210g x x =-<,故()g x 在(0,)2x π∈递增,故()()022g x g ππ<=-<,则sin cos x x x <.综上所述,“对任意(0,)2x π∈,sin cos k x x x <”是“1k <”的必要不充分条件,选B .【考点定位】导数的应用.【名师点睛】本题以充分条件和必要条件为载体考查三角函数和导数在单调性上的应用,根据已知条件构造函数,进而研究其图象与性质,是函数思想的体现,属于难题. 2.【2015高考湖南,文8】设函数()ln(1)ln(1)f x x x =+--,则()f x 是( ) A 、奇函数,且在(0,1)上是增函数 B 、奇函数,且在(0,1)上是减函数 C 、偶函数,且在(0,1)上是增函数 D 、偶函数,且在(0,1)上是减函数 【答案】A 【解析】 函数()ln(1)ln(1)f x x x =+--,函数的定义域为(-1,1),函数()ln(1)ln(1)()f x x x f x -=--+=-所以函数是奇函数.()2111'111f x x x x =+=+-- ,在(0,1)上()'0f x > ,所以()f x 在(0,1)上单调递增,故选A. 【考点定位】利用导数研究函数的性质【名师点睛】利用导数研究函数()f x 在(a ,b)内的单调性的步骤:(1)求()'f x ;(2)确认()'f x 在(a ,b)内的符号;(3)作出结论:()'0f x >时为增函数;()'0f x <时为减函数.研究函数性质时,首先要明确函数定义域.3.【2015高考北京,文8】某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.注:“累计里程“指汽车从出厂开始累计行驶的路程在这段时间内,该车每100千米平均耗油量为( )A .6升B .8升C .10升D .12升 【答案】B【解析】因为第一次邮箱加满,所以第二次的加油量即为该段时间内的耗油量,故耗油量48V =升. 而这段时间内行驶的里程数3560035000600S =-=千米. 所以这段时间内,该车每100千米平均耗油量为481008600⨯=升,故选B. 【考点定位】平均变化率.【名师点晴】本题主要考查的是平均变化率,属于中档题.解题时一定要抓住重要字眼“每100千米”和“平均”,否则很容易出现错误.解此类应用题时一定要万分小心,除了提取必要的信息外,还要运用所学的数学知识进行分析和解决问题.4.【2015高考新课标1,文14】已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则 a = . 【答案】1 【解析】试题分析:∵2()31f x ax '=+,∴(1)31f a '=+,即切线斜率31k a =+,又∵(1)2f a =+,∴切点为(1,2a +),∵切线过(2,7),∴273112a a +-=+-,解得a =1.考点:利用导数的几何意义求函数的切线;常见函数的导数;【名师点睛】对求过某点的切线问题,常设出切点,利用导数求出切线方程,将已知点代入切线方程得到关于切点横坐标的方程,解出切点的横坐标,即可求出切线方程,思路明确,关键是运算要细心.5.【2015高考天津,文11】已知函数()()ln ,0,f x ax x x =∈+∞ ,其中a 为实数,()f x '为()f x 的导函数,若()13f '= ,则a 的值为 .【答案】3【解析】因为()()1ln f x a x '=+ ,所以()13f a '==. 【考点定位】本题主要考查导数的运算法则.【名师点睛】本题考查内容单一,求出()()1ln f x a x '=+由,再由()13f '=可直接求得a 的值,因此可以说本题是一道基础题,但要注意运算的准确性,由于填空题没有中间分,一步出错,就得零分,故运算要特别细心.6.【2015高考陕西,文15】函数xy xe =在其极值点处的切线方程为____________. 【答案】1y e=-【解析】()()(1)xxy f x xe f x x e '==⇒=+,令()01f x x '=⇒=-,此时1(1)f e-=-函数xy xe =在其极值点处的切线方程为1y e=- 【考点定位】:导数的几何意义.【名师点睛】1.本题考查导数的几何意义,利用导数研究曲线上某点处切线方程等基础知识,考查运算求解能力.2.解决导数几何意义的问题时要注意抓住切点的三重作用:○1切点在曲线上;○2切点在切线上;○3切点处导函数值等于切线斜率. 7.【2015高考安徽,文21】已知函数)0,0()()(2>>+=r a r x axx f (Ⅰ)求)(x f 的定义域,并讨论)(x f 的单调性; (Ⅱ)若400=ra,求)(x f 在),0(+∞内的极值. 【答案】(Ⅰ)递增区间是(-r ,r );递减区间为(-∞,-r )和(r ,+∞);(Ⅱ)极大值为100;无极小值.【解析】(Ⅰ)由题意可知r x -≠ 所求的定义域为()()r r -∞--+∞ ,,. 2222)()(r xr x axr x ax x f ++=+=,422222)())(()2()22()2()(r x r x x r a r xr x r x ax r xr x a x f ++-=+++-++=' 所以当r x -<或r x >时,0)(<'x f ,当r x r <<-时,0)(>'x f因此,)(x f 单调递减区间为),(),,(+∞--∞r r ;)(x f 的单调递增区间为(),r r -. (Ⅱ)由(Ⅰ)的解答可知0)('=r f )(x f 在()r ,0上单调递增,在()+∞,r 上单调递减.因此r x =是)(x f 的极大值点,所以)(x f 在),0(+∞内的极大值为()100440042)(2====r a r ar r f ,)在(+∞,0)(x f 内无极小值; 综上,)在(+∞,0)(x f 内极大值为100,无极小值.【考点定位】本题主要考查了函数的定义域、利用导数求函数的单调性,以及求函数的极值等基础知识.【名师点睛】本题在利用导数求函数的单调性时要注意,求导后的分子是一个二次项系数为负数的一元二次式,在求0)(>'x f 和0)(<'x f 时要注意,本题主要考查考生对基本概念的掌握情况和基本运算能力.8.【2015高考北京,文19】(本小题满分13分)设函数()2ln 2x f x k x =-,0k >.(I )求()f x 的单调区间和极值;(II )证明:若()f x 存在零点,则()f x 在区间(上仅有一个零点.【答案】(I )单调递减区间是(0,)k ,单调递增区间是(,)k +∞;极小值(1ln )2k k f -=;(II )证明详见解析.2'()k x kf x x x x-=-=.由'()0f x =解得x =.()f x 与'()f x 在区间(0,)+∞上的情况如下:所以,()f x 的单调递减区间是,单调递增区间是)+∞;()f x 在x =处取得极小值(1ln )2k k f -=.(Ⅱ)由(Ⅰ)知,()f x 在区间(0,)+∞上的最小值为(1ln )2k k f -=. 因为()f x 存在零点,所以(1ln )02k k -≤,从而k e ≥.当k e =时,()f x 在区间上单调递减,且0f =,所以x =是()f x 在区间上的唯一零点.当k e >时,()f x 在区间(0,)e 上单调递减,且1(1)02f =>,(02e kf e -=<,所以()f x 在区间上仅有一个零点.综上可知,若()f x 存在零点,则()f x 在区间上仅有一个零点.考点:导数的运算、利用导数判断函数的单调性、利用导数求函数的极值、函数零点问题. 【名师点晴】本题主要考查的是导数的运算、利用导数判断函数的单调性、利用导数求函数的极值和函数的零点,属于难题.利用导数求函数()f x 的单调性与极值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③求方程()0f x '=的所有实数根;④列表格.证明函数仅有一个零点的步骤:①用零点存在性定理证明函数零点的存在性;②用函数的单调性证明函数零点的唯一性.9.【2015高考福建,文22】已知函数2(1)()ln 2x f x x -=-.(Ⅰ)求函数()f x 的单调递增区间; (Ⅱ)证明:当1x >时,()1f x x <-;(Ⅲ)确定实数k 的所有可能取值,使得存在01x >,当0(1,)x x ∈时,恒有()()1f x k x >-.【答案】(Ⅰ) ⎛ ⎝;(Ⅱ)详见解析;(Ⅲ)(),1-∞. 【解析】(I )()2111x x f x x x x-++'=-+=,()0,x ∈+∞.由()0f x '>得2010x x x >⎧⎨-++>⎩解得0x <<.故()f x 的单调递增区间是⎛ ⎝. (II )令()()()F 1x f x x =--,()0,x ∈+∞.则有()21F x x x-'=.当()1,x ∈+∞时,()F 0x '<, 所以()F x 在[)1,+∞上单调递减,故当1x >时,()()F F 10x <=,即当1x >时,()1f x x <-. (III )由(II )知,当1k =时,不存在01x >满足题意.当1k >时,对于1x >,有()()11f x x k x <-<-,则()()1f x k x <-,从而不存在01x >满足题意.当1k <时,令()()()G 1x f x k x =--,()0,x ∈+∞,则有()()2111G 1x k x x x k x x-+-+'=-+-=.由()G 0x '=得,()2110x k x -+-+=.解得10x =<,21x =>.当()21,x x ∈时,()G 0x '>,故()G x 在[)21,x 内单调递增. 从而当()21,x x ∈时,()()G G 10x >=,即()()1f x k x >-, 综上,k 的取值范围是(),1-∞.【考点定位】导数的综合应用.【名师点睛】利用导数判断或求函数的单调区间,通过不等式'()0f x >或'()0f x <求解,但是要兼顾定义域;利用导数研究函数的单调性,再用单调性来证明不等式是函数、导数、不等式综合中的一个难点,解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或最值,从而证得不等式,注意()()f x g x >与min max ()()f x g x >不等价,min max ()()f x g x >只是()()f x g x >的特例,但是也可以利用它来证明,在2014年全国Ⅰ卷理科高考21题中,就是使用该种方法证明不等式;导数的强大功能就是通过研究函数极值、最值、单调区间来判断函数大致图象,这是利用研究基本初等函数方法所不具备的,而是其延续.10.【2015高考广东,文21】(本小题满分14分)设a 为实数,函数()()()21f x x a x a a a =-+---.(1)若()01f ≤,求a 的取值范围; (2)讨论()f x 的单调性; (3)当2a ≥时,讨论()4f x x+在区间()0,+∞内的零点个数. 【答案】(1)1,2⎛⎤-∞ ⎥⎝⎦;(2))(x f 在),(+∞a 上单调递增,在),(a -∞上单调递减;(3)当2=a 时,()4f x x +有一个零点2x =;当2>a 时,()4f x x+有两个零点. 【解析】试题分析:(1)先由()01f <可得1≤+a a ,再对a 的取值范围进行讨论可得1≤+a a 的解,进而可得a 的取值范围;(2)先写函数()f x 的解析式,再对a 的取值范围进行讨论确定函数()f x 的单调性;(3)先由(2)得函数()f x 的最小值,再对a 的取值范围进行讨论确定()4f x x+在区间()0,+∞内的零点个数. 试题解析:(1)22(0)f a a a a a a =+-+=+,因为()01f ≤,所以1≤+a a , 当0≤a 时,10≤,显然成立;当0>a ,则有12≤a ,所以21≤a .所以210≤<a . 综上所述,a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦.(2)()⎪⎩⎪⎨⎧<++-≥--=ax a x a x ax x a x x f ,2)12(,12)(22对于()x a x u 1221--=,其对称轴为a a a x <-=-=21212,开口向上, 所以)(x f 在),(+∞a 上单调递增;对于()a x a x u 21221++-=,其对称轴为a a a x >+=+=21212,开口向上, 所以)(x f 在),(a -∞上单调递减.综上所述,)(x f 在),(+∞a 上单调递增,在),(a -∞上单调递减.(3)由(2)得)(x f 在),(+∞a 上单调递增,在),0(a 上单调递减,所以2min )()(a a a f x f -==.(i)当2=a 时,2)2()(min -==f x f ,⎪⎩⎪⎨⎧<+-≥-=2,452,3)(22x x x x x x x f令()40f x x +=,即xx f 4)(-=(0x >). 因为)(x f 在)2,0(上单调递减,所以2)2()(-=>f x f而x y 4-=在)2,0(上单调递增,2)2(-=<f y ,所以)(x f y =与xy 4-=在)2,0(无交点. 当2≥x 时,xx x x f 43)(2-=-=,即04323=+-x x ,所以042223=+--x x x ,所以()0)1(22=+-x x ,因为2≥x ,所以2=x ,即当2=a 时,()4f x x+有一个零点2x =.(ii)当2>a 时,2min )()(a a a f x f -==,当),0(a x ∈时,42)0(>=a f ,2)(a a a f -=,而xy 4-=在),0(a x ∈上单调递增, 当a x =时,a y 4-=.下面比较2)(a a a f -=与a4-的大小 因为0)2)(2()4()4(2232<++--=---=---aa a a a a a a a a 所以aa a a f 4)(2-<-=结合图象不难得当2>a 时,)(x f y =与xy 4-=有两个交点. 综上所述,当2=a 时,()4f x x +有一个零点2x =;当2>a 时,()4f x x+有两个零点. 考点:1、绝对值不等式;2、函数的单调性;3、函数的最值;4、函数的零点.【名师点晴】本题主要考查的是绝对值不等式、函数的单调性、函数的最值和函数的零点,属于难题.零点分段法解绝对值不等式的步骤:①求零点;②划区间,去绝对值号;③分别解去掉绝对值的不等式;④取每段结果的并集,注意在分段时不要遗漏区间的端点值.判断函数的单调性的方法:①基本初等函数的单调性;②导数法.判断函数零点的个数的方法:①解方程法;②图象法.11.【2015高考湖北,文21】设函数()f x ,()g x 的定义域均为R ,且()f x 是奇函数,()g x 是偶函数,()()e x f x g x +=,其中e 为自然对数的底数.(Ⅰ)求()f x ,()g x 的解析式,并证明:当0x >时,()0f x >,()1g x >; (Ⅱ)设0a ≤,1b ≥,证明:当0x >时,()()(1)()(1)f x ag x a bg x b x+-<<+-. 【答案】(Ⅰ)1()(e e )2x x f x -=-,1()(e e )2x x g x -=+.证明:当0x >时,e 1x >,0e 1x -<<,故()0.f x >又由基本不等式,有1()(e e )12x x g x -=+>=,即() 1.g x > (Ⅱ)由(Ⅰ)得2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x f x g x -''=-=+=+=⑤2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x g x f x -''=+=-=-=⑥当0x >时,()()(1)f x ag x a x >+-等价于()()(1)f x axg x a x >+- ⑦ ()()(1)f x bg x b x<+-等价于()()(1).f x bxg x b x <+- ⑧于是设函数 ()()()(1)h x f x cxg x c x =---,由⑤⑥,有()()()()(1)h x g x cg x cxf x c '=----(1)[()1]().c g x cxf x =--- 当0x >时,(1)若0c ≤,由③④,得()0h x '>,故()h x 在[0,)+∞上为增函数,从而()(0)0h x h >=,即()()(1)f x cxg x c x >+-,故⑦成立.(2)若1c ≥,由③④,得()0h x '<,故()h x 在[0,)+∞上为减函数,从而()(0)0h x h <=,即()()(1)f x cxg x c x <+-,故⑧成立.综合⑦⑧,得 ()()(1)()(1)f x ag x a bg x b x+-<<+-.【考点定位】本题考查函数的奇偶性和导数在研究函数的单调性与极值中的应用,属高档题. 【名师点睛】将函数的奇偶性和导数在研究函数的单调性与极值中的应用联系在一起,重点考查函数的综合性,体现了函数在高中数学的重要地位,其解题的关键是第一问需运用奇函数与偶函数的定义及性质建立方程组进行求解;第二问属于函数的恒成立问题,需借助导数求解函数最值来解决.12.【2015高考山东,文20】设函数. 已知曲线在点(1,(1))f 处的切线与直线平行.(Ⅰ)求a 的值;(Ⅱ)是否存在自然数k ,使得方程()()f x g x =在(,1)k k +内存在唯一的根?如果存在,求出k ;如果不存在,请说明理由;(Ⅲ)设函数()min{(),()}m x f x g x =({},min p q 表示,,p q 中的较小值),求()m x 的最大值.【答案】(I )1a = ;(II) 1k = ;(III) 24e. 【解析】(I )由题意知,曲线在点(1,(1))f 处的切线斜率为2,所以'(1)2f =,又'()ln 1,af x x x=++所以1a =. (II )1k =时,方程()()f x g x =在(1,2)内存在唯一的根.设2()()()(1)ln ,x x h x f x g x x x e=-=+-当(0,1]x ∈时,()0h x <. 又2244(2)3ln 2ln 8110,h e e=-=->-= 所以存在0(1,2)x ∈,使0()0h x =. 因为1(2)'()ln 1,x x x h x x x e -=+++所以当(1,2)x ∈时,1'()10h x e>->,当(2,)x ∈+∞时,'()0h x >,所以当(1,)x ∈+∞时,()h x 单调递增.所以1k =时,方程()()f x g x =在(,1)k k +内存在唯一的根.(III )由(II )知,方程()()f x g x =在(1,2)内存在唯一的根0x ,且0(0,)x x ∈时,()()f x g x <,0(,)x x ∈+∞时,()()f x g x >,所以020(1)ln ,(0,](),(,)xx x x x m x x x x e +∈⎧⎪=⎨∈+∞⎪⎩. 当0(0,)x x ∈时,若(0,1],()0;x m x ∈≤若0(1,),x x ∈由1'()ln 10,m x x x=++>可知00()();m x m x <≤故0()().m x m x ≤ 当0(,)x x ∈+∞时,由(2)'(),xx x m x e -=可得0(,2)x x ∈时,'()0,()m x m x >单调递增;(2,)x ∈+∞时,'()0,()m x m x <单调递减;可知24()(2),m x m e≤=且0()(2)m x m <. 综上可得函数()m x 的最大值为24e.【考点定位】1.导数的几何意义;2.应用导数研究函数的单调性、最值;3.函数零点存在性定理.【名师点睛】本题考查了导数的几何意义、应用导数研究函数的性质、函数零点存在性定理等,解答本题的主要困难是(II )(III)两小题,首先是通过构造函数,利用函数零点存在性定理,作出判断,并进一步证明函数在给定区间的单调性,明确方程()()f x g x =在(,1)k k +内存在唯一的根.其次是根据(II )的结论,确定得到()m x 的表达式,并进一步利用分类讨论思想,应用导数研究函数的单调性、最值.本题是一道能力题,属于难题.在考查导数的几何意义、应用导数研究函数的性质、函数零点存在性定理等基础知识的同时,考查考生的计算能力、应用数学知识分析问题解决问题的能力及分类讨论思想.本题是教辅材料的常见题型,有利于优生正常发挥. 13.【2015高考四川,文21】已知函数f (x )=-2lnx +x 2-2ax +a 2,其中a >0. (Ⅰ)设g (x )为f (x )的导函数,讨论g (x )的单调性;(Ⅱ)证明:存在a ∈(0,1),使得f (x )≥0恒成立,且f (x )=0在区间(1,+∞)内有唯一解. 【解析】(Ⅰ)由已知,函数f (x )的定义域为(0,+∞)g (x )=f '(x )=2(x -1-lnx -a )所以g '(x )=2-22(1)x x x-= 当x ∈(0,1)时,g '(x )<0,g (x )单调递减 当x ∈(1,+∞)时,g '(x )>0,g (x )单调递增(Ⅱ)由f '(x )=2(x -1-lnx -a )=0,解得a =x -1-lnx令Φ(x )=-2xlnx +x 2-2x (x -1-lnx )+(x -1-lnx )2=(1+lnx )2-2xlnx 则Φ(1)=1>0,Φ(e )=2(2-e )<0 于是存在x 0∈(1,e ),使得Φ(x 0)=0令a 0=x 0-1-lnx 0=u (x 0),其中u (x )=x -1-lnx (x ≥1) 由u '(x )=1-1x≥0知,函数u (x )在区间(1,+∞)上单调递增 故0=u (1)<a 0=u (x 0)<u (e )=e -2<1即a 0∈(0,1)当a =a 0时,有f '(x 0)=0,f (x 0)=Φ(x 0)=0 再由(Ⅰ)知,f '(x )在区间(1,+∞)上单调递增 当x ∈(1,x 0)时,f '(x )<0,从而f (x )>f (x 0)=0 当x ∈(x 0,+∞)时,f '(x )>0,从而f (x )>f (x 0)=0 又当x ∈(0,1]时,f (x )=(x -a 0)2-2xlnx >0 故x ∈(0,+∞)时,f (x )≥0综上所述,存在a ∈(0,1),使得f (x )≥0恒成立,且f (x )=0在区间(1,+∞)内有唯一解.【考点定位】本题主要考查导数的运算、导数在研究函数中的应用、函数的零点等基础知识,考查推理论证能力、运算求解能力、创新意识,考查函数与方程、数形结合、化归与转化等数学思想.【名师点睛】本题第(Ⅰ)问隐藏二阶导数知识点,由于连续两次求导后,参数a 消失,故函数的单调性是确定的,讨论也相对简单.第(Ⅱ)问需要证明的是:对于某个a ∈(0,1),f (x )的最小值恰好是0,而且在(1,+∞)上只有一个最小值.因此,本题仍然要先讨论f (x )的单调性,进一步说明对于找到的a ,f (x )在(1,+∞)上有且只有一个等于0的点,也就是在(1,+∞)上有且只有一个最小值点.属于难题.14.【2015高考天津,文20】(本小题满分14分)已知函数4()4,,f x x x x R =-? (I )求()f x 的单调区间;(II )设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()y g x =,求证:对于任意的正实数x ,都有()()f x g x £;(III )若方程()=()f x a a 为实数有两个正实数根12x x ,,且12x x <,求证:1321-43a x x <-+.【答案】(I )()f x 的单调递增区间是(),1-∞ ,单调递减区间是()1,+∞;(II )见试题解析;(III )见试题解析. 【解析】(I )由3()44f x x ¢=-,可得()f x 的单调递增区间是(),1-∞ ,单调递减区间是()1,+∞;(II )()()()00g x f x x x '=-,()()()F x f x g x =- ,证明()F x 在()0,x -∞单调递增,在()0,x +∞单调递减,所以对任意的实数x ,()()00F x F x ≤= ,对于任意的正实数x ,都有()()f x g x £;(III )设方程()g x a = 的根为2x ' ,可得132412ax '=-+,由()g x 在(),-∞+∞ 单调递减,得()()()222g x f x a g x '≥== ,所以22x x '≤ .设曲线()y f x = 在原点处的切线为(),y h x = 方程()h x a = 的根为1x ' ,可得14ax '=,由()4h x x = 在在(),-∞+∞ 单调递增,且()()()111h x a f x h x '==≤ ,可得11,x x '≤ 所以13212143ax x x x ''-≤-=-+ .试题解析:(I )由4()4f x x x =-,可得3()44f x x ¢=-,当()0f x '> ,即1x < 时,函数()f x 单调递增;当()0f x '< ,即1x > 时,函数()f x 单调递减.所以函数()f x 的单调递增区间是(),1-∞ ,单调递减区间是()1,+∞.(II )设()0,0P x ,则1304x = ,()012,f x '=- 曲线()y f x = 在点P 处的切线方程为()()00y f x x x '=- ,即()()()00g x f x x x '=-,令()()()F x f x g x =- 即()()()()0F x f x f x x x '=-- 则()()()0F x f x f x '''=-.由于3()44f x x ¢=-在(),-∞+∞ 单调递减,故()F x '在(),-∞+∞ 单调递减,又因为()00F x '=,所以当()0,x x ∈-∞时,()0F x '>,所以当()0,x x ∈+∞时,()0F x '<,所以()F x 在()0,x -∞单调递增,在()0,x +∞单调递减,所以对任意的实数x ,()()00F x F x ≤= ,对于任意的正实数x ,都有()()f x g x £.(III )由(II )知()13124g x x ⎛⎫=-- ⎪⎝⎭,设方程()g x a = 的根为2x ' ,可得132412a x '=-+,因为()g x 在(),-∞+∞ 单调递减,又由(II )知()()()222g x f x a g x '≥== ,所以22x x '≤ .类似的,设曲线()y f x = 在原点处的切线为(),y h x = 可得()4h x x = ,对任意的(),x ∈-∞+∞,有()()40f x h x x -=-≤ 即()()f x h x ≤ .设方程()h x a = 的根为1x ' ,可得14ax '=,因为()4h x x = 在(),-∞+∞ 单调递增,且()()()111h x a f x h x '==≤ ,因此,11,x x '≤ 所以13212143ax x x x ''-≤-=-+ .【考点定位】本题主要考查导数的几何意义及导数的应用.考查函数思想、化归思想及综合分析问题解决问题的能力【名师点睛】给出可导函数求单调区间,实质是解关于导函数的不等式,若函数解析式中不含参数,一般比较容易.不过要注意求单调区间,要注意定义域优先原则,且结果必须写成区间形式,不能写成不等式形式;利用导数证明不等式是近几年高考的一个热点,解决此类问题的基本思路是构造适当的函数,利用导数研究函数的单调性和极值破解. 15.【2015高考新课标1,文21】(本小题满分12分)设函数()2ln xf x e a x =-.(I )讨论()f x 的导函数()f x '的零点的个数; (II )证明:当0a >时()22lnf x a a a≥+. 【答案】(I )当0a £时,()f x ¢没有零点;当0a >时,()f x ¢存在唯一零点.(II )见解析 【解析】试题分析:(I )先求出导函数,分0a £与0a >考虑()f x '的单调性及性质,即可判断出零点个数;(II )由(I )可设()f x ¢在()0+¥,的唯一零点为0x ,根据()f x '的正负,即可判定函数的图像与性质,求出函数的最小值,即可证明其最小值不小于22ln a a a+,即证明了所证不等式.试题解析:(I )()f x 的定义域为()0+¥,,()2()=20x af x e x x¢->.当0a £时,()0f x ¢>,()f x ¢没有零点; 当0a >时,因为2x e 单调递增,ax-单调递增,所以()f x ¢在()0+¥,单调递增.又()0f a ¢>,当b 满足04a b <<且14b <时,(b)0f ¢<,故当0a >时,()f x ¢存在唯一零点.(II )由(I ),可设()f x ¢在()0+¥,的唯一零点为0x ,当()00x x Î,时,()0f x ¢<;当()0+x x 违,时,()0f x ¢>. 故()f x 在()00x ,单调递减,在()0+x ¥,单调递增,所以当0x x=时,()f x 取得最小值,最小值为0()f x . 由于0202=0x a ex -,所以00022()=2ln 2ln 2a f x ax a a a x a a++?.故当0a >时,2()2lnf x a a a?. 考点:常见函数导数及导数运算法则;函数的零点;利用导数研究函数图像与性质;利用导数证明不等式;运算求解能力.【名师点睛】导数的综合应用是高考考查的重点和热点,解决此类问题,要熟练掌握常见函数的导数和导数的运算法则、掌握通过利用导数研究函数的单调性、极值研究函数的图像与性质.对函数的零点问题,利用导数研究函数的图像与性质,画出函数图像草图,结合图像处理;对恒成立或能处理成立问题,常用参变分离或分类讨论来处理.16.【2015高考浙江,文20】(本题满分15分)设函数2(),(,)f x x ax b a b R =++∈.(1)当214a b =+时,求函数()f x 在[1,1]-上的最小值()g a 的表达式;(2)已知函数()f x 在[1,1]-上存在零点,021b a ≤-≤,求b 的取值范围.【答案】(1)222,2,4()1,22,2,24a a a g a a a a a ⎧++≤-⎪⎪⎪=-<≤⎨⎪⎪-+>⎪⎩;(2)[3,9--【解析】(1)将函数进行配方,利用对称轴与给定区间的位置关系,通过分类讨论确定函数在给定上的最小值,并用分段函数的形式进行表示;(2)设定函数的零点,根据条件表示两个零点之间的不等关系,通过分类讨论,分别确定参数b 的取值情况,利用并集原理得到参数b 的取值范围.试题解析:(1)当214a b =+时,2()()12a f x x =++,故其对称轴为2ax =-.当2a ≤-时,2()(1)24a g a f a ==++.当22a -<≤时,()()12a g a f =-=.当2a >时,2()(1)24a g a f a =-=-+.综上,222,2,4()1,22,2,24a a a g a a a a a ⎧++≤-⎪⎪⎪=-<≤⎨⎪⎪-+>⎪⎩(2)设,s t 为方程()0f x =的解,且11t -≤≤,则s t ast b +=-⎧⎨=⎩.由于021b a ≤-≤,因此212(11)22t ts t t t --≤≤-≤≤++. 当01t ≤≤时,222222t t t b t t --≤≤++, 由于222032t t --≤≤+和212932t t t --≤≤-+,所以293b -≤≤-当10t -≤≤时,222222t t t b t t --≤≤++, 由于22202t t --≤<+和2302t t t --≤<+,所以30b -≤<.综上可知,b的取值范围是[3,9--.【考点定位】1.函数的单调性与最值;2.分段函数;3.不等式性质;4.分类讨论思想. 【名师点睛】本题主要考查函数的单调性与最值,函数零点问题.利用函数的单调性以及二次函数的对称轴与给定区间的位置关系,利用分类讨论思想确定在各种情况下函数的最小值情况,最后用分段函数的形式进行表示;利用函数与方程思想,确定零点与系数之间的关系,利用其范围,通过分类讨论确定参数b 的取值范围.本题属于中等题,主要考查学生应用函数性质解决有关函数应用的能力,考查学生对数形结合数学、分类讨论思想以及函数与方程思想的应用能力,考查学生基本的运算能力.17.【2015高考重庆,文19】已知函数32()f x ax x =+(a R ∈)在x=43-处取得极值. (Ⅰ)确定a 的值,(Ⅱ)若()()xg x f x e =,讨论的单调性. 【答案】(Ⅰ)12a =,(Ⅱ)g()x 在(,4)(1,0)-?-和 内为减函数,(4,1)(0,)--+?和内为增函数..【解析】试题分析:(Ⅰ)先求出函数()f x 的导函数2()32f x ax x ¢=+,由已知有4()03f ¢-=可得关于a 的一个一元方程,解之即得a 的值,(Ⅱ)由(Ⅰ)的结果可得函数321g()2x x x x e 骣琪=+琪桫,利用积的求导法则可求出g ()x ¢=1(1)(4)2x x x x e ++,令g ()0x ¢=,解得0,1=-4x x x ==-或.从而分别讨论-4x <,41x -<<-,-10x <<及0x >时g ()x ¢的符号即可得到函数g()x 的单调性.试题解析: (1)对()f x 求导得2()32f x ax x ¢=+因为()f x 在43x =-处取得极值,所以4()03f ¢-=, 即16416832()09333a a ??=-=,解得12a =.(2)由(1)得,321g()2xx x x e 骣琪=+琪桫,故232323115g ()222222x x x x x x e x x e x x x e 骣骣骣¢琪琪琪=+++=++琪琪琪桫桫桫1(1)(4)2x x x x e =++ 令g ()0x ¢=,解得0,1=-4x x x ==-或. 当-4x <时,g ()0x ¢<,故g()x 为减函数, 当41x -<<-时,g ()0x ¢>,故g()x 为增函数, 当-10x <<时,g ()0x ¢<,故g()x 为减函数, 当0x >时,g ()0x ¢>,故g()x 为增函数,综上知g()x 在(,4)(1,0)-?-和 内为减函数,(4,1)(0,)--+?和内为增函数. 【考点定位】1. 导数与极值,2. 导数与单调性.【名师点睛】本题考查函数导数的概念和运算,运用导数研究函数的单调性及导数与函数极值之间的关系,利用函数的极值点必是导数为零的点,使导函数大于零的x 的区间函数必增,小于零的区间函数必减进行求解,本题属于中档题,注意求导的准确性及使导函数大于零或小于零的x 的区间的确定.。

2015年高考数学理科试题汇编(函数与导数)

2015年高考数学理科试题汇编(函数与导数)

2015年高考全国各地理科数学试题汇编(函数-导数)注: 为了保证对各地试题的整体认识,此部分没有按知识点剪切分类.(新课标I )设函数f(x)=e x(2x-1)-ax+a,其中a 1,若存在唯一的整数x 0,使得f (x 0)0,则a 的取值范围是( )A.[-,1)B. [-,)C. [,)D. [,1)(新课标I )若函数)ln()(2x a x x x f ++=为偶函数,则a=(新课标I )(本小题满分12分)已知函数f (x )=31,()ln 4x ax g x x ++=- (Ⅰ)当a 为何值时,x 轴为曲线()y f x = 的切线;(Ⅱ)用min {},m n 表示m,n 中的最小值,设函数}{()min (),()(0)h x f x g x x => ,讨论h (x )零点的个数(新课标II )设函数⎩⎨⎧≥<-+=)1(2)1()2(log 1)(2x x x x f x,则=+-)12(log )2(2f f (A )3 (B )6 (C )9 (D )12 (新课标II )(新课标II )设函数f’(x)是奇函数))((R x x f ∈的导函数,f (-1)=0,当x>0时,0)()('<-x f x xf ,则使得f (x) >0成立的x 的取值范围是(A ))1,0()1,( --∞ (B )),1()0,1(+∞- (C )0,1()1,(---∞ (D )),1()1,0(+∞ (新课标II )设函数f(x)=e mx +x 2-mx.(Ⅰ)证明:f(x)在(-∞,0)单调递减,在(0,+∞)单调递增; (Ⅱ)若对于任意x 1, x 2∈[-1,1],都有|f(x 1)- f(x 2)|≤e -1,求m 的取值范围(北京)如图,函数()f x 的图象为折线ACB ,则不等式()()2log 1f x x +≥的解集是 A .{}|10x x -<≤ B .{}|11x x -≤≤ C .{}|11x x -<≤ D .{}|12x x -<≤(北京)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油(北京)设函数()()()2142 1.x a x f x x a x a x ⎧-<⎪=⎨--⎪⎩‚‚‚≥①若1a =,则()f x 的最小值为;②若()f x 恰有2个零点,则实数a 的取值范围是 .(北京)(本小题13分) 已知函数()1ln 1xf x x+=-.(Ⅰ)求曲线()y f x =在点()()00f ,处的切线方程;(Ⅱ)求证:当()01x ∈,时,()323x f x x ⎛⎫>+ ⎪⎝⎭; (Ⅲ)设实数k 使得()33x f x k x ⎛⎫>+ ⎪⎝⎭对()01x ∈,恒成立,求k 的最大值.(浙江)7、存在函数()f x 满足,对任意x R ∈都有( )A. (sin 2)sin f x x =B. 2(sin 2)f x x x =+C. 2(1)1f x x +=+D. 2(2)1f x x x +=+(浙江)10、已知函数221,1()2lg(1),1x x f x x x ⎧+-≥⎪=⎨⎪+<⎩,则((3))f f -= ,()f x 的最小值是 .(浙江)12、若2log 3a =,则22aa-+= .(浙江)18、(本题满分15分)已知函数f (x )=2x +ax+b (a ,b ∈R ),记M (a ,b )是|f (x )|在区间[-1,1]上的最大值。

2015年全国各地高考数学试题及解答分类大全(集合)

2015年全国各地高考数学试题及解答分类大全(集合)

(A)(1,3) (B)(1,4)
(C)(2,3)
【答案】C
【解析】因为 A x x2 4x 3 0 x 1 x 3 ,
(D)(2,4)
所以 A B x 1 x 3 x 2 x 4 x 2 x 3.
故选:C. 【考点定位】1、一元二次不等式;2、集合的运算. 【名师点睛】本题考查集合的概念与运算,利用解一元二次不等式的解法化简集合并求两集合的交 集,本题属基础题,要求学生最基本的算运求解能力.
ðU

【答案】1, 4
【解析】因为 B {x | 2 x 3},所以 CU B {x | x 2 或 x 3},又因为 A {1,2,3,4}, 所以 A (CU B) {1,4} .
【考点定位】集合运算
第 6页 (共 7页)
第 7页 (共 7页)
15.(2015 四川理)设集合 A {x | (x 1)(x 2) 0} ,集合 B {x |1 x 3} ,则 A B =(

(A){x | 1 x 3}
(B) {x | 1 x 1} (C ) {x |1 x 2} (D) {x | 2 x 3}
【答案】A
【考点定位】集合的基本运算.
考点:1、一元二次方程;2、对数不等式;3、集合的并集运算.
14、(2015 四川文)设集合 A={x|-1<x<2},集合 B={x|1<x<3},则 A∪B=(
)
(A){x|-1<x<3} (B){x|-1<x<1}
(C){x|1<x<2}
(D){x|2<x<3}
【答案】A
【考点定位】本题主要考查集合的概念,集合的表示方法和并集运算. 【名师点睛】集合的运算通常作为试卷的第一小题,是因为概念较为简单,学生容易上手,可 以让考生能够信心满满的尽快进入考试状态. 另外,集合问题一般与函数、方程、不等式及其性质关 联,也需要考生熟悉相关知识点和方法.本题最后求两个集合的并集,相对来说比较容易,与此相关 的交集、补集等知识点也是常考点,应多加留意.属于简单题.

2015年高考试题分类汇编(导数的几何意义)

2015年高考试题分类汇编(导数的几何意义)

2015年全国高考试题分类汇编(导数的几何意义) 第 1 页 共 1 页 2015年全国高考试题分类汇编(导数的几何意义) 第 1 页 共 1 页 2015年全国高考试题分类汇编(导数的几何意义) 考点1 切线
1.(2014·陕西卷·文科)函数x y xe =在其极值点处的切线方程为 .
2.(2014·天津卷·文科)已知函数()ln f x ax x =,((0,)x ∈+∞)其中a 为实数,()f x '为()f x 的导函数,若(1)3f '= ,则a 的值为 .
3.(2014·全国卷Ⅰ·文科)已知函数3()1f x ax x =++的图像在点(1,(1))f 处的切线过点(2,7),则a = .
4.(2014·全国卷Ⅱ·文科)已知曲线ln y x x =+在点(1,1)处的切线与曲线()221y ax a x =+++相切,则a = .
5.(2014·陕西卷·理科)设曲线x y e =在点(0,1)处的切线与曲线1(0)y x x
=>上点P 处的切线垂直,则P 的坐标为 .
6.(2014·全国卷Ⅱ·理科)设函数()f x '是奇函数()f x 的导函数,(1)0f -=,当0x >时,()()xf x f x '-0<,则使得()0f x >成立的x 的取值范围是
A.(,1)(0,1)-∞-U
B.(1,0)(1,)-+∞U
C.(,1)(1,0)-∞--U
D.(0,1)(1,)+∞U。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年高考数学试题分类汇编-----专题九(导数及应用)答案解析1.(15北京理科)已知函数()1ln 1xf x x+=-.(Ⅰ)求曲线()y f x =在点()()00f ,处的切线方程; (Ⅱ)求证:当()01x ∈,时,()323x f x x ⎛⎫>+ ⎪⎝⎭; (Ⅲ)设实数k 使得()33x f x k x ⎛⎫>+ ⎪⎝⎭对()01x ∈,恒成立,求k 的最大值. 【答案】(Ⅰ)20x y -=,(Ⅱ)证明见解析,(Ⅲ)k 的最大值为2.试题解析:(Ⅰ)212()ln,(1,1),(),(0)2,(0)011x f x x f x f f x x+''=∈-===--,曲线()y f x =在点()()00f ,处的切线方程为20x y -=;(Ⅱ)当()01x ∈,时,()323x f x x ⎛⎫>+ ⎪⎝⎭,即不等式3()2()03x f x x -+>,对(0,1)x ∀∈成立,设331()ln 2()ln(1)ln(1)2()133x x x F x x x x x x +=-+=+---+-,则422()1x F x x'=-,当()01x ∈,时,()0F x '>,故()F x 在(0,1)上为增函数,则()(0)0F x F >=,因此对(0,1)x ∀∈,3()2()3x f x x >+成立;(Ⅲ)使()33x f x k x ⎛⎫>+ ⎪⎝⎭成立,()01x ∈,,等价于31()ln ()013x x F x k x x +=-+>-,()01x ∈,; 422222()(1)11kx k F x k x x x+-'=-+=--, 当[0,2]k ∈时,()0F x '≥,函数在(0,1)上位增函数,()(0)0F x F >=,符合题意;当2k >时,令402()0,(0,1)k F x x k-'==∈,()(0)F x F <,显然不成立,综上所述可知:k 的最大值为2.考点:1.导数的几何意义;2.利用导数研究函数的单调性,证明不等式;3.含参问题讨论.2.(15北京文科)设函数()2ln 2x f x k x =-,0k >.(Ⅰ)求()f x 的单调区间和极值;(Ⅱ)证明:若()f x 存在零点,则()f x 在区间(上仅有一个零点.【答案】(1)单调递减区间是,单调递增区间是)+∞;极小值(1ln )2k k f -=;(2)证明详见解析.所以,()f x 的单调递减区间是,单调递增区间是)+∞;()f x 在x =(1ln )2k k f -=.(Ⅱ)由(Ⅰ)知,()f x 在区间(0,)+∞上的最小值为(1ln )2k k f -=. 因为()f x 存在零点,所以(1ln )02k k -≤,从而k e ≥.当k e =时,()f x 在区间上单调递减,且0f =,所以x =()f x 在区间上的唯一零点.当k e >时,()f x 在区间上单调递减,且1(1)02f =>,02e kf -=<,所以()f x在区间上仅有一个零点.综上可知,若()f x 存在零点,则()f x在区间上仅有一个零点.考点:导数的运算、利用导数判断函数的单调性、利用导数求函数的极值和最值、函数零点问题.3.(15年安徽理科)设函数2()f x x ax b =-+.(1)讨论函数(sin )22f x ππ在(-,)内的单调性并判断有无极值,有极值时求出极值;(2)记20000(),(sin )(sin )f x x a x b f x f x =-+-求函数在22ππ(-,)上的最大值D ; (3)在(2)中,取2000,D 14a ab z b ===-≤求满足时的最大值。

【答案】(Ⅰ)极小值为;(Ⅱ); (Ⅲ)1.试题解析:(Ⅰ),.24a b -00||||D a a b b =-+-2(sin )sin sin sin (sin )f x x a x b x x a b =-+=-+22x ππ-<<,.考点:1.函数的单调性、极值与最值;2.绝对值不等式的应用.4.(15年安徽文科)已知函数(1)求的定义域,并讨论的单调性;(2)若,求在内的极值。

[(sin )]'(2sin )cos f x x a x =-22x ππ-<<)0,0()()(2>>+=r a r x axx f )(x f )(x f 400=ra)(x f ),0(+∞【答案】(1)递增区间是(-r,r );递减区间为(-∞,-r )和(r ,+∞);(2)极大值为100;无极小值.(Ⅱ)由(Ⅰ)可知 内的极大值为 内无极小值;所以内极大值为100,无极小值. 考点:1.导数在函数单调性中的应用;2.函数的极值.5.(15年福建理科)若定义在上的函数 满足 ,其导函数 满足 ,则下列结论中一定错误的是( ) A . B . C . D . 【答案】C)在(+∞,0)(x f 10044)(2===rar ar r f )在(+∞,0)(x f )在(+∞,0)(x f R ()f x ()01f =-()f x '()1f x k '>>11f k k ⎛⎫<⎪⎝⎭111f k k ⎛⎫> ⎪-⎝⎭1111f k k ⎛⎫< ⎪--⎝⎭111k f k k ⎛⎫> ⎪--⎝⎭考点:函数与导数.6.(15年福建理科)已知函数,(Ⅰ)证明:当;(Ⅱ)证明:当时,存在,使得对(Ⅲ)确定k 的所以可能取值,使得存在,对任意的恒有.【答案】(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ) . 【解析】试题分析:(Ⅰ)构造函数只需求值域的右端点并和0比较即可;(Ⅱ)构造函数即,求导得 ,利用导数研究函数的形状和最值,证明当时,存在,使得即可;(Ⅲ)由(Ⅰ)知,当时,对于故,则不等式变形为,构造函数,只需说明,易发现函数在递增,而,故不存在;当时,由(Ⅱ)知,存在,使得对任意的任意的恒有,此时不等式变形为f()ln(1)x x (),(k),g x kx R 0xx x 时,f()1k 00x 0(0),x x 任意,恒有f()()x g x ;0t (0),x ,t 2|f()()|x g x x =1k ()f()ln(1),(0,),F x x x x x x G()f()()ln(1),(0,),x x g x x kx x ()0G x >1()1+G x k x(1k)1+kx x()G x 1k 00x ()0G x >1k (0,),x +()f()g x x x ,()f()g x x 2|f()()|x g x x 2k ln(1)x x x 2M()k ln(1),[0)x x x x x ,+()0M x <()M x 22(k 2)8(k 1)0)k x (,(0)0M =1k 00x 0(0),x x ,f()()x g x,构造,易发现函数在递增,而,不满足题意;当时,代入证明即可.试题解析:解法一:(1)令则有当 ,所以在上单调递减;故当时,即当时,.(2)令则有当 ,所以在上单调递增,故对任意正实数均满足题意. 当时,令得. 取对任意恒有,所以在上单调递增, ,即 .综上,当时,总存在,使得对任意的恒有.(3)当时,由(1)知,对于故,,令,2ln(1)k x xx 2N()ln(1)k ,[0)x x x x x ,+()N x 2(+2(k +2)8(1k)0)k x )(,(0)0N =1k ()f()ln(1),(0,),F x x x x x x 1()11+1+x F x x x(0,),x()0F x ()F x (0,)0x ()(0)0,F x F 0x x x f()G()f()()ln(1),(0,),x x g x x kx x 1(1k)()1+1+kx G x k x x0kG ()0x G()x [0,)G()(0)0x G 0x 01k ()0,x G 11=10k x k k01=1x k,0(0,),x x G ()0x G()x 0[0,x )G()(0)0x G f()()x g x 1k 00x 0(0),x x ,f()()x g x 1k (0,),x +()f()g x x x ,()f()g x x |f()()|()()k ln(1)x g x g x f x x x 2M()k ln(1),[0)x x x x x ,+则有 故当时,,在上单调递增,故,即,所以满足题意的t 不存在.当时,由(2)知存在,使得对任意的任意的恒有.此时,令,则有 故当时,,在上单调递增,故,即,记与中较小的为,则当,故满足题意的t 不存在.当,由(1)知,,令,则有当时,,所以在上单调递减,故,故当时,恒有,此时,任意实数t 满足题意.综上,.解法二:(1)(2)同解法一. (3)当时,由(1)知,对于,21-2+(k-2)1M ()k2=,11x x k x x x x22(k 2)8(k 1)0)k x (,M ()0x M()x 22(k 2)8(k 1)[0)k ,M()M(0)0x 2|f()()|x g x x 1k 00x 0(0),x x ,f()()x g x |f()()|f()()ln(1)k x g x x g x x x 2N()ln(1)k ,[0)x x x x x ,+2'1-2-(k+2)1()2=,11x x k N x k x x x2(+2(k +2)8(1k)0)k x )(,N ()0x M()x 2(2)(k 2)8(1k)[0)k ,N()(0)0x N 2f()()x g x x 0x 2(2)(k 2)8(1k)k 1x 21(0)|f()()|xx x g x x ,时,恒有=1k (0,),x当+|f()()|()()ln(1)x g x g x f x x x 2H()ln(1),[0)x x x x x ,+21-2H ()12=,11x xx x x x0x H ()0x H()x [0+,)H()(0)0x H 0x 2|f()()|x g x x =1k 1k (0,),x +()f()g x x x ,故,令,从而得到当时,恒有,所以满足题意的t 不存在.当时,取由(2)知存在,使得.此时, 令,此时 , 记与中较小的为,则当, 故满足题意的t 不存在. 当,由(1)知,,令,则有 当时,,所以在上单调递减,故,故当时,恒有,此时,任意实数t 满足题意综上,.考点:导数的综合应用.7.(15年福建文科)“对任意,”是“”的( )A .充分而不必要条件B .必要而不充分条件C . 充分必要条件D .既不充分也不必要条件 【答案】B|f()()|()()k ln(1)k (k 1)x g x g x f x x x x x x 2(k 1),01xx x k 解得1k (0,1)x k 对于2|f()()|x g x x 1k 11k+1=12k k k ,从而00x 0(0),x x 任意,恒有1f()()x k x kxg x 11|f()()|f()()(k)2kx g x x g x k xx 21k 1k ,022x x x 解得2f()()x g x x 0x 1-k 21x 21(0)|f()()|x x x g x x ,时,恒有=1k (0,),x当+|f()()|()()ln(1)x g x g x f x x x 2M()ln(1),[0)x x x x x =-+-∈∞,+212M ()12,11x x x x x x--'=--=++0x M ()0x M()x [0+∞,)M()M(0)0x 0x 2|f()()|x g x x =1k (0,)2x π∈sin cos k x x x <1k <考点:导数的应用.8.(15年福建文科)已知函数.(Ⅰ)求函数的单调递增区间; (Ⅱ)证明:当时,;(Ⅲ)确定实数的所有可能取值,使得存在,当时,恒有.【答案】(Ⅰ) ;(Ⅱ)详见解析;(Ⅲ). 【解析】试题分析:(Ⅰ)求导函数,解不等式并与定义域求交集,得函数的单调递增区间;(Ⅱ)构造函数,.欲证明,只需证明的最大值小于0即可;(Ⅲ)由(II )知,当时,不存在满足题意;当时,对于,有,则,从而不存在满足题意;当时,构造函数,,利用导数研究函数的形状,只要存2(1)()ln 2x f x x -=-()f x 1x >()1f x x <-k 01x >0(1,)x x ∈()()1f x k x >-⎛ ⎝⎭(),1-∞()21x x f x x-++'='()0f x >()f x ()()()F 1x f x x =--()1,x ∈+∞()1f x x <-()F x 1k =01x >1k >1x >()()11f x x k x <-<-()()1f x k x <-01x >1k <()()()G 1x f x k x =--()0,x ∈+∞()G x在,当时即可.试题解析:(I ),.由得解得.故的单调递增区间是.(II )令,.则有.当时,, 所以在上单调递减,故当时,,即当时,. (III )由(II )知,当时,不存在满足题意.当时,对于,有,则,从而不存在满足题意.当时,令,,则有.由得,.解得,.当时,,故在内单调递增. 从而当时,,即,01x >0(1,)x x ∈()0G x >()2111x x f x x x x-++'=-+=()0,x ∈+∞()0f x '>2010x x x >⎧⎨-++>⎩102x +<<()fx 10,2⎛ ⎝⎭()()()F 1x f x x =--()0,x ∈+∞()21F x x x-'=()1,x ∈+∞()F 0x '<()F x [)1,+∞1x >()()F F 10x <=1x >()1f x x <-1k =01x >1k >1x >()()11f x x k x <-<-()()1f x k x <-01x >1k <()()()G 1x f x k x =--()0,x ∈+∞()()2111G 1x k x x x k x x-+-+'=-+-=()G 0x '=()2110x k x -+-+=10x =<21x =>()21,x x ∈()G 0x '>()G x [)21,x ()21,x x ∈()()G G 10x >=()()1f x k x >-综上,的取值范围是. 考点:导数的综合应用.9.(15年新课标1理科)设函数=,其中a 1,若存在唯一的整数x 0,使得0,则的取值范围是( ) A.[-,1) B. [-,) C. [,) D. [,1) 【答案】D10.(15年新课标2理科)设函数f’(x)是奇函数的导函数,f (-1)=0,当时,,则使得成立的x 的取值范围是(A ) (B )(C ) (D )【答案】A 【解析】k (),1-∞()f x (21)x e x ax a --+0()f xa记函数,则,因为当时,,故当时,,所以在单调递减;又因为函数是奇函数,故函数是偶函数,所以在单调递减,且.当时,,则;当时,,则,综上所述,使得成立的的取值范围是,故选A .11.(15年新课标2理科)设函数2()mx f x e x mx =+-。

相关文档
最新文档